岩石学报  2016, Vol. 32 Issue (11): 3269-3280   PDF    
右江盆地酸性脉岩继承锆石成因及地质意义
朱经经1, 钟宏1, 谢桂青2, 赵成海1, 胥磊落1, 陆刚3     
1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081 ;
2. 中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室, 北京 100037 ;
3. 广西壮族自治区区域地质调查研究院, 桂林 541003
摘要: 卡林型金矿与岩浆作用的关系一直以来是矿床学家关注的热点。右江盆地发育众多卡林型金矿床,但由于区内岩浆岩出露十分有限,岩浆活动对金成矿有无贡献目前还无定论。火成岩中的继承锆石常常可以用来指示早期的、隐伏的岩浆活动。桂西北地区晚白垩世巴马、料屯和下巴哈石英斑岩脉中含有大量的继承锆石。其中,料屯和下巴哈两处脉岩分别与料屯和明山金矿在空间上紧密相关。脉岩中锆石的LA-ICP-MS和SIMS原位U-Pb定年表明,其主要集中于130~140Ma、242Ma左右、400~450Ma、700~1000Ma和1700~1800Ma等五个年龄段。关于较年轻的两个时间段,来自料屯和下巴哈石英斑岩脉的继承锆石分别获得两组谐和年龄,即136.3±3.9Ma(2σ)和242.3±1.7Ma(2σ)、128.2±2.3Ma(2σ)和243.1±3.6Ma(2σ)。这些脉岩侵入的最年轻地层为中三叠统百逢组,因而前三叠纪继承锆石可能捕获自地层,而晚于三叠纪的130~140Ma锆石则应来自于深部隐伏岩体。关于242Ma左右锆石,尽管其与围岩地层百逢组1~2段近于同期,但其晶形较差且多呈不规则碎片状,暗示其更可能源自百逢组中的沉积碎屑锆石。结合区域地质背景,认为该期锆石所代表的岩浆事件可能与古特提斯洋闭合有关。以上130~140Ma和约242Ma左右的两组年龄,与初步确定的右江盆地卡林型金矿的两次成矿的时代基本一致,据此推断金矿化与岩浆作用可能有一定成因联系。
关键词: 右江盆地     卡林型金矿     继承锆石     锆石U-Pb定年    
Origin and geological implication of the inherited zircon from felsic dykes, Youjiang basin, China
ZHU JingJing1, ZHONG Hong1, XIE GuiQing2, ZHAO ChengHai1, XU LeiLuo1, LU Gang3     
1. State Key Laboratory of Ore Deposits Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China ;
2. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China ;
3. Institute of Regional Geological Survey of Guangxi Zhuang Autonomous Region, Guilin 541003, China
Abstract: The relationship between the Carlin-type gold deposits with magmatism is still debatable. Numerous Carlin-type gold deposits occur in the Youjiang basin, Southwest China. Due to the limited exposures of magmatic rocks within this region, it is unknown if there is genetic connections between magmatism and gold mineralization. The inherited zircons found in igneous rocks could give insight into the older or hidden magmatic events which are poorly exposed at the surface. The Bama, Liaotun, and Xiabaha quartz porphyry dykes host plenty of inherited zircons, among which the Liaotun and Xiabaha dykes are spatially present within the Liaotun and Mingshan gold deposits, respectively. Five main age clusters at 130~140Ma, ca.242Ma, 400~450Ma, 700~1000Ma, and 1700~1800Ma were recognized in the inherited zircons by both LA-ICP-MS and SIMS U-Pb dating. The two younger groups of inherited zircons from the Liaotun and Xiabaha dykes give concordant U-Pb ages of 136.3±3.9Ma (2σ), 242.3±1.7Ma (2σ) and 128.2±2.3Ma (2σ), 243.1±3.6Ma (2σ), respectively. All the three dykes intruded the strata including the Middle Triassic Baifeng Formation (Member 1 and 2; 247~244Ma) and older sequences. Therefore, those zircons with ages older than the Middle Triassic should be probably captured from the host sedimentary rocks. Conversely, those at 130~140Ma might be derived from the hidden magmatic intrusions. For the zircons at ca.242Ma, though coeval to the first and second members of the Baifeng Formation, they usually occur as anhedral fractions, indicating they might be inherited from the detrital zircons hosted by the sandstone and siltstone of the Baifeng Formation. Combined with the regional magmatism and geological setting, we propose that the ages of Triassic zircon forming events could represent the magmatic pulse related to the closure of the Paleo-Tethys Ocean. The zircon ages of 130~140Ma and ca.242Ma are generally consistent with the timing of gold mineralization in the Youjiang basin. Thus, we prefer that there might be genetic links between magmatism and the formation of Carlin-type gold deposits in the Youjiang basin.
Key words: Youjiang basin     Carlin-type gold deposits     Inherited zircon     Zircon U-Pb dating    
1 引言

卡林型金矿是一种沉积岩容矿的微细浸染型金矿床,在全球该类型矿床主要分布于美国内华达州北部地区和我国的右江盆地及西秦岭地区(Hu et al., 2002Zhang et al., 2003Cline et al., 2005Kesler et al., 2005; Peters et al., 2007Su et al., 2008, 2009a, 2012Hu and Zhou, 2012)。近年来的研究表明,美国内华达的卡林型金矿主要形成于33~42Ma(Tretbar et al., 2000Cline, 2001Arehart et al., 2003),与区内始新世大规模岩浆活动具有一定的成因联系(Henry and Boden, 1998Ressel et al., 2000Ressel and Henry, 2006Muntean et al., 2011Johnson et al., 2015)。我国右江盆地发育的卡林型金矿与美国内华达州具有很多相似性,但其形成时代和成矿机理(包括硫、金及成矿流体的来源等)却远未得到有效约束。成矿时代方面,前人针对各类矿物采用了多种定年方法,给出了十分宽泛的年龄范围:36~267Ma(Hu et al., 2002胡瑞忠等,2007aSu et al., 2009bChen et al., 2015)。其中,如下两组年龄可能相对集中:(1) 通过方解石Sm-Nd同位素定年,获得了数个卡林型金矿的成矿时代可能为135~150Ma(Su et al., 2009b王泽鹏,2013);(2) 含砷黄铁矿、毒砂Re-Os及云母40Ar/39Ar和蚀变成因金红石U-Pb定年结果表明,金成矿时代可能为200~230Ma左右(陈懋弘等, 2007, 2009Chen et al., 2015)。成矿机理方面,不少学者提出岩浆作用对金成矿十分关键(黄永全和崔永勤,2001刘建中等,2006王泽鹏,2013)。然而,除与峨眉山地幔柱有关的基性侵入体外(260Ma;Xu et al., 2008),右江盆地内部火成岩出露十分有限;现有的研究表明,区内发育的少量超基性和酸性脉岩主要形成于80~100Ma(Liu et al., 2010c陈懋弘等, 2012, 2014),较上述两组成矿年龄明显年轻,且部分矿区发现脉岩切穿金矿体的地质现象(陈懋弘等,2014)。因而,很难将卡林型金矿与已出露的岩浆活动联系起来。然而,就区内是否存在隐伏岩体及其与金成矿是否存在成因联系等科学问题,目前尚不明确。

