岩石学报  2016, Vol. 32 Issue (11): 3239-3251   PDF    
华南大规模低温成矿的主要科学问题
胡瑞忠, 付山岭, 肖加飞     
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081
摘要: 大面积低温成矿是全球独特的重要成矿事件。华南地区扬子地块西南部面积约50万平方千米的广大范围,低温矿床广泛发育,包括卡林型金矿床、MVT型Pb-Zn矿床和脉型锑、汞、砷等矿床,构成华南低温成矿域。该成矿域由川滇黔接壤区的Pb-Zn、右江盆地Au-Sb-As-Hg和湘中盆地Sb-Au等三个矿集区组成。其中的矿床主要赋存于沉积岩中,受断裂构造控制,形成于100~250℃的低温条件下。以往的研究取得了重要进展,但成矿时代、成矿动力学背景、成矿物质基础和成矿过程等关键科学问题一直悬而未决。近年的研究表明,这些矿床可能形成于200~230Ma(印支期)和130~160Ma(燕山期)两个时期,除川滇黔Pb-Zn矿集区由盆地卤水演化成矿外,其余两个矿集区的形成可能均受印支期和燕山期的深部岩浆活动驱动,尽管成矿流体中的水主要是大气成因地下水。本专题报道了近年来这些方面的最新研究进展,包括20篇文章,主要涉及这些低温矿床的地质地球化学特征、成矿时代、矿床成因和成矿动力学背景等。
关键词: 华南     大规模低温成矿     成矿时代     动力学背景     成矿过程    
Major scientific problems on low-temperature metallogenesis in South China
HU RuiZhong, FU ShanLing, XIAO JiaFei     
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Abstract: Low-temperature metallogenesis in a huge area is very special in the world. The giant South China low-temperature metallogenic domain (SCLTMD) covers an area of around 500, 000km2 in the southwestern Yangtze Block in South China, and is composed of the Chuan-Dian-Qian Pb-Zn, Youjiang Au-As-Sb-Hg and Xiangzhong Sb-Au metallogenic provinces. The SCLTMD hosts numerous Carlin-type gold deposits, MVT Pb-Zn deposits and vein-type Sb, Hg and As deposits, which were basically hosted by sedimentary rocks, formed under low temperature conditions (ca.100~250℃) and obviously controlled by fault and fracture systems. Many developments have been obtained from previous studies. However, some crucial scientific problems concerning the accurate mineralization ages, metallogenic geodynamics and processes are still much debatable. Recent studies have shown that these deposits might form dominantly during 200~230Ma and 130~160Ma, corresponding to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) orogenies in South China, and the formation of the deposits were triggered by Indosinian and Yanshanian buried magmatism except the Pb-Zn deposits in the Chuan-Dian-Qian provinces. This special issue reports the latest progresses about this aspect in 20 papers that deal dominantly with the geological and geochemical features, ages of mineralization, origins and tectonic settings of the low-temperature ore deposits formed in the SCLTMD.
Key words: South China     Large-scale metallogenesis     Mineralization ages     Geodynamic setting     Ore-forming processes    

低温成矿域指低温热液矿床大面积密集成群产出的区域(李朝阳,1999; 涂光炽,2002; 赵振华和涂光炽,2003)。涂光炽(1998)李朝阳(1999)采用200℃作为低温的上线,但他们同时强调温度区间的划分既是人为的,又不可能是截然断开的,中低温、高中温之间都存在着过渡,应该把低温矿床定义为主成矿温度多在200℃以下更合适些。虽然低温矿床在世界各地都有分布,但低温成矿域在世界上的分布则较局限。华南陆块由扬子地块和华夏地块在新元古代碰撞拼贴而形成。在两个地块交接部位扬子地块一侧的川、滇、黔、桂、湘等省区面积约50万平方千米的广大范围内,卡林型金矿和锑、汞、砷、铅、锌等低温矿床广泛发育,且不少为大型-超大型矿床(涂光炽,2000; 赵振华和涂光炽,2003; 毛景文等,2006; 胡瑞忠等,2015)。该区锑矿的储量占全球的50%以上,金矿储量约占全国的10%,汞矿储量约占全国的80%,同时还是我国铅锌矿的主要产区之一,显示出大规模低温成矿的特征,构成华南低温成矿域(李朝阳,1999; 涂光炽,2002; 赵振华和涂光炽,2003; 图 1)。在美国中西部,MVT型铅锌矿床、卡林型金矿等低温矿床也非常发育,是美国的主要矿产资源基地之一(Leach et al., 2001, 2010; Arehart et al., 2003; Pannalal et al., 2004; Muntean et al., 2011)。这种大面积产出不同矿种低温矿床的低温成矿域,目前世界上主要见于上述两个区域(李朝阳,1999)。因此,即使就全球而言,在什么条件下才能形成低温成矿域,也是很具特色的重要科学问题。毫无疑问,华南低温成矿域是研究大规模低温成矿作用,建立和发展大规模低温成矿理论的理想场所。

图 1 华南及邻区地质简图:构造构架及华南低温成矿域矿床分布(据Hu et al., 2002; Hu and Zhou, 2012; Qiu et al., 2016修改) Fig. 1 Simplified geological map of South China and adjacent regions showing the structure frame and the distribution of ore deposits in the South China low-temperature metallogenic domain (modified after Hu et al., 2002; Hu and Zhou, 2012; Qiu et al., 2016)

20世纪70年代以来,随着滇黔桂地区卡林型金矿的发现,华南以卡林型金矿和铅、锌、砷、锑、汞矿为主的低温成矿域的形成背景和过程,已成为一个重要科学问题而引起学界的重视(涂光炽, 1987, 1988, 1998, 2000; 周永章和胡瑞忠,1995; 李朝阳,1999; 涂光炽,2002; 赵振华和涂光炽,2003)。研究工作取得重要进展,研究发现(1)该区的基底为元古代变质岩建造,盖层为显生宙碳酸盐-细碎屑岩建造,其中黑色岩系发育,二叠纪末期的峨眉山玄武岩在该成矿域西半部广泛分布; 自古生代以来,长期处于较稳定状态; 相对于华夏地块,研究区中生代花岗岩浆活动微弱(涂光炽, 1987, 1988, 1998, 2000, 2002; 赵振华和涂光炽,2003); (2)该区的低温矿床主要集中分布在三个矿集区,分别是川滇黔接壤区的Pb-Zn矿集区、右江盆地Au-Sb-As-Hg矿集区、湘中盆地Sb-Au矿集区(马东升等,2002; 黄智龙等,2004; 胡瑞忠等, 2007, 2015; 张长青等,2009; Hu and Zhou, 2012; Zhou et al., 2014); (3)矿体主要呈脉状、透镜状、似层状、不规则状产出,明显受穿层断裂、层间破碎带、不整合面和岩溶构造控制,属于后生矿床(胡瑞忠等, 1995, 2007; 涂光炽等,2000; 赵振华和涂光炽,2003; 张长青等,2009; Zhou et al., 2001; Hu et al., 2002; Peng et al., 2003; Su et al., 2009a, 2012b, ); (4)虽然从前寒武到三叠系的地层中均有低温矿床产出,但不同矿种对地层时代或岩性有一定的选择性。卡林型金矿主要赋存在三叠系泥质灰岩中(Hu et al. 2002),锑矿主要赋存在泥盆系碳酸盐岩和钙质碎屑岩中(彭建堂和胡瑞忠,2001; 彭建堂等,2003; 胡瑞忠等, 2007),汞矿主要赋存在寒武系地层中(胡瑞忠等, 2007); 铅锌矿主要赋存在震旦系、石炭系和二叠系白云岩和白云质灰岩中(Zhou et al., 2001, 2013a, 2014b; 黄智龙等, 2004); (5)各类矿床的矿物组合和元素组合特征:卡林型金矿的矿石矿物主要为含砷黄铁矿、毒砂、辉锑矿、雄黄和雌黄,金主要呈微细粒或不可见金形式分布在含砷黄铁矿中,脉石矿物主要为石英和方解石; 铅锌矿的矿石矿物主要为方铅矿和闪锌矿,脉石矿物主要为石英和方解石; 锑矿的矿石矿物主要辉锑矿、黄铁矿、毒砂、雄黄和雌黄,脉石矿物主要为石英、方解石和萤石; 卡林型金矿除Au外通常富集As、Sb、Hg、Tl、Ba等,铅锌矿中通常富集Ag、Ge、Cd等(涂光炽, 1998, 2000; 彭建堂和胡瑞忠,2001; 马东升等,2002; 赵振华和涂光炽,2003; 黄智龙等,2004; Hu et al., 2002; Su et al., 2009a); (6)这些矿床成矿温度主要在100~250℃,成矿流体大都为小于10% NaCleqv的低盐度流体(Hu et al., 2002; Su et al., 2009a; Gu et al., 2012),但川滇黔接壤区的Pb-Zn矿床盐度较高,可达8%~17% NaCleqv (张长青等, 2009); (7)矿床的成矿物质和成矿流体具有多来源的特点,尽管成矿模式尚未系统建立也不能完全排除有其它流体参与,但大多认为是深循环大气成因流体或盆地流体浸取出基地和/或围岩中的有用组分而运移至相对开放的断裂空间成矿的(胡瑞忠等,1995; 李朝阳,1999; Zhou et al., 2001, 2013a, 2014b; Hu et al., 2002; Gu et al., 2012; 彭建堂和胡瑞忠,2001; 彭建堂等,2003; 张长青等,2009),尽管成矿的动力和热驱动机制还不十分清楚。

虽然以往的研究取得了重要进展,但现有理论还无法合理解释华南低温成矿域的形成机制,尚有较多重要科学问题亟待解决。解决这些关键科学问题,从而建立华南大面积低温成矿理论,不仅对丰富和发展大陆动力学与成矿关系的理论体系具有重要意义,同时也是提高该区找矿预测效率的重要基础。

1 低温成矿的精确年代格架

要建立大面积低温成矿理论,一个很重要的方面是对其成矿时代和动力驱动机制的正确把握。但是,低温成矿时代,因这些矿床物质组成的固有特点而一直未得到较好解决。这些低温矿床的共同特点是,一般都缺少适合用传统放射性同位素定年的矿物,这就给矿床定年研究带来了很大难度(Arehart et al., 2003)。

