岩石学报  2016, Vol. 32 Issue (10): 3139-3154   PDF    
朝鲜半岛及华北上元古界-古生界沉积序列与碎屑锆石年代学记录及其构造属性分析
李忠1,2, 倪玲梅1,2, 徐建强1     
1. 中国科学院地质与地球物理研究所, 北京 100029 ;
2. 中国科学院大学, 北京 100049
摘要: 通过地层结构、沉积序列与碎屑锆石年代学记录等三方面的成因分析和区域对比,本文进一步探究了中-朝地块新元古代-古生代的构造属性及演化信息。研究指出,朝鲜半岛平南盆地、太白山盆地以及华北地块内部,其地层结构-沉积相序主要以寒武-奥陶系内陆架碳酸盐岩沉积、志留-泥盆系缺失、中上石炭统-二叠系海陆交互相含煤沉积为特征,并具有可对比的1.85Ga、2.5Ga以及1.15Ga、1.6Ga等碎屑锆石年龄峰值。而在临津江带、沃川带以及华北东南缘,则以泥盆-石炭系泥岩/片岩、中基性火山岩及火山碎屑岩、碳酸盐岩(透镜体)混杂发育为特征,总体显示外陆架沉积环境,且具有可对比的与地层时代接近的最小碎屑锆石年龄,这也是对沉积期较强构造-岩浆活动的反映。综合地层结构、相序、碎屑锆石年龄组成以及聚煤记录,提出朝鲜半岛与华北应属于统一的一级构造单元,即“中-朝板块”;但朝鲜半岛西南部及华北东南缘毗邻板块边缘,因此其地层-沉积记录与板内存在差异,简单的一致性模式并不适用。
关键词: 地层结构     沉积序列     碎屑锆石年龄     构造属性     朝鲜半岛     华北    
The Upper Proterozoic-Paleozoic records of sedimentary sequences and detrital zircon geochronology in Korean Peninsula and North China:Implications for tectonic attributes and division.
LI Zhong1,2, NI LingMei1,2, XU JianQiang1     
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Based on genetic analysis and correlation of stratigraphic frameworks, depositional sequences and detrital zircon chronological records, the paper further explored the Neoproterozoic-Paleozoic tectonic attributes and evolutional informations of Sino-Korean blocks. For the Pyeongnam and Tabeaksan basins, Korean Peninsula, and interior of North China block, their stratigraphic frameworks and depositional sequences are mainly characterized by the Cambrian-Ordovician inner continental shelf carbonate deposition, Silurian-Devonian non-deposition and middle-upper Carboniferous-Permian littoral coal-bearing deposition, in which the comparable age peaks of detrital zircons, including 1.85Ga, 2.5Ga, 1.15Ga and 1.6Ga, occur in the most sandstone samples of the Neoproterozoic-Paleozoic strata. However, for the Imjingang and Okcheon belts, Korean Peninsula, and southeast margin of North China block, their stratigraphic units are mainly composed by the Devonian-Carboniferous mudstones/schists, intermediate basic volcanics and pyroclastic rocks, generally characterized by depositional environments of outer continental shelf, with the comparably minimum age peaks close to the stratigraphic time ranges, also reflecting strong tectonic-magmatic activities during sedimentary stages. Therefore, it is presented that Korean Peninsula and North China are both belong to the first-order tectonic unit, that is, Sino-Korean Plate. However, due to southwestern Korean Peninsula and southeastern North China near to the plate margin, unstable/active tectonic regions, their stratigraphic-depositional records are obviously different those in the plate interior, indicating no identical stratigraphic-depositional model between them.
Key words: Stratigraphic frameworks     Depositional sequence     Detrital zircon age     Tectonic attribute     Korean Peninsula     North China    
1 引言

中-朝地块和基底构造单元属性与划分,这是在东亚大地构造研究中为学术界长期关注的基础课题,但争议颇多(任纪舜,1994; Cho et al.,1995; Chang,1996; Zhang,1997; Cluzel et al.,1991ab; Yin and Nie,1996; Chough et al.,2000; 乔秀夫和张安棣,2002; Tsujimori,2002; Li et al.,2003; Niu et al.,2015)。近年来新的工作不断推进,丰富了有关中-朝地块岩浆岩和变质岩岩石学、地球化学、地球物理以及构造地质纪录的对比素材和认识(Oh,2006; Zhai et al.,2007; 胥颐等,2009; Peng et al.,2011),但有关争议并未因此停止。

作为中-朝地块构造单元划分研究中不可回避的重要方面,沉积/地层纪录及其对比一直是一项重要内容(Kobayashi,1967; Lee,1980; Kim and Lee,19992000; Jeong and Lee,20002004; Choi et al.,2003; Lee and Lee,2003; Li et al.,2004b; Kwon et al.,2006);近年来从碎屑锆石年代学及物源探索中-朝地块构造属性的研究也时有报道(李忠等,2009; Lee et al.,20122016; Chough,2013),这对沉积/地层纪录研究无疑是重要补充。然而,由于众所周知的原因,朝鲜半岛尤其是北朝鲜的相关工作比较欠缺,制约了对中-朝地块构造-沉积演化的整体性认识。本文基于在南朝鲜太白山地区、北朝鲜平南盆地及邻区、华北地区的工作基础,结合已有沉积/地层资料,力图通过地层结构、沉积序列与碎屑锆石年代学记录等三方面的成因分析和区域对比,挖掘中-朝地块新元古代-古生代的构造-沉积演化信息,为深入认识与准确划分构造单元提供重要依据。

2 研究区地质演化背景

中国东部大陆自北而南主要分布有六大构造单元:中亚-兴蒙造山带、华北陆块、苏鲁-大别造山带、扬子陆块、南华造山带(裂谷系)、华南(华夏)陆块;而根据以往认识(Cho et al.,1995; Ree et al.,1996; Cluzel et al.,1991b; Oh et al.,2004),朝鲜半岛自北而南则由狼林地块(NM)、临津江带(IB)、京畿地块(GM)、沃川带(OB)、岭南地块(YM)等单元构成(图 1)。本文研究区主要涉及华北陆块东部与朝鲜半岛。

图 1 中国东部与朝鲜半岛构造单元与本文取样剖面位置 Fig. 1 Tectonic units of East China and Korean Peninsula and the sampling locations in the paper