作者的初步研究显示,上述晚白垩世酸性脉岩往往富含大量的继承锆石。尽管继承锆石的来源十分复杂,但依然可能为早期的、隐伏的岩浆活动带来一些指示(Hoskin and Schaltegger, 2003Pereira et al., 2011)。因而,对这些继承锆石进行深入研究,可能会为我们评估岩浆作用对金成矿的贡献提供有益的线索。本文选取右江盆地出露的三处酸性脉岩(其中两处与金矿床具紧密的空间联系)中的继承锆石为研究对象,通过锆石U-Pb定年手段,提取区内隐伏的岩浆岩信息并分析其构造意义,进而探究岩浆活动与卡林型金矿是否存在成因联系。

2 地质背景

右江盆地位于扬子克拉通(其与华夏陆块共同组成华南板块)的西南缘,并以哀牢山-红河断裂与西南侧的三江古特提斯构造域相连(图 1Peters et al., 2007Hu and Zhou, 2012)。盆地南侧与越北陆块为邻,二者可能被另一条古特提斯洋缝合带(即滇琼缝合带,图 1aCai and Zhang, 2009Yang et al., 2012a)隔开。连同师宗-弥勒断裂、凭祥-南宁断裂和紫云-亚都断裂,右江盆地被限制在一个近三角形的区域,故该区又被成为滇黔桂“金三角”。一般认为,早古生代晚期,伴随着古特提斯洋的打开,本区发生裂解并形成裂谷盆地,同时接受了大量浅水相的碳酸盐岩沉积(Liu et al., 2002杜远生等,2013)。至中三叠世,由于古特提斯洋的闭合,该区演变为前陆盆地,并发育以砂岩和泥岩为代表的深水浊流相沉积(Enos et al., 2006)。详细的镜下鉴定表明,该套沉积岩中含有大量的火山碎屑物质(Yang et al., 2012b)。值得指出的是,盆地西北侧发育中三叠世碳酸盐岩,表明该区域当时水深相对较浅(图 1)。

图 1 右江盆地构造位置(a)及其地质简图(b)(据Cai and Zhang, 2009; Hou et al., 2016修改) 图中各Sn(W)矿床的年龄数据来源于文献汇总(Wang et al., 2004李水如等,2008冯佳睿等,2011Cheng et al., 2013Mao et al., 2013; Xu et al., 2015) Fig. 1 Tectonic framework of the Youjiang basin (a) and its simplified geologic map (b) showing the distribution of Carlin-type gold deposits and igneous intrusions in the basin (modified after Cai and Zhang, 2009; Hou et al., 2016) Ages for the Sn (W) deposits are summarized from Wang et al., 2004; Li et al., 2008; Feng et al., 2011; Cheng et al., 2013; Mao et al., 2013; Xu et al., 2015

已有研究表明,右江盆地卡林型金矿的主要容矿岩石为晚古生代碳酸盐岩和中三叠统沉积碎屑岩,少部分为辉绿岩(Hu et al., 2002Peters et al., 2007Su et al., 2009aGoldfarb et al., 2014)。从矿体形态上区分,碳酸盐岩容矿的金矿床往往发育层状矿体(如水银洞金矿),而碎屑岩容矿金矿床的矿体则主要受高角度断层控制,其中以烂泥沟超大型金矿床最为著名(Zhang et al., 2003Xia et al., 2012)。尽管容矿岩石和矿体产状不尽相同,但各卡林型金矿具有相似的矿物组合、矿床地球化学特征,暗示可能具有相似的成因机制(Hu et al., 2002Zhang et al., 2003Peters et al., 2007)。盆地内部构造活动强烈,并以北东和北西向断层最为发育,其中北西向右江大断裂可能控制了区内大多数金矿床的展布(图 1bPeters et al., 2007)。具体而言,这些矿床主要发育于背斜的两翼或受控于次级断裂(Hu et al., 2002Zhang et al., 2003Su et al., 2009a; Xia et al., 2014)。

前已述及,除与峨眉山地幔柱相关的辉绿岩侵入体略显规模外,区内岩浆岩仅零星出露。在盆地北部出露一些碱性的超基性岩脉,该组岩脉距卡林型金矿床约30km(Su et al., 2009b),锆石U-Pb定年结果显示其形成于85~88Ma(Liu et al., 2010c)。而在盆地的西侧,发育一系列沿北西和北东断裂分布的酸性脉岩。少量的定年结果显示,这些脉岩主要形成于90~100Ma(陈懋弘等, 2012, 2014)。此外,在盆地的南部和西部边缘,出露一些晚白垩世大型花岗岩侵入体,并产出一系列大型-超大型锡矿床(如个旧、大厂锡矿床,图 1bWang et al., 2004Hu and Zhou, 2012Cheng et al., 2013Mao et al., 2013Xu et al., 2015)。

3 样品与岩石学特征

右江盆地的酸性脉岩主要出露于桂西北地区,其中大部分分布于卡林型金矿的外围(陈懋弘等,2012),少部分与金矿床在空间上紧密相关。脉岩一般沿北东向和北西向断裂分布,倾角较陡。脉体宽度一般不超过20m,而走向上可延伸至20km。本文选取三处酸性脉岩开展研究,其中料屯和下巴哈两处脉岩分别横穿料屯和明山金矿矿区,而巴马脉岩与金矿床无直接空间联系(图 2)。

图 2 巴马、料屯(a)和下巴哈(b)酸性脉岩分布地质图(据广西壮族自治区区域地质测量队,1971修编) 广西壮族自治区区域地质测量队. 1971.东兰幅(G-48-XXXVI)1:20万矿产图和田林幅(G-48-XXXV)1:20万地质图 Fig. 2 Geological distribution of the Bama, Liaotun (a), and Xiabaha (b) felsic dykes