1.1 国内研究现状

实际上,前人曾用了较多方法以试图确定这些矿床的成矿时代,但得到了变化范围很大的结果。例如,(1) 卡林型金矿:张峰和杨科佑(1992)用石英裂变径迹法测得白地金矿床的年龄为82.9±6.3Ma~87.6±6.1Ma; 罗孝桓(1997)用石英裂变径迹法测得丫它金矿床的年龄为100Ma; 胡瑞忠等(1995)用K-Ar法测得世加金矿床中新鲜辉绿岩脉的年龄为140Ma,该金矿床的矿体切穿辉绿岩脉,因此判断该金矿床的成矿年龄应小于140Ma; Su et al. (2009b)用方解石Sm-Nd等时线法确定水银洞金矿床的年龄为134±3Ma; 刘东升和耿文辉(1985)用矿石Rb-Sr等时线法测得戈塘金矿床的年龄为176±36Ma; 陈懋弘等(2007)用含砷黄铁矿Re-Os等时线法测得烂泥沟金矿床的年龄为193±13Ma; 陈懋弘等(2009)用蚀变成因绢云母40Ar/39Ar法测得烂泥沟金矿床的年龄为195±2Ma; 胡瑞忠等(1995)用石英流体包裹体Rb-Sr等时线法测得烂泥沟金矿床的年龄为259±27Ma; 苏文超等(1998)用石英流体包裹体Rb-Sr等时线法测得烂泥沟金矿床的年龄为106Ma; 王国田(1992)分别用含砷黄铁矿中的流体包裹体和热液蚀变绢云母进行Rb-Sr等时线定年,确定金牙金矿的年龄分别为267±28Ma和206±12Ma; 李泽琴等(1995)根据黄铁矿的Pb模式年龄确定金牙金矿床的年龄为82~130Ma。(2) 铅锌矿:李文博等(2004)用方解石Sm-Nd等时线法测得会泽麒麟厂铅锌矿床的年龄为222±14Ma; 黄智龙等(2001, 2004)测定了会泽麒麟厂铅锌矿床中闪锌矿的Rb-Sr等时线年龄,获得年龄值为225.6±3.1Ma; Zhou et al.(2013a, b)测定了天桥和茂阻铅锌矿床中闪锌矿的Rb-Sr等时线年龄,获得的年龄值分别为192±7Ma和196±13Ma; 张长青等(2005)通过K-Ar法测定了会泽麒麟厂铅锌矿床中蚀变粘土矿物伊利石,获得年龄值为176.5±2.5Ma; 欧锦秀(1996)将黔西北青山铅锌矿床矿石铅单阶段演化模式年龄134~192Ma作为成矿年龄; 王奖臻等(2002)根据矿床产出区域的构造和地质特征推断成矿时代为燕山期至喜山期。(3) 锑矿:Peng et al. (2003)用主成矿期方解石Sm-Nd等时线法测得锡矿山锑矿的年龄为155.5±1.1Ma; Hu et al. (1996)用6个方解石和1个辉锑矿样品进行Sm-Nd等时线法定年,确定锡矿山锑矿的年龄为156.3±12.0Ma。

综上上述结果可以看出,以前使用的定年方法主要包括:石英裂变径迹法、粘土矿物和流体包裹体Rb-Sr等时线法、方解石Sm-Nd等时线法、闪锌矿和矿石Rb-Sr等时线法、硫化物矿物Pb模式年龄法、黄铁矿Re-Os等时线法和热液蚀变矿物绢云母40Ar/39Ar法等。定年结果表明,除湘中盆地Sb-Au矿集区以锡矿山超大型锑矿床为代表的年龄数据较集中外(~155Ma),川滇黔接壤区的Pb-Zn矿集区和以卡林型金矿为代表的右江盆地Au-Sb-As-Hg矿集区都有很大的年龄变化范围(川滇黔矿集区为134~226Ma,右江盆地矿集区为83~267Ma)并表现出以下特点:(1) 同一方法在同一矿床获得了很不相同的年龄,如烂泥沟金矿床,不同作者用石英流体包裹体Rb-Sr等时线法分别获得了106Ma和259±27Ma的年龄; (2) 同一矿床用不同的方法获得的年龄也很不相同,如金牙金矿床,含砷黄铁矿中流体包裹体的Rb-Sr等时线年龄为267±28Ma,热液蚀变成因绢云母的Rb-Sr等时线年龄为206±12Ma,而热液成因黄铁矿的Pb-Pb定年结果则为82~130Ma。再如烂泥沟金矿床,石英流体包裹体Rb-Sr等时线年龄为106Ma和259±27Ma,含砷黄铁矿Re-Os等时线年龄为193±13Ma,热液蚀变矿物绢云母的40Ar/39Ar坪年龄为195±2Ma。

因为成矿时代的不确定性,华南低温成矿域的成矿作用究竟与那些地质事件有关或者说是什么地质事件驱动了成矿流体的形成和迁移成矿,以往远未形成清晰认识。这制约了对大面积低温成矿背景或成矿驱动机制的正确认识。

1.2 国际研究进展

如前所述,除我国华南外美国中西部的卡林型金矿和MVT铅锌矿等低温矿床亦十分发育(李朝阳,1999)。长期以来,对其成矿时代和动力学背景也一直没有得到很好解决。(1) 美国内华达地区卡林型金矿床:以前也曾用多种方法确定这些卡林型金矿的时代,一直到1996年还曾认为其有一个很大的范围,为152~35Ma (Arehart, 1996)。由于成矿时代没能得到精确确定而未能合理地确定其成矿动力学背景。近年来,一些学者在一些美国的卡林型金矿床中发现了少量可用于40Ar/39Ar法定年的热液成因冰长石,以及可用于Rb-Sr定年的热液成因硫砷铊汞矿。他们主要用这些方法较精确地确定了美国内华达地区卡林型金矿的成矿时代,发现这些矿床实际上是在一个很窄的年龄范围形成的,集中在42~36Ma,相当于区域构造由挤压向伸展转变的阶段, 并与横穿内华达的中酸性隐伏岩体时代相当(Groff et al., 1997; Hofstra et al., 1999; Hall et al., 2000; Tretbar et al., 2000; Hutcherson, 2002; Chakurian et al., 2003; Arehart et al., 2003; Cline et al., 2005; Muntean et al., 2011)。根据这些研究,目前几乎已公认,虽然成矿流体主要为盆地流体和/或深循环的大气降水,但成矿的驱动机制(甚至部分成矿流体)则与第三系弧后伸张背景下的中酸性岩浆活动有关(Hofstra et al., 1999; Arehart et al., 2003; Kesler et al., 2005; Cline et al., 2005; Muntean et al., 2011)。(2) 美国MVT铅锌矿床:MVT铅锌矿床在美国中部最为发育,包括田纳西州的Jefferson City和Copper Ridge矿集区,密苏里州的Old Lead Belt和Viburnum Trend矿集区,俄克拉何马州-堪萨斯州-密苏里州的Tri-Stage矿集区,威斯康星州-伊利诺伊州的Upper Mississippi河谷矿集区。以前关于这些铅锌矿床的年龄资料也较混乱,近年来,主要通过闪锌矿的Rb-Sr定年,发现它们主要形成于两个时期,即350~380Ma和约270Ma,并认为它们分别是由两次造山运动驱动较高盐度的盆地流体大规模侧向运移,流体在运移过程中淋滤地层中的成矿元素而成矿的(Nakai et al., 1990, 1993; Brannon et al., 1992; Christensen et al., 1995a, b; Leach et al., 2001; Pannalal et al., 2004)。

可见,随着对定年方法学研究的不断深入以及分析测试手段的进步,较精确确定低温成矿时代的条件已基本成熟。总结国内外相关研究进展发现,要实现低温矿床精确定年的目标,分析样品和分析手段的正确选择至关重要。

2 构造演化与低温成矿的关系

华南陆块由扬子地块和华夏地块在新元古代时期碰撞拼贴而形成,其北面和西南面分别通过秦岭-大别造山带和松马缝合带与华北地块和印支地块相连接(图 1)。秦岭-大别造山带和松马缝合带形成于三叠纪或印支期,分别是华北地块与华南陆块以及印支地块与华南陆块聚合的产物(Sengör and Hsü, 1984; 许志琴等,1992; Metcalfe, 1994; Ames et al., 1996; 张国伟等,1996; 潘桂棠等,1997; 钟大赉,1998; Carter et al., 2001; Fan et al., 2010; Wang et al., 2010; Qiu et al., 2016)。

印支期,华南大陆由古亚洲和古特提斯构造域向环太平洋构造域发生了重要转变(任纪舜等, 1999)。这一时期,在周缘构造作用下,发生了陆壳的构造重建和物质重组,产生了面状变质-变形,并形成了时代约为200~250Ma的过铝质花岗岩(Zhou et al., 2006; Li and Li, 2007; Wang et al., 2012)。侏罗纪以来,华南东侧发生了构造格局的重大调整及强烈的壳-幔相互作用,发育了岩石圈伸展背景下、高峰期约为150~160Ma和80~100Ma的花岗岩浆活动(Wang et al., 2012)。

华南以中生代成矿大爆发著称于世。主要包括两种特征的矿化类型:华南陆块东侧南岭地区中生代钨锡多金属大规模成矿; 华南陆块西侧扬子地块中生代大面积低温成矿。南岭地区的钨锡多金属矿床中存在大量辉钼矿,可用辉钼矿Re-Os法进行精确定年。根据大量辉钼矿Re-Os定年研究结果,目前已基本确定该区中生代的钨锡多金属矿床主要形成于三个时期,成矿年龄分别为200~230Ma、150~160Ma、80~100Ma (华仁民等, 2005; 毛景文等, 2007, 2008; 杨锋等, 2009; Peng et al., 2006; Cheng and Mao, 2010; Hu and Zhou, 2012; Mao et al., 2013),其中,200~230Ma和150~160Ma的钨锡多金属成矿作用主要发生在南岭中段,分别与印支期由特提斯相关的多陆块相互作用形成的过铝质花岗岩和由燕山期软流圈上涌而形成的花岗岩有关(Hu and Zhou, 2012; Hu et al., 2012a, b; Wang et al., 2012; Mao et al., 2013); 80~100Ma的钨锡多金属成矿作用主要发生在南岭西段,沿右江盆地Au-As-Sb-Hg矿集区周边分布,包括云南个旧、白牛厂和广西大厂等锡多金属矿床,与燕山晚期伸展背景下形成的花岗岩有关(Hu and Zhou, 2012; Mao et al., 2013)。

如前所述,华南大面积低温成矿的时代以往还未得到很好确定。但是,如果考虑到扬子地块在中生代经历了与华夏地块相似的构造事件,那么华南中生代大规模低温成矿的时代,应该可以从华南中生代钨锡多金属成矿时代中得到启发,从而可据此确定其成矿动力学背景。