对于华北陆块与朝鲜半岛主要陆块(NM、YM),其基底一般下部均由新太古代-古元古代高级片麻岩和片岩、上部(上地壳)由中-新元古代片岩、石英岩、大理岩、钙硅质岩和角闪岩组成,都经历过角闪岩到麻粒岩相变质作用,并受到后期中生代较强的岩浆侵入和构造叠加改造(翟明国等,2007; 李忠等,2009)。对于研究区内的苏鲁-大别造山带,其属于早中生代的陆-陆碰撞造山带,并以发育超高压变质作用而著称(Okay et al.,19891993; Wang et al.,1989),一般认为由于晚中生代的强烈剥露该带古生代地层保存很差,但北缘(华北南缘?)可能保存有陆缘晚古生代沉积(杨志坚,1964; Chen et al.,2003; 王世锋等,2003; Jiang et al.,2005);而朝鲜半岛的两个活动带(IB、OB),其成因主要与晚古生代-中生代变质变形作用相关,其中赋存有保存不完整的古生代地层(Chough,2013)。

苏鲁-大别造山带向东如何延伸?这是研究区构造格局的焦点问题(图 1)。一方面,目前主要有可与IB(Chough et al.,2000; Chough,2013),或IB-GM(Oh,2006; Fitches and Zhu,2006),或IB-OB(Yin and Nie,1993)类比等构造划分方案。另一方面,也有相当一部分学者认为朝鲜半岛IB与OB两个变质变形带以及GM都不具有碰撞造山带的典型特征,因此提出了苏鲁-大别造山带并非穿越朝鲜半岛(Ishiwatari and Tsujimori,2001; Khanchuk,2001; 乔秀夫和张安棣,2002; Zhai et al.,2007)的构造框架,即整个朝鲜半岛属于陆块,且与华北板块类似,该模式也因对黄海转换断裂(Chang and Park,2001)或朝鲜半岛西缘断裂带(郝天姚等,2002; 胥颐等,2009)的认识而得到旁证;但这一认识与将"京畿地块"厘定为三叠纪或早中生代碰撞造山带(Oh,2006; 侯泉林等,2008)的认识显著对立。

值得关注的是,朝鲜半岛发育古生界保存较好的沉积盆地,即在朝鲜北部的平南(Pyeongnam)盆地和朝鲜南部的太白山(Taebaeksan)盆地及沃川(Ogcheon)盆地,它们是朝鲜半岛古生界及元古宇沉积/地层记录的主要发育区。在以往开展的相关沉积地层学研究中,一种观点认为,平南盆地与太白山盆地古生界与华北具有可比性(Kim et al.,2001; Choi et al.,2003; Kwon et al.,2006; Chough,2013);但也有观点提出南朝鲜湖南剪切带以西的沃川盆地古生界与华南类似(Kobayashi,1967; Lee,1980),与湖南剪切带以东的太白山盆地不同。显然,随着近年来资料的不断积累,有必要进一步系统对比研究朝鲜半岛与华北的沉积/地层记录。

3 古生界地层格架与沉积序列 3.1 华北及其边缘地带

对于华北板块古生代地层格架,以往多数研究认为,其显著特征是中奥陶世到中石炭世存在着巨大的沉积间断(图 2)。早古生代自寒武纪至中奥陶世连续沉积,呈现海相碳酸盐岩为主夹少量细碎屑岩沉积序列(图 3);在角度或平行不整合之上,晚古生代广泛发育石炭-二叠系连续沉积,总体由滨浅海相逐渐过渡为陆相含煤碎屑岩建造(图 4)。值得注意的是,一系列研究迹象表明华北板块边缘及其他局部地区多处赋存有上述间断期的沉积地层。

图 2 朝鲜半岛与华北古生界地层格架 古生物资料来源:张日东(1985) GIASDPRK(1993) ,山东省地质矿产局(1996) ;佛子岭群同位素年龄转王世锋等(2003) ,Rimjin系同位素年龄引自Li et al.(2004b)和张艳斌(个人通讯),Okcheon群同位素年龄引自Kim et al.(2014) Fig. 2 The Paleozoic stratigraphic framework in Korean Peninsula and North China

图 3 朝鲜半岛与华北构造稳定区下古生界沉积序列划分与对比 朝鲜半岛资料来源:GIASDPRK(1993) ; Chough(2013) Fig. 3 Division and correlation of the Lower Paleozoic depositional sequences in the stable tectonic regions of Korean Peninsula and North China

图 4 朝鲜半岛与华北构造稳定区上古生界沉积序列划分与对比 朝鲜半岛资料来源:Lee and Chough(2006) ,其他同图 3;图例参见图 3 Fig. 4 Division and correlation of the Upper Paleozoic depositional sequences in the stable tectonic regions of Korean Peninsula and North China

其一,在华北板块西南缘(鄂尔多斯盆地南缘)一带,出露早古生代最高层位为背锅山组-东庄组或赵老峪组,根据新测定的453.2±6.9Ma这一凝灰岩锆石U-Pb年龄(吴素娟等,2014),因此应该界定为晚奥陶世地层,而非中奥陶世。而在华北板块北部,本溪组原归于中-上石炭统,而最近发表的冀北地区本溪组底部砂岩碎屑锆石U-Pb最小平均年龄约为298Ma,指示沉积时代最早为早二叠纪(Ma et al.,2014)。

其二,在华北板块东南缘,即合肥盆地以南著名的"北淮阳构造带"中,不仅早前就有区域地质和生物地层研究推测保存有晚古生代或泥盆-石炭纪沉积(杨志坚,1964; 高联达和刘志刚,1988; 李曰俊等,1997),而后期对佛子岭群副变质岩440Ma年轻碎屑锆石U-Pb年龄、由凝灰岩形成的长英糜棱岩的Rb-Sr等时线年龄(408±13Ma)的识别(Chen et al.,2003; 王世锋等,2003),则进一步表明这里至少存在形成于华北陆块南缘或陆间残留海环境的泥盆纪(潘家岭组和诸佛庵组)地层(Jiang et al.,2005)。而在合肥盆地中南部(肥中断裂以西)的防虎山地区,对出露的中生界下伏含石墨片岩碎屑锆石的研究(石永红等,2014),发现其最新一组U-Pb年龄为460~422Ma(14颗锆石),也倾向认为与佛子岭群可以对比,即属于泥盆纪或泥盆-石炭纪沉积。由于这套地层与邻近地层的呈断层接触关系(图 2),因此,其确切的年代范围将随着进一步的研究发现而存在扩展的可能性。

鉴于上述,我们提出所谓华北古生代沉积间断应该存在很大不均一性。一方面,板块内部与边缘地带地层结构显著分异,前者大致在中古生代期间存在沉积间断,后者则间断不明显,至少发育有泥盆-石炭纪沉积;另一方面,即便在板块内部,上述不整合顶底时间界面也呈现明显穿时特征,底界范围从中奥陶世到晚奥陶世,顶界则跨越中石炭世至早二叠世。

