岩石学报  2016, Vol. 32 Issue (8): 2477-2493   PDF    
玲珑黑云母花岗岩成因:矿物学特征约束
赛盛勋1, 赵天明2, 王中亮1, 黄锁英3, 张良1     
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083 ;
2. 山东省莱州市国土资源局,莱州 261400 ;
3. 山东黄金矿业(莱州)有限公司焦家金矿,莱州 261441
摘要: 晚侏罗世玲珑黑云母花岗岩广泛分布于胶东半岛西北部,是胶东半岛众多中生代侵入岩中出露面积最大的岩体,为区内主要赋矿围岩。有关其成岩物理化学条件、岩石成因类型和源区特征却一直存在争议。本文在系统的岩石学和岩相学研究基础上,对钾长石、斜长石、黑云母和角闪石等主要造岩矿物进行了成分分析,以期厘定成岩物理化学条件,并进一步约束岩石成因。研究结果表明:钾长石K2O含量为14.17%~15.85%,平均15.14%,Na2O含量为0.62%~1.50%,平均1.04%,属于正长石(Or=86.51~94.35);斜长石Na2O含量为8.41%~10.02%,平均9.11%,CaO含量为3.05%~4.54%,平均3.99%,属于更长石(Ab=74.97~84.56);黑云母相对富铁(FeO为18.49%~21.64%,平均20.13%)、贫镁(MgO为8.06%~10.89%,平均9.50%),为镁铁黑云母或富铁黑云母;角闪石富铁(FeO为21.24%~22.24%,平均21.68%)、贫镁(MgO为5.75%~6.57%,平均6.11%),均为含铁韭闪石质普通角闪石。花岗岩不同温压条件下的水逸度图解显示岩体形成压力为2.7~3.2kbar,深度为10~12km;锆石饱和温度计(综合前人数据计算得到)、角闪石-斜长石温度计和二长石温度计结果分别表明岩浆侵位温度为728~795℃,结晶温度为614~682℃,最后在531~565℃温度下固结成岩;黑云母和角闪石成分表明岩体形成时氧逸度较低,为-21.67~-16.73。黑云母化学成分MgO与Al2O3呈现负相关性,说明其结晶过程中可能发生了Mg2+和Al3+的置换反应,结合黑云母MgO-FeO-Al2O3图解可知岩体具有钙碱性花岗岩的特征。黑云母的含铁系数、MF值、Al值和较低的氧逸度指示玲珑黑云母花岗岩为S型花岗岩。黑云母具有由核部到边部FeO、MgO和K2O含量均一的特征,结合黑云母FeO/(FeO+MgO)-MgO图解、黑云母MF值以及角闪石Mg#值说明岩石物质来源为壳源。玲珑黑云母花岗岩中斜长石和黑云母的种属,岩体内大量太古宙继承锆石和产出方向与区域胶东群一致的胶东群残留体进一步说明其可能是胶东群部分熔融的产物,形成过程中没有明显幔源物质的参与。
关键词: 玲珑黑云母花岗岩     地质温压计     岩石成因     矿物学特征     胶东半岛    
Petrogenesis of Linglong biotite granite: Constraints from mineralogical characteristics
SAI ShengXun1, ZHAO TianMing2, WANG ZhongLiang1, HUANG SuoYing3, ZHANG Liang1     
1. State Key Laboratory of Geological Process and Mineral Resources,China University of Geosciences,Beijing 100083,China ;
2. Shandong Provincial Laizhou City Bureau of Land and Resources,Laizhou 261400,China ;
3. Jiaojia Gold Company,Shandong Gold Mining Co.,Ltd.,Laizhou 261441,China
Abstract: The Late Jurassic Linglong biotite granite,which is the largest pluton among the abundant Mesozoic granitoids and hosts most of the gold resources,is widely developed in the northwestern part of Jiaodong Peninsula. For a long time the physicochemical conditions during rock formation,genetic type and source characteristics are controversial. On the basis of systematic petrological and petrographical research,this paper conducts electron microprobe analysis on the main rock-forming minerals such as K-feldspar,plagioclase,biotite and hornblende,trying to throw light on the physicochemical conditions during rock formation and provide further constraints on the petrogenesis of the rock. The results show that K2O amount of the K-feldspar is 14.17%~15.85% (average value of 15.14%) and Na2O amount is 0.62%~1.50% (average value of 1.04%),belonging to orthoclase (Or=86.51~94.35); the Na2O amount of plagioclase is 8.41%~10.02% (average value of 9.11%) and CaO amount is 3.05%~4.54% (average value of 3.99%),belonging to oligoclase (Ab=74.97~84.56); the biotite is magnesio-biotite or ferri-biotite with relatively high FeO amount of 18.49%~21.64% (average value of 20.13%) and low MgO amount of 8.06%~10.89% (average value of 9.50%); all the hornblende belongs to iron pagasite hornblende with high FeO amount of 21.24%~22.24% (average value of 21.68%) and low MgO amount of 5.75%~6.57% (average value of 6.11%). Diagram of water fugacity in different P-T conditions shows that the pressure during rock formation is 2.7~3.2kbar,representing a depth of approximately 10~12km. Zircon saturation thermometer (calculated from the data of the former researchers),hornblende-plagioclase thermometer and K-feldspar-plagioclase thermometer show the temperature of initial magma,the intrusion temperature and the consolidation temperature are 728~795℃,614~682℃ and 531~565℃,respectively. Chemical composition of both biotite and hornblende shows that oxygen fugacity during the rock formation is low,roughly -21.67~-16.73. Content of MgO and Al2O3 is negatively correlated in biotite,suggesting substitution between Mg2+ and Al3+ during crystallization of biotite,and showing feature of calc-alkaline granite combined with the MgO-FeO-Al2O3 diagram. The MF value,Al content and low oxygen fugacity suggest Linglong biotite granite is S-type granite. The uniform content of FeO,MgO and K2O in biotite,FeO/(FeO+MgO)-MgO diagram,MF value of biotite as well as Mg# value of hornblende suggest the magma source of Linglong biotite granite is crustal. The species of plagioclase and biotite,abundant Archean inherited zircon and residue whose occurrence is the same as that of the regional Jiaodong Group further constrain that the Linglong biotite granite is resulted from partial melting of the Jiaodong Group with no significant input of mantle source during rock formation.
Key words: Linglong biotite granite     Geothermobarometer     Petrogenesis     Mineralogical characteristics     Jiaodong Peninsula    
1 引言

胶东半岛中生代花岗岩类广泛发育,主要由晚侏罗世玲珑型花岗岩、早白垩世早期郭家岭型花岗岩和早白垩世晚期艾山型花岗岩组成(Deng et al.,2008; 邓军等,2010; Ma et al.,2013; Goldfarb et al.,2014; 刘跃等,2014; Wang et al.,2014; 杨立强等,2014a; Yang et al.,2014; 图 1)。其中,玲珑型花岗岩与金矿床有着密切的空间联系,是区内最主要的赋矿围岩(Deng et al.,200620082015a; Yang et al.,20142016a)。虽然前人对玲珑型花岗岩进行了大量的全岩主微量,全岩Sr-Nd同位素和锆石Hf同位素工作(Zhang et al.,2010; Yang et al.,2012; Ma et al.,2013),并且大量锆石U-Pb年龄将成岩年龄精确地限定在163~155Ma(Hou et al.,2007; Yang et al.,2012; Ma et al.,2013),然其成因类型和源区仍存在争议:成因类型,有S型花岗岩(Wang et al.,2014)、I型花岗岩(Ma et al.,2013)和类埃达克岩(Hou et al.,2007; Zhang et al.,2010)等多种观点;源区特征,Hou et al.(2007)认为玲珑型花岗岩源自具有榴辉石残留相的新太古代增厚下地壳的部分熔融;Zhang et al.(2010)提出三叠纪扬子板块向华北板块俯冲碰撞,引起古元古代-太古代陆壳的加厚,玲珑型花岗岩主要来源于这种加厚下地壳的部分熔融;Yang et al.(2012)指出太平洋板块俯冲于华北板块之下引起太古宙下地壳活化、软流圈上涌和华北板块下地壳增厚,增厚下地壳的部分熔融形成了玲珑型花岗岩;Ma et al.(2013)则提出玲珑型花岗岩最有可能来源于增厚华北板块和扬子板块的部分熔融,同时也有与碰撞相关的碱性岩、超高压变质岩等多种来源。