事实上,尽管湘中盆地Sb-Au矿集区和右江盆地Au-Sb-As-Hg矿集区的中生代岩浆活动相对微弱,但是其周缘(或某些矿区)确有少量花岗岩、花岗斑岩和基性脉岩存在; 遥感资料显示的环状构造和地球物理资料显示的异常特征亦表明,这两个矿集区之下可能存在有隐伏岩体。深入系统的研究这些火成岩的时代、成因及其与成矿的关系,可能是揭示上述两个矿集区成矿驱动机制的关键所在。此外,可能形成于印支期(约200~230Ma)的川滇黔Pb-Zn矿集区,紧邻特提斯构造域的印支期松马缝合带东侧分布,深入研究该期造山运动及其与成矿的关系,可能是深入认识该矿集区成矿背景的关键。

另一方面,前期研究已表明华南大陆西侧自南华纪至早中生代是以区域性升降为主要特征,是一长期接受稳定沉积的克拉通盆地。早中生代以来在其周缘形成山-盆构造、前陆冲断和复合联合构造,而内陆则在盖层内发育以薄皮构造为特征的宽广变形,滇黔桂及右江盆地均不同程度地被卷入(Yan et al., 2003)。但不同地段构造演变的差异明显,大致以威远-梵净山为界,北侧为自东向西呈隔槽、隔挡式连续扩展的NE向构造区带,南侧则展示为近NWW、NE、NNE和近南北向构造的复合叠加,至紫云-罗甸断裂以南的南盘江地区则以NWW向脆性形变构造面貌为主导。但是,这些差异性的形变构造主要由哪些构造事件所导致?它们与低温成矿的内在联系是什么?以往的研究尚未对这些问题给予足够的关注。因此,确定中生代重要变革时期华南大陆、尤其是其西侧的盆山演变、结构构造与时空格架及其与低温成矿事件间的耦合关系,可能是完整认知低温成矿作用构造控制的关键所在。

3 低温成矿的物质基础和成矿过程 3.1 低温成矿的物质基础

一个很有意义的事实是,华南低温成矿域主要形成Au、Sb、Pb、Zn、Ag、Hg、As等矿床(涂光炽, 1998, 2000; 李朝阳,1999),华南陆块东侧同为中生代成矿的南岭地区主要形成W、Sn、Nb、Ta等矿床(Hu and Zhou, 2012; Mao et al., 2013),控制这种元素分区的物质基础是因为各自前寒武纪基底组成的不同还是显生宙盖层组成的差异?是低温成矿域的地球化学背景就富集Au、Sb、Pb、Zn、Ag、Hg、As等成矿元素吗?涂光炽院士曾提出,低温热液矿床集中分布可能与该区元古代基底及多期、大面积分布的细碎屑岩-碳酸盐岩建造有关(涂光炽,1993; 李朝阳,1999)。但以往的研究多以低温成矿域某一矿床或矿种为对象,来探讨其可能的物质来源和成矿背景,缺乏区域尺度的宏观把握。

扬子地块西南缘基底与盖层组成较为复杂。根据以往的研究,基底和盖层可大致归纳为8套岩石地层组合。其中基底3套,盖层5套(含峨眉山玄武岩)。

基底:(1) 早元古代大红山群(底巴都组)和河口群等角闪岩相-麻粒岩相高级变质岩系,其原岩为一套中、基性火山岩和碎屑沉积岩,零星出露于低温成矿域及周缘山系(刘肇昌等, 1996; 张鸿翔等, 2001),虽然针对Fe-Cu矿床类型的研究取得某些进展(Zhao et al., 2011, 2012),但有关成矿元素丰度及与低温成矿关系的研究很少; (2) 中新元古代会理群、苴林群、昆阳群、梵净山群、冷家溪群和四堡群等中低级绿片岩相地层,在扬子地块西缘较广泛出露,年代学研究显示其形成于830-Ma以前,原岩是一套火山-碎屑岩系和中酸性侵入岩(Zhao et al., 2011),其中As、B、Sb、Pd、Mo、Ag、U、Pt、Pb、Zn、W和Cu等成矿元素局部不同程度富集(马东升等,2002; 陈永清等,2003); (3) 新元古代浅变质板溪群和丹洲群为一套火山-沉积碎屑岩系,角度不整合于下伏地层岩石之上,同位素年龄为700~830Ma (Li et al., 1995; Zhao et al., 2011),但缺少系统的元素组成研究。

盖层:(1) 震旦系-寒武系发育从红色粗碎屑岩、冰碛岩,到盖帽白云岩+黑色页岩+灰岩组合,富含P、Ge、Cd、Se、Ni、Mo等成矿元素(Och et al., 2013; Pi et al., 2013; Zhu et al., 2013); (2) 奥陶系-志留系以浅海碳酸盐岩和笔石页岩互层为主,没有直接成矿元素的有关数据; (3) 受广西运动影响,主要发育于贵阳-榕江一线以南的上古生界浅海碳酸盐岩建造,以礁灰岩和泥灰岩为主,富含Ga、Ge、Cd等元素; (4) 三叠系从下而上包括裂陷带火山-沉积建造、弧后盆地复理石建造和克拉通内陆相碎屑岩建造,代表了印支运动(Yang et al., 2012; Yan et al., 2011); (5) 晚二叠世峨眉山玄武岩及其岩石共生组合广布于云贵川,空间分布与低温成矿域有所重叠。西伯利亚和塔里木大火成岩省零星分布的Au-Hg-Sb-As矿床的形成被认为与不同时期的地幔柱活动相关(Oppliger et al., 1997; Pirajno et al., 2009)。研究表明,峨眉山玄武岩和“大厂层”凝灰岩、火山角砾岩富含Au、Sb、As和Hg等成矿元素(陈豫等, 1984; 曹鸿水,1991; 田亚洲等,2011)。川滇黔铅锌矿集区已发现的400多个矿床、矿点的外围,绝大部分都有大面积峨眉山玄武岩出露(黄智龙等,2004)。

可见确有一些资料表明,上述8套岩石地层单元的某些组合具有富集低温成矿元素的趋势。然而,以往区域尺度的系统性研究还较欠缺,已有积累还不足以揭示大面积低温成矿与基底和盖层的关联性。因此,基底和盖层的元素地球化学背景及其与大规模低温成矿的关联,还是急需回答的科学问题。

3.2 低温成矿域的元素共生分异及成矿流体演化

华南低温成矿域主要由右江盆地、湘中盆地、川滇黔接壤区三个成矿元素组合迥异的矿集区组成。右江盆地以Au、Sb、Hg、As矿化为主,湘中盆地以Sb、Au矿化为主,川滇黔接壤区以Pb、Zn矿化为主。即使在同一矿集区,元素的空间分布也存在明显的共生分异现象,物质组成通常“你中有我,我中有你”(涂光炽,2002)。但是,造成这种共生分异的机制是什么,各低温矿种之间存在何种联系,以往的认识还较模糊。

以往的研究初步发现,造成这种元素共生分异现象的一个重要因素,可能是流体演化和分异的结果。流体包裹体研究表明,美国卡林型金矿以低温(200±50℃)、中等盐度(3%~6% NaCleqv)、含CO2(2mol%~4mol%)和少量CH4、富含H2S为主要特征(Hofstra and Cline, 2000; Cline, 2001; Emsbo et al., 2003)。Muntean et al. (2011)根据元素的气相搬运现象,推测美国卡林型金矿成矿元素的来源,可能与深部岩浆去气搬运的Au、As、Sb等有关; Su et al. (2009a)采用单个流体包裹体成分的LA-ICP-MS分析技术,发现黔西南卡林型金矿成矿流体富含Au、As、Sb等成矿元素,而不含Fe、Cu、Pb、Zn等,认为赋矿围岩的硫化物化过程是黔西南卡林型金矿最重要的成矿机制。以沉积岩为主要容矿岩石的铅锌矿床是全球铅锌的重要来源,密西西比河谷型(MVT)铅锌矿床为其主要类型。大量的流体包裹体研究表明,这些铅锌矿床的形成,是与盆地形成和演化过程有关的盆地流体(热卤水)大规模迁移的产物(Garven et al., 1993; Leach et al., 2010),这种成矿流体具有较大变化的温度(50~270℃)和盐度(2%~30% NaCleqv) (Basuki and Spooner, 2004; Stoffell et al., 2008; Wilkinson et al., 2009)。最近,Stoffell et al. (2008)Wilkinson et al. (2009)利用单个流体包裹体成份的LA-ICP-MS分析技术,对北美和爱尔兰地区一些典型MVT铅锌矿床矿石矿物闪锌矿和共生脉石矿物(如石英等)中流体包裹体的成份进行了对比研究,发现闪锌矿中的流体包裹体富含Pb(10×10-6~890×10-6),热力学计算预测Zn的含量高达3000×10-6~5000×10-6,而与闪锌矿密切共生的石英等矿物中的流体包裹体则贫Pb (0.2×10-6~3.5×10-6)和Zn (0.1×10-6~12×10-6),认为两种流体混合可能是该类铅锌矿床的重要成矿机制。

在矿田尺度和单个矿床,元素共生分异是许多热液矿床比较普遍的地质现象。如澳大利亚Mole花岗岩体从岩体向外分别发育W-Sn、Cu-Sn-As、Pb-Zn-Ag等矿床(Heinrich, 2005)。近年来,随着单个流体包裹体成分LA-ICP-MS分析技术的建立与完善(Günther and Heinrich, 1999; Heinrich et al., 2003; Pettke et al., 2012),为深入研究成矿元素共生分异过程和机制提供了重要依据。Audetat et al. (1998)发现澳大利亚Yankee Lode锡多金属矿床石英流体包裹体里的Cu和B主要分配在气相之中,而Sn等成矿元素则在液相中富集; Ulrich et al.(1999, 2001)也发现Grasberg(印度尼西亚)和Alumbrera(阿根廷)斑岩型Cu-Au矿床流体包裹体Au、Cu、As等成矿元素在气相中富集; Heinrich et al.(1999, 2004)、Heinrich (2005)通过单个流体包裹体成分分析和热力学研究,系统总结了与岩浆热液有关的矿床中成矿元素在液相和气相中的分配,认为Pb、Zn、Ag、Sn、Tl等成矿元素富集在以Cl为矿化剂的液相中,而Au、Cu、As、Sb等成矿元素则在以S为矿化剂的气相中富集,流体的不混溶(如沸腾作用)过程导致矿化剂元素(如S和Cl等)分异,最终导致元素分异。成矿实验研究进一步发现,成矿流体密度是控制成矿元素分异的重要因素之一(Pokrovski et al., 2005)。初步研究发现,在低温成矿域的不同矿床甚至同一矿床中,可见富S流体与富Cl流体共存的现象,这两种流体是否来自统一的体系,经过何种深部地质过程导致其矿化剂元素和成矿元素的分异,目前还需深入研究。