料屯脉岩沿龙田背斜核部发育的北东向断裂产出,倾角近乎直立。围岩地层有石炭系、二叠系灰岩及中三叠统百逢组砂岩-泥岩(属百逢组1~2段,图 2a)。该脉岩沿走向上延伸约10km,脉宽10m左右。采样点远离料屯金矿区,该处脉岩侵入至下二叠统灰岩地层中。岩石呈灰白色,斑状结构,其中斑晶主要为石英和白云母,粒径为0.2~2mm,含量约占10%;基质以石英、白云母和碱性长石为主,岩石学上可定名为石英斑岩(图 3a)。地球化学研究表明,料屯酸性脉岩富集硅(SiO2质量分数为75%~80%)和钾,属于过铝质S型花岗岩(李院强等,2014)。料屯金矿矿区内,矿体主要赋存于百逢组第2段砂岩-泥岩地层中,走向北西。石英斑岩脉沿北东向断层侵入至百逢组地层,近脉岩处砂泥岩发育显著硅化,同时切穿金矿体,暗示金成矿早于脉岩的侵位(陈懋弘等,2014)。

图 3 料屯(a)和巴马(b)酸性脉岩显微照片(正交偏光) 矿物缩写:Kfs-钾长石;Mus-白云母;Qtz-石英 Fig. 3 Representative transmitted photomicrographs of the Liaotun (a) and Bama (b) felsic dykes (cross-polarized light) Abbreviations: Kfs-potassium feldspar; Mus-muscovite; Qtz-quartz

下巴哈脉岩主要沿北西-北北西向断裂相间出露,倾角为60°~80°,脉宽约4m。其西北段主要侵入至石炭系碳酸盐岩地层中,向东南延伸约10km,且围岩逐渐过渡到二叠系灰岩及中三叠统百逢组1~2段砂岩-泥岩地层(图 2b)。采样点位于该脉岩的西北段。与料屯石英斑岩脉相比,二者具有相似的地球化学特征(黄永全和崔永勤,2001);岩石学方面,斑晶以石英为主,白云母相对较少。该系列脉岩的东南段横穿明山金矿区,并侵入至下二叠统茅口组和中三叠统百逢组地层中(黄永全和崔永勤,2001庞保成等,2014)。金矿体主要受近东西向断裂控制,赋存于百逢组第2段砂泥岩地层中;尽管未见脉岩与矿体直接的穿切关系,但二者显著斜交,可能不具有成因联系(庞保成等,2014)。

巴马酸性脉岩沿巴马背斜核部发育的北西向断裂产出,倾角近直立,出露宽度5~10m,走向上延伸近10km。与料屯和下巴哈石英斑岩脉不同的是,围岩地层除石炭系和二叠系碳酸盐岩外,还包括晚二叠世辉绿岩(张晓静和肖加飞,2014);但未见脉岩侵入至中三叠世砂泥岩地层的地质现象(图 2a)。在采样点附近,该脉岩侵入至下二叠统灰岩地层中。岩石学方面,其与料屯石英斑岩脉相似,均为斑状结构,斑晶以石英和白云母为主,基质为石英、白云母和碱性长石(图 3b);地球化学特征亦与料屯和下巴哈脉岩基本一致(陈懋弘等,2012)。

4 锆石U-Pb定年方法

分别采集料屯、下巴哈和巴马石英脉岩约20kg(采样点见图 2)。为保证样品纯度,首先剔除了表面风化层,随后送至廊坊诚信地质服务公司挑选锆石。巴马脉岩挑选出的锆石较多(超过300粒),以柱状自形晶为主,长度为100~200μm,长宽比一般为2:1。料屯和下巴哈脉岩的锆石含量较少,分别仅挑出50粒左右,自形程度较差,少量可见长柱状晶形,多为锆石碎片。颗粒一般较小,长度不超过100μm。为获得准确可靠的分析结果,基于上述锆石的不同形态特征,选取了不同的测试仪器和分析方法。

4.1 巴马酸性脉岩

选取代表性的锆石约200粒制作环氧树脂靶,并拍摄透射光和反射光显微照片,以查明锆石的内部结构。上述工作在北京锆年领航科技有限公司完成。由于锆石颗粒较大,选择激光剥蚀-电感耦合等离子质谱仪(LA-ICP-MS)开展锆石U-Pb定年工作。该项测试在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,使用仪器为193nm型准分子激光剥蚀系统(型号:GeoLasPro)和ELANDRC-e电感耦合等离子体质谱。测试期间,激光束能量密度为10J/cm2,束斑直径为32μm,频率为5Hz,剥蚀时间为40s。使用标准锆石91500矫正仪器质量歧视效应和元素分馏,而标准锆石GJ-1和Plešovice作为未知样,用以检验数据质量。单点分析的同位素比值及年龄误差为1σ。ICPMSDataCal10.2和Isoplot 3.76软件分别被用来处理原始数据和进行年龄计算(Liu et al., 2010aLudwig, 2012)。测得的锆石GJ-1和Plešovice的206Pb/238U加权平均年龄均与推荐值(GJ-1:~599.8Ma,Liu et al., 2010b;Plešovice:~337.1Ma,Sláma et al., 2008)在误差范围内一致。具体分析流程与Liu et al.(2010a, b)的描述相同。

4.2 料屯和下巴哈酸性脉岩

将所有锆石样品并标样TEM2(416.8Ma;Black et al., 2004)和6266(559.0Ma;Stern and Amelin, 2003)用以制作环氧树脂靶。为揭示锆石的内部结构,完成透-反射光显微照相后,将锆石靶表面镀金并拍摄扫描电镜(SEM)、阴极发光(CL)和背散射(BSE)图像。所用仪器为蔡司公司生产的EVO MA15扫描电镜,并配有宽频CL和BSE探头。鉴于锆石颗粒较小,选择离子探针质谱仪(SIMS:Cameca IMS 1280)开展锆石U-Pb同位素测试工作。用强度为1nA一次O2-离子束轰击样品表面(轰击能量:23kV),束斑为15μm×18μm。以上工作均在加拿大阿尔伯塔大学完成。用标准锆石TEM2校正样品的Pb/U比值,Th和U含量则通过标准锆石6266计算获得,并基于实测204Pb含量校正普通Pb。单点分析的同位素比值及年龄误差为1σ。原始数据处理采用SQUID2软件(Ludwig, 2009),并通过ISOPLOT 3.76软件计算谐和年龄(Ludwig, 2012)。标准锆石6266的206Pb/238U加权平均年龄为560±1.5Ma(MSWD=2.4),与其推荐值在误差范围内一致。详细分析流程请见Stern et al.(2009)