花岗岩类岩石结构构造和矿物组合特征等可以有效地反映岩浆形成过程的物理化学条件及岩浆演化特征,并被用于判别成因类型、源区性质和成岩构造背景(Abdel-Rahman,1994; 郭耀宇等,2015; Yang et al.,2016b)。前人利用标准矿物Q-Ab-Or图解法得出玲珑型花岗岩形成压力整体位于2.0~4.5kbar(桑隆康,1987; 田农等,1989; 孙胜龙,1993),但该方法仅适用于对岩石形成压力的粗略估计,不能用于定量计算。同时对花岗岩形成温度的工作主要集中在实验岩石学估算(曲晓明等,2000)和代表岩石固结温度的二长石温度计计算(孙胜龙,1993),缺乏从岩浆形成到岩石固结整个成岩过程中温度的定量指示。

本文在系统的野外调查和岩相学观察的基础上,开展了较为全面的钾长石、斜长石、黑云母和角闪石电子探针分析工作,厘定了玲珑型花岗岩形成过程的温压条件,并进一步探讨其岩石成因和源区特征,旨在对已有全岩主微量、全岩Sr-Nd同位素和锆石Hf同位素等工作做一补充,深化对胶东中生代花岗岩成因和岩浆演化的认识。

2 地质背景与岩体特征

胶东半岛地处太平洋板块与欧亚板块的活动交汇处,位于华北克拉通东南缘,大别-苏鲁超高压变质带的东北缘,西以郯庐断裂带为界与鲁西相接(Deng et al.,20032011; Tan et al.,2008; Yang et al.,2016c; Zhai and Santosh,2013)。胶东半岛主要由西北部的胶北地体和东南部的苏鲁地体组成,二者以标志着华北板块和扬子板块碰撞缝合带的五莲-烟台断裂为界(Tang et al.,2008)。

胶北地体属于华北板块南缘,区域基底由新太古界胶东群、下元古界荆山群和粉子山群以及上元古界蓬莱群组成(Deng et al.,2009; 王中亮,2012; 张良等,2014; Deng and Wang,2016; 图 1)。胶东群主要由2.9~2.5Ga的TTG岩系、少量2.5Ga的角闪岩和2.4Ga的基性麻粒岩序列组成(陈光远等,1993; Tang et al.,2008)。下元古界荆山群和粉子山群不整合或断层接触于胶东群之上,岩性主要为片岩、片麻岩、钙硅酸盐岩、大理岩、少量麻粒岩和角闪岩等,形成于2.5~1.9Ga(Wang et al.,1998; Yang et al.,2016d)。上元古界蓬莱群不整合接触于粉子山群之上,主要岩性为大理岩、板岩、石英岩、千枚岩和泥灰岩等(陈光远等,1993; Deng et al.,2015b; Wang et al.,2015)。

图 1 胶东半岛大地构造位置(a)和胶东区域基底、超高压变质岩和中生代花岗岩分布地质图(b)(据杨立强等,2014a修改) Fig. 1 Tectonic map of the Jiaodong Peninsula(a)and sketch map of the geology of the Jiaodong Peninsula showing the distribution of basement,UHP metamorphic rocks and Mesozoic granitoids(b)(modified after Yang et al.,2014a)

苏鲁地体属于扬子板块的北缘(Zhai et al.,2001),前寒武纪基底以超高压变质岩为主,岩性主要为花岗片麻岩、含柯石英榴辉岩、大理岩和硅质岩(Yang et al.,2005; 图 1),其原岩年龄为780~740Ma(Li et al.,1993)。此外,苏鲁地体中也发育少量原岩年龄为2.0~1.8Ga的榴辉岩、角闪岩和麻粒岩(Tang et al.,2008)。

胶东半岛发育了广泛的岩浆活动(邓军等,2000; Yang et al.,2009),主要有晚三叠世(225~205Ma,Chen et al.,2003; Yang et al.,2005)、晚侏罗世(166~149Ma,Hou et al.,2007; Ma et al.,2013)和早白垩世(130~110Ma,Wang et al.,1998; Zhang et al.,2010; Wang et al.,2014; Yang et al.,2016e)三个阶段。晚三叠世花岗岩仅在胶东东部有报道(Yang et al.,2005),晚侏罗世和早白垩世花岗岩则广泛分布(Deng et al.,2011; Ma et al.,2013; 图 1)。晚侏罗世花岗岩通称为玲珑型花岗岩,侵位于胶西北基底岩石胶东群变质岩中,以玲珑黑云母花岗岩为主(Yang et al.,2016f)。

玲珑黑云母花岗岩面积达1000km2以上(Yang et al.,2012),重力异常的反演模拟证明该岩体为一席状岩基,厚度小于10km且具有南厚北薄的特征(万天丰等,2000)。该岩体呈NNE向带状展布于胶西北焦家断裂与招平断裂之间,和胶东东部昆嵛山花岗岩同期形成(Zhang et al.,2010),并于132~126Ma被以郭家岭花岗闪长岩为代表的早白垩世郭家岭型花岗岩体侵入(杨立强等,20062014b; Hou et al.,2007; Yang et al.,2012; 王中亮等,2014; 图 2)。岩体内部发育有大量胶东群斜长角闪岩、黑云变粒岩和片麻岩等包体或混合岩化花岗岩,包体和混合岩化花岗岩与主岩呈渐变过渡关系(孙丰月等,1995; 图 3a,b)。玲珑黑云母花岗岩多为浅灰白色-浅肉红色,中粗粒结构,主要岩性为黑云母二长花岗岩。部分岩石发育片麻状构造(图 3c),在岩体边缘片麻理多与接触边界平行,在岩体内部则呈揉皱状连续变化(王吉珺,2000),说明岩体发生过整体熔融,是一个岩浆侵入体(万天丰等,2000);部分发育较致密均匀的块状构造(图 3d)。前者与胶东群等前寒武纪变质岩多呈渐变接触关系,后者则多呈突变接触关系。

图 2 焦家金矿田地质图及取样位置(据Wang et al.,2014修改) Fig. 2 Geological map of the Jiaojia gold orefield with sample locations of the Linglong biotite granite in this study(modified after Wang et al.,2014)
图 3 玲珑黑云母花岗岩野外及手标本照片 (a)玲珑黑云母花岗岩中斜长角闪岩等胶东群包体;(b)玲珑黑云母花岗岩中混合岩化花岗岩;(c)浅肉红色黑云母花岗岩,中粗粒结构,片麻状构造;(d)浅灰白色黑云母花岗岩,中粗粒结构,块状构造 (a)amphibolite enclaves of Jiaodong Group in Linglong biotite granite;(b)migmatizational granite in Linglong biotite granite;(c)light flesh-pink biotite granite,medium- to coarse-grained,showing gneissic structure;(d)light grey-white biotite granite,medium- to coarse-grained,showing massive structure Fig. 3 Field and specimen photos of Linglong biotite granite
3 样品特征与分析方法 3.1 样品特征

本研究在望儿山金矿床-150m、-190m、-310m中段内采集了玲珑黑云母花岗岩样品,其岩性为黑云母二长花岗岩,具体采样位置见图 2。所有样品均远离金矿体,手标本及显微镜观察显示花岗岩样品新鲜(图 3图 4)。该样品呈浅灰白色-浅肉红色,中粗粒结构,片麻状构造(图 3c)。岩石中主要矿物为石英(35%~40%)、钾长石(25%~35%)、斜长石(25%~30%)、黑云母(5%~10%)和角闪石(1%~5%)等,另有榍石、褐帘石、绿帘石、磁铁矿、锆石等副矿物(图 4)。