归纳起来,目前对低温成矿域的成矿流体特征已有初步的认识,低温成矿域的流体和物质来源可能并不如原先想象的那么简单。在以往研究的基础上,深入系统地开展高分辨率壳幔相互作用的多元示踪研究,可能是建立低温成矿与壳幔深部过程相互关系的重要途径; 而深入系统地开展单个流体包裹体组成、性质和流体分异机制的研究,则可能是揭示流体精细演化和成矿过程以及成矿元素共生分异机制的关键所在。

4 研究进展

围绕上述科学问题,主要在国家“973”项目“华南大规模低温成矿作用”的支持下,近年来开展了较深入系统的研究。在以往研究积累的基础上,研究工作取得了较好进展,初步确定了大规模低温成矿的时代,以及大规模低温成矿过程和动力学背景(Hu et al., 2016)。

研究发现,华南中生代大规模低温成矿可能主要有两个时期:第一期的时代约为200~230Ma,相当于印支期; 第二期的时代约为130~160Ma,相当于燕山期。印支期的成矿作用涉及了右江盆地Au-As-Sb-Hg、川-滇-黔Pb-Zn和湘中盆地Sb-Au三个矿集区。燕山期的成矿作用只涉及到了右江盆地和湘中盆地两个矿集区。

研究表明,(1) 印支期(200~230Ma)印支地块与华南陆块沿松马缝合带的后碰撞造山运动,驱动较高盐度的盆地流体循环并浸取出基底和/或围岩中的有用组分并运移至相对开放的断裂空间成矿,形成了川-滇-黔矿集区的Pb-Zn矿床。印支期后碰撞伸展背景下由于降压熔融形成的深部花岗岩浆,驱动大气成因地下水循环并将地层中的成矿元素活化迁移,并在合适的构造部位沉淀富集,形成了右江盆地矿集区的卡林型金矿床以及湘中盆地矿集区基地地层中的锑-金矿床; (2) 印支期奠定了华南大规模低温成矿的主体格架,燕山期的成矿作用与侏罗纪深部花岗岩浆活动可能具有密切联系,这一期的成矿作用只叠加在湘中盆地和右江盆地两个矿集区,主要形成锑、汞、砷等矿床,与这两个矿集区印支期的成矿机制相似; (3) 华南扬子地块中生代的两期大规模低温成矿作用,与其东侧华夏地块与花岗岩浆活动有关的钨锡多金属矿床的两期成矿作用,在时代上基本相似。这表明低温成矿与钨锡成矿具有相似的成矿动力学背景。

本专题共录用了20篇文章,从不同侧面反映了上述研究进展中的某些方面。

张岳等(2016)以开阳磷矿地区下寒武统牛蹄塘组黑色岩系剖面作为研究对象,划分了详细的牛蹄塘组地层层序,发现黑色岩系中普遍富集As、Sb、Ag三种主要低温成矿元素,Au也在大部分层位也有明显富集,这为右江盆地矿集区低温成矿的物质来源提供了重要线索。

朱经经等(2016)通过对桂西北地区一些晚白垩世石英斑岩脉中的继承锆石进行了LA-ICP-MS和SIMS原位U-Pb定年研究,发现130~140Ma和约240Ma左右的两组可能来自深部花岗岩的继承锆石年龄,与初步确定的右江盆地的两次低温成矿时代基本一致,据此推断低温成矿与深部岩浆作用可能有一定成因联系。

甘成势等(2016)首次报道了右江盆地东部杨屯地区存在安山岩。LA-ICP-MS锆石U-Pb定年结果表明安山岩的喷发时代为159.3±2.8Ma,与该盆地第二期低温成矿作用时代相当,地质地球化学研究表明安山岩是板内伸展环境含金云母的富集岩石圈地幔部分熔融的产物,为揭示低温成矿动力学背景提供了重要依据。

靳晓野等(2016)探讨了右江盆地典型金矿床含有机质流体与金成矿作用之间的关系。研究表明,成矿流体可能起源于深部岩浆但在演化过程中有大量循环大气水的加入。矿床的成矿热源与区域古地温无关,可能是深部岩浆活动远端低温热液成矿作用的产物,金成矿与区域古油藏之间不存在成因联系。

董文斗等(2016)对右江盆地矿集区的安那金矿床的石英中流体包裹体进行了研究,发现主要为富CO2气-液两相或三相包裹体,认为流体溶蚀交代辉绿岩中的含Ti-Fe辉石或钛铁矿,溶解Fe的硫化物化过程是含Au黄铁矿和毒砂沉淀富集的重要机制。成矿作用可能与右江盆地南缘印支期造山事件有关。

陈娴等(2016)以右江盆地矿集区的晴隆锑矿床为研究对象,首次进行了辉锑矿中流体包裹体的He、Ar同位素地球化学研究。结果表明,成矿流体的3He/4He为0.13~0.46Ra,成矿流体由地下循环的雨水和含地幔He的岩浆流体两个端元组成,矿床的成矿作用受侏罗纪的深部花岗岩浆活动驱动。

皮桥辉等(2016)以右江盆地矿集区的云南者桑卡林型金矿床和该区出露的基性岩脉为研究对象,进行了成岩成矿年代学研究。研究表明,热液成因绢云母的Ar-Ar坪年龄为215.3±1.9Ma,与该区出露的基性岩脉中锆石的LA-ICP-MS原位U-Pb年龄(215±5Ma)高度一致,岩浆活动驱动了矿床的形成。

韦东田等(2016)以右江盆地矿集区中的泥堡金矿床为对象开展了矿石和围岩组成的对比研究。结果表明,去碳酸盐化和硫化物化作用,是泥堡金矿床的主要成矿机制。在矿化前的去碳酸盐化作用为成矿提供了有利的环境; 在成矿过程中,通过硫化物化形成了贫砷黄铁矿的载金富砷黄铁矿边缘。

谢贤洋等(2016)对右江盆地矿集区泥堡金矿床的流体包裹体和稳定同位素地球化学进行了研究。结果表明,层控和断控两类矿体成矿流体性质和来源一致,具有相似的演化过程。成矿流体可能来源于大气降水和海水的混合,从早到晚海水所占的比例逐渐增大,流体中的碳主要来自海相碳酸盐岩的溶解。

叶霖等(2016)以川-滇-黔Pb-Zn矿集区中的天宝山矿床为例,用LA-ICPMS方法原位分析了矿石矿物闪锌矿和方铅矿的微量元素组成。研究表明,本矿床闪锌矿以富集Cd、Ge为特征,方铅矿以富集Ag、Sb为特征,微量元素组成与MVT型矿床基本一致,明显有别于其它类型Pb-Zn矿床。

何承真等(2016)对四川天宝山铅锌矿床的锌、硫同位素组成及成矿物质来源进行了研究。根据锌、硫同位素组成变化规律,发现成矿流体中的锌主要来源于上震旦统灯影组白云岩,硫则主要来源于上震旦统灯影组地层中的蒸发岩。

孙海瑞等(2016)报道了天宝山矿床深部新发现的铜矿化的矿物学和同位素地球化学特征。结果表明,黄铜矿和方铅矿的δ34S相近,具有相似的S源,是地层中蒸发岩热化学还原作用的产物。黄铜矿和方铅矿的Pb同位素组成相近,壳源特征明显,深部铜矿化与铅锌矿是同一成矿热液体系的产物。

梁峰等(2016)对川-滇-黔矿集区富乐铅锌矿床中的白云石和方解石开展了详细的矿物学和元素地球化学研究。结果表明,富乐铅锌矿床是由氧化性、酸性和富含金属、亏损Sr的流体与还原性、碱性和亏损金属、富含Sr的流体混合,从而导致矿质沉淀形成的。

朱路艳等(2016)对黔西北地区部分铅锌矿床的流体包裹体和硫同位素进行了研究。结果表明,成矿流体为中低温(160~260℃)、高盐度(10%~22% NaCleqv)的卤水,S主要来源于围岩,成矿元素以Cl的络合物进行搬运,富含Pb、Zn的流体与富含H2S流体的混合是铅锌富集成矿的重要机制。

金中国等(2016)研究了川滇黔矿集区贵州境内最大Pb-Zn矿床——普定纳雍枝铅锌矿床的S、Pb同位素地球化学。结果表明,成矿流体中的S主要来源于赋矿地层,Pb等成矿元素主要来源于基底岩石,成矿流体具后生和低温等特征,属于MVT矿床。

陈佑纬等(2016)开展了湘中盆地矿集区龙山金锑矿床外围酸性岩脉的年代学和地球化学研究。结果表明,这些脉岩由古-中元古代浅变质碎屑岩在碰撞后伸展背景下减压部分熔融形成,其锆石U-Pb年龄为220~217Ma,与龙山金锑矿床成矿年龄一致,岩浆活动可能是成矿的重要热源和流体来源之一。

张东亮等(2016)以锡矿山地区晚古生代地层中的碎屑锆石为对象,进行了原位U-Pb年代学研究。厘定出湘中盆地垂向物质组合从下向上主要包括结晶基底(>1.9Ga)、变质基底(1.9~0.54Ga)、微变质基底(0.54~0.41Ga)以及沉积盖层( < 0.41Ga),为进一步探讨该区低温成矿与基底地层的关系提供了基础。

付山岭等(2016)开展了龙山金锑矿床的成矿年代学研究。结果表明,该矿床可能发生了200Ma(黄铁矿Re-Os年龄)和160Ma(锆石U-Th/He年龄)的两次成矿作用; 或者矿床形成于200Ma左右,但受到了160Ma左右岩浆热事件的改造; 岩浆事件对驱动矿床的形成发挥了重要作用。

李伟等(2016)对湘中盆地矿集区的古台山金矿床进行了H、O、C同位素地球化学研究。结果显示,该矿床的成矿过程中有岩浆流体参与,围岩发生硫化物化和碳酸盐化等,是导致Au沉淀富集的重要因素。