5 锆石U-Pb年龄

除原生结晶锆石外,3个酸性脉岩样品均富含数量不等的继承锆石。阴极发光图像显示大部分锆石都具有很好的岩浆环带(图 4a, d)。与结晶锆石相比,继承锆石晶形较差,多为锆石碎片,且边部形状不规则,可能暗示其遭受了不同程度的溶蚀;其他少量晶体较完整的锆石边部呈浑圆状或不规则状,暗示经历溶蚀或搬运、磨圆等沉积过程。原生结晶锆石的U-Pb年龄为95~100Ma,与陈懋弘等(2012, 2014)报道的白云母40Ar/39Ar年龄(95Ma左右)在误差范围内一致。继承锆石年龄显著较老,其206Pb/238U表面年龄主要集中于130~140Ma、242Ma左右、400~450Ma、700~1000Ma和1700~1800Ma等五个年龄段(图 5)。具体而言,各个脉岩中的继承锆石的特征和年龄略有不同。值得提出的是,由于前人已对上述脉岩的成岩时代进行了有效约束(陈懋弘等, 2012, 2014),且本文的重点是通过继承锆石推测区内隐伏的岩浆活动并探讨其与金成矿的关系,因而对原生结晶锆石的U-Pb年龄不作深入讨论。

图 4 料屯(a-c)和下巴哈(d-f)酸性脉岩中继承锆石U-Pb谐和年龄图 图a、d展示了代表性锆石的阴极发光图片,其中红色椭圆代表分析点位,并附相应点号(表 2).大部分锆石呈碎片状,且边部多由于溶蚀而呈不规则状;少量晶体较完整的锆石边部呈不规则状或浑圆状,暗示经历溶蚀或搬运、磨圆等沉积过程.图b、c和e、f中的红色椭圆代表ISOPLOT软件计算的谐和年龄范围(Ludwig, 2012),分析点误差为1σ Fig. 4 Concordia diagrams of SIMS U-Pb isotopic analyses of inherited zircons for the Liaotun (a-c) and Xiabaha (d-f) felsic rocks Cathodoluminescence images of representative inherited zircons with spot numbers (red ellipse) are included in Fig. 4a, d, corresponding to the spot analyses given in Table 2. Note most of the zircons occur as fractions with irregular edges, and the relatively euhedral crystals have irregular edges or round shapes, indicative of corrosion or sedimentary processes including transportation and rounding. The red ellipses reflect the concordia ages calculated by ISOPLOT (Ludwig, 2012) in Fig. 4b, c, e, f. Data-point error ellipses are 1σ

图 5 酸性脉岩中继承锆石的206Pb/238U模式年龄分布图 Fig. 5 Frequency of 206Pb/238U model ages of the inherited zircons

(1) 巴马酸性岩脉。该脉岩样品(BM)中的锆石以结晶期岩浆锆石为主,继承锆石相对较少。对35个锆石颗粒进行了LA-ICP-MS U-Pb定年,其中仅5颗属于继承锆石(表 1)。这些继承锆石的U=244×10-6~2076×10-6,Th=108×10-6~898×10-6,相应的Th/U=0.23~0.66。206Pb/238U年龄主要分布于400~450Ma和700~1000Ma两个时间段。

表 1 巴马石英斑岩脉中继承锆石LA-ICP-MS U-Pb同位素分析数据 Table 1 LA-ICP-MS U-Pb isotopic data on the inherited zircons of the Bama quartz porphyry dyke

(2) 料屯酸性脉岩。该脉岩样品(NJ)含有大量的继承锆石,而结晶期岩浆锆石相对较少。其中,很多继承锆石的晶形不完整(图 4a)。对样品NJ的27个锆石颗粒进行了SIMS U-Pb同位素分析,其中继承锆石为24颗(表 2)。这些锆石的Th和U含量变化较大(U=91.4×10-6~1410×10-6,Th=39.6×10-6~448×10-6),但Th/U相对一致,除分析点NJ-B82@1和NJ-A10@1之外,所有分析点的Th/U均大于0.1(0.13~1.21)。U-Pb年龄涵盖上述五个分布区间(图 4a)。206Pb/238U年龄分布于242Ma左右和130~140Ma两个区间的锆石分别具有谐和的U-Pb同位素组成,与前者有关的11个分析点获得的谐和年龄为242.3±1.7Ma(2σ,MSWD=0.062;图 4b),而与后者相关的3个分析点得到的谐和年龄为136.3±3.9Ma(2σ,MSWD=0.0006;图 4c)。

表 2 料屯和下巴哈石英斑岩脉中继承锆石SIMS U-Pb同位素分析数据 Table 2 SIMS U-Pb isotopic data on the inherited zircons of the Liaotun and Xiabaha quartz porphyry dykes

(3) 下巴哈酸性脉岩。下巴哈石英脉岩样品(XBH)的锆石也以继承锆石为主。由于锆石颗粒很小,仅选出11颗做SIMS U-Pb同位素分析,其中8颗为继承锆石(表 2)。这些继承锆石的U=169×10-6~4032×10-6,Th=36×10-6~640×10-6,除分析点XBH-A2@1和XBH-B5@1之外,Th/U比值均大于0.1(0.27~0.88)。U-Pb年龄分布范围较广,但集中于130~140Ma和242Ma左右两个时间段(图 4d)。前者含3个分析点,剔除一个明显发生Pb丢失的锆石,两个分析点获得的谐和年龄为128.2±2.3Ma(2σ,MSWD=2.9;图 4f);而后者包括的3个分析点得到的谐和年龄为243.1±3.6Ma(2σ,MSWD=0.31;图 4e)。

6 讨论 6.1 继承锆石的成因

锆石包括原生岩浆、继承、变质、热液等多种成因类型(Hoskin and Schaltegger, 2003吴元保和郑永飞,2004Schaltegger,2007Yang et al., 2014)。而火成岩中的继承锆石大致具有两种来源:(1)捕获自围岩沉积岩地层;(2)来自于深部隐伏岩体。前者来自于碎屑锆石,常可以用来指示沉积的物源、沉积时代的上限以及重建古地理环境等(Gehrels et al., 2011Thomas, 2011)。而后者则对指示隐伏岩浆事件的时代十分关键(Condie et al., 2009Pereira et al., 2011)。

巴马、料屯和下巴哈酸性脉岩的形成时代为95~100Ma,围岩地层主要为晚古生代(C-T)碳酸盐岩和碎屑岩,均远远老于成岩时代(图 2)。其中最年轻的围岩为中三叠统百逢组1~2段(T2b1-2)。百逢组形成于三叠世安尼期,其1~2段的形成时代约为247~244Ma(Ovtcharova et al., 2006Chen and Stiller, 2007)。因而,244Ma可以作为围岩地层中所含碎屑锆石的年龄下限。故我们获得的400~450Ma、700~1000Ma和1700~1800Ma等三个较老年龄段的锆石,很可能来自于围岩地层,而较年轻的130~140Ma的锆石应当来自于隐伏岩体。至于242Ma左右的继承锆石,其在误差范围内与百逢组1~2段近于同期,故上述两种来源均有可能。进一步的分析表明,该期锆石多呈碎片状(图 4),具完整晶形者较少。此外,尽管料屯和下巴哈脉岩中该期锆石较多,而对未侵入至百逢组地层的巴马而言(图 2a),并未发现242Ma左右的继承锆石(表 1)。因而我们认为,该期继承锆石更有可能捕获自围岩地层。