图 4 玲珑黑云母花岗岩矿物组合特征 (a)钾长石包含浑圆状斜长石、石英等矿物;(b)条纹长石结构,钾长石中包含白云母等矿物,部分白云母呈放射状分布于矿物颗粒间;(c)斜长石净边结构;(d)自形黑云母包裹于钾长石中,解理纹弯曲黑云母存在于矿物颗粒间;(e)压碎的角闪石;(f)他形榍石和自形褐帘石,褐帘石边缘为绿帘石.矿物代号:Q-石英;Kfs-钾长石;Pl-斜长石;Bi-黑云母;Hbl-角闪石;Mus-白云母;Pth-条纹长石;Spn-榍石;Aln-褐帘石;Ep-绿帘石 (a)K-feldspar with round plagioclase and quartz;(b)perthite texture,K-feldspar with long strip muscovite inside,radiate muscovite distributes among different mineral grains;(c)anhedral plagioclase,showing clean margin structure;(d)euhedral biotite in the K-feldspar,biotite with curved cleavage distributes among different mineral grains;(e)fragmented hornblende;(f)anhedral sphene and allanite,with epidote in the margin of allanite. Mineral abbreviations: Q-quartz; Kfs-K-feldspar; Pl-plagioclase; Bi-biotite; Hbl-hornblende; Mus-muscovite; Pth-perthite; Spn-sphene; Aln-allanite; Ep-epidote Fig. 4 Photos of mineral assemblage features of Linglong biotite granite

石英粒度较小,一般为0.1~0.2mm,他形充填于矿物颗粒间。常见浑圆状石英包裹于钾长石中(图 4a)。受构造作用普遍具波状消光(图 4a,c,d)。

钾长石粒度0.6~2.5mm,粒度较其他矿物粗大,自形-半自形,部分具有卡式双晶。其内常有浑圆状或不规则状斜长石、黑云母和白云母等包体,呈筛状结构(图 4a,b),显示岩浆成因特征。部分钾长石沿解理扩充交代斜长石,形成一系列平行的交代条纹结构,并保持相同的消光位(图 4b)。以上现象表明钾长石晚于斜长石、黑云母及白云母结晶。

斜长石粒度0.3~7.0mm,粒度变化较大,自形-半自形,普遍发育聚片双晶。部分存在于矿物颗粒间,因钾长石交代在二者接触处常具有净边结构(图 4c);部分斜长石存在于钾长石中(图 4a),说明斜长石的生成相对早于钾长石。受构造作用具有波状消光、双晶折断等现象。

黑云母粒度0.1~0.5mm,形态上可分为两类,一类呈自形存在于钾长石颗粒中或矿物颗粒间(图 4d);另一类黑云母解理纹弯曲变形,存在于矿物颗粒间(图 4d),部分呈定向排列,可能受后期构造应力作用所致。两类黑云母多色性较弱,棕褐色、浅绿或黄绿色。

角闪石含量较少,粒度0.2~0.5mm,多色性明显,常出现受应力作用的压碎现象(图 4e)。白云母呈长条状或放射状存在于矿物颗粒间或包裹于钾长石中,具有鲜艳的二级蓝绿干涉色(图 4b)。榍石他形,信封状结构,粒度较小,具有浅黄、褐色的弱多色性(图 4f)。绿帘石自形,具弱的成分环带,核部为自形菱状褐帘石,无次生蚀变现象(图 4f)。

黑云母发育于自形板状的斜长石之间,暗示黑云母结晶于斜长石之后。钾长石自形-半自形,且内部包含黑云母及斜长石,说明钾长石结晶晚于斜长石及黑云母。石英发育于自形斜长石和钾长石之间则表明其最晚结晶。

3.2 分析方法

在详细的岩相学观察基础上,圈定新鲜的钾长石、斜长石、黑云母和角闪石用于电子探针测试。探针片喷碳与样品测试工作在核工业北京地质研究院分析测试研究中心完成。

矿物成分分析采用日本电子JOEL公司生产的JXA-8100电子探针分析仪进行,加速电压为20kV,束流1×10-8A,束斑直径3μm,出射角40°。测试的主量元素包括Na2O、SiO2、FeO、K2O、Al2O3、MgO、TiO2、CaO、P2O5和F等,氧化物的检出限为0.01%,F的检出限为0.11%。

4 矿物地球化学特征 4.1 钾长石

钾长石的电子探针结果如表 1。可知钾长石成分均匀,与昆嵛山花岗岩中钾长石成分相似(张德全等,1995; 徐洪林等,1997; 图 5a)。K2O含量为 14.17%~15.85%,平均1 5.14%,Na2O含量为0.62%~1.50%,平均1.04%。FeO 含量较低,介于0.03%~0.16%之间。MgO、TiO2、F、MnO和P2O5含量均较低,说明类质同象较少,钾长石形成的温度较低(陈光远等,1993),这也得到下文二长石温度计计算结果的验证。Or值高(86.51~94.35),而Ab值较低(5.65~13.49),An值几乎可以忽略不计(0.10~0.40),本区所有的钾长石均为正长石(图 5a)。挑选样品WES10D228B2中颗粒较大的钾长石,避开裂隙和包裹体等垂直于边界进行电子探针剖面分析(图 6a),其核部Ab值最高(10.29~11.71),由核部向幔部Ab降低到6.09~8.65,由幔部向边部发生2次微弱的振荡韵律变化,但整体变化较小,并不具有成分环带。这说明钾长石形成过程中物理化学条件变化不大,稍有波动。

表 1 玲珑黑云母花岗岩钾长石电子探针成分(wt%) Table 1 Electron microprobe composition of K-feldspar for the Linglong biotite granite(wt%)
图 5 长石的三元分类图解(a,据Deer et al.,1992)、黑云母Mg-(Al+Fe3++Ti)-(Fe2++Mn)分类图解(b,据Foster,1960)和角闪石Si-Mg/(Mg+Fe2+)分类图(c,据Leak et al.,1997) (a)前人钾长石和斜长石数据王炳成和李福堂(1985)Hou et al.(2007),昆嵛山花岗岩中钾长石和斜长石数据张德全等(1995)徐洪林等(1997);(b)Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ和Ⅶ分别代表金云母区、铁金云母区、富镁黑云母区、镁铁黑云母区、富铁黑云母区、铁叶云母区和铝叶云母区,前人黑云母数据王吉珺(2000)Hou et al.(2007),昆嵛山花岗岩中黑云母数据张德全等(1995)徐洪林等(1997)张华锋等(2006),胶东群变粒岩和片岩中黑云母数据于津海(1989) (a)former data of K-feldspar and plagioclase are from Wang et al.(1985)Hou et al.(2007),and data of ones in Kunyushan granite are from Zhang et al.(1995)Xu et al.(1997);(b)Ⅰ-phlogopite,Ⅱ-iron-phlogopite,Ⅲ-eastonite,Ⅳ-magnesio-biotite,Ⅴ-ferri-biotite,Ⅵ-annite,former data of biotite are from Wang et al.(2000)Hou et al.(2007),and data of ones in Kunyushan granite are from Zhang et al.(1995)Xu et al.(1997)Zhang et al.(2006),data of biotite in granulite and schist in Jiaodong Group are from Yu et al.(1989) Fig. 5 Ternary classification diagram for feldspar(a,after Deer et al.,1992); Mg-(Al+Fe3++Ti)-(Fe2++Mn)classification diagram for biotite(b,after Foster,1960); Si-Mg/(Mg+Fe2+)classification diagram for hornblende(c,after Leak et al.,1997)
4.2 斜长石

斜长石的电子探针结果如表 2。可知斜长石成分均匀,与昆嵛山花岗岩中斜长石成分相似(张德全等,1995; 徐洪林等,1997; 图 5a)。Na2O含量为8.41%~10.02%,平均9.11%,CaO含量为3.05%~4.54%,平均3.99%。普遍含有FeO(0.04%~0.14%)。部分样品含有TiO2,但含量较低,最高的仅0.12%,MnO和MgO含量均较低。Ab值较高(74.97~84.56),An值变化较大(14.22~22.27),Or值几乎可以忽略不计(0.75~2.76),本区所有的斜长石均为更长石(图 5a)。挑选样品WES10D211B4中颗粒较大的斜长石,避开裂隙和包裹体等垂直边界进行电子探针剖面分析(图 6b),结果显示从核部到幔部An值从18.47到16.40稍有降低,由幔部到边部An值升高到19.00,整体趋势平缓,符合岩浆斜长石结晶规律。从斜长石的SiO2-An相关图上可以看出An值和SiO2含量变化都较小且二者近似呈负相关(图 7a),符合岩浆缓慢结晶过程的特征。