我们希望本专题的出版,能够进一步推动对华南大规模低温成矿作用的研究。

致谢 本文科学问题的凝练曾与项目组主要成员毕献武研究员、苏文超研究员、黄智龙研究员、范蔚茗研究员、谢桂青研究员、温汉捷研究员、夏勇研究员、颜丹平教授、王岳军教授、李建威教授等进行了讨论,他们提出了宝贵意见或提供了部分资料; 项目专家委员会和领域专家成员给予了指导和帮助; 王京彬研究员、周永章教授、邓军教授审阅了论文并提出宝贵意见和建议; 本文取得的进展是基于集体研究成果的总结和提升; 在此一并表示感谢。
参考文献
[] Ames L, Zhou GZ, Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, Central China. Tectonics , 15 (2) :472–489. DOI:10.1029/95TC02552
[] Arehart GB. 1996. Characteristics and origin of sediment-hosted disseminated gold deposits:A review. Ore Geology Reviews , 11 (6) :383–403. DOI:10.1016/S0169-1368(96)00010-8
[] Arehart GB, Chakurian AM, Tretbar DR, Christensen JN, McInnes BA, Donelick RA. 2003. Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, Western North America, and implications for deposit genesis. Economic Geology , 98 (2) :235–248.
[] Audetat A, Günther D, Heinrich CA. 1998. Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions. Science , 279 (5359) :2091–2094. DOI:10.1126/science.279.5359.2091
[] Basuki NI, Spooner ETC. 2004. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits:Identifying thresholds for metal transport. Exploration and Mining Geology , 11 (1-4) :1–17.
[] Brannon JC, Podosek FA, McLimans RK. 1992. A Permian Rb-Sr age for sphalerite from the Upper Mississippi Valley zinc-lead district, Southwest Wisconsin. Nature , 356 :509–511. DOI:10.1038/356509a0
[] Cao HS. 1991. A discussion on the genetic environment and minerogenesis of "Dachang Strata" in southwestern Guizhou. Geology of Guizhou , 8 (1) :5–12.
[] Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia:significance of Triassic thermotectonism (Indosinian orogen) in Vietnam. Geology , 29 (3) :211–214. DOI:10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
[] Chakurian AM, Arehart GB, Donelick RA, Zhang X , Reiners PW, Reiners PW. 2003. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track, 40Ar/39Ar, and apatite (U-Th)/He methods. Economic Geology , 98 (6) :1159–1171. DOI:10.2113/gsecongeo.98.6.1159
[] Chen MH, Mao JW, Qu WJ, Wu LL, Uttley PJ, Norman T, Zheng JM, Qin YZ. 2007. Re-Os dating of arsenian pyrites from the Lannigou gold deposit, Zhenfeng, Guizhou Province, and its geological significances. Geological Review , 53 (3) :371–382.
[] Chen MH, Dong QW, Hu Y, Chen ZY, Zhang W. 2009. Genetic types of phyllosilicate (Micas) and its 39Ar-40Ar dating in Lannigou gold deposit, Guizhou Province, China. Acta Mineralogica Sinica , 29 (3) :353–362.
[] Chen X, Su WC, Huang Y. 2016. He and Ar isotope Geochemistry of ore-forming fluids for the Qinglong Sb deposit in Guizhou Province, China. Acta Petrologica Sinica , 32 (11) :3312–3320.
[] Chen Y, Liu XC, Zhang QH. 1984. A tentative discussion on the genesis of the Dachang antimony deposit, Qinglong County, Guizhou Province. Mineral Deposits , 3 (3) :1–12.
[] Chen YQ, Xia QL , Liu HG, Liu HG. 2003. Geochemical characteristics of Pt-Pt-Cu ore-bearing formations in eastern Yunnan and analysis of their ore potentiality. Geology in China , 30 (3) :225–234.
[] Chen YW, Bi XW, Fu SL , Dong SH, Dong SH. 2016. Zircon U-Pb dating and Hf isotope of the felsic dykes in the Longshan Au-Sb deposit in Central Hunan Province and their geological significance. Acta Petrologica Sinica , 32 (11) :3469–3488.
[] Cheng YB, Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China:Constraints on their petrogenesis and tectonic setting. Lithos , 120 (3-4) :258–276. DOI:10.1016/j.lithos.2010.08.013
[] Christensen JN, Halliday AN, Leigh KH, Kesler SE. 1995a. Direct dating of sulfides by Rb-Sr:A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochimica et Cosmochimica Acta , 59 (24) :5191–5197. DOI:10.1016/0016-7037(95)00345-2
[] Christensen JN, Halliday AN, Vearncombe JR, Kesler SE. 1995b. Testing models of large-scale crustal fluid flow using direct dating of sulfides:Rb-Sr evidence for early dewatering and formation of MVT deposits, Canning Basin, Australia. Geology , 90 (4) :877–884.
[] Cline JS. 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, North-central Nevada. Economic Geology , 96 (1) :75–89.
[] Cline JS, Hofstra AH, Muntean JL, Tosdal RM, Hickey KA. 2005. Carlin-type gold deposits in Nevada:Critical geologic characteristics and viable models. Economic Geology , 100 :451–484.
[] Dong WD, Shen NP, Su WC, Cai JL. 2016. Study on the ore-forming fluid geochemistry of the Anna gold deposit in southeastern Yunnan Province, China. Acta Petrologica Sinica , 32 (11) :3321–3330.
[] Emsbo P, Hofsrta AH, Lauha EA, Griffin GL, Hutchinson RW. 2003. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada. Economic Geology , 98 (6) :1069–1105. DOI:10.2113/gsecongeo.98.6.1069
[] Fan WM, Wang YJ, Zhang AM, Zhang FF, Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos , 119 (3-4) :553–568. DOI:10.1016/j.lithos.2010.08.010
[] Fu SL, Hu RZ, Chen YW, Luo . 2016. Chronology of the large Longshan Au-Sb deposit in central Hunan Province:Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating. Acta Petrologica Sinica , 32 (11) :3507–3517.
[] Gan CS, Wang YJ, Zhang YZ, Liu HC, Zhang LM. 2016. The identification and implications of the Late Jurassic shoshonitic high-Mg andesite from the Youjiang basin. Acta Petrologica Sinica , 32 (11) :3281–3294.
[] Garven G, Ge S, Person MA, Sverjensky DA. 1993. Genesis of stratabound ore deposits in mid-continent basins of North America.1. The role of regional groundwater flow. American Journal of Science , 293 :497–568.
[] Groff JA, Heizler MT, McIntosh WC, Norman DI. 1997. 40Ar/39Ar dating and mineral paragenesis for Carlin-type gold deposits along the Getchell trend, Nevada:Evidence for Cretaceous and Tertiary gold mineralization. Economic Geology , 92 (5) :601–622. DOI:10.2113/gsecongeo.92.5.601
[] Gu XX, Zhang YM, Li BH, Dong SY, Xue CJ, Fu SH. 2012. Hydrocarbon-and ore-bearing basinal fluids:A possible link between gold mineralization and hydrocarbon accumulation in the Youjiang basin, South China. Mineralium Deposita , 47 (6) :663–682. DOI:10.1007/s00126-011-0388-x
[] Günther D, Heinrich CA. 1999. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. Journal of Analytical Atomic Spectrometry , 14 (9) :1363–1368. DOI:10.1039/A901648A
[] Hall CM, Kesler SE, Simon G, Fortuna J. 2000. Overlapping Cretaceous and Eocene alteration, Twin Creeks Carlin-type deposits, Nevada. Economic Geology , 95 (8) :1739–1752.
[] He CZ, Xiao CY, Wen HJ, Zhou T, Zhu GW, Fan HF. 2016. Zinc-sulfur isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China:Implications for source of ore components. Acta Petrologica Sinica , 32 (11) :3394–3406.
[] Heinrich CA, Günther D, Audetat A, Frischknecht TUR. 1999. Metal fractionation between magmatic brine and vapor determined by microanalysis of fluid inclusions. Geology , 27 (8) :755–758. DOI:10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
[] Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat1 A, Günther D, Hattendorf B, Bleiner D, Guillong D , Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass spectrometry. Geochimica et Cosmochimica Acta , 67 (18) :3473–3497. DOI:10.1016/S0016-7037(03)00084-X
[] Heinrich CA, Driesner T, Stefansson A , Seward TM. 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology , 32 (9) :761–764. DOI:10.1130/G20629.1
[] Heinrich CA. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:A thermodynamic study. Mineralium Deposita , 39 (8) :864–889. DOI:10.1007/s00126-004-0461-9
[] Hofstra AH , Cline JS. 2000. Characteristics and models for Carlin-Type gold deposits. Reviews in Economic Geology , 13 :163–220.
[] Hofstra AH, Snee LW, Rye RO, Folger HW, Phinisey JD, Loranger RJ, Dahl AR, Naeser CW, Stein HJ , Lewchuk MT. 1999. Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States:Relationship to Mid-Tertiary extension and magmatism. Economic Geology , 94 (6) :769–802. DOI:10.2113/gsecongeo.94.6.769
[] Hu RZ, Su WC, Bi XW , Li ZQ. 1995. A possible evolution way of ore-forming hydrothermal fluid for the Carlin-type gold deposits in the Yunnan-Guizhou-Guangxi triangle area. Acta Mineralogica Sinica , 15 (2) :144–149.
[] Hu RZ, Su WC, Bi XW, Tu GC , Hofstra AH. 2002. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita , 37 (3-4) :378–392. DOI:10.1007/s00126-001-0242-7