6.2 华南板块西南缘中三叠世岩浆事件及其动力学背景

巴马、料屯和下巴哈脉岩中继承锆石的年龄主要分布于上述五个时间段,其中前三叠纪的三组年龄与华南板块主要的岩浆事件时限基本一致(Wang et al., 2012, 2013Yang et al., 2012a),暗示其可能与华南板块内部的各期岩浆事件相关。而130~140Ma的隐伏岩浆活动,则与华南板块140~125Ma时间段的岩石圈伸展较为吻合(毛景文等,2004胡瑞忠等,2007b),初步认为二者可能存在成因联系。

关于242Ma左右的继承锆石,由于其与最年轻的围岩地层(百逢组1~2段)近于同时代,结合岩层内部存在不少火山碎屑(Yang et al., 2012a),表明岩浆与沉积事件相隔很短,也暗示沉积区域应紧邻242Ma左右(中三叠世)岩浆活动的中心。右江盆地南缘发育一些早-中三叠世的岩浆岩,尤以一系列火山岩的产出为代表(覃小峰等,2011Yang et al., 2012b)。这些岩浆岩很可能为242Ma左右继承锆石的源岩。对于该期岩浆事件,存在两种可能动力学机制:(1)与太平洋板块西向平板俯冲有关(Li and Li, 2007Carter and Clift, 2008Li et al., 2012);(2)受印支运动即印支板块与华南板块的相互作用控制(Zhou et al., 2006Wang et al., 2013)。依照太平洋板块平板俯冲模型,右江盆地及其邻近区域应发育210Ma左右的岩浆活动,而240~250Ma的岩浆活动则应集中于华南板块的东南缘。显然,该模型无法解释上述中三叠世的岩浆事件。事实上,除南缘发育的火山活动之外,右江盆地周边也产出大量的早-中三叠世的火成岩。包括西侧的金沙江-哀牢山古特提斯带(Zhu et al., 2011Zi et al., 2012Lai et al., 2014Liu et al., 2015)、越北地块(Roger et al., 2012)等。系列地质、地球化学证据表明,介于印支板块和华南板块之间的古特提斯洋闭合于中三叠世(245Ma左右)或略早,松玛缝合带(Roger et al., 2012Faure et al., 2014Lai et al., 2014Wang et al., 2014)和/或介于右江盆地与越北地块之间的滇琼缝合带(Cai and Zhang, 2009)可能是古特提斯洋闭合后的残余(图 1)。因而,本研究涉及的242Ma左右的继承锆石所代表的岩浆事件可能与古特提斯洋的闭合紧密相关。

6.3 卡林型金矿与岩浆的可能关系

尽管目前就右江盆地卡林型金矿的成矿时代争议较大,但较多的年龄数据表明这些金矿很可能形成于135~150Ma(Su et al., 2009b王泽鹏,2013)或200~230Ma左右(陈懋弘等, 2007, 2009Chen et al., 2015)。前者主要基于以下两点认识:(1) 金成矿与去碳酸盐化蚀变紧密相关;(2) 方解石为去碳酸盐化的产物,故认为方解石的Sm-Nd同位素年龄可以代表金成矿时代。200~230Ma左右的年龄主要来自于Re-Os同位素定年,所用样品为含金毒砂和含砷黄铁矿(陈懋弘等,2009Chen et al., 2015)。最近,皮桥辉等(个人交流,2016)采用离子探针手段,对云南者桑金矿热液金红石进行了U-Pb定年,由于金红石与载金矿物——含砷黄铁矿具显著共生关系,推断者桑金矿形成于213.6±5.4Ma(MSWD=0.95)。该年龄与含砷黄铁矿、毒砂Re-Os定年结果在误差范围内一致。这表明右江盆地的卡林型金矿的早期成矿年龄可能为晚三叠世。

由上述讨论可以发现,右江盆地及周缘可能存在年龄在130~140Ma左右和约242Ma的隐伏花岗岩体。这两个时代的深部花岗岩浆活动与右江盆地两期卡林型金矿的成矿作用时代基本一致。这种时代上的一致性可能暗示,卡林型金矿的形成可能与其深部的岩浆活动具有成因联系。值得指出的是,这种推论是初步的,还需要更多成岩成矿精确年代学以及成矿流体地球化学的深入研究。

7 结论

(1) LA-ICP-MS和SIMS锆石U-Pb定年表明,继承锆石主要集中于130~140Ma、242Ma左右、400~450Ma、700~1000Ma和1700~1800Ma等五个年龄段。对于较年轻的两个时间段,料屯和下巴哈石英斑岩脉捕获的继承锆石分别获得两组谐和年龄,分别为136.3±3.9Ma(2σ)和242.3±1.7Ma(2σ)、128.2±2.3Ma(2σ)和243.1±3.6Ma(2σ)。

(2) 前三叠世继承锆石应来源于围岩地层;130~140Ma锆石可能捕获自深部隐伏岩体,而242Ma左右的锆石颗粒与中三叠统百逢组近于同时代,进一步研究表明其可能来自于百逢组中的沉积碎屑锆石,该期锆石所代表的岩浆事件可能与古特提斯洋闭合有关。

(3) 右江盆地及周缘可能存在年龄在130~140Ma左右和约242Ma的隐伏花岗岩体。这两个时代的深部花岗岩浆活动与右江盆地两期卡林型金矿的成矿作用时代基本一致。这种时代上的一致性可能暗示,卡林型金矿的形成可能与其深部的岩浆活动具有成因联系。