表 2 玲珑黑云母花岗岩斜长石电子探针成分(wt%) Table 2 Electron microprobe composition of plagioclase for the Linglong biotite granite(wt%)
图 6 钾长石Ab变化图(a)、斜长石An变化图(b)及黑云母FeO、MgO和K2O变化图(c) Fig. 6 Electron microprobe line profile analysis of K-feldspar(a),plagioclase(b)and biotite(c)from the Linglong biotite granite
图 7 斜长石中SiO2-An相关图(a)和黑云母中MgO-Al2O3相关图(b) Fig. 7 Diagram of chemical variation of SiO2 vs. An in plagioclase(a)and MgO vs. Al2O3 in biotite(b)
4.3 黑云母

黑云母电子探针结果如表 3。可知黑云母成分均匀,与昆嵛山花岗岩中黑云母成分相似(张德全等,1995; 徐洪林等,1997; 张华锋等,2006; 图 5b)。SiO2含量为36.63%~38.33%,平均37.39%;FeO含量较高(18.49%~21.64%,平均20.13%);MgO含量相对较低(8.06%~10.89%,平均9.50%);TiO2含量较高(1.46%~3.50%,平均2.78%);MnO含量较高(0.26%~0.65%,平均0.48%)。CaO含量较低,大多数低于检出限,显示出无Ca或贫Ca特征,表明黑云母不受或很少受岩浆期后初生变质引起的绿泥石化和绢云母化蚀变影响(Kumar and Pathak,2010),应为原生岩浆成因黑云母。本文数据显示玲珑黑云母花岗岩中黑云母主要为镁铁黑云母(图 5b),前人数据显示大部分为富铁黑云母(王吉珺,2000; Hou et al.,2007; 图 5b),种类虽略有不同,但均表明黑云母富铁。挑选样品WES10D214B1中颗粒较大的黑云母垂直边界进行了电子探针剖面分析(图 6c),结果显示从核部到边部FeO、MgO、K2O值稍有波动,整体趋势平缓,表明结晶过程中并没有基性成分的加入。

表 3 玲珑黑云母花岗岩黑云母电子探针成分(wt%) Table 3 Electron microprobe composition of biotite for the Linglong biotite granite(wt%)

黑云母中MgO与Al2O3呈负相关性(图 7b),说明其结晶过程中可能发生了Mg2+与Al3+的置换反应(郭耀宇等,2015)。钙碱性及过铝质岩浆体系中,置换方式3Mg2+↔2Al3+至关重要,而在碱性岩浆体系中则主要以Mg2+↔ Fe2+和3Fe2+↔2Al3+两种置换方式为主(Abdel-Rahman,1994)。黑云母MgO-FeO-Al2O3构造环境判别图也显示玲珑黑云母花岗岩为造山带钙碱性花岗岩(图 8a)。

图 8 黑云母MgO-FeO-Al2O3构造环境判别图(a,据Abdel-Rahman,1994)和FeO/(FeO+MgO)-MgO图解(b,据周作侠,1986) 图a中A、C、P分别代表非造山带碱性花岗岩、造山带钙碱性花岗岩和过铝质花岗岩;图b中C、MC和M分别代表壳源、壳幔混源和幔源.前人黑云母数据王吉珺(2000)Hou et al.(2007),昆嵛山花岗岩中黑云母数据张德全等(1995)徐洪林等(1997)张华锋等(2006) Field A,C and P correspond to anorogenic alkaline suites,calc-alkaline orogenic suites and peraluminous suites,respectively in Fig. 8a; C,MC and M represent crustal source,mixing source between crust and mantle as well as mantle source,respectively in Fig. 8b. Former data of biotite are from Wang et al.(2000)Hou et al.(2007),and data of ones in Kunyushan granite are from Zhang et al.(1995)Xu et al.(1997)Zhang et al.(2006) Fig. 8 MgO-FeO-Al2O3 discrimination diagram for tectonic setting(a,after Abdel-Rahman,1994)and FeO/(FeO+MgO)vs. MgO diagram(b,after Zhou,1986)of biotite
4.4 角闪石

黑云母电子探针结果如表 4,可知玲珑黑云母花岗岩中角闪石具有高的FeO含量(21.24%~22.20%)和低的MgO含量(5.75%~6.57%),属于富铁贫镁的角闪石。角闪石阳离子(Ca+Na)B>1.00,NaB<0.50,根据Leak et al.(1997)的分类,该角闪石为钙质角闪石。又(Na+K)A<0.5,Ti<0.5,Fe3+<Al,按钙质角闪石的进一步命名原则,可知本区角闪石均为含铁韭闪石质普通角闪石(图 5c)。

表 4 玲珑黑云母花岗岩角闪石电子探针成分(wt%) Table 4 Electron microprobe composition of hornblende for the Linglong biotite granite(wt%)
5 讨论 5.1 温压条件和氧逸度

标准矿物Q-Ab-Or图解法可用于对花岗岩形成压力进行粗略估计,前人利用这一方法得出的玲珑黑云母花岗岩形成压力基本一致(4.5kbar,桑隆康,1987; 4kbar,田农等,1989; 2~3kbar,孙胜龙,1993),整体位于2.0~4.5kbar。镜下观察发现绿帘石自形,具弱的成分环带,核部为自形褐帘石,无溶蚀现象(图 4f),表明绿帘石和褐帘石为岩浆成因(豆敬兆等,2015),它的出现暗示岩浆侵位压力在3~5kbar(Schmidt and Thompson,1996)。

角闪石全铝压力计和黑云母全铝压力计等矿物压力计在定量计算花岗岩形成压力上也较为常用,二者都有一定的适用范围。角闪石全铝压力计适用压力范围为2.0~13.0kbar,适用温度范围一般在655~750℃(Johnson and Rutherford,1989);再者,必须有与角闪石共存的斜长石,且斜长石中An应在25~35之间(Anderson and Smith,1995),由表 2可知,玲珑黑云母花岗岩中斜长石An主要位于14.22~22.27,不符合这一范围;最后,只有0.40<Fe/(Fe+Mg)<0.65和Fe3+/(Fe3++Fe2+)≧0.25的角闪石才适用于该压力计(Schmidt,1992; Anderson and Smith,1995),由表 4可知玲珑黑云母花岗岩中角闪石并不处于这一范围。所以角闪石全铝压力计不适用于玲珑黑云母花岗岩的压力计算。黑云母全铝压力计总体上适合压力小于2.0kbar的条件(Uchida et al.,2007),小于前人用标准矿物Q-Ab-Or图解法得到的压力值(2.0~4.5kbar);此外,该压力计并未经过实验岩石学的标定,而是通过其它方法(例如闪锌矿压力计)获得压力来标定压力与黑云母全铝的关系(Uchida et al.,2007),可靠性有待验证。所以黑云母全铝压力计可能也不适用于此次压力的计算。

鉴于标准矿物Q-Ab-Or图解法只能得到花岗岩形成压力的粗略结果,并且角闪石全铝压力计和黑云母全铝压力计可能不适用于该岩体,为了获得较为精确的岩体形成压力,我们首先借助于黑云母脱水线得到岩石的水逸度。施性明等(1981)的成岩成矿实验表明玲珑黑云母花岗岩在压力大于2kbar时的初熔温度为650~700℃,可近似的将这一温度视为岩石的结晶温度。由黑云母lgfH2O-103/K稳定图解可知岩石形成的水逸度为1.5~2.0kbar(图 9a),花岗岩在不同温压条件下的水逸度图解显示其形成压力为2.7~3.2kbar(图 9b),按照上地壳平均比重(2700kg/m3)计算得对应的形成深度相当于10~12km。与标准矿物Q-Ab-Or图解法得到的岩体形成深度相近,也与同期的胶东东部昆嵛山花岗岩形成深度相似(10~15km; 张德全等,1995; 张华锋等,2006)。