3.2 朝鲜半岛及边缘地带

朝鲜半岛古生界主要分布于北朝鲜平南盆地和南朝鲜太白山盆地,前者与下伏元古宇海相沉积岩或副变质岩地层呈整合或不整合接触,后者多与下伏前寒武纪花岗岩、片麻岩和副变质岩呈不整合接触(图 2图 3)。

以往研究多认为,上述盆地区古生界由下寒武统-中奥陶统、中石炭统-二叠系构成,中奥陶统和中石炭统之间以角度不整合接触(Cheong,1969; Chough et al.,2000)。其中,寒武-奥陶系又称Joseon超群,主要由浅海相碳酸盐岩夹碎屑岩组成;其上以不整合覆盖着晚古生代晚石炭世-二叠系Pyeongan超群,其总体以海陆交互相与陆相硅质碎屑岩夹煤层为特征(图 4)。不仅平南盆地与太白山盆地的古生代地层结构类似(Lee and Chough,2006; Chough,2013),其与华北内部典型地层结构、沉积序列以及聚煤时期也可以类比(图 3图 4)。当然,也有学者据生物化石分析提出北朝鲜黄海北道谷山地区存在晚奥陶世(迷卢统)和志留纪(谷山统)地层,甚至认为其化石特征与华南相似(张日东,1985),但仍有待厘定(图 3)。

该区值得关注的年代地层研究进展及问题讨论如下:

其一,原归于太白山盆地寒武系底部主要由砾岩、中粗砂岩与细砂岩构成的硅质碎屑岩层,由于缺乏生物化石,以往时代归属的依据并不充足。为此,针对原归于寒武系下部的Jangsan组砾岩、Myeonsan组中粗砂岩及其上覆的Myobong组粉砂岩、泥页岩夹灰岩(图 3),基于层序和碎屑锆石年代学分析发现(Kim and Lee,2006; Lee et al.,2012),Jangsan组和Myeonsan组的碎屑锆石年龄谱相近,而与Myobong组明显不同(参见图 5);且Jangsan组和Myeonsan组中碎屑锆石最小年龄均为古元古代,Myobong组碎屑锆石最小年龄则为寒武系、接近其生物地层时代(Lee et al.,2016),因此提出Jangsan组可能为新元古代,并为上覆Myeonsan组提供石英质砾石物源。尽管上述碎屑锆石年龄谱的差异,并非具备将Jangsan组划入新元古代的充分条件,但目前在没有其他有效的年代地层限定的情况下,上述考虑有其合理性。不过,将具有类似碎屑锆石年龄谱的Jangsan组和Myeonsan组分别划归新元古代和寒武纪,笔者认为欠妥,更何况两者间也并不存在明显的不整合界面。因此本文采用将Jangsan-Myeonsan组共同划归新元古代(实际上也不能排除中元古代的可能),其与寒武纪界线置于Myobong组底界的更变方案(图 2图 3)。

其二,众所周知,朝鲜半岛长期存在发育泥盆系即临津系(Rimjin System)的观点,但分布范围有限。据以往资料报道(GIASDPRK,1993),临津系呈带状分布于平南盆地与GM之间,宽15~20km、长100~150km,后期变形改造较强,多与元古宙或下古生界呈假整合或构造接触。这套地层总体以浅变质的中薄层砂泥岩(石英岩、千枚岩、片岩)互层为特征,偶夹中厚层碳酸盐岩,其中海相化石及植物化石较丰富,古生物年代学确定依据相对可靠,如晚泥盆世分子弓石燕属(Cyrtospirifer)的鉴定(Li et al.,2004b)。前人以Ryeonggang断裂带为界可分东西两部分,东部临津系薄层中基性火山岩、火山碎屑岩(透镜体)较发育,西部临津系则泥页岩/片岩、碳酸盐岩(透镜体)相对发育,对比性差,显示了比较明显的构造混杂特征。

近年的碎屑锆石和后期侵入岩U-Pb定年结果进一步约束了临津系的年代地层归属。笔者(Li et al.,2004b)曾经从平南盆地以南的临津系浅变质粉砂岩中获得418Ma的碎屑锆石最小峰值年龄,近年来从同一地区的变质砂岩/泥质粉砂岩也获得类似的420Ma(Kim et al.,2014)、405Ma(张艳斌,个人通讯)等类似的最小峰值年龄(参见图 6)。这无疑将这套副变质岩的沉积时代限定在志留纪以后。无独有偶,对于与IB带有着类似变质变形特征的OB带,以往对其中副变质岩的地层时代争议较大,而近期从中获得的碎屑锆石最小峰值年龄为359Ma(Kim et al.,2014)、436Ma(Cho et al.,2013)(参见图 6);而在GM西缘沿海地区的副变质岩中则获得的碎屑锆石最小峰值年龄为436~448Ma(Cho et al.,2010; Kim et al.,2014)。结合这套副变质岩的变质变形时间始于300Ma的认识(Cho and Kim,2005),且(原岩)岩性组合与该地区上石炭统-二叠系含煤岩系(GIASDPRK,1993; Chough,2013)似有不同,说明朝鲜半岛IB、OB带或西南部沿海边缘可能多处分布有泥盆-石炭纪的沉积地层。

图 5 华北-朝鲜半岛构造稳定区上元古界-古生界碎屑锆石U-Pb年龄谱对比 (a)鲁西上二叠统石河子组1个砂岩,N=67(Li et al.,2013);(b)冀北下二叠统山西组1个砂岩,N=96(Ma et al.,2014);(c)京西中寒武统徐庄组1个细砂岩,N=78(胡波等,2013);(d)鲁西上元古界土门群3个砂岩,N=214(Hu et al.,2012);(e)胶东上元古界蓬莱群3个石英岩,N=153(初航等,2011);(f)IB中古生界变质砂岩,N=41(Kim et al.,2014);(g)平南盆地上元古界Mukchon组1个砂岩,N=77(本文);(h)平南盆地上元古界Jikhyon组1个砂岩,N=80(本文);(i)太白山Manhang组1个砂岩、2个泥粉砂岩,N=75(李忠等,2009; Kim et al.,2012);(j)太白山Sesong组1个砂岩,N=81(Mckenzie et al.,2011);(k)太白山Myobong组3个砂岩,N=86(Lee et al.,20122016);(l)太白山上元古界Myeonsan组7个砂岩,N=121(Kim et al.,2013; Lee et al.,2016);(m)太白山上元古界Jangsan组5个砂岩,N=160(李忠等,2009; Lee et al.,2012). 浅绿色范围指示地层年代,其中前寒武纪地层年代范围含有推测成分 Fig. 5 U-Pb chronological distribution of the Upper Proterozoic-Paleozoic detrital zircons in the stable tectonic regions of Korean Peninsula and North China

