岩石学报  2016, Vol. 32 Issue (5): 1467-1492   PDF    
秦岭杂岩清油河斜长角闪岩多期变质的证据——来自锆石微量元素和包裹体的启示
王亚伟, 刘良** , 廖小莹, 盖永升, 杨文强, 康磊    
大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069
摘要:北秦岭清油河地区广泛发育以透镜状、条带状或岩墙状赋存于秦岭杂岩石英二长片麻岩中的斜长角闪岩,矿物组合为角闪石、斜长石以及少量的石榴子石、单斜辉石等。锆石阴极发光图像、不同微区矿物包裹体和稀土元素分析,以及不同性质锆石LA-ICP-MS U-Pb定年和微量元素分析等综合研究结果表明,该斜长角闪岩锆石成因十分复杂,可进一步划分为三种类型。第一类锆石呈半自形-他形晶,阴极发光显示条带状分带,锆石稀土总量较高,球粒陨石标准化稀土配分模式中重稀土富集,Eu负异常明显,记录的206Pb/238U加权平均值为774±13Ma,代表了该岩石原岩形成时代;第二类锆石呈他形晶,为典型的变质锆石,阴极发光图像为扇状或面状分带,锆石稀土总量较低,球粒陨石标准化稀土配分模式中重稀土相对平坦,没有Eu的负异常,表明该类锆石结晶时岩石中含有石榴子石,而没有长石,该类锆石矿物包裹体主要为Grt+Cpx+Q,可能代表榴辉岩相(榴辉岩或者石榴子石辉石岩)变质矿物组合,记录的206Pb/238U加权平均值为493±5Ma;第三类锆石呈他形晶或构成第二类锆石的薄边,亦为典型变质锆石,阴极发光为面状分带,锆石稀土总量较低,球粒陨石标准化稀土配分模式中重稀土平坦,具有Eu的异常,锆石包裹体矿物组合为Grt+Cpx+Pl+Amp+Q,应代表退变质矿物组合,记录的206Pb/238U加权平均值为448±4Ma。该斜长角闪岩的原岩年龄(774±13Ma)、峰期变质年龄(493±5Ma)和后期退变质年龄(448±4Ma)与北秦岭已厘定的高压-超高压岩石的原岩年龄、峰期变质和退变质年龄非常吻合,说明该岩石可能是北秦岭高压-超高压变质岩带的一部分。据此,并结合清油河斜长角闪岩中发现残存金刚石的研究成果,可以推测现今秦岭杂岩中出露的一些低级变质相岩石峰期也可能经历了高压-超高压变质,只是由于后期强烈的退变质作用的改造而难于识别和辨认,北秦岭高压-超高压岩石的分布可能远比目前观察到的丰富。此外,本次研究还显示清油河斜长角闪岩原岩具有大陆拉斑玄武岩特征,是陆壳岩石的一部分。这些资料为进一步论证北秦岭早古生代高压-超高压岩石(包括榴辉岩、长英质片麻岩、石榴子石辉岩、榴闪岩和部分斜长角闪岩等)是陆壳俯冲-深俯冲作用的产物提供了新的证据。
关键词秦岭杂岩     斜长角闪岩     锆石微量元素     锆石包裹体     多期变质    
Multi-metamorphism of amphibolite in the Qinling complex, Qingyouhe area: Revelation from trace elements and mineral inclusions in zircons
WANG YW, LIU L** , LIAO XY, GAI YS, YANG WQ, KANG L    
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: Amphibolites as lense and dyke are commonly identified within quartz-gneiss rocks in Qingyouhe area, North Qinling. Zircon grains separated from amphibolite in Qingyouhe area of North Qinling can be subdivided into three types based on cathodoluminescence (CL) images, mineral inclusions assemblage, rare earth element, trace element analyses and in situ U-Pb LA-ICP-MS dates: (1) TypeⅠis inherited (magmatic) zircons with weakly zoned, the chondrite-normalized REE patterns show a steep slope HREE pattern, high rare earth element (REE) contents, and negative Eu anomalies. This zircon domain yield a 206Pb/238U weight mean age of 774±13Ma; (2) Type Ⅱ is metamorphic zircon with homogeneous CL images, characterized by low REE and HREE, a remarkably flat HREE profile without a significant Eu anomaly. This type of zircon preserved mineral inclusion assemblage Grt+Cpx+Q, and give a 206Pb/238U age with weight mean of 493±5Ma, interpreted as the age of eclogite-facies metamorphism; (3) Type Ⅲ is metamorphic zircon rim. Comparing with the type Ⅱ zircons, metamorphic rim show a remarkably flat HREE profile and a significant Eu anomaly, contains granulite-facies or high grade amphibolite facies metamorphic mineral inclusion assemblage of Grt+Cpx+Amp+Pl+Q. These metamorphic zircons or metamorphic rim yield an age of 448±4Ma. The protolith age (774±13Ma), eclogite-facies age (493±5Ma), and amphibolite-facies retrogression age (448±4Ma) from amphibolite in Qingyouhe area are coincide with other HP-UHP rocks of North Qinling complex,suggesting that the amphibolites also a part of HP/UHP unit in Qinling complex. These studies indicate that the present amphibolite facies metamorphic rocks in the Qinling complex might have undergone a former HP-UHP metamorphism, but it is difficult to identify due to the succedently strong overprinted retrogress metamorphism. Therefore, the HP-UHP rocks are volumetrically abundant in the Qinling complex than previously recognized. Furthermore, this investigation obtain the protolith age of 774±13Ma from Qinyouhe amphibolites, and it has the geochemical characteristics of continental tholeiite, which is interpreted as the protolith as a part of the continental crustal rocks. Therefore, these data provides new evidence for further demonstrate that the North Qinling Early Palaeozoic HP-UHP rocks (including eclogite, felsic gneiss, garnet pyroxenite, garnet amphibolite and part of amphibolite, etc.) are the product of continental crust subduction-deep subduction.
Key words: Qinling complex     Amphibolites     Zircon trace element     Mineral inclusions within zircon     Multi-stage metamorphism    
1 引言