图 9 黑云母lgfH2O-103/K稳定图解(a,据Wones,1981)和花岗岩在不同温压条件下的水逸度图解(b,据饶纪龙,1979) Fig. 9 lgfH2O-103/K stability diagram of biotite(a,after Wones,1981)and water fugacity diagram of granite under different temperature and pressure conditions(b,after Rao,1979)

Henry et al.(2005)认为岩体中黑云母Ti-Mg/(Mg+Fe)温度估算结果比角闪石-黑云母矿物对的估算结果要合理些,因为角闪石-黑云母矿物对方法得到的温度低于花岗岩固相线温度,可能反映岩石固结降温过程中黑云母与角闪石之间发生过铁镁交换,导致估算温度偏低。用Ti-Mg/(Mg+Fe)图解得到的岩体结晶温度大致位于550~700℃之间(图 10a),昆嵛山花岗岩中黑云母也投点在大致相同的范围内(张德全等,1995; 徐洪林等,1997; 张华锋等,2006)。

图 10 黑云母的Ti-Mg/(Mg+Fe)温度图解(a,据Henry et al.,2005)和黑云母组成与氧缓冲对相关图(b,据Wones and Eugster,1965) 前人黑云母数据王吉珺(2000)Hou et al.(2007),昆嵛山花岗岩中黑云母数据张德全等(1995)徐洪林等(1997)张华锋等(2006) Former data of biotite are from Wang et al.(2000)Hou et al.(2007),and data of ones in Kunyushan granite are from Zhang et al.(1995)Xu et al.(1997)Zhang et al.(2006) Fig. 10 Ti vs. Mg/(Mg+Fe)temperature diagram of biotite(a,after Henry et al.,2005)and correlative diagram between biotite composition and oxygen buffer-reagents(b,after Wones and Eugster,1965)

锆石饱和温度可以对岩浆侵位温度进行很好的估计,因为锆石是在岩浆演化早期开始结晶的,所以锆石饱和温度和岩浆液相线接近(Miller et al.,2003)。本文收集前人全岩锆含量及主量元素组成数据后(Wang et al.,1998; Hou et al.,2007; Zhang et al.,2010; Ma et al.,2013),根据Watson and Harrison(1983)提供的花岗岩锆饱和温度计算方法,获得玲珑黑云母花岗岩的锆饱和温度为728~795℃。挑选接触边平直的角闪石和斜长石(接触点号见表 2),利用Holland and Blundy(1994)提出的角闪石-斜长石温度计,代入上文得到的形成压力,算得岩浆结晶温度为614~682℃。而使用Putirka(2008)提出的二长石温度计得到的共生钾长石和斜长石的平衡温度则较低(接触点号见表 1),为531~565℃,长石的晶出(尤其是钾长石)往往是岩浆结晶晚期的产物,故二长石温度计结果可近似视为岩体固结温度(林文蔚和殷秀兰,1998)。由岩相学观察可知矿物结晶顺序为斜长石-黑云母-钾长石-石英,与上述温度计算结果相一致。

黑云母和角闪石的Fe3+/Fe2+均较低,分别介于0.00~0.12和0.07~0.11之间。在黑云母组成与氧缓冲对相关图中,玲珑黑云母花岗岩和昆嵛山花岗岩中黑云母相似,投点大多位于Fe2SiO4-SiO2-Fe2O4氧缓冲对以下,部分落于Fe2SiO4-SiO2-Fe2O4和Ni-NiO之间(图 10b),说明岩石形成时的氧逸度较低。岩石中存在磁铁矿+石英+榍石的矿物组合,可由Wones(1989)的氧逸度公式logfO2=-30930/T+14.98+0.142(P-1)/T计算岩石形成时的氧逸度,根据上述压力值(2.7~3.2kbar)和角闪石-斜长石温度计得到的温度值(614~682℃)计算得到的氧逸度也较低,为-21.67~-16.73。

5.2 岩石成因

本区黑云母的FeO含量较高,为镁铁黑云母或富铁黑云母,典型的S型花岗岩为富铁花岗岩(Abdel-Rahman et al.,1994)。黑云母的MF值也可作为划分I型和S型花岗岩的依据,前者MF值>0.5,后者MF值<0.5(王炳成和李福堂,1985; Yang et al.,2015a);玲珑黑云母花岗岩中黑云母的MF值均<0.5,符合S型花岗岩特征。Whalen and Chappell(1988)认为I型花岗岩中的黑云母具有较低的Al(0.144~0.224),而S型花岗岩中的黑云母具有较高的Al(0.353~0.561),玲珑黑云母花岗岩中黑云母的Al为0.29~0.64,平均0.44,大部分位于S型花岗岩范围内。S型花岗岩在黑云母组成与氧缓冲对相关图中一般位于Ni-NiO线以下,和玲珑黑云母花岗岩的投影范围相一致(图 10b)。此外,玲珑黑云母花岗岩的A/CNK值多数大于1,(87Sr/86Sr)i值多介于0.7182~0.7137(王吉珺等,2000; Hou et al.,2007; Zhang et al.,2010; Yang et al.,2012; Ma et al.,2013)。以上证据均表明玲珑黑云母花岗岩具有S型花岗岩的特征。

斜长石不具有环带结构,说明岩浆房几乎未受到扰动,原始熔浆处在一种平衡结晶的环境中(Yang et al.,2015b),从熔浆中晶出的矿物非常容易与熔体反应,形成成分均一的矿物,因而不具环带。钾长石和斜长石的电子探针剖面分析结果显示其化学成分整体变化较小,趋势平缓,符合岩浆长石结晶规律(图 6a,b)。斜长石的SiO2-An相关图显示An和SiO2%含量近似呈负相关(图 7a),也表明岩石为岩浆平衡结晶的产物。

在FeO/(FeO+MgO)-MgO图解上该区黑云母全部落入壳源区(图 8b),并且壳源花岗岩中黑云母的MF值一般小于0.5,角闪石Mg值小于0.5(谢应雯和张玉泉,1995),本区花岗岩中黑云母的MF值为0.41~0.49,角闪石的Mg值为0.34~0.37,指示玲珑黑云母花岗岩的地壳来源。黑云母的电子探针剖面分析结果显示从核部到边部,MgO、FeO和K2O的含量几乎不变(图 6c),指示其结晶过程中并没有外部基性成分的加入。以上特征均表明该花岗岩的壳源属性,形成过程中没有明显幔源物质的作用。

玲珑黑云母花岗岩内不同岩性的包体相连时,可以与胶东群变质岩中对应岩性的层位连成一体,说明岩体中的包体并未经过远距离的迁移,应为胶东群变质岩的原地残留体(孙丰月等,1995)。胶东群黑云变粒岩中的斜长石为接近中长石的更长石An29.2(陈光远等,1993),而玲珑黑云母花岗岩中的斜长石也为接近中长石的更长石An14.22-22.27,其黑云母成分也与胶东群中黑云变粒岩和片岩相似(表 3图 5),说明斜长石和黑云母可能具有对胶东群中相应矿物种属的继承性。玲珑黑云母花岗岩中发育的大量与胶东群同期的太古宙继承锆石(Ma et al.,2013; 黄涛等,2014)进一步支持玲珑黑云母花岗岩可能是由胶东群部分熔融形成的,与昆嵛山花岗岩来自新太古代下地壳部分熔融的成因相一致(张华锋等,2006)。在地壳约10km的深度上,因局部地热梯度异常,当有H2O流体的存在时,可以形成熔融程度不大的花岗质岩浆(邓晋福,1987),这一深度与上文得到的玲珑黑云母花岗岩形成深度相一致。曲晓明等(2000)对胶东群进行的熔融实验表明:在1.5kbar、850℃和水过饱和条件下,胶东群确实可以发生部分熔融产生与玲珑黑云母花岗岩成分相近的熔体。综合以上证据可知,玲珑黑云母花岗岩可能是胶东群部分熔融形成的S型花岗岩。

6 结论

(1) 花岗岩在不同温压条件下的水逸度图解显示玲珑黑云母花岗岩形成压力为2.7~3.2kbar,对应成岩深度为10~12km;综合锆石饱和温度计、角闪石-斜长石温度计和二长石温度计计算结果可知,玲珑黑云母花岗岩侵入温度为728~795℃,岩浆结晶温度为614~682℃,最后在531~565℃温度下固结成岩。黑云母和角闪石成分指示成岩时的氧逸度较低,大致为-21.67~-16.73。