综上,无论朝鲜半岛还是华北,陆块内部与边缘地带地层结构均存在显著分异,陆块内部中古生代(大约志留纪-早石炭世)均存在可对比的明显间断;而边缘地带或构造楔入地带则广泛分布着可对比的中古生代(大约泥盆-石炭纪)地层。

4 碎屑锆石年代学记录 4.1 碎屑锆石年代学样品与测试方法

针对南朝鲜太白山地区、北朝鲜平南盆地及邻区、华北地区古生界及上元古界,本文调研了该地区已经发表的相关数十个样品的碎屑锆石年代学数据,并补充开展了北朝鲜平南盆地上元古界上下部各1个石英砂岩和临津江带中古生界临津系1个粉砂岩样品(图 1)的碎屑锆石分析(表 1),在此基础上综合分析、挖掘中-朝地块的构造属性。

表 1 三个样品的碎屑锆石U-Pb年龄测定结果 Table 1 U-Pb dating data of sandstone detrital zircons of three samples in the paper

显微镜下随机挑选出的锆石颗粒通过双面胶固定在透明的环氧树脂中,再经抛光制作成样品靶。对样品靶进行阴 极发光(CL)分析,获得锆石颗粒的内部结构特征和相关成因信息。碎屑锆石U-Pb同位素测试在中国科学院地质与地球物理研究所多接收等离子质谱仪(LA-MC-ICP-MS)实验室进行。利用配有193nm激光取样系统的Neptune多接收等离子体质谱仪(MC-ICP-MS)和Agilent 7500a四极杆等离子体质谱仪(Q-ICPMS)分析完成。根据锆石颗粒大小不同,激光剥蚀束斑分别设定为40μm和50μm,频率为8Hz,脉冲输出能量为100mJ。标准锆石91500和标准硅酸盐玻璃NIST 610分别用作元素分馏校正的内标和优化仪器。详细的实验方法和步骤参见(Xie et al.,2008)。锆石年龄的分馏校正和计算采用GLITTER 4.0软件(Macquarie University),所有年龄结果均以204Pb含量做了普通铅校正(Andersen,2002),采用Isoplot(ver3.0)(Ludwig,2003)绘制U-Pb年龄谐和图和相对概率图。

4.2 上元古界碎屑锆石及构造含义

图 5所示,分析上元古界碎屑锆石U-Pb年龄谱,发现与华北相比,平南盆地、太白山盆地既有共性,也有个性。

北朝鲜平南盆地上元古界碎屑锆石U-Pb年龄显示1.15Ga、1.6Ga以及1.8Ga三个显著峰值,与华北(Wan et al.,20062011; Lu et al.,2008)基本类似,唯与2.5Ga峰值有关的年龄少见;最小年龄约1.0Ga,缺少新元古代年龄,与华南陆块缺少亲缘性。而南朝鲜太白山盆地基本由古元古代-新太古代(1.6~2.8Ga)年龄组成(图 5l,m),主要峰值为1.8~1.9Ga和2.5Ga(李忠等,2009; Kim et al.,2013; Lee et al.,20122016),也缺少新元古代年龄。

显然,与以往普遍接受的华北板块基底最显著的两期新太古代-古元古代尤其是~1.85Ga(Lu et al.,2008)构造-热事件相比,平南盆地、太白山盆地与华北有共性可以追踪。但是,平南盆地上元古界碎屑锆石大量存在的1.15Ga、1.6Ga的年龄似乎个性显著(图 5g,h),尤其1.15Ga与Rodinia超大陆的可能关系引人关注。不过,初航等(2011) Hu et al.(2012) 已相继在华北东缘山东境内的上元古界的碎屑锆石中揭示了这两个峰值年龄的记录(图 5d,e),并提出了碎屑物源与格林威尔期(Grenvillian)构造-热事件暨岩浆岩可能的亲缘关系。值得注意的是,它们的特殊性与其取样构造位置不无关系。因此,本文认为朝鲜半岛应该处于"中-朝板块"的边缘地带,其保存了板块内部不发育或难于保存的构造-热事件记录。

4.3 古生界碎屑锆石及构造含义

古生界碎屑锆石分构造稳定区和活动区两部分讨论,前者包括平南盆地、太白山盆地以及华北内部,后者包括临津江带、沃川带以及华北南缘。

朝鲜半岛构造稳定区下古生界碎屑锆石年龄数据仅出自太白山盆地早-中寒武世地层,其碎屑锆石年龄组成较该区下伏地层出现显著变化。由图 5i-m可见,除华北板块基底最显著的两期新太古代-古元古代年龄外,太白山下-中寒武统碎屑锆石新增丰富的中元古代-新元古代年龄(图 5j,k),区间为1600~520Ma,已发表的文献将该年龄特征与东冈瓦纳相联系,因而指示中朝板块在古生代早期可能属于东冈瓦纳北缘的一部分(Mckenzie et al.,2011; Lee et al.,2016)。这一特征与处于华北内部的京西地区的情况类似(Hu et al.,2012参见图 5c)。该地区上古生界石炭-二叠系碎屑锆石除了特征的~1.85Ga及少量~2.5Ga年龄外,就是发育大量的峰值为317Ma的碎屑锆石(图 5i),这一特征与华北内部的碎屑锆石记录(图 5a,b)几乎一致,也说明该地区晚石炭世早期(312~317Ma)有过一次与沉积期几乎同时的、影响广泛的构造-岩浆活动。

根据前述地层分析,临津江带和沃川带沉积地层时代可能主要为泥盆-石炭纪。由图 6可见,沃川带除了峰值为1.9Ga和2.5Ga左右的碎屑锆石外,1600~700Ma同样发育且新元古代~960Ma峰值突出(图 6c,d);此外,碎屑锆石最小年龄峰值359Ma,说明存在石炭纪以后地层。临津江带临津系样品数据点较少,但与沃川带相似,以~419Ma年龄最为显著,其次为新元古代中期,1.1~1.8Ga年龄数量零星。总体看,两个带的碎屑锆石年龄组成在继承区域中-朝基底碎屑锆石背景年龄信息基础上,以志留-石炭纪等新年龄的介入而呈现极大分异性,与华北南缘"北淮阳带"的副变质岩系有类似性,其碎屑构成与地质年代学均说明物源均主体来自中-朝地块或克拉通,只是在后期受到扬子地块的局域影响(Li et al.,2004a)。因此,这些地区可能是板块边缘构造活动区特点的总体反映。