[] Hu RZ, Tao Y, Zhong H, Huang ZL , Zhang ZW. 2005. Mineralization systems of a mantle plume:A case study from the Emeishan igneous province, Southwest China. Earth Science Frontiers , 12 (1) :42–54.
[] Hu RZ, Peng JT, Ma DS, Su WC, Shi CH, Bi XW , Tu GC. 2007. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif. Mineral Deposits , 26 (6) :583–596.
[] Hu RZ , Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita , 47 (6) :579–588. DOI:10.1007/s00126-012-0431-6
[] Hu RZ, Wei WF, BI XW, Peng JT, Qi YQ, Wu LY , Chen YW. 2012a. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos , 150 :111–118. DOI:10.1016/j.lithos.2012.05.015
[] Hu RZ, Bi XW, Jiang GH, Chen HW, Peng JT, Qi YQ, Wu LY , Wei WF. 2012b. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China. Mineralium Deposita , 47 (6) :623–632. DOI:10.1007/s00126-011-0396-x
[] Hu RZ, Mao JW, Hua RM and Fan WM. 2015. Intra-continental Mineralization of South China Craton. Beijing:Science Press, 1-903 (in Chinese)
[] Hu RZ, Fu SL, Huang Y, Zhou MF, Fu SH, Zhao CH, Wang YJ, Bi XW , Xiao JF. 2016. The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model. Journal of Asian Earth Sciences, in press .
[] Hu XW, Pei RF , Zhou S. 1996. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China. Resource Geology , 46 (4) :227–231.
[] Hua RM, Chen PR, Zhang WL , Lu JJ. 2005. Three major metallogenic events in Mesozoic in South China. Mineral Deposits , 24 (2) :99–107.
[] Huang ZL, Chen J, Liu CQ, Han RS, Li WB, Zhao DS, Gao DR , Feng ZH. 2001. A preliminary discussion on the genetic relationship between Emeishan basalts and Pb-Zn deposits as exemplified by the Huize Pb-Zn deposit, Yunnan Province. Acta Mineralogica Sinica , 21 (4) :681–688.
[] Huang ZL, Chen J, Han RS, Li WB, Liu CQ, Zhang ZL, Ma DY, Gao DR , Yang HL.2004. Geochemistry and Metallogenesis of Yunnan Huize Super-large Pb-Zn Deposits and a Study on the Relationship between the Deposits and Emeishan Basalt. Beijing: Geological Publishing House .
[] Hutcherson S. 2002. Geology and geochemistry of the Murray deposit, Jerritt Canyon mining district, Nevada. Master Degree Thesis. Reno:University of Nevada, 1-89
[] Jin XY, Li JW, Hofstra AH, Marsh E, Liu JZ , Yang W. 2016. Relationship between Carlin-type gold deposits and paleo-petroleum reservoirs in SW Guizhou, China:Evidence from gas compositions of fluid inclusions and Raman spectroscopic characteristics of bitumen. Acta Petrologica Sinica , 32 (11) :3295–3311.
[] Jin ZG, Zhou JX, Huang ZL, Luo K, Gao JG, Peng S, Wang B , Chen XL. 2016. Ore genesis of the Nayongzhi Pb-Zn deposit, Puding city, Guizhou Province, China:Evidences from S and in situ Pb isotopes. Acta Petrologica Sinica , 32 (11) :3441–3455.
[] Kesler SE, Riciputi LC , Ye ZJ. 2005. Evidence for a magmatic origin for Carlin-type gold deposits:Isotopic composition of sulfur in the Betze-Post-Screamer deposit, Nevada, USA. Mineralium Deposita , 40 (2) :127–136. DOI:10.1007/s00126-005-0477-9
[] Leach DL, Taylor RD, Bradley DC, Lewchuk MT, Symons DT, de Marsily G , Brannon J. 2001. Mississippi Valley-type lead-zinc deposits through geological time:Implications from recent age-dating research. Mineralium Deposita , 36 (8) :711–740. DOI:10.1007/s001260100208
[] Leach DL, Bradley DC, Huston D, Pisarevsky SA , Gardoll SJ. 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology , 105 (3) :593–625. DOI:10.2113/gsecongeo.105.3.593
[] Li CY. 1999. Some geological characteristics of concentrated distribution area of epithermal deposits in China. Earth Science Frontiers , 6 (1) :163–170.
[] Li W, Xie GQ, Zhang ZY , Zhang XK. 2016. Constraint on the genesis of Gutaishan gold deposit:Evidence from fluid inclusion and C-H-O isotopes. Acta Petrologica Sinica , 32 (11) :3489–3506.
[] Li WB, Huang ZL, Wang YX, Chen J, Han RS, Xu C, Guan T , Yin MD. 2004. Age of the giant Huize Zn-Pb deposit determined by Sm-Nd dating of hydrothermal calcite. Geological Review , 50 (2) :189–195.
[] Li ZQ, Chen SD, Wang JZ, Li FC , Wang GT. 1995. Isotope geochemistry of Jinya a disseminated gold deposit in western Guangxi. Journal of Mineralogy and Petrology , 15 (2) :66–72.
[] Li ZX, Zhang LH , Powell CM. 1995. South China in Rodinia:Part of the missing link between Australia-East Antarctica and Laurentia. Geology , 23 (5) :407–410. DOI:10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
[] Li ZX , Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology , 35 (2) :179–182. DOI:10.1130/G23193A.1
[] Liang F, Bi XW, Feng CX, Tang YY, Wei DX , Dai ZH. 2016. Mineralogy and geochemistry of carbonate constraints on ore-forming mechanism of the Fule Pb-Zn deposit, Yunnan Province, China. Acta Petrologica Sinica , 32 (11) :3418–3430.
[] Liu DS , Geng WH. 1985. On the mineral association and mineralization conditions of the Carlin-type gold deposit in China. Geochimica (3) :277–282.
[] Liu ZC, Li FY, Zhong KH, Li W , Wen SX.1996. Tectonic Evolution and Metallogenesis in Western Margin of Yangtze Massif. Chengdu: University of Electronic Science and Technology Press .
[] Luo XH. 1997. Analysis of gold mineralization in southwestern Guizhou based on structural styles. Guizhou Geology , 14 (4) :312–320.
[] Ma DS, Pan JY , Lu XY. 2002. Geochemical signals for ore-forming process by mid-low temperature fluid in Au-Sb deposits, in NW-Central Hunan, China. Journal of Nanjing University (Natural Science) , 38 (3) :435–445.
[] Mao JW, Hu RZ, Chen YC , Wang YT.2006. University of Electronic Science and Technology Press(II). Beijing: Geological Publishing House .
[] Mao JW, Xie GQ, Guo CL , Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China:metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica , 23 (10) :2329–2338.
[] Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB , Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities , 14 (4) :510–526.
[] Mao JW, Cheng YB, Chen MH , Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita , 48 (3) :267–294. DOI:10.1007/s00126-012-0446-z
[] Metcalfe I. 1994. Gondwanal and origin, dispersion, and accretion of East and Southeast Asian continental terranes. Journal of South American Earth Sciences , 7 (3-4) :333–347. DOI:10.1016/0895-9811(94)90019-1
[] Muntean JL, Cline JS, Simon AC , Longo AA. 2011. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geoscience , 4 (2) :122–127. DOI:10.1038/ngeo1064
[] Nakai S, Halliday AN, Kesler SE , Jones HD. 1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature , 346 (6282) :354–357. DOI:10.1038/346354a0
[] Nakai S, Halliday AN, Kesler SE, Jones HD, Kyle JR , Lane TS. 1993. Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits. Geochimica et Cosmochimica Acta , 57 (2) :417–427. DOI:10.1016/0016-7037(93)90440-8
[] Och LM, Shields-Zhou GA, Poulton SW, Manning C, Thirlwall MF, Li D, Chen X, Ling HF, Osborn T , Cremonese L. 2013. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research , 225 :166–189. DOI:10.1016/j.precamres.2011.10.005
[] OppligerGL, MurphyJB, BrimhallG.1997. Is the ancestral Yellowstone hotspot responsible for the Tertiary "Carlin" mineralization in the Great Basin of Nevada?. Geology , 25 (7) :627–630.
[] Ou JX. 1996. Geological characteristics and ore-control geological conditions of Qingshan lead-zinc deposit, Guizhou. Journal of Guilin Institute of Technology , 16 (3) :377–382.
[] Pan GT, Chen ZL, Li XZ, Yan YJ, Xu XS, Xu Q, Jiang XS, Wu YL, Luo JN, Zhu TX , Peng YM.1997. Geological-tectonic Evolution in the Eastern Tethy. Beijing: Geological Publishing House .
[] Pannalal SJ, Symons DTA , Sangster DF. 2004. Paleomagnetic dating of Upper Mississippi Valley zinc-lead mineralization, WI, USA. Journal of Applied Geophysics , 56 (2) :135–153. DOI:10.1016/j.jappgeo.2004.04.006
[] Peng JT , Hu RZ. 2001. Carbon and oxygen isotope systematics in the Xikuangshan giant antimony deposit, central Hunan. Geological Review , 47 (1) :34–41.
[] Peng JT, Hu RZ , Burnard PG. 2003. Samarium-Neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China):The potential of calcite as a geochronometer. Chemical Geology , 200 (1-2) :129–136. DOI:10.1016/S0009-2541(03)00187-6