(2) 玲珑黑云母花岗岩属于S型花岗岩,可能是由胶东群物质部分熔融形成的,没有明显幔源物质的参与。

致谢 研究工作得到了中国地质大学(北京)邓军教授和杨立强教授的指导与帮助;野外工作得到了望儿山金矿床相关工作人员的帮助和支持;电子探针测试工作得到了核工业北京地质研究院分析测试研究中心葛祥坤老师及相关人员的协助;博士后邱昆峰,研究生郭林楠、刘跃、李瑞红、张炳林和豆敬兆等参加了部分研究工作;匿名审稿人对本文提出了宝贵修改意见;在此一并致以诚挚的感谢!
参考文献
[1] Abdel-Rahman AFM. 1994. Nature of biotites from alkaline,calc-alkaline,and peraluminous magmas. Journal of Petrology , 35 (2) :525–541. DOI:10.1093/petrology/35.2.525
[2] Anderson JL, Smith DR. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist , 80 (5-6) :549–559. DOI:10.2138/am-1995-5-614
[3] Chen GY, Sun DS, Zhou XR, Shao W, Gong RT, Shao Y.1993. Mineralogy of Guojialing Granodiorite and Its Relationship to Gold Mineralization in the Jiaodong Peninsula. Beijing: Chinese University of Geosciences Press : 1 -230.
[4] Chen JF, Xie Z, Li HM, Zhang XD, Zhou TX, Park YS, Ahn KS, Chen DG, Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane,China. Geochemical Journal , 37 (1) :35–46. DOI:10.2343/geochemj.37.35
[5] Deer WA, Howie RA, Zussman J.1992. An Introduction to the Rock-Forming Minerals. 2 Edition. Harlow: Longman Group : 1 -232.
[6] Deng J, Fang Y, Yang LQ, Ding SJ, Xiao RG, Peng RM, Wang JP. 2000. Shear alteration,mass transfer and gold mineralization:An example from Jiaodong gold-deposit concentration region,Shandong,China. Earth Science , 25 (4) :428–432.
[7] Deng J, Yang LQ, Sun ZS, Wang JP, Wang QF, Xin HB, Li XJ. 2003. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt. Acta Geologica Sinica , 77 (4) :537–546.
[8] Deng J, Yang LQ, Ge LS, Wang QF, Zhang J, Gao BF, Zhou YH, Jiang SQ. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science , 16 (8) :777–784. DOI:10.1080/10020070612330069
[9] Deng J, Wang QF, Yang LQ, Zhou L, Gong QJ, Yuan WM, Xu H, Guo CY, Liu XW, Zhu XL. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province,China. Acta Geologica Sinica , 82 (4) :769–780.
[10] Deng J, Yang LQ, Gao BF, Sun ZS, Guo CY, Wang QF, Wang JP. 2009. Fluid evolution and metallogenic dynamics during tectonic regime transition:Example from the Jiapigou gold belt in northeast China. Resource Geology , 59 (2) :140–152. DOI:10.1111/rge.2009.59.issue-2
[11] Deng J, Chen YM, Liu Q, Yang LQ, Hou CQ, Wang JT.2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone,Shandong Province. Beijing: Geological Publishing House : 1 -371.
[12] Deng J, Wang QF, Wan L, Liu H, Yang LQ, Zhang J. 2011. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China. Ore Geology Reviews , 40 (1) :54–64. DOI:10.1016/j.oregeorev.2011.05.001
[13] Deng J, Liu XF, Wang QF, Pan RG. 2015a. Origin of the Jiaodong-type Xinli gold deposit,Jiaodong Peninsula,China:Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions. Ore Geology Reviews , 65 :674–686. DOI:10.1016/j.oregeorev.2014.04.018
[14] Deng J, Wang CM, Bagas L, Carranza EJM, Lu YJ. 2015b. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula,China:Constraints from zircon U-Pb,illite K-Ar,and apatite fission track thermochronometry. Mineralium Deposita , 50 (8) :987–1006. DOI:10.1007/s00126-015-0584-1
[15] Deng J, Wang QF. 2016. Gold mineralization in China:Metallogenic provinces,deposit types and tectonic framework. Gondwana Research , 36 :219–274. DOI:10.1016/j.gr.2015.10.003
[16] Deng JF.1987. Phase Equilibrium and Petrogenesis of Rocks. Wuhan: China University of Geosciences Publishing House : 1 -198.
[17] Dou JZ, Fu S, Zhang HF. 2015. Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula:Implication for crustal uplift and exhumation. Acta Petrologica Sinica , 31 (8) :2325–2336.
[18] Foster MD. 1960. Interpretation of the Composition of Trioctahedral Mica. U. S. Geological Survey Professional Paper , 354-B :11–48.
[19] Goldfarb RJ, Taylor RD, Collins GS, Goryachev NA, Orlandini OF. 2014. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research , 25 (1) :48–102. DOI:10.1016/j.gr.2013.03.002
[20] Guo YY, He WY, Li ZC, Ji XZ, Han Y, Fang WK, Yin C. 2015. Petrogenesis of Ge'erkuohe porphyry granitoid,western Qinling:Constraints from mineral chemical characteristics of biotites. Acta Petrologica Sinica , 31 (11) :3380–3390.
[21] Henry DJ, Guidotti CV, Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist , 90 (2-3) :316–328. DOI:10.2138/am.2005.1498
[22] Holland T, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology , 116 (4) :433–447. DOI:10.1007/BF00310910
[23] Hou ML, Jiang YH, Jiang SY, Ling HF, Zhao KD. 2007. Contrasting origins of Late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula,East China:Implications for crustal thickening to delamination. Geological Magazine , 144 (4) :619–631. DOI:10.1017/S0016756807003494
[24] Huang T, Yang LQ, Liu XD, Li HL, Zhang BL, Wang JG, Zhao YF, Zhang N. 2014. Crustal evolution of the Jiaobei terrane:Evidence from U-Pb ages,trace element compositions and Hf isotopes of inherited zircons of the Linglong biotite granite. Acta Petrologica Sinica , 30 (9) :2574–2594.
[25] Johnson MC, Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology , 17 (9) :837–841. DOI:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
[26] Kumar S, Pathak M. 2010. Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya:Evidence of bimodal granitogeny and tectonic affinity. Journal of the Geological Society of India , 75 (5) :715–730. DOI:10.1007/s12594-010-0058-0
[27] Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichec VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ. 1997. Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association,Commission on New Minerals and Mineral Names. European Journal of Mineralogy , 9 :623–651. DOI:10.1127/ejm/9/3/0623
[28] Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR, Wang SS. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites:Timing and processes. Chemical Geology , 109 (1-4) :89–111. DOI:10.1016/0009-2541(93)90063-O
[29] Lin WW, Yin XL. 1998. The forming physicochemical conditions of Linglong granitic complex and its geological significance. Acta Geoscientia Sinica , 19 (1) :40–49.
[30] Liu Y, Deng J, Wang ZL, Zhang L, Zhang C, Liu XD, Zheng XL, Wang XD. 2014. Zircon U-Pb age,Lu-Hf isotopes and petrogeochemistry of the monzogranites from Xincheng gold deposit,northwestern Jiaodong Peninsula,China. Acta petrologica Sinica , 30 (6) :2559–2573.
[31] Ma L, Jiang SY, Dai BZ, Jiang YH, Hou ML, Pu W, Xu B. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,eastern China:Zircon U-Pb geochronological,geochemical and Sr-Nd-Hf isotopic evidence. Lithos , 162-163 :251–263. DOI:10.1016/j.lithos.2013.01.009