图 6 朝鲜半岛构造活动区古生界副变质岩碎屑锆石U-Pb年龄谱对比 (a)IB中古生界变质砂岩,N=41(Kim et al.,2014);(b)北朝鲜泥盆系(临津系)变粉砂岩,N=18(本文);(c)OB西南部中古生界Pibanryeong地层单元3个变砂岩,N=139(Cho et al.,2013);(d)OB西南部中古生界Poeum地层单元3个变砂岩,N=232(Kim et al.,2014; Cho et al.,2013). 浅绿色范围指示推测地层年代 Fig. 6 U-Pb chronological distribution of the Paleozoic detrital zircons in the unstable/active tectonic regions of Korean Peninsula and North China
5 讨论

对于上元古界碎屑锆石年龄组成,北朝鲜狼林地块南部(平南盆地)基底与华北陆块东缘相似,而南朝鲜太白山盆地基底则与华北内部可以很好对比。就前者而言,关于碎屑物源与格林威尔期构造-热事件暨岩浆岩关系(初航等,2011; Hu et al.,2012)的进一步解释可能存在两个模式:其一,狼林地块南部、华北陆块东南缘等基底构成具有与华北陆块内部不同的特征;其二,上述研究区存在非华北属性的块体混入,如与华南陆块楔入相关的模式存在(Li,1994; Zhai et al.,2007)。显然,基于已有华北基底划分认识,上述模式一是有其合理性的;然而,由于上述研究区构造位置的特殊性,模式二不能完全排除,因此前寒武纪基底构造属性和单元划分的厘定似乎尚难定论。

平南盆地、太白山盆地以及华北内部的下古生界(寒武系为主),其地层结构、相序、碎屑锆石年龄组成(平南盆地暂缺)基本可以对比。当然,与华北内部的寒武系相比,研究区碎屑锆石年龄在1600~520Ma区间出现多个峰值,特别是新元古代700~800Ma的碎屑锆石年龄,将其解释为中朝板块在古生代早期可能属于东冈瓦纳北缘的一部分(Mckenzie et al.,2011; Lee et al.,2016),这与类似的地层结构结合考虑,似乎是可以接受的模型。

平南盆地、太白山盆地以及华北内部的上古生界(石炭-二叠系为主),其地层结构、相序、聚煤时期、碎屑锆石年龄组成(平南盆地暂缺)相似度极高,差异性极小。因此,综合考虑古生代的地层和沉积记录,笔者认为,上述地区古生代构造单元类同,具有可以对比的构造属性(图 7)。另一方面,古地磁研究结果表明太白山盆地上古生界Pyeongan超群极移轨迹与华北相连而与华南无关,表明朝鲜半岛和华北板块至少在晚古生代时已联合在一起(Doh and Piper,1994)。Kim et al.(2012) 认为太白山盆地晚石炭世最小碎屑锆石年龄(330~310Ma)代表的岩浆活动与Pyeongan超群初始沉积非常接近或同步,提出其沉积于晚石炭世-二叠纪时期主动大陆边缘背景下弧相关的前陆盆地,物源区与日本的Hida-Oki带相联系;而Cluzel et al.(1991ab)认为Pyeongan超群早期为浅海相被动大陆边缘沉积背景,随后转变成主动大陆边缘的内陆环境,砂岩碎屑组分成熟度逐渐减小、火山物质逐渐增多似乎也支持这一看法。

图 7 中-朝板块南部构造边界与边缘构造活动区分布 Fig. 7 Distribution of the southern tectonic boundary and active regions of Sino-Korean Plate

泥盆-石炭纪(目前尚无二叠纪及其以后的明显证据)地层-沉积记录发育于临津江带、沃川带以及华北南缘,年龄组成比较复杂,其中具有华北板块的物源属性,但也不能完全排除亲扬子/华南板块的物源供给(Li et al.,2004a; Kim et al.,2014; Cho et al.,2013),尤其新元古代年龄的峰值。此外,与地层时代接近的最新碎屑锆石年龄峰值,指示至少泥盆-石炭纪沉积期构造-岩浆活动显著。综合分析认为,这类沉积单元应该属于"中-朝板块"中-晚古生代边缘构造活动区(图 7),当然,对其时空范围的精确界定或恢复仍有待研究。

6 结论

(1) 综合地层结构、相序、碎屑锆石年龄组成以及聚煤记录,朝鲜半岛(至少大部分地区)与华北应属于统一的一级构造单元,即"中-朝板块";但朝鲜半岛西南部及华北东南缘毗邻板块边缘,因此其地层-沉积记录与板内存在差异,简单的一致性模式并不适用。

(2) 板内代表性地区包括朝鲜半岛平南盆地、太白山盆地以及华北内部,其地层结构-沉积相序以寒武-奥陶系内陆架沉积、志留-泥盆系缺失、中上石炭统-二叠系海陆交互相含煤沉积为特征,并具有可对比的1.85Ga、2.5Ga以及1.15Ga、1.6Ga等碎屑锆石年龄峰值。

(3) 板缘代表性地区包括临津江带、沃川带以及华北东南缘,其地层结构-沉积相序以泥盆-石炭系泥页岩/片岩、中基性火山岩及火山碎屑岩、碳酸盐岩(透镜体)混杂发育为特征,总体显示构造活动的外陆架沉积环境,并具有可对比的与地层时代接近的最小碎屑锆石年龄,这也是对中-晚古生代沉积期构造-岩浆活动的反映。