致谢 在野外考察过程中得到中国科学院地球化学研究所肖加飞研究员、蓝江波博士、黄勇硕士、张晓静硕士及广西区域地质调查研究院潘艺文工程师的帮助;锆石U-Pb定年工作分别在中国科学院地球化学研究所戴智慧高级工程师和加拿大阿尔伯塔大学Richard Stern博士的协助下完成;胡瑞忠研究员对研究工作和论文的写作给予了指导和帮助;西北大学刘燊教授和另外一位匿名评阅人对文章初稿提出了许多建设性意见;在此一并表示感谢!
参考文献
[] Arehart GB, Chakurian AM, Tretbar DR, Christensen JN, McInnes BA , Donelick RA. 2003. Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, western North America, and implications for deposit genesis. Economic Geology , 98 (2) :235–248.
[] Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS , Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology , 205 (1-2) :115–140. DOI:10.1016/j.chemgeo.2004.01.003
[] Cai JX , Zhang KJ. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics , 467 (1-4) :35–43. DOI:10.1016/j.tecto.2008.12.003
[] Carter A , Clift PD. 2008. Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event?. Comptes Rendus Geoscience , 340 (2-3) :83–93. DOI:10.1016/j.crte.2007.08.011
[] Chen JH , Stiller F. 2007. The halobiid bivalve genus Enteropleura and a new species from the Middle Anisian of Guangxi, southern China. Acta Palaeontologica Polonica , 52 (1) :53–61.
[] Chen MH, Mao JW, Qu WJ, Wu LL, Uttley PJ, Norman T, Zheng JM , Qin YZ. 2007. Re-Os dating of arsenian pyrites form the Lannigou gold deposit, Zhenfeng, Guizhou Province, and its geological significances. Geological Reviews , 53 (3) :371–382.
[] Chen MH, Huang QW, Hu Y, Chen ZY , Zhang W. 2009. Genetic types of phyllosilicate (micas) and its 39Ar-40Ar dating in Lannigou gold deposit, Guizhou Province, China. Acta Mineralogica Sinica , 29 (3) :353–362.
[] Chen MH, Lu G , Li XH. 2012. Muscovite 40Ar/39Ar dating of the quartz porphyry veins from Northwest Guangxi, China, and its geological significance. Geological Journal of China Universities , 18 (1) :106–116.
[] Chen MH, Zhang Y, Meng YY, Lu G , Liu SQ. 2014. Determination of upper limit of metallogenic epoch of Liaotun gold deposit in western Guangxi and its implications for chronology of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi "golden triangle" area. Mineral Deposits , 33 (1) :1–13.
[] Chen MH, Mao JW, Li C, Zhang ZQ , Dang Y. 2015. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China. Ore Geology Reviews , 64 :316–327. DOI:10.1016/j.oregeorev.2014.07.019
[] Cheng YB, Mao JW , Spandler C. 2013. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos , 175-176 :213–229. DOI:10.1016/j.lithos.2013.04.002
[] Cline JS. 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology , 96 (1) :75–89.
[] Cline JS, Hofstra AH, Muntean JL, Tosdal RM , Hickey KA. 2005. Carlin-type gold deposits in Nevada:Critical geologic characteristics and viable models. Economic Geology 100th anniversary volume :451–484.
[] Condie KC, Belousova E, Griffin WL , Sircombe KN. 2009. Granitoid events in space and time:Constraints from igneous and detrital zircon age spectra. Gondwana Research , 15 (3-4) :228–242. DOI:10.1016/j.gr.2008.06.001
[] Du YS, Huang H, Yang JH, Huang HW, Tao P, Huang ZQ, Hu LS , Xie CX. 2013. The basin translation from Late Paleozoic to Triassic of the Youjiang basin and its tectonic signification. Geological Review , 59 (1) :1–11.
[] Enos P, Lehrmann DJ, Wei JY, Yu YY, Xiao JF, Chaikin DH, Minzoni M, Berry AK , Montgomery P. 2006. Triassic evolution of the Yangtze platform in Guizhou Province, People's Republic of China. Geological Society of America Special Papers , 417 :1–105.
[] Faure M, Lepvrier C, Van Nguyen V, Van Vu T, Lin W , Chen ZC. 2014. The South China block-Indochina collision:Where, when, and how?. Journal of Asian Earth Sciences , 79 :260–274. DOI:10.1016/j.jseaes.2013.09.022
[] Feng JR, Mao JW, Pei RF , Li C. 2011. A tentative discussion on Indosinian ore-forming events in Laojunshan area of southeastern Yunnan:A case study of Xinzhai tin deposit and Nanyangtian tungsten deposit. Mineral Deposits , 30 (1) :57–73.
[] Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B , Pecha M. 2011. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere , 3 (3) :183–200. DOI:10.1130/L121.1
[] Goldfarb RJ, Taylor RD, Collins GS, Goryachev NA , Orlandini OF. 2014. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research , 25 (1) :48–102. DOI:10.1016/j.gr.2013.03.002
[] Henry CD , Boden DR. 1998. Eocene magmatism:The heat source for Carlin-type gold deposits of northern Nevada. Geology , 26 (12) :1067–1070. DOI:10.1130/0091-7613(1998)026<1067:EMTHSF>2.3.CO;2
[] Hoskin PWO , Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry , 53 (1) :27–62. DOI:10.2113/0530027
[] Hou L, Peng HJ, Ding J, Zhang JR, Zhu SB, Wu SY, Wu Y , Ouyang HG. 2016. Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao Trend, Youjiang Basin, China:Implications for paragenesis and source of sulfur. Economic Geology , 111 (2) :331–353. DOI:10.2113/econgeo.111.2.331
[] Hu RZ, Su WC, Bi XW, Tu GZ , Hofstra AH. 2002. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita , 37 (3-4) :378–392. DOI:10.1007/s00126-001-0242-7
[] Hu RZ, Bi XW, Peng JT, Liu S, Zhong H, Zhao JH , Jiang GH. 2007a. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits , 26 (2) :139–152.
[] Hu RZ, Peng JT, Ma DS, Su WC, Shi CH, Bi XW , Tu GC. 2007b. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif. Mineral Deposits , 26 (6) :583–596.
[] Hu RZ , Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita , 47 (6) :579–588. DOI:10.1007/s00126-012-0431-6
[] Huang YQ , Cui YQ. 2001. The relationship between magmatic rocks and gold mineralization of Mingshan gold deposit of Lingyun, Guangxi. Guangxi Geology , 14 (4) :22–28.
[] Johnson CL, Dilles JH, Kent AJR, Farmer LP, Henry CD and Ressel MW. 2015. Petrology and geochemistry of the Emigrant Pass volcanics, Nevada:Implications for a magmatic-hydrothermal origin of the Carlin gold deposits. In:Pennell and Garside (eds.). New Concepts and Discoveries. Lancaster, USA:DEStech Publications, Inc:391-408