[] Peng JT, Hu RZ , Jiang GH. 2003. Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province:Constraints on the mineralizing age and ore-forming materials' sources. Acta Petrologica Sinica , 19 (4) :785–791.
[] Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD , Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita , 41 (7) :661–669. DOI:10.1007/s00126-006-0084-4
[] Pettke T, Oberli F, Audetat A, Guilong M, Simon AC, Hanley JJ , Klemm LM. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geology Reviews , 44 :10–38. DOI:10.1016/j.oregeorev.2011.11.001
[] Pi DH, Liu CQ, Shields-Zhou GA , Jiang SY. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China:Constraints for redox environments and origin of metal enrichments. Precambrian Research , 225 :218–229. DOI:10.1016/j.precamres.2011.07.004
[] Pi QH, Hu RZ, Peng KQ, Wu JB, Wei CW , Huang Y. 2016. Relationship between mafic rock and gold mineralization:Insights from the Zhesang gold deposit in Yunnan Province. Acta Petrologica Sinica , 32 (11) :3331–3342.
[] Pirajno F, Ernst RE, Borisenko AS, Fedoseev G , Naumov EA. 2009. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geology Reviews , 35 (2) :114–136. DOI:10.1016/j.oregeorev.2008.10.003
[] Pokrovski GS, Roux J , Harrichoury JC. 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology , 33 (8) :657–660. DOI:10.1130/G21475.1
[] Qiu L, Yan DP, Tang SL, Wang Q, Yang WX, Tang XL , Wang JB. 2016. Mesozoic geology of southwestern China:Indosinian foreland overthrusting and subsequent deformation. Journal of Asian Earth Sciences , 122 :91–105. DOI:10.1016/j.jseaes.2016.03.006
[] Ren JS, Wang ZX, Chen BW, Jiang CF, Niu BG, Li JT, Xie GL, He ZJ, Liu ZG.1997. The Tectonics of China from a Global View:A Guide to the Tectonic Map of China and Adjacent Regions:View Geotectonics of China from Globe. Beijing: Geological Publishing House .
[] Sengör AMC, Hsü KJ. 1984. The comprises of eastern Asia:History of the eastern end of Paleotethys. Men. Soc. Geo. Fr. , 147 :139–147.
[] Stoffell B, Appold MS, Willkinson JJ, McClean NA , Jeffries TE. 2008. Geochemistry and evolution of Mississippi Valley-type mineralizing brines from the Tri-State and northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Economic Geology , 103 (7) :1411–1435. DOI:10.2113/gsecongeo.103.7.1411
[] Su WC, Yang KY, Hu RZ , Chen F. 1998. Fluid inclusion chronological study of the Carlin-type gold deposits in southwestern China:As exemplified by the Lannigou gold deposit, Guizhou Province. Acta Mineralogica Sinica , 18 (3) :359–362.
[] Su WC, Heinrich CA, Pettke T, Zhang XC, Hu RZ , Xia B. 2009a. Sediment-hosted gold deposits in Guizhou, China:Products of wall-rock sulfidation by deep crustal fluids. Economic Geology , 104 (1) :73–93. DOI:10.2113/gsecongeo.104.1.73
[] Su WC, Hu RZ, Bi XW, Xia Y , Liu YP. 2009b. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chemical Geology , 258 (3-4) :269–274. DOI:10.1016/j.chemgeo.2008.10.030
[] Su WC, Zhang HT, Hu RZ, Ge X, Xia B, Chen YY , Zhu C. 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for gold depositional processes. Mineralium Deposita , 47 (6) :653–662. DOI:10.1007/s00126-011-0328-9
[] Sun HR, Zhou JX, Huang ZL, Fan HF, Ye L, Luo K , Gao JG. 2016. The genetic relationship between Zn-and Cu-dominant mineralization in the Tianbaoshan Pb-Zn deposit, Southwest China. Acta Petrologica Sinica , 32 (11) :3407–3417.
[] Tretbar DR, Arehart GB , Christensen JN. 2000. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite. Geology , 28 (10) :947–950. DOI:10.1130/0091-7613(2000)28<947:DGDIAC>2.0.CO;2
[] Tian YZ, Niu AG, Zhu MJ , Kang G. 2011. The study of the mineralization of basaltic conglomerate and antimony deposit in the middle of the Dachang Formation, Qinglong, Guizhou. Journal of Guizhou University (Natural Sciences) , 28 (5) :25–28.
[] Tu GC.1987. Geochemistry of Strata-bound Deposit (Vol.1, Vol.2). Beijing: Science Press .
[] Tu GC.1988. Geochemistry of Strata-bound Deposit (Vol.3). Beijing: Science Press .
[] Tu GC.1998. The Low Temperature Geochemistry. Beijing: Science Press .
[] Tu GC.2000. Supper Ore Deposits in China. Beijing: Science Press .
[] Tu GC. 2002. Two unique mineralization areas in Southwest China. Bulletin of mineralogy, Petrology and Geochemistry , 21 (1) :1–2.
[] Ulrich T, Günther D , Heinrich CA. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature , 399 (6737) :676–679. DOI:10.1038/21406
[] Ulrich T, Günther D , Heinrich CA. 2001. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions:Bajo de la alumbrera, Argentina. Economic Geology , 97 (8) :1743–1774.
[] Wang GT. 1992. Three strontium and rubidium isotime ages in Northwest Guangxi. Guangxi Geology , 5 (1) :29–35.
[] Wang JZ, Li CY, Li ZQ, Li BH , Liu WZ. 2002. The comparison of Mississippi Valley-type lead-zinc deposits in southwest of China and in mid-continent of United States. Bulletin of Mineralogy, Petrology and Geochemistry , 21 (2) :127–132.
[] Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA and Zhang AM. 2010. Tectonic setting of the South China Block in the Early Paleozoic:Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29(6):TC6020
[] Wang YJ, Fan WM, Zhang GW , Zhang YH. 2012. Phanerozoic tectonics of the South China Block:Key observations and controversies. Gondwana Research , 23 (4) :1273–1305.
[] Wei DT, Xia Y, Tan QP, Xie ZQ, Yan J, Guo HY , Liu JZ. 2016. Comparative study of the wallrock and ore and ore forming mechanism at the Nibao gold deposit, Guizhou, China. Acta Petrologica Sinica , 32 (11) :3343–3359.
[] Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE , Appold MS. 2009. Anomalously metal-rich fluids form hydrothermal ore deposits. Science , 323 (5915) :764–767. DOI:10.1126/science.1164436
[] Xie XY, Feng DS, Chen MH, Guo SX, Kuang SD , Chen HS. 2016. Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit, Guizhouand insights into ore genesis. Acta Petrologica Sinica , 32 (11) :3360–3376.
[] Xu ZQ, Hou LW , Wang ZX.1992. Orogenic Process of the Songpan-Ganzi in China. Beijing: Geological Publishing House .
[] Yan DP, Zhou MF, Song HL, Wang XW , Malpas J. 2003. Origin and tectonic significance of a Mesozoic multilayer over-thrust system within the Yangtze bock (South China). Tectonophysics , 361 (3-4) :239–254. DOI:10.1016/S0040-1951(02)00646-7
[] Yan DP, Zhou MF, Li SB , Wei GQ. 2011. Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmen Shan thrust belt, eastern Tibetan Plateau. Tectonics , 30 (6) :TC6005.
[] Yang F, Li XF, Feng ZH , Bai YP. 2009. 40Ar/39Ar dating of muscovite from greisenized granite and geological significance in Limu tin deposit. Journal of Guilin University of Technology , 29 (1) :21–24.
[] Yang JH, Cawood PA, Du YS, Huang H , Hu LS. 2012. Detrital record of Indosinian Mountain building in SW China:Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics , 574-575 :105-117.
[] Ye L, Li ZL, Hu YS, Huang ZL, Zhou JX, Fan HF , Danyushevskiy L. 2016. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China:A LA-ICPMS study. Acta Petrologica Sinica , 32 (11) :3377–3393.
[] Zhang CQ, Mao JW, Liu F , Li HM. 2005. K-Ar dating of altered clay minerals from Huize Pb-Zn deposit in Yunnan Province and its geological significance. Mineral Deposits , 24 (3) :317–324.
[] Zhang CQ, Yu JJ, Mao JW , Rui ZY. 2009. Advances in the study of Mississippi Valley-type deposits. Mineral Deposits , 28 (2) :195–210.
[] Zhang DL, Huang DZ, Zhang HF, Wang GQ , Du GF. 2016. Chronological framework of basement beneath the Xiangzhong Basin:Evidence by U-Pb ages of detrital zircons from Xikuangshan. Acta Petrologica Sinica , 32 (11) :3456–3468.
[] Zhang F , Yang KY. 1992. A study on the metallogenetic epoch fine disseminated gold deposit in Southwest Guizhou using the fission track. Chinese Science Bulletin , 37 (17) :1593–1595.
[] Zhang GW, Zhang BR , Yuan XC.1996. Book of Orogenic Process and Lithosphere Three Dimension Framework in Qinling Orogenic Belt. Beijing: Science Press .
[] Zhang HX, Liu CQ, Xu ZF , Huang ZL. 2001. Geochemical evidence of the Lower Proterozoic subduction system at the western margin at the Yangtze plate:The trace element geochemical study of related metamorphic basaltic. Acta Mineralogica Sinica , 21 (2) :231–238.