(4) 朝鲜半岛与华北应属于统一的"中-朝板块",但次级单元构造-沉积记录以及基底剥露在近板块边缘分异显著,对其构造属性仍有待精细厘定。

致谢 翟明国院士曾对研究工作给予热情支持;朝鲜北、南双方有关学者在野外考察中给予了大力协助;两位匿名审稿人对初稿提出多方面建设性修订意见!
参考文献
[1] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology , 192 (1-2) :59–79. DOI:10.1016/S0009-2541(02)00195-X
[2] Bureau of Geology and Mineral Resources of Shandong Province.1996. Stratigraphy (Lithostratic) of Shandong Province. Wuhan: China University of Geosciences Press : 84 -197.
[3] Chang EZ. 1996. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences , 13 (3-5) :267–277. DOI:10.1016/0743-9547(96)00033-5
[4] Chang KH, Park SO. 2001. Paleozoic Yellow Sea transform fault:Its role in the tectonic history of Korea and adjacent regions. Gondwana Research , 4 (4) :588–589.
[5] Chen FK, Guo JH, Jiang LL, Siebel W, Cong BL, Satir M. 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen,China:Evidence from zircon ages. Journal of Asian Earth Sciences , 22 (4) :343–352. DOI:10.1016/S1367-9120(03)00068-3
[6] Cheong CH. 1969. Stratigraphy and paleontology of the Samcheog coalfield,Gangweondo,Korea (Ⅰ). Journal of the Geological Society of Korea , 5 (1) :13–55.
[7] Cho M, Kwon ST, Ree JH, Nakamura E. 1995. High pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area. Journal of the Petrological Society of Korea , 4 :1–19.
[8] Cho M, Kim H. 2005. Metamorphic evolution of the Ogcheon Belt,Korea:A review and new age constraints. International Geology Review , 47 (1) :41–57. DOI:10.2747/0020-6814.47.1.41
[9] Cho M, Na J, Yi K. 2010. SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation,western Gyeonggi massif,Korea:Tectonic implications. Geosciences Journal , 14 (2) :99–109. DOI:10.1007/s12303-010-0011-7
[10] Cho M, Cheong W, Ernst WG, Yi K, Kim J. 2013. SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt,Korea:Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences , 63 :234–249. DOI:10.1016/j.jseaes.2012.08.020
[11] Choi DK, Kim DH, Sohn JW, Lee SB. 2003. Trilobite faunal successions across the Cambrian-Ordovician boundary intervals in Korea and their correlation with China and Australia. Journal of Asian Earth Sciences , 21 (7) :781–793. DOI:10.1016/S1367-9120(02)00106-2
[12] Chough SK, Kwon ST, Ree JH, Choi DK. 2000. Tectonic and sedimentary evolution of the Korean Peninsula:A review and new view. Earth-Science Reviews , 52 (1-3) :175–235. DOI:10.1016/S0012-8252(00)00029-5
[13] Chough SK. 2013. Geology and Sedimentology of the Korean Peninsula. London:Elsevier :9–98.
[14] Chu H, Lu SN, Wang HC, Xiang ZQ, Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation,Penglai Group in Changdao,Shandong Province. Acta Petrologica Sinica , 27 (4) :1017–1028.
[15] Cluzel D, Jolivet L, Cadet JP. 1991a. Early Middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea):A new insight on the Paleozoic buildup of East Asia. Tectonics , 10 (6) :1130–1151. DOI:10.1029/91TC00866
[16] Cluzel D, Lee BJ, Cadet JP. 1991b. Indosinian dextral ductile fault system and synkinematic plutonism in the southwest of the Ogcheon belt (South Korea). Tectonophysics , 194 (1-2) :131–151. DOI:10.1016/0040-1951(91)90277-Y
[17] Doh S, Piper JDA. 1994. Palaeomagnetism of the (Upper Palaeozoic-Lower Mesozoic) Pyongan Supergroup,Korea:A Phanerozoic link with the North China Block. Geophysical Journal International , 117 :850–863. DOI:10.1111/gji.1994.117.issue-3
[18] Fitches WR, Zhu G. 2006. Is the Ogcheon metamorphic belt of Korea the eastward continuation of the Nanhua Basin of China?. Gondwana Research , 9 (1-2) :68–84. DOI:10.1016/j.gr.2005.06.003
[19] Gao LD, Liu ZG. 1988. Discovery and geological significance of microfossils from the Nanwan Formation of Xinyang Group,Henan. Geological Review , 34 (5) :421.
[20] GIASDPRK (Geological Institute,Academy of Sciences,DPR of Korea).1993.Geology of Korea.Pyongyang:Foreign Languages Books Publishing House
[21] Hao TY, Suh M, Wang QS, Choi S, Jiang WW, Song HB, Yan XW, Liu JH, Yao CL. 2002. A study on the extension of fault zones in Yellow Sea and its adjacent areas based on gravity data. Chinese Journal of Geophysics , 45 (3) :385–397.
[22] Hou QL, Wu YD, Wu FY, Zhai MG, Guo JH, Li Z. 2008. Possible tectonic manifestations of the Dabie-Sulu orogenic belt on the Korean Peninsula. Geological Bulletin of China , 27 (10) :1659–1666.
[23] Hu B, Zhai MG, Li TS, Li Z, Peng P, Guo JH, Kusky TM. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications:Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research , 22 (3-4) :828–842. DOI:10.1016/j.gr.2012.03.005
[24] Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ, Zhang HD. 2013. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton:Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing. Acta Petrologica Sinica , 29 (7) :2508–2536.
[25] Ishiwatari A, Tsujimori T. 2001. Late paleozoic high-pressure metamorphic belts in Japan and Sikhote-Alin:Possible oceanic extension of the Chinese Dabie-Su-Lu suture detouring Korea. Gondwana Research , 4 (4) :636–638.
[26] Jeong H, Lee YI. 2000. Late Cambrian biogeography:Conodont bioprovinces from Korea. Palaeogeography,Palaeoclimatology,Palaeoecology , 162 (1-2) :119–136. DOI:10.1016/S0031-0182(00)00108-5
[27] Jeong H, Lee YI. 2004. Nd isotopic study of Upper Cambrian conodonts from Korea and implications for Early Paleozoic paleogeography. Palaeogeography,Palaeoclimatology,Palaeoecology , 212 (1-2) :77–94. DOI:10.1016/S0031-0182(04)00305-0
[28] Jiang LL, Wolfgang S, Chen FK, Liu YC, Chu DR. 2005. U-Pb zircon ages for the Luzhenguan Complex in northern part of the eastern Dabie orogen. Science in China (Series D) , 48 (9) :1357–1367. DOI:10.1360/03yd0532
[29] Khanchuk AI. 2001. Pre-Neogene tectonics of the Sea-of-Japan region:A view from the Russian side. Earth Science , 55 (5) :275–291.