在高压-超高压变质作用的研究中,锆石被认为是高压-超高压矿物最好的保护“容器”,是研究由于后期折返过程中发生强烈退变质的高压-超高压岩石复杂演化历史的最理想矿物(刘福来等,2005; Liu and Liou,2011)。在变质作用过程中,变质成因锆石的微量元素特征受到与锆石同时形成的矿物种类的控制(如石榴石、长石等),因而其特征对反演变质作用的条件(如榴辉岩相、麻粒岩相和角闪岩相等)具有重要的指示意义(Rubatto and Willianms,2000; Hermann et al.,2001; Rubatto,2002; Rubatto and Hermann,2003);同时,锆石中包裹体的矿物组合及其变化、以及矿物成分研究还可以很好地指示寄主岩石的演化历史(刘福来等,200520062011; Liu et al.,2010a; Liu and Liou,2011)。因此,通过对锆石进行显微结构、微量元素特征和矿物包裹体成分以及U-Pb定年等方面的系统研究,可为变质作用演化过程的反演,尤其是对经历了多期次退变质作用强烈改造的变质岩石进行变质演化过程的分析研究以及锆石U-Pb年龄的合理解释提供有效的制约(Rubatto and Willianms,2000; Rubatto,2002; Liu et al.,2010a2012; Liu and Liou,2011; 刘福来等,200520062011)。

近20年来,在北秦岭构造带的秦岭杂岩(前人多称秦岭群或秦岭岩群)中陆续发现和确定了多种类型的高压-超高压变质岩。早期,在秦岭杂岩北部官坡一带发现榴辉岩(胡能高等,19941995)、南部松树构一带发现高压基性麻粒岩(含石榴子石辉石岩)、长英质高压麻粒岩(刘良和周鼎武,1994; 刘良等,19951996)和榴闪岩(杨勇等,1994)。随后,杨经绥等(2002)在北秦岭官坡一带榴辉岩及其围岩片麻岩的锆石中发现了金刚石包裹体,从而提出该榴辉岩及其围岩经历了超高压变质;Liu et al.(2003)在松树沟长英质高压麻粒岩的石榴子石中发现丰富的金红石+石英+磷灰石棒状出溶物,指示出溶前该石榴子石超硅,进而认为该岩石曾经历超高压变质;Cheng et al.(2011)刘良等(2013)在秦岭杂岩南部清油河一带发现了退变榴辉岩;最近,Wang et al.(2014)在清油河退变榴辉岩(斜长角闪岩)中也发现金刚石包裹体。这些研究表明秦岭杂岩是一个高压-超高压变质带,且其中部分岩石经历了超高压变质作用,峰期压力在金刚石稳定域之上。

斜长角闪岩是秦岭杂岩中最常见的岩石类型之一,通常呈条带状、不规则的透镜状或岩墙状分布于片麻岩中(周鼎武等,2000; 闫全人等,2009),少部分与榴辉岩、榴闪岩呈过渡关系(陈丹玲和刘良,2011)。然而,目前关于这些斜长角闪岩与区内高压-超高压榴辉岩之间的相互关系缺乏认识,其是否也经历了榴辉岩相变质,其峰期变质、退变质时代如何尚不清晰。另外,较长时期以来,不同学者对秦岭杂岩中广泛分布的斜长角闪岩的成因的认识有很大争议(游振东等,1990; 张宗清等,1994; 周鼎武等,2000; 陆松年等,2006; 闫全人等,2009)。早期研究认为大部分斜长角闪岩可能是秦岭杂岩形成早期火山喷发或同期岩浆侵入的产物(游振东等,1990),其形成时代代表了秦岭杂岩形成年龄或者接近秦岭杂岩的形成时代。张宗清等(1994)获得西峡蛇尾地区秦岭杂岩中斜长角闪岩全岩Sm-Nd等时年龄为1987±49Ma,限定秦岭杂岩下部岩石形成年龄等于或早于1987Ma,该年龄曾作为秦岭杂岩存在早元古代变质基底的重要证据之一。但值得注意的是,随着锆石U-Pb测年技术的发展,很多研究者对秦岭杂岩中副变质岩中碎屑锆石进行分析,认为秦岭杂岩可能并不存在早元古代的结晶基底(陆松年等,2006; 时毓等,2009; 杨力等,2010; 万渝生等,2011; Shi et al.,2013)。最近,闫全人等(2009)获得西峡地区侵入于秦岭杂岩云英片岩中的斜长角闪岩锆石的SHRIMP U-Pb年龄值为449±11Ma,认为该斜长角闪岩是晚奥陶世加里东期后造山期热收缩导致的地壳伸展或岩石圈拆离减薄的产物;但万渝生等(2011)闫全人等(2009)提供的锆石CL图像及其Th/U比值特征分析,认为这些锆石均为高角闪岩相-麻粒岩相变质锆石,代表了一期变质事件,而不是斜长角闪岩原岩的形成/侵位时代。由此可见,目前关于秦岭杂岩中斜长角闪岩的形成时代及其构造背景的认识尚不清晰。