[32] Miller CF, McDowell SM, Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology , 31 (6) :529–532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[33] Putirka KD. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry , 69 (1) :61–120. DOI:10.2138/rmg.2008.69.3
[34] Qu XM, Wang HN, Rao B. 2000. Partial melting experiments of Jiaodong Group and their implication for the origin of the granties. Geochimica , 29 (2) :153–161.
[35] Rao JL.1979. Thermodynamics in Geochemistry. Beijing: Science Publishing House : 1 -237.
[36] Sang LK. 1987. Quantitative thermobaromety conditions estimation of during formation of Linglong granite. Mineralogical and Petrological Forum , 3 :35–42.
[37] Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology , 110 (2-3) :304–310. DOI:10.1007/BF00310745
[38] Schmidt MW, Thompson AB. 1996. Epidote in calc-alkaline magmas:An experimental study of stability,phase relationships,and the role of epidote in magmatic evolution. American Mineralogist , 81 (3-4) :462–474. DOI:10.2138/am-1996-3-420
[39] Shi XM, Zhao YJ, Zhao XC, Huang KL. 1981. Characteristics of granitoids in Zhaoyuan and its experimental research,Jiaodong Peninsula. Journal of Changchun Geology School (1) :45–56.
[40] Sun FY, Shi ZL, Feng BZ.1995. Gold Ore Geology,Lithogenesis and Metallogenesis Related to the Differentiation of Mantle-Derived C-H-O Fluids in Jiaodong Peninsula,Eastern China. Changchun: Jilin People's Publishing House : 1 -170.
[41] Sun SL. 1993. Physical and chemical condition for the formation of granites in the northwest of Jiaodong region,Shandong Province. Geology of Shandong , 9 (2) :61–67.
[42] Tan J, Wei JH, Guo LL, Zhang KQ, Yao CL, Lu JP, Li HM. 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes,Guocheng,Jiaodong Peninsula:Implications for North China Craton lithosphere evolution. Science in China (Series D) , 51 (10) :1483–1500. DOI:10.1007/s11430-008-0079-3
[43] Tang J, Zheng YF, Wu YB, Gong B, Zha XP, Liu XM. 2008. The relationship between grainte genesis and gold deposits along the Zhaoyuan-Yexian gold ore belt in Shangdong Province. Precambrian Research , 161 (3-4) :389–418. DOI:10.1016/j.precamres.2007.09.008
[44] Tian N, Qi CM, Lü YF. 1989. The relationship between granite genesis and gold deposits along the Zhaoyuan-Yexian gold ore belt in Shandong Province. Mineral Deposits , 8 (4) :41–50.
[45] Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology , 57 (1) :47–56. DOI:10.1111/rge.2007.57.issue-1
[46] Wan TF, Teyssier C, Zeng HL, Zhou WX, Tikoff B. 2001. Emplacement mechanism of Linglong granitoid complex,Shandong Peninsula,China. Science in China (Series D) , 44 (6) :535–544. DOI:10.1007/BF02876213
[47] Wang BC, Li FT. 1985. Petrological and mineralogical characteristics of the Linglong granites. Geology of Shandong , 1 (1) :1–25.
[48] Wang JJ. 2000. Discussion on genesis of Linglong granite. Contributions to Geology and Mineral Resources Research , 15 (4) :289–298.
[49] Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC, Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews , 13 (1-5) :275–291. DOI:10.1016/S0169-1368(97)00022-X
[50] Wang ZL. 2012. Metallogenic system of Jiaojia gold field, Shandong Province, China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-230 (in Chinese with English summary)
[51] Wang ZL, Yang LQ, Deng J, Santosh M, Zhang HF, Liu Y, Li RH, Huang T, Zheng XL, Zhao H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit,Jiaodong Peninsula,East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences , 95 :274–299. DOI:10.1016/j.jseaes.2014.03.001
[52] Wang ZL, Zhao RX, Zhang Q, Lu HW, Li JL, Cheng W. 2014. Magma mixing for the high Ba-Sr Guojialing-type granitoids in Northwest Jiaodong Peninsula:Constraints from petrogeochemistry and Sr-Nd isotopes. Acta Petrologica Sinica , 30 (9) :2595–2608.
[53] Wang ZL, Yang LQ, Guo LN, Marsh E, Wang JP, Liu Y, Zhang C, Li RH, Zhang L, Zheng XL, Zhao RX. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit,Jiaodong Peninsula,China:A fluid inclusion study. Ore Geology Reviews , 65 :701–707. DOI:10.1016/j.oregeorev.2014.06.006
[54] Watson EB, Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters , 64 (2) :295–304. DOI:10.1016/0012-821X(83)90211-X
[55] Whalen JB, Chappell BW. 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt,Southeast Australia. American Mineralogist , 73 (3-4) :281–296.
[56] Wones DR, Eugster HP. 1965. Stability of biotite:Experiment,theory,and application. American Mineralogist , 50 (9) :1228–1272.
[57] Wones DR. 1981. Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology , 31 (168) :191–212.
[58] Wones DR. 1989. Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist , 74 (7-8) :744–749.
[59] Xie YW, Zhang YQ. 1995. Compositional characteristics and petrological significance of Mg-Fe micas in alkalic rocks of the Ailaoshan-Jinshajiang rift system. Acta Mineralogica Sinica , 15 (1) :82–87.
[60] Xu HL, Zhang DQ, Sun GY. 1997. Characteristics and genesis of Kunyushan granite and its relation with gold deposits in Jiaodong. Acta Petrologica et Mineralogica , 16 (2) :131–143.
[61] Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF, Lo CH, Song B. 2005. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt,East China and their relationship to lithospheric thinning. Chemical Geology , 222 (3-4) :200–231. DOI:10.1016/j.chemgeo.2005.07.006
[62] Yang KF, Fan HR, Santosh M, Hu FF, Wilde SA, Lan TG, Lu LN, Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton. Lithos , 146-147 :112–127. DOI:10.1016/j.lithos.2012.04.035
[63] Yang LQ, Deng J, Wang QF, Gao BF, Xu H. 2006. Deep-seated tectonic and geological process controls on mineralization and mineral resources. Mineral Deposits , 25 (S1) :107–110.
[64] Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ, Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit,Jiaodong gold Province,China. Resource Geology , 59 (2) :181–193. DOI:10.1111/rge.2009.59.issue-2
[65] Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF, Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research , 25 (4) :1469–1483. DOI:10.1016/j.gr.2013.07.001
[66] Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC, Zheng XL. 2014a. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica , 30 (9) :2447–2467.