[30] Kim HS, Ree JH, Kim J. 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny:Evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin,South Korea. International Journal of Earth Sciences , 101 (2) :483–498. DOI:10.1007/s00531-011-0683-x
[31] Kim HS, Hwang MK, Ree JH, Yi K. 2013. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian:Insights from U-Pb dating of detrital zircon. Earth and Planetary Science Letters , 368 :204–218. DOI:10.1016/j.epsl.2013.03.003
[32] Kim JH, Lee YI, Li MS, Bai Z. 2001. Comparison of the ordovician-carboniferous boundary between Korea and NE China:Implications for correlation and tectonic evolution. Gondwana Research , 4 (1) :39–53. DOI:10.1016/S1342-937X(05)70653-5
[33] Kim SW, Kwon S, Santosh M, Cho DL, Ryu IC. 2014. Detrital zircon U-Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea. Journal of Asian Earth Sciences , 95 :217–227. DOI:10.1016/j.jseaes.2014.05.022
[34] Kim Y, Lee YI. 1999. Glauconies of the Early Ordovician Dongjeom Formation,Korea:Implications for their stratigraphic significance. Journal of the Geological Society of Korea , 35 :213–222.
[35] Kim Y, Lee YI. 2000. Ironstones and green marine clays in the Dongjeom Formation (Early Ordovician) of Korea. Sedimentary Geology , 130 (1-2) :65–80. DOI:10.1016/S0037-0738(99)00104-9
[36] Kim Y, Lee YI. 2006. Early evolution of the Duwibong Unit of the Lower Paleozoic Joseon Supergroup,Korea:A new view. Geosciences Journal , 10 (4) :391–402. DOI:10.1007/BF02910434
[37] Kobayashi T. 1967. The Cambro-Ordovician formations and faunas of South Korea,Part 10,stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations of other areas. Section C,The Cambrian of eastern Asia and other parts of the continent.Journal of the Faculty of Science,University of Tokyo,Section Ⅱ , 16 :381–534.
[38] Kwon YK, Chough SK, Choi DK, Lee DJ. 2006. Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician),mideast Korea. Sedimentary Geology , 192 (1-2) :19–55. DOI:10.1016/j.sedgeo.2006.03.024
[39] Lee HS, Chough SK. 2006. Lithostratigraphy and depositional environments of the Pyeongan Supergroup (Carboniferous-Permian) in the Taebaek area,mid-east Korea. Journal of Asian Earth Sciences , 26 (3-4) :339–352. DOI:10.1016/j.jseaes.2005.05.003
[40] Lee HY. 1980. Discovery of a Silurian conodont fauna from South Korea. Journal of Geological Society of Korea , 16 :114–123.
[41] Lee YI, Lee JI. 2003. Paleozoic sedimentation and tectonics in Korea:A review. Island Arc , 12 (2) :162–179. DOI:10.1046/j.1440-1738.2003.00388.x
[42] Lee YI, Choi T, Lim HS, Orihashi Y. 2012. Detrital zircon U-Pb ages of the Jangsan Formation in the northeastern Okcheon belt,Korea and its implications for material source,provenance,and tectonic setting. Sedimentary Geology , 282 :256–267. DOI:10.1016/j.sedgeo.2012.09.005
[43] Lee YI, Choi T, Lim HS, Orihashi Y. 2016. Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin,South Korea:Implications for the Gondwana linkage of the Sino-Korean (North China) block during theNeoproterozoic-Early Cambrian. Palaeogeography,Palaeoclimatology,Palaeoecology , 441 :770–786. DOI:10.1016/j.palaeo.2015.10.025
[44] Li HY, Xu YG, Liu YM, Huang XL, He B. 2013. Detrital zircons reveal no Jurassic plateau in the eastern North China Craton. Gondwana Res. , 24 :622634.
[45] Li RW, Li SY, Jin FQ, Wan YS, Zhang SK. 2004a. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains,central China and the tectonic significance:Constraints from trace elements,mineral chemistry and SHRIMP dating of zircons. Sedimentary Geology , 166 (3-4) :245–264. DOI:10.1016/j.sedgeo.2003.12.009
[46] Li YJ, Hu SL, Jin FQ, Wang DX, Hao J, Yin HP. 1997. The genetic type of Yangshan Upper Paleozoic basin and its relation to the Tongbai-Dabie orogenic belt. Scientia Geologica Sinica , 32 (1) :19–26.
[47] Li Z,Chen DZ and Zhai MG.2004b.Paleozoic sedimentary records correlation between Korea and North China:Implication on the united Sino-Korea Block.In:Gondwana to Asia of 2004,Abstract Volume.Chonjiu:Chonbook University,31-32
[48] Li Z, Peng ST, Xu CW, Han YX, Zhai MG. 2009. U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin,Korea. Acta Petrologica Sinica , 25 (1) :182–192.
[49] Li ZX. 1994. Collision between the North and South China blocks:A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology , 22 (8) :739–742. DOI:10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
[50] Li ZX, Cho M, Li XH. 2003. Precambrian tectonics of East Asia and relevance to supercontinent evolution. Precambrian Research , 122 (1-4) :1–6. DOI:10.1016/S0301-9268(02)00204-8
[51] Lu SN, Zhao GC, Wang HC, Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton:A review. Precambrian Research , 160 (1-2) :77–93. DOI:10.1016/j.precamres.2007.04.017
[52] Ludwig KR.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley,California:Berkeley Geochronology Center,70 http://www.oalib.com/references/15774489
[53] Ma SX, Meng QR, Duan L, Wu GL. 2014. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton. Journal of Asian Earth Sciences , 87 :89–101. DOI:10.1016/j.jseaes.2014.02.020
[54] Mckenzie NR, Hughes NC, Myrow PM, Choi DK, Park TY. 2011. Trilobites and zircons link North China with the eastern Himalaya during the Cambrian. Geology , 39 (6) :591–594. DOI:10.1130/G31838.1
[55] Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY, Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin , 60 (18) :1598–1616. DOI:10.1007/s11434-015-0891-z
[56] Oh CW, Kim SW, Ryu IC, Okada T, Hyodo H, Itaya T. 2004. Tectono-metamorphic evolution of the Okcheon metamorphic belt,South Korea:Tectonic implications in East Asia. Island Arc , 13 (2) :387–402. DOI:10.1111/iar.2004.13.issue-2