[] Kesler SE, Riciputi LC , Ye ZJ. 2005. Evidence for a magmatic origin for Carlin-type gold deposits:Isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA. Mineralium Deposita , 40 (2) :127–136. DOI:10.1007/s00126-005-0477-9
[] Lai CK, Meffre S, Crawford AJ, Zaw K, Xue CD , Halpin JA. 2014. The western Ailaoshan volcanic belts and their SE Asia connection:A new tectonic model for the Eastern Indochina Block. Gondwana Research , 26 (1) :52–74. DOI:10.1016/j.gr.2013.03.003
[] Li SR, Wang DH, Liang T, Qu WJ , Ying LJ. 2008. Metallogenic epochs of the Damingshan tungsten deposit in Guangxi and its prospecting potential. Acta Geologica Sinica , 82 (7) :873–879.
[] Li YQ, Pang BC, Yang F, Zhang DW, Zeng QF, Liu X , Jiang XH. 2014. Geochemical characteristics and metallogenic significance of quart porphyry in Liaotun gold deposit, Bama County, Guangxi. Geoscience , 28 (6) :1138–1150.
[] Li ZX , Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology , 35 (2) :179–182. DOI:10.1130/G23193A.1
[] Li ZX, Li XH, Chung SL, Lo CH, Xu XS , Li WX. 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian:Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics , 532-535 :271–290.
[] Liu HC, Wang YJ, Cawood PA, Fan WM, Cai YF , Xing XW. 2015. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Research , 27 (3) :1292–1306. DOI:10.1016/j.gr.2013.12.013
[] Liu JM, Ye J, Ying HL, Liu JJ, Zheng MH , Gu XX. 2002. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China. Journal of Asian Earth Sciences , 20 (5) :517–533. DOI:10.1016/S1367-9120(01)00053-0
[] Liu JZ, Deng YM, Liu CQ, Zhang XC , Xia Y. 2006. Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County, Guizhou Province. Geology in China , 33 (1) :169–177.
[] Liu S, Su WC, Hu RZ, Feng CX, Gao S, Coulson IM, Wang T, Feng GY, Tao Y , Xia Y. 2010c. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from Southwest Guizhou Province, SW China. Lithos , 114 (1-2) :253–264. DOI:10.1016/j.lithos.2009.08.012
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ , Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology , 51 (1-2) :537–571. DOI:10.1093/petrology/egp082
[] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J , Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin , 55 (15) :1535–1546. DOI:10.1007/s11434-010-3052-4
[] Ludwig KR. 2009. SQUID2:A User's Manual, rev. 12 Apr, 2009. Berkeley, CA:Berkeley Geochronology Center Special Publication, 5:1-110
[] Ludwig KR. 2012. Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel. Berkeley, CA:Berkeley Geochronology Center Special Publication, 5:75
[] Mao JW, Xie GQ, Li XF, Zhang CQ , Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers , 11 (1) :45–55.
[] Mao JW, Cheng YB, Chen MH , Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita , 48 (3) :267–294. DOI:10.1007/s00126-012-0446-z
[] Muntean JL, Cline JS, Simon AC , Longo AA. 2011. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geosciences , 4 (2) :122–127. DOI:10.1038/ngeo1064
[] Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A , Guex J. 2006. New Early to Middle Triassic U-Pb ages from South China:Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters , 243 (3-4) :463–475. DOI:10.1016/j.epsl.2006.01.042
[] Pang BC, Xiao H, Fu W, Zhang QW , Chen HY. 2014. Microfabric and composition of hydrothermal minerals from the Mingshan Carlin gold deposit in northwestern Guangxi and their implication for ore-forming process. Journal of Jilin University (Earth Science Edition) , 44 (1) :105–119.
[] Pereira MF, Chichorro M, Solá AR, Silva JB, Sánchez-García T , Bellido F. 2011. Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos , 123 (1-4) :204–217. DOI:10.1016/j.lithos.2010.11.008
[] Peters SG, Huang JZ, Li ZP , Jing CG. 2007. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan provinces, and Guangxi District, China. Ore Geology Reviews , 31 (1-4) :170–204. DOI:10.1016/j.oregeorev.2005.03.014
[] Qin XF, Wang ZQ, Zhang YL, Pan LZ, Hu GA , Zhou FS. 2011. Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi:Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrologica Sinica , 27 (3) :794–808.
[] Ressel MW, Noble DC, Henry CD , Trudel WS. 2000. Dike-hosted ores of the Beast deposit and the importance of Eocene magmatism in gold mineralization of the Carlin trend, Nevada. Economic Geology , 95 (7) :1417–1444.
[] Ressel MW , Henry CD. 2006. Igneous geology of the Carlin Trend, Nevada:Development of the Eocene plutonic complex and significance for Carlin-type gold deposits. Economic Geology , 101 (2) :347–383. DOI:10.2113/gsecongeo.101.2.347
[] Roger F, Maluski H, Lepvrier C, Vu Van T , Paquette JL. 2012. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in northern Vietnam:Geodynamical implications. Journal of Asian Earth Sciences , 48 :72–82. DOI:10.1016/j.jseaes.2011.12.012
[] Schaltegger U. 2007. Hydrothermal zircon. Elements , 3 (1) :51–79. DOI:10.2113/gselements.3.1.51
[] Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN , Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology , 249 (1-2) :1–35. DOI:10.1016/j.chemgeo.2007.11.005
[] Stern RA , Amelin Y. 2003. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology , 197 (1-4) :111–142. DOI:10.1016/S0009-2541(02)00320-0
[] Stern RA, Bodorkos S, Kamo SL, Hickman AH , Corfu F. 2009. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostandards and Geoanalytical Research , 33 (2) :145–168. DOI:10.1111/ggr.2009.33.issue-2
[] Su WC, Xia B, Zhang HT, Zhang XC , Hu RZ. 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for the environment and processes of ore formation. Ore Geology Reviews , 33 (3-4) :667–679. DOI:10.1016/j.oregeorev.2007.10.002
[] Su WC, Heinrich CA, Pettke T, Zhang XC, Hu RZ , Xia B. 2009a. Sediment-hosted gold deposits in Guizhou, China:Products of wall-rock sulfidation by deep crustal fluids. Economic Geology , 104 (1) :73–93. DOI:10.2113/gsecongeo.104.1.73