[67] Yang LQ, Deng J and Wang ZL. 2014b. Ore-controlling structural pattern of Jiaodong gold deposits:Geological-geophysical integration constraints. In:Chen YT, Jin ZM, Shi YL, Yang WC and Zhu RX (eds.). The Deep-seated Structures of Earth in China. Beijing:Sciences Press, 1006-1030 (in Chinese)
[68] Yang LQ, Deng J, Dilek Y, Qiu KF, Ji XZ, Li N, Taylor RD, Yu JY. 2015a. Structure,geochronology,and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue Suture Zone,Qinling Orogen,China. The Geological Society of America Bulletin , 127 (11-12) :1831–1854. DOI:10.1130/B31249.1
[69] Yang LQ, Deng J, Qiu KF, Ji XZ, Santosh M, Song KR, Song YH, Geng JZ, Zhang C, Hua B. 2015b. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane,central China:Constraints from petrology,geochemistry,and zircon U-Pb-Hf isotopic systematics. Journal of Asian Earth Sciences , 98 :320–341. DOI:10.1016/j.jseaes.2014.11.023
[70] Yang LQ, Deng J, Guo LN, Wang ZL, Li XZ, Li JL. 2016a. Origin and evolution of ore fluid,and gold-deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,eastern China. Ore Geology Reviews , 72 :585–602. DOI:10.1016/j.oregeorev.2015.08.021
[71] Yang LQ, Deng J, Dilek Y, Meng JY, Gao X, Santosh M, Wang D, Yan H. 2016b. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos , 245 :258–273. DOI:10.1016/j.lithos.2015.10.005
[72] Yang LQ, Deng J, Guo RP, Guo LN, Wang ZL, Chen BH, Wang XD. 2016c. World-class Xincheng gold deposit:An example from the giant Jiaodong gold province. Geoscience Frontiers , 7 (3) :419–430. DOI:10.1016/j.gsf.2015.08.006
[73] Yang LQ, Deng J, Wang ZL, Guo LN, Li RH, Groves DI, Danyushevsky LV, Zhang C, Zheng XL, Zhao H. 2016d. Relationships between gold and pyrite at the Xincheng gold deposit,Jiaodong Peninsula,China:Implications for gold source and deposition in a brittle epizonal environment. Economic Geology , 111 (1) :105–126. DOI:10.2113/econgeo.111.1.105
[74] Yang LQ, Guo LN, Wang ZL, Zhao RX, Song MC and Zheng XL. 2016e. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews, in press
[75] Yang LQ, Deng J, Wang ZL, Zhang L, Goldfarb RJ, Yuan WM, Weinberg RF, Zhang RZ. 2016f. Thermochronologic constraints on evolution of the Linglong metamorphic core complex and implications for gold mineralization:A case study from the Xiadian gold deposit,Jiaodong Peninsula,eastern China. Ore Geology Reviews , 72 :165–178. DOI:10.1016/j.oregeorev.2015.07.006
[76] Yu JH. 1989. On the age and origin of the Kunyushan migmatite complex in the eastern part of Jiaodong. Geological Review , 35 (4) :285–297.
[77] Zhai MG, Guo JH, Liu WJ. 2001. An exposed cross-section of Early Precambrian continental lower crust in North China craton. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy , 26 (9-10) :781–792. DOI:10.1016/S1464-1895(01)00127-2
[78] Zhai MG, Santosh M. 2013. Metallogeny of the North China Craton:Link with secular changes in the evolving Earth. Gondwana Research , 24 (1) :275–297. DOI:10.1016/j.gr.2013.02.007
[79] Zhang DQ, Xu HL, Sun GY. 1995. Emplacement ages of the Denggezhuang gold deposit and the Kunyushan granite and their geological implications. Geological Review , 41 (5) :415–425.
[80] Zhang HF, Li SR, Zhai MG, Guo JH. 2006. Crust uplift and its implications in the Jiaodong Peninsula,eastern China. Acta Petrologica Sinica , 22 (2) :285–295.
[81] Zhang J, Zhao ZF, Zheng YF, Dai MN. 2010. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China. Lithos , 119 (3-4) :512–536. DOI:10.1016/j.lithos.2010.08.005
[82] Zhang L, Liu Y, Li RH, Huang T, Zhang RZ, Chen BH, Li JK. 2014. Lead isotope geochemistry of Dayingezhuang gold deposit,Jiaodong Peninsula,China. Acta Petrologica Sinica , 30 (9) :2468–2480.
[83] Zhou ZX. 1986. The origin of intrusive mass in Fengshandong,Hubei Province. Acta Petrologica Sinica , 2 (1) :59–70.
[84] 陈光远, 孙岱生, 周珣若, 邵伟, 宫润谭, 邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化. 北京: 中国地质大学出版社 : 1 -230.
[85] 邓军, 方云, 杨立强, 丁式江, 肖荣阁, 彭润民, 王建平.2000. 剪切蚀变与物质迁移及金的富集——以胶东矿集区为例. 地球科学 , 25 (4) :428–432.
[86] 邓军, 陈玉民, 刘钦, 杨立强, 侯成桥, 王君亭.2010. 胶东三山岛断裂带金成矿系统与资源勘查 :1–371.
[87] 邓晋福.1987. 岩石相平衡与岩石成因. 武汉:武汉地质学院出版社 :1–198.
[88] 豆敬兆, 付顺, 张华锋.2015. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀. 岩石学报 , 31 (8) :2325–2336.
[89] 郭耀宇, 和文言, 李在春, 戢兴忠, 韩愉, 房维科, 殷超.2015. 西秦岭格尔括合花岗闪长斑岩岩石成因:黑云母矿物学特征约束. 岩石学报 , 31 (11) :3380–3390.
[90] 黄涛, 杨立强, 刘向东, 李海林, 张炳林, 王建刚, 赵云峰, 张宁.2014. 胶北地体地壳演化:玲珑黑云母花岗岩继承锆石U-Pb年龄、微量元素和Hf同位素证据. 岩石学报 , 30 (9) :2574–2594.
[91] 林文蔚, 殷秀兰.1998. 玲珑花岗质杂岩体形成的物理化学条件及其地质意义. 地球学报 , 19 (1) :40–49.
[92] 刘跃, 邓军, 王中亮, 张良, 张潮, 刘向东, 郑小礼, 王旭东.2014. 胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成. 岩石学报 , 30 (9) :2559–2573.
[93] 曲晓明, 王鹤年, 饶冰.2000. 胶东群部分熔化实验及其对花岗岩成因的指示. 地球化学 , 29 (2) :153–161.
[94] 饶纪龙. 1979. 地球化学中的热力学. 北京: 科学出版社 : 1 -237.
[95] 桑隆康.1987. 玲珑花岗岩形成的温压条件定量估计. 矿物学岩石学论丛 , 3 :35–42.
[96] 施性明, 赵元进, 赵希澂, 黄克隆.1981. 山东招远一带花岗质岩石基本特征及其实验研究. 长春地质学院学报 (1) :45–56.
[97] 孙丰月, 石准立, 冯本智. 1995. 胶东金矿地质及幔源C-H-O流体分异成岩成矿. 长春: 吉林人民出版社 : 1 -170.
[98] 孙胜龙.1993. 胶东西北部地区花岗岩类岩石成岩的物理化学条件. 山东地质 , 9 (2) :61–67.
[99] 田农, 戚长谋, 吕以发.1989. 山东招掖金矿带花岗岩成因及与金矿床的关系. 矿床地质 , 8 (4) :41–50.
[100] 万天丰, TeyssierC, 曾华霖, 周伟新, TikoffB.2000. 山东玲珑花岗质岩体侵位机制. 中国科学(D辑) , 30 (4) :337–344.
[101] 王炳成, 李福堂.1985. 玲珑花岗岩的岩石学和矿物学特征. 山东国土资源 , 1 (1) :1–25.
[102] 王吉珺.2000. 玲珑花岗岩成因探讨. 地质找矿论丛 , 15 (4) :289–298.
[103] 王中亮. 2012. 焦家金矿田成矿系统. 博士学位论文. 北京:中国地质大学, 1-230 http://cdmd.cnki.com.cn/article/cdmd-11415-1012364390.htm
[104] 王中亮, 赵荣新, 张庆, 鲁辉武, 李京濂, 程蔚.2014. 胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因:岩石地球化学与Sr-Nd同位素约束. 岩石学报 , 30 (9) :2595–2608.
[105] 谢应雯, 张玉泉.1995. 哀牢山-金沙江裂谷系岩石中镁铁云母成分特征及其岩石学意义. 矿物学报 , 15 (1) :82–87.
[106] 徐洪林, 张德全, 孙桂英.1997. 胶东昆嵛山花岗岩的特征、成因及其与金矿的关系. 岩石矿物学杂志 , 16 (2) :131–143.
[107] 杨立强, 邓军, 王庆飞, 高帮飞, 徐浩.2006. 深部构造与地质过程控矿研究. 矿床地质 , 25 (S1) :107–110.
[108] 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼.2014a. 胶东中生代金成矿系统. 岩石学报 , 30 (9) :2447–2467.
[109] 杨立强, 邓军, 王中亮. 2014b. 胶东金矿控矿构造样式:地质-地球物理综合约束. 见:陈运泰, 金振民, 石耀霖, 杨文采, 朱日祥编. 中国大陆地球内部物理学与动力学研究——庆贺滕吉文院士从事地球物理研究60周年. 北京:科学出版社, 1006-1030
[110] 于津海.1989. 胶东东部昆嵛山混合杂岩体的形成时代及成因. 地质论评 , 35 (4) :285–297.
[111] 张德全, 徐洪林, 孙桂英.1995. 山东邓格庄金矿与昆嵛山花岗岩的定位时代及其地质意义. 地质论评 , 41 (5) :415–425.
[112] 张华锋, 李胜荣, 翟明国, 郭敬辉.2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报 , 22 (2) :285–295.
[113] 张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎.2014. 胶东大尹格庄金矿床铅同位素地球化学. 岩石学报 , 30 (9) :2468–2480.
[114] 周作侠.1986. 湖北丰山洞岩体成因探讨. 岩石学报 , 2 (1) :59–70.