[57] Oh CW. 2006. A new concept on tectonic correlation between Korea,China and Japan:Histories from the Late Proterozoic to Cretaceous. Gondwana Research , 9 (1-2) :47–61. DOI:10.1016/j.gr.2005.06.001
[58] Okay AI, Xu ST and Şengör AMC. 1989. Coesite from the Dabie Shan eclogites,Central China. European Journal of Mineralogy , 1 (4) :595–598. DOI:10.1127/ejm/1/4/0595
[59] Okay AI, Şengör AMC, Satir M. 1993. Tectonics of an ultrahigh-pressure metamorphic terrane:The Dabie Shan/Tongbai Shan Orogen,China. Tectonics , 12 (6) :1320–1334. DOI:10.1029/93TC01544
[60] Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS, Zhang YB. 2011. Neoproterozoic (~900Ma) Sariwon sills in North Korea:Geochronology,geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research , 20 (1) :243–254. DOI:10.1016/j.gr.2010.12.011
[61] Qiao XF, Zhang AD. 2002. North China block,Jiao-Liao-Korea block and Tanlu fault. Geology in China , 29 (4) :337–345.
[62] Ree JH, Cho M, Kwon ST, Nakamura E. 1996. Possible eastward extension of Chinese collision belt in South Korea:The Imjingang belt. Geology , 24 (12) :1071–1074. DOI:10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
[63] Ren JS. 1994. The continental tectonics of China. Acta Geosicientia Sinica , 15 (3-4) :5–13.
[64] Shi YH, Cao S, Wang J, Nie F, Kang T. 2014. Analysis of petrology,geochronology for Beihuaiyang metamorphic unit,and discussion about the suture of Dabie Orogen. Chinese Journal of Geology , 49 (2) :378–393.
[65] Tsujimori T. 2002. Prograde and retrograde P-T paths of the Late Paleozoic glaucophane eclogite from the renge metamorphic belt,Hida Mountains,Southwestern Japan. International Geology Review , 44 (9) :797–818. DOI:10.2747/0020-6814.44.9.797
[66] Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research , 149 (3-4) :249–271. DOI:10.1016/j.precamres.2006.06.006
[67] Wan YS, Liu DY, Wang SJ, Yang EX, Wang W, Dong CY, Zhou HY, Du LL, Yang YH, Diwu CR. 2011. ~2. 7Ga juvenile crust formation in the North China Craton (Taishan-Xintai area,western Shandong Province):Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon.Precambrian Research , 186 (1-4) :169–180.
[68] Wang SF, Huang SY, Xu B. 2003. Strategraphy research and its problems in Northern Huaiyang tectonic belt. Geological Science and Technology Information , 22 (1) :29–33.
[69] Wang XN, Liou JG, Mao HK. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology , 17 (12) :1085–1088. DOI:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2
[70] Wu SJ, Li ZH, Hu JM, Gong WB. 2014. Confirmation of Ordovician sediments in southern margin of Ordos Basin by SHRIMP U-Pb zircon dating of volcanic tuff interlayers and its significance. Geological Review , 60 (4) :903–912.
[71] Xie LW, Zhang YB, Zhang HH, Sun JF, Wu FY. 2008. In situ simultaneous determination of trace elements,U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin , 53 (10) :1565–1573.
[72] Xu Y, Li ZW, Kwanghee K, Hao TY, Liu JS. 2009. Crustal velocity structure and collision boundary between the Sino-Korea and Yangtze blocks in the Yellow Sea. Chinese Journal of Geophysics , 52 (3) :646–652.
[73] Yang ZJ. 1964. Geological time problems of Foziling Group. Geological Review , 22 (5) :327–336.
[74] Yin A, Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems,eastern Asia. Tectonics , 12 (4) :801–813. DOI:10.1029/93TC00313
[75] Yin A, Nie SY. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In:Yin A and Harrison TM (eds.).The Tectonic Evolution of Asia.Cambridge:Cambridge University Press :442–485.
[76] Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL, Fan QC. 2007. Linking the Sulu UHP belt to the Korean Peninsula:Evidence from eclogite,Precambrian basement,and Paleozoic sedimentary basins. Gondwana Research , 12 (4) :388–403. DOI:10.1016/j.gr.2007.02.003
[77] Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Zhang YB, Hou QL, Fan QC, Hu Bo. 2007. Extension of the Sulu UHP belt to the Korean Peninsula:Evidence from orogenic belts,Precambrian basements,and Paleozoic sedimentary basins. Geological Journal of China Universities , 13 (3) :415–428.
[78] Zhang KJ. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics , 270 (1-2) :145–156. DOI:10.1016/S0040-1951(96)00208-9
[79] Zhang RD. 1985. Lower Paleozoic erathem in Northern Korea. Journal of Stratigraphy , 9 (4) :271–277.
[80] 初航, 陆松年, 王惠初, 相振群, 刘欢.2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究. 岩石学报 , 27 (4) :1017–1028.
[81] 高联达, 刘志刚.1988. 河南信阳群南湾组微体化石的发现及其地质意义. 地质论评 , 34 (5) :421.
[82] 郝天珧, SuhM, 王谦身, ChoiS, 江为为, 宋海斌, 阎晓蔚, 刘建华, 姚长利.2002. 根据重力数据研究黄海周边断裂带在海区的延伸. 地球物理学报 , 45 (3) :385–397.
[83] 侯泉林, 武昱东, 吴福元, 翟明国, 郭敬辉, 李忠.2008. 大别-苏鲁造山带在朝鲜半岛可能的构造表现. 地质通报 , 27 (10) :1659–1666.
[84] 胡波, 翟明国, 彭澎, 刘富, 第五春荣, 王浩铮, 张海东.2013. 华北克拉通古元古代末-新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据. 岩石学报 , 29 (7) :2508–2536.
[85] 李曰俊, 胡世玲, 金福全, 王道轩, 郝杰, 殷和平.1997. 杨山晚古生代沉积盆地成因类型及其与桐柏-大别造山带关系的探讨. 地质科学 , 32 (1) :19–26.
[86] 李忠, 彭守涛, 许承武, 韩银学, 翟明国.2009. 韩国太白山盆地古生界砂岩碎屑锆石U-Pb年代及其区域构造含义. 岩石学报 , 25 (1) :182–192.
[87] 乔秀夫, 张安棣.2002. 华北块体、胶辽朝块体与郯庐断裂. 中国地质 , 29 (4) :337–345.
[88] 任纪舜.1994. 中国大陆的组成、结构、演化和动力学. 地球学报 , 15 (3-4) :5–13.
[89] 山东省地质矿产局. 1996. 山东省岩石地层. 武汉: 中国地质大学出版社 : 84 -197.
[90] 石永红, 曹晟, 王娟, 聂峰, 康涛.2014. 北淮阳变质单元岩石学、年代学分析及对大别造山带构造缝合线位置的探究. 地质科学 , 49 (2) :378–393.
[91] 王世锋, 黄少瑛, 徐备.2003. 北淮阳区地层研究进展. 地质科技情报 , 22 (1) :29–33.
[92] 吴素娟, 李振宏, 胡健民, 公王斌.2014. 鄂尔多斯盆地南缘赵老峪剖面奥陶系凝灰岩锆石SHRIMP U-Pb定年及其地质意义. 地质论评 , 60 (4) :903–912.
[93] 胥颐, 李志伟, KwangheeK, 郝天珧, 刘劲松.2009. 黄海的地壳速度结构与中朝-扬子块体拼合边界. 地球物理学报 , 52 (3) :646–652.
[94] 杨志坚.1964. 佛子岭群的地质时代问题. 地质论评 , 22 (5) :327–336.
[95] 翟明国, 郭敬辉, 李忠, 陈代钊, 彭澎, 李铁胜, 张艳斌, 侯泉林, 樊祺诚, 胡波.2007. 苏鲁造山带在朝鲜半岛的延伸:造山带、前寒武纪基底以及古生代沉积盆地的证据与制约. 高校地质学报 , 13 (3) :415–428.
[96] 张日东.1985. 朝鲜北半部的下古生界. 地层学杂志 , 9 (4) :271–277.