[] Su WC, Hu RZ, Xia B, Xia Y , Liu YP. 2009b. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chemical Geology , 258 (3-4) :269–274. DOI:10.1016/j.chemgeo.2008.10.030
[] Su WC, Zhang HT, Hu RZ, Ge X, Xia B, Chen YY , Zhu C. 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for gold depositional processes. Mineralium Deposita , 47 (6) :653–662. DOI:10.1007/s00126-011-0328-9
[] Thomas WA. 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere , 3 (4) :304–308. DOI:10.1130/RF.L001.1
[] Tretbar DR, Arehart GB , Christensen JN. 2000. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite. Geology , 28 (10) :947–950. DOI:10.1130/0091-7613(2000)28<947:DGDIAC>2.0.CO;2
[] Wang BD, Wang LQ, Chen JL, Yin FG, Wang DB, Zhang WP, Chen LK , Liu H. 2014. Triassic three-stage collision in the Paleo-Tethys:Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China. Gondwana Research , 26 (2) :475–491. DOI:10.1016/j.gr.2013.07.023
[] Wang DH, Chen YC, Chen W, Sang HQ, Li HQ, Lu YF, Chen KL , Lin ZM. 2004. Dating of the Dachang superlarge tin-polymetallic deposit in Guangxi and its implication for the genesis of the No.100 orebody. Acta Geologica Sinica (English Edition) , 78 (2) :452–458.
[] Wang LJ, Yu JH, Griffin WL , O'Reilly SY. 2012. Early crustal evolution in the western Yangtze Block:Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research , 222-223 :368–385. DOI:10.1016/j.precamres.2011.08.001
[] Wang YJ, Fan WM, Zhang GW , Zhang YH. 2013. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research , 23 (4) :1273–1305. DOI:10.1016/j.gr.2012.02.019
[] Wang ZP. 2013. Genesis and dynamic mechanism of the epithermal ore deposits, SW Guizhou, China:A case study of gold and antimony deposits. Ph. D. Dissertation. Guiyang:Institute of Geochemistry, Chinese Academy of Sciences, 1-150 (in Chinese with English summary)
[] Wu YB , Zheng YF. 2004. Genesis of zircon and its constraints on the interpretation of U-Pb age. Chinese Science Bulletin , 49 (15) :1554–1569. DOI:10.1007/BF03184122
[] Xia Y, Su WC, Zhang XC and Liu JZ. 2012. Geochemistry and Metallogenic model of Carlin-type gold deposits in Southwest Guizhou Province, China. In:Panagiotaras D (ed.). Geochemistry-Earth's System Processes. InTech, 127-156
[] Xu B, Jiang SY, Wang R, Ma L, Zhao KD , Yan X. 2015. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos , 218 :54–72.
[] Xu YG, Luo ZY, Huang XL, He B, Xiao L, Xie LW , Shi YR. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta , 72 (13) :3084–3104. DOI:10.1016/j.gca.2008.04.019
[] Yang JH, Cawood PA, Du YS, Huang H , Hu LS. 2012a. Detrital record of Indosinian mountain building in SW China:Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics , 574-575 :105–117. DOI:10.1016/j.tecto.2012.08.027
[] Yang JH, Cawood PA, Du YS, Huang H, Huang HW , Tao P. 2012b. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sedimentary Geology , 261-262 :120–131. DOI:10.1016/j.sedgeo.2012.03.018
[] Yang WB, Niu HC, Shan Q, Sun WD, Zhang H, Li NB, Jiang YH , Yu XY. 2014. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite:Implications for Zr-REE-Nb mineralization. Mineralium Deposita , 49 (4) :451–470. DOI:10.1007/s00126-013-0504-1
[] Zhang XC, Spiro B, Halls C, Stanley CJ , Yang KY. 2003. Sediment-hosted disseminated gold deposits in Southwest Guizhou, PRC:Their geological setting and origin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics. International Geology Review , 45 (5) :407–470. DOI:10.2747/0020-6814.45.5.407
[] Zhang XJ , Xiao JF. 2014. Zircon U-Pb geochronology, Hf isotope and geochemistry study of the Late Permian diabases in the Northwest Guangxi Autonomous Region. Bulletin of Mineralogy, Petrology and Geochemistry , 33 (2) :163–176.
[] Zhou XM, Sun T, Shen WZ, Shu LS , Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes , 29 (1) :26–33.
[] Zhu JJ, Hu RZ, Bi XW, Zhong H , Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos , 126 (3-4) :248–264. DOI:10.1016/j.lithos.2011.07.003
[] Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E, McCuaig TC , Peng TP. 2012. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos , 144-145 :145–160. DOI:10.1016/j.lithos.2012.04.020
[] 陈懋弘, 毛景文, 屈文俊, 吴六灵, UttleyPJ, NormanT, 郑建民, 秦运忠.2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义. 地质论评 , 53 (3) :371–382.
[] 陈懋弘, 黄庆文, 胡瑛, 陈振宇, 章伟.2009. 贵州烂泥沟金矿层状硅酸盐矿物及其40Ar/39Ar年代学研究. 矿物学报 , 29 (3) :353–362.
[] 陈懋弘, 陆刚, 李新华.2012. 桂西北地区石英斑岩脉白云母40Ar/39Ar年龄及其地质意义. 高校地质学报 , 18 (1) :106–116.
[] 陈懋弘, 张延, 蒙有言, 陆刚, 刘苏桥.2014. 桂西巴马料屯金矿床成矿年代上限的确定——对滇黔桂"金三角"卡林型金矿年代学研究的启示. 矿床地质 , 33 (1) :1–13.
[] 杜远生, 黄虎, 杨江海, 黄宏伟, 陶平, 黄志强, 胡丽沙, 谢春霞.2013. 晚古生代-中三叠世右江盆地的格局和转换. 地质论评 , 59 (1) :1–11.
[] 冯佳睿, 毛景文, 裴荣富, 李超.2011. 滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例. 矿床地质 , 30 (1) :57–73.
[] 胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪.2007a. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质 , 26 (2) :139–152.
[] 胡瑞忠, 彭建堂, 马东升, 苏文超, 施春华, 毕献武, 涂光炽.2007b. 扬子地块西南缘大面积低温成矿时代. 矿床地质 , 26 (6) :583–596.
[] 黄永全, 崔永勤.2001. 广西凌云县明山金矿床岩浆岩与金矿化关系. 广西地质 , 14 (4) :22–28.
[] 李水如, 王登红, 梁婷, 屈文俊, 应立娟.2008. 广西大明山钨矿区成矿时代及其找矿前景分析. 地质学报 , 82 (7) :873–879.
[] 李院强, 庞保成, 杨锋, 张东伟, 曾庆锋, 刘旭, 蒋新红.2014. 广西巴马料屯金矿石英斑岩地球化学特征及成矿指示意义. 现代地质 , 28 (6) :1138–1150.
[] 刘建中, 邓一明, 刘川勤, 张兴春, 夏勇.2006. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式. 中国地质 , 33 (1) :169–177.
[] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄.2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘 , 11 (1) :45–55.
[] 庞保成, 肖海, 付伟, 张青伟, 陈宏毅.2014. 桂西北明山卡林型金矿床热液矿物的显微组构与化学成分特征及其对成矿作用的指示. 吉林大学学报(地球科学版) , 44 (1) :105–119.
[] 覃小峰, 王宗起, 张英利, 潘罗忠, 胡贵昂, 周府生.2011. 桂西南早中生代酸性火山岩年代学和地球化学:对钦-杭结合带西南段构造演化的约束. 岩石学报 , 27 (3) :794–808.
[] 王泽鹏. 2013.贵州省西南部低温矿床成因及动力学机制研究——以金、锑矿床为例.博士学位论文.贵阳:中国科学院地球化学研究所, 1-150
[] 吴元保, 郑永飞.2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报 , 49 (16) :1589–1604.
[] 张晓静, 肖加飞.2014. 桂西北玉凤、巴马晚二叠世辉绿岩年代学、地球化学特征及成因研究. 矿物岩石地球化学通报 , 33 (2) :163–176.