[] Zhang Y, Yan DP, Zhao F, Li XT, Qiu L , Zhang YX. 2016. Stratigraphic sequences, abundance anomalies and occurrences of As, Sb, Au, Ag in the Lower Cambrian Niutitang Formation in Kaiyang Phosphate Mine area. Acta Petrologica Sinica , 32 (10) :3252–3268.
[] Zhao JH, Zhou MF, Yan DP, Zheng JP , Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny. Geology , 39 (4) :299–302. DOI:10.1130/G31701.1
[] Zhao XF, Zhou MF, Hitzman MW, Li JW, Bennett M, Meighan C , Anderson E. 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China. Economic Geology , 107 (2) :357–375. DOI:10.2113/econgeo.107.2.357
[] Zhao ZH , Tu GC.2003. Supper Ore Deposits in China (II). Beijing: Science Press .
[] Zhong DL.1998. The Paleo-Tethyan Orogenic Belt, Western Yunnan and Sichuan Provinces. Beijing: Science Press .
[] Zhou CX, Wei CS, Guo JY , Li CY. 2001. The source of metals in the Qilingchang Zn-Pb deposit, northeastern Yunnan, China:Rb-Sr isotope constraints. Economic Geology , 96 :583–598. DOI:10.2113/gsecongeo.96.3.583
[] Zhou JX, Huang ZL , Yan ZF. 2013a. The origin of the Maozu carbonate-hosted Pb-Zn deposit, Southwest China:Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. Journal of Asian Earth Sciences , 73 :39–47. DOI:10.1016/j.jseaes.2013.04.031
[] Zhou JX, Huang ZL, Zhou MF, Li XB , Jin ZG. 2013b. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geology Reviews , 53 :77–92. DOI:10.1016/j.oregeorev.2013.01.001
[] Zhou JX, Huang ZL, Zhou MF, Zhu XK , Muchez P. 2014. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews , 58 :41–54. DOI:10.1016/j.oregeorev.2013.10.009
[] Zhou XM, Sun T, Shen WZ, Shu LS , Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes , 29 (1) :26–33.
[] Zhou YZ , Hu RZ. 1995. Studies and progresses on low-temperature geochemistry. Advance in Earth Sciences , 10 (5) :442–444.
[] Zhu B, Becker H, Jiang SY, Pi DH, Fischer-Gödde M , Yang JH. 2013. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China. Precambrian Research , 225 :67–76. DOI:10.1016/j.precamres.2012.02.002
[] Zhu JJ, Zhong H, Xie GQ, Zhao CH, Xu LL , Lu G. 2016. Provenance and geological implication of the inherited zircon from felsic dykes, Youjiang basin, China. Acta Petrologica Sinica , 32 (11) :3269–3280.
[] Zhu LY, Su WC, Shen NP, Dong WD, Cai JL, Zhang ZW, Zhao H , Xie P. 2016. Fluid inclusion and sulfur isotopic studies of lead-zinc deposits, northwestern Guizhou, China. Acta Petrologica Sinica , 32 (11) :3431–3440.
[] 曹鸿水.1991. 黔西南"大厂层"形成环境及其成矿作用的探讨. 贵州地质 , 8 (1) :5–12.
[] 陈懋弘, 毛景文, 屈文俊, 吴六灵, UttleyPJ, NormanT, 郑建民, 秦运忠.2007. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义. 地质论评 , 53 (3) :371–382.
[] 陈懋弘, 黄庆文, 胡瑛, 陈振宇, 章伟.2009. 贵州烂泥沟金矿层状硅酸盐矿物及其39Ar-40Ar年代学研究. 矿物学报 , 29 (3) :353–362.
[] 陈娴, 苏文超, 黄勇.2016. 贵州晴隆锑矿床成矿流体He-Ar同位素地球化学. 岩石学报 , 32 (11) :3312–3320.
[] 陈永清, 夏庆霖, 刘红光.2003. 滇东Pt-Pd-Cu含矿建造地球化学特征及其含矿性分析. 中国地质 , 30 (3) :225–234.
[] 陈佑纬, 毕献武, 付山岭, 董少花.2016. 湘中地区龙山金锑矿床酸性岩脉U-Pb年代学和Hf同位素特征及其地质意义. 岩石学报 , 32 (11) :3469–3488.
[] 陈豫, 刘秀成, 张启厚.1984. 贵州晴隆大厂锑矿床成因探讨. 矿床地质 , 3 (3) :1–12.
[] 董文斗, 沈能平, 苏文超, 蔡佳丽.2016. 滇东南安那金矿床成矿流体地球化学研究. 岩石学报 , 32 (11) :3321–3330.
[] 付山岭, 胡瑞忠, 陈佑纬, 骆金诚.2016. 湘中龙山大型金锑矿床成矿时代研究——黄铁矿Re-Os和锆石U-Th/He定年. 岩石学报 , 32 (10) :3507–3517.
[] 甘成势, 王岳军, 张玉芝, 刘汇川, 张立敏.2016. 右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义. 岩石学报 , 32 (11) :3281–3294.
[] 何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰.2016. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源. 岩石学报 , 32 (11) :3394–3406.
[] 胡瑞忠, 苏文超, 毕献武, 李泽琴.1995. 滇黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径:年代学证据. 矿物学报 , 15 (2) :144–149.
[] 胡瑞忠, 彭建堂, 马东升, 苏文超, 施春华, 毕献武, 涂光炽.2007. 扬子地块西南缘大面积低温成矿时代. 矿床地质 , 26 (6) :583–596.
[] 胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京: 科学出版社 : 1 -903.
[] 华仁民, 陈培荣, 张文兰, 陆建军.2005. 论华南地区中生代3次大规模成矿作用. 矿床地质 , 24 (2) :99–107.
[] 黄智龙, 陈进, 刘丛强, 韩润生, 李文博, 赵德顺, 高德荣, 冯志宏.2001. 峨眉山玄武岩与铅锌矿床关系初探——以云南会泽铅锌矿床为例. 矿物学报 , 21 (4) :681–688.
[] 黄智龙, 陈进, 韩润生, 李文博, 刘丛强, 张振亮, 马德云, 高德荣, 杨海林. 2004. 云南会泽超大型铅锌矿床地球化学及成因:兼论峨眉山玄武岩与铅锌成矿的关系. 北京: 地质出版社 .
[] 靳晓野, 李建威, HofstraA, MarshE, 刘建中, 杨梧.2016. 黔西南卡林型金矿床与区域古油藏的关系:来自流体包裹体气相组成和沥青拉曼光谱特征的证据. 岩石学报 , 32 (11) :3295–3311.
[] 金中国, 周家喜, 黄智龙, 罗开, 高建国, 彭松, 王兵, 陈兴龙.2016. 贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据. 岩石学报 , 32 (11) :3441–3455.
[] 李朝阳.1999. 中国低温热液矿床集中分布区的一些地质特点. 地学前缘 , 6 (1) :163–170.
[] 李伟, 谢桂青, 张志远, 张兴康.2016. 流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约. 岩石学报 , 32 (11) :3489–3506.
[] 李文博, 黄智龙, 王银喜, 陈进, 韩润生, 许成, 管涛, 尹牡丹.2004. 会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义. 地质论评 , 50 (2) :189–195.
[] 李泽琴, 陈尚迪, 王奖臻, 李福春, 王国田.1995. 桂西金牙微细浸染型金矿同位素地球化学研究. 矿物岩石 , 15 (2) :66–72.
[] 梁峰, 毕献武, 冯彩霞, 唐永永, 韦东晓, 戴智慧.2016. 云南富乐铅锌矿床碳酸盐矿物化学特征对成矿作用的指示. 岩石学报 , 32 (11) :3418–3430.
[] 刘东升, 耿文辉.1985. 我国卡林型金矿矿物特征及成矿条件探讨. 地球化学 , 14 (3) :277–282.
[] 刘肇昌, 李凡友, 钟康惠, 李伟, 文绍先. 1996. 扬子地台西缘构造演化与成矿. 成都: 电子科技大学出版社 .
[] 罗孝桓.1997. 黔西南右江区金矿床控矿构造样式及成矿作用分析. 贵州地质 , 14 (4) :312–320.
[] 马东升, 潘家永, 卢新卫.2002. 湘西北-湘中地区金-锑矿床中-低温流体成矿作用的地球化学成因指示. 南京大学学报(自然科学版) , 38 (3) :435–445.
[] 毛景文, 胡瑞忠, 陈毓川, 王义天. 2006. 大规模成矿作用与大型矿集区(下册). 北京: 地质出版社 .
[] 毛景文, 谢桂青, 郭春丽, 陈毓川.2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报 , 23 (10) :2329–2338.
[] 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川.2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报 , 14 (4) :510–526.
[] 欧锦秀. 1996.贵州水城青山铅锌矿床的成矿地质特征.
[] 潘桂棠, 陈智梁, 李兴振, 颜仰基, 许效松, 徐强, 江新胜, 吴应林, 罗建宁, 朱同兴, 彭勇民. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社 .
[] 皮桥辉, 胡瑞忠, 彭科强, 吴建标, 韦朝文, 黄勇.2016. 卡林型金矿床与基性岩的关系-以云南者桑金矿为例. 岩石学报 , 32 (11) :3331–3342.
[] 彭建堂, 胡瑞忠.2001. 湘中锡矿山超大型锑矿床的碳、氧同位素体系. 地质论评 , 47 (1) :34–41.
[] 彭建堂, 胡瑞忠, 蒋国豪.2003. 贵州晴隆锑矿床中萤石的Sr同位素地球化学. 岩石学报 , 19 (4) :785–791.
[] 任纪舜, 王作勋, 陈炳蔚, 姜春发, 牛宝贵, 李锦铁, 谢广连, 何政利, 刘志刚. 1999. 从全球构造看中国大地构造-中国及邻区大地构造图简要说明. 北京: 地质出版社 .
[] 苏文超, 杨科佑, 胡瑞忠, 陈丰.1998. 中国西南部卡林型金矿床流体包裹体年代学研究——以贵州烂泥沟大型卡林型金矿床为例. 矿物学报 , 18 (3) :359–362.
[] 孙海瑞, 周家喜, 黄智龙, 樊海峰, 叶霖, 罗开, 高建国.2016. 四川会理天宝山铅锌矿床深部新发现铜矿与铅锌矿的成因关系探讨. 岩石学报 , 32 (11) :3407–3417.
[] 田亚洲, 聂爱国, 祝明金, 亢庚.2011. 贵州晴隆大厂层中段玄武质砾岩与锑矿成矿关系研究. 贵州大学学报 , 28 (5) :25–28.
[] 涂光炽. 1987. 中国层控矿床地球化学. 北京: 科学出版社 .
[] 涂光炽. 1988. 中国层控矿床地球化学. 北京: 科学出版社 .
[] 涂光炽. 1998. 低温地球化学. 北京: 科学出版社 .
[] 涂光炽. 2000. 中国超大型矿床. 北京: 科学出版社 .
[] 涂光炽.2002. 我国西南地区两个别具一格的成矿带. 矿物岩石地球化学通报 , 21 (1) :1–2.
[] 王国田.1992. 桂西北地区三条铷-锶等时线年龄. 广西地质 , 5 (1) :29–35.
[] 王奖臻, 李朝阳, 李泽琴, 李葆华, 刘文周.2002. 川滇黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比. 矿物岩石地球化学通报 , 21 (2) :127–131.
[] 韦东田, 夏勇, 谭亲平, 谢卓君, 闫俊, 郭海燕, 刘建中.2016. 黔西南泥堡金矿围岩与矿石的对比及其成矿机制研究. 岩石学报 , 32 (11) :3343–3359.
[] 谢贤洋, 冯定素, 陈懋弘, 郭申祥, 况顺达, 陈恨水.2016. 贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义. 岩石学报 , 32 (11) :3360–3376.
[] 许志琴, 侯立伟, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版杜 .
[] 杨锋, 李晓峰, 冯佐海, 白艳萍.2009. 栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义. 桂林工学院学报 , 29 (1) :21–24.
[] 叶霖, 李珍立, 胡宇思, 黄智龙, 周家喜, 樊海峰, DanyushevskiyL.2016. 四川天宝山铅锌矿床硫化物微量元素组成:LA-ICPMS研究. 岩石学报 , 32 (11) :3377–3393.
[] 张长青, 毛景文, 刘峰, 李厚民.2005. 云南会泽铅锌矿床粘土矿物K-Ar测年及其地质意义. 矿床地质 , 24 (3) :317–324.
[] 张长青, 余金杰, 毛景文, 芮宗瑶.2009. 密西西比型(MVT)铅锌矿床研究进展. 矿床地质 , 28 (2) :195–210.
[] 张东亮, 黄德志, 张宏法, 王国强, 杜高峰.2016. 湘中盆地基底的时代格架:来自锡矿山碎屑锆石U-Pb年龄的证据. 岩石学报 , 32 (11) :3456–3468.
[] 张峰, 杨科佑.1992. 黔西南微细浸染型金矿裂变径迹成矿时代研究. 科学通报 , 37 (17) :1593–1595.
[] 张国伟, 张本仁. 1996. 秦岭造山带造山过程和岩石圈三维结构图丛. 北京: 科学出版社 .
[] 张鸿翔, 刘丛强, 徐志方, 黄智龙.2001. 扬子板块西缘早元古代俯冲体系的地球化学证据——有关变基性岩的微量元素地球化学研究. 矿物学报 , 21 (2) :231–238.
[] 张岳, 颜丹平, 赵非, 李旭拓, 邱亮, 张翼西.2016. 贵州开阳磷矿地区下寒武统牛蹄塘组地层层序及其As、Sb、Au、Ag丰度异常与赋存状态研究. 岩石学报 , 32 (11) :3252–3268.
[] 赵振华, 涂光炽. 2003. 中国超大型矿床. 北京: 科学出版社 .
[] 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社 .
[] 周永章, 胡瑞忠.1995. 低温地球化学的研究与发展. 地球科学进展 , 10 (5) :442–444.
[] 朱经经, 钟宏, 谢桂青, 赵成海, 胥磊落, 陆刚.2016. 右江盆地酸性岩脉继承锆石成因及地质意义. 岩石学报 , 32 (11) :3269–3280.
[] 朱路艳, 苏文超, 沈能平, 董文斗, 蔡佳丽, 张正伟, 赵海, 谢鹏. 2016. 黔西北地区铅锌矿床流体包裹体与硫同位素地球化学研究. 岩石学报, 32(11): 3431-3440自然科学版,第一卷,第二卷.第三卷.I.域.II. 北京:科学出版社
[] 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社 .
[] 周永章, 胡瑞忠.1995. 低温地球化学的研究与发展. 地球科学进展 , 10 (5) :442–444.
[] 朱经经, 钟宏, 谢桂青, 赵成海, 胥磊落, 陆刚.2016. 右江盆地酸性岩脉继承锆石成因及地质意义. 岩石学报 , 32 (11) :3269–3280.
[] 朱路艳, 苏文超, 沈能平, 董文斗, 蔡佳丽, 张正伟, 赵海, 谢鹏.2016. 黔西北地区铅锌矿床流体包裹体与硫同位素地球化学研究. 岩石学报 , 32 (11) :3431–3440.