针对上述两个关键科学问题,本文选择秦岭杂岩清油河地区的斜长角闪岩为解剖对象,重点对其锆石进行了CL图像、矿物包裹体、微量元素特征和U-Pb定年,矿物化学特征以及全岩地球化学研究,分析确定了该斜长角闪岩多期变质的证据,探讨了秦岭杂岩中部分斜长角闪岩的成因机制及其地质意义。

2 区域地质背景

秦岭造山带依商丹缝合带与勉略缝合带划分为北秦岭构造带(华北板块南缘构造带)、南秦岭构造带(秦岭微板块)和扬子板块北缘构造带(图 1a)(张国伟等,19952001; Meng and Zhang,2000)。其中,北秦岭构造带是指秦岭商丹断裂带与洛南-栾川-方城断裂带之间的秦岭北部区域,其间又以多条断裂由北向南依次划分为宽坪岩群、二郎坪岩群、秦岭杂岩和丹凤岩群(图 1b)。

图 1 北秦岭造山带构造简图及采样点位置(据Wang et al.,2011) Fig. 1 Simplified geological map of North Qinling belt and sample locations(modified after Wang et al.,2011)

宽坪岩群是一套变形强烈、变质程度达高绿片岩相-低角闪岩相的浅变质岩系,原岩主要由基性火山岩、碎屑岩和碳酸盐岩组成。早期,通过Sm-Nd等时线和TIMS锆石研究认为宽坪岩群的形成时代为中新元古代(张寿广等,1991; 张宗清等,1994);最近,陆松年等(2009)Zhu et al.(2011)Shi et al.(2013)对宽坪群碎屑锆石研究发现最年轻的碎屑锆石分布在500~600Ma之间;王宗起等(2009)在该岩群的碎屑岩中发现大量的疑源类、几丁虫和虫颚等早-中奥陶世化石组合。因此,宽坪岩群的形成时代主体可能为早古生代寒武-奥陶纪。

二郎坪岩群分布在秦岭杂岩以北、宽坪岩群以南,其主体由变碎屑沉积岩和变火山岩以及蛇绿岩类岩石组成,火山岩夹层硅质岩中产早中奥陶世牙形石和放射虫(王学仁等,1995),最新获得其中火山岩和蛇绿岩中的辉长岩-辉绿岩锆石的形成年龄为463~474Ma(陆松年等,2003; 赵姣等,2012)。

秦岭杂岩是一套中深变质杂岩系,主体以各种片麻岩、石英片岩、石英岩、斜长角闪岩、大理岩-钙硅酸粒岩和变粒岩等岩石的发育为特征,以普遍出现黑云母、石墨、矽线石或蓝晶石、石榴子石等变质矿物为标志,岩石变形复杂并发育深熔作用。目前北秦岭地区已发现的高压-超高压岩石均呈透镜体状或夹层状赋存在豫陕交界一带的这套中深变质岩系之中,这些高压-超高压岩石具有面状分布的特征,并且经历了早古生代~500Ma峰期变质作用和~450Ma和~420Ma两期退变质(刘良等,2013及其参考文献)。同时,秦岭杂岩中还存在500Ma、452Ma与~420Ma三期与高压-超高压岩石峰期变质和两期退变质时代基本一致的花岗岩浆作用,这三期花岗岩浆活动分别与~500Ma陆壳深俯冲、~450Ma碰撞地壳增厚及其之后的~420Ma地壳抬升这三期构造事件相对应(Zhang et al.,2013及其参考文献)。

丹凤群分布在秦岭杂岩南侧,构成分割南、北秦岭的缝合构造带,是秦岭古生代洋盆闭合的产物。丹凤群主体由一套绿片岩相至低角闪岩相的火山-沉积岩系组成,具有以岛弧型火山岩为特点的镁铁质、超镁铁质岩石组合,形成于洋内岛弧构造环境(张旗等,1995; 张旗和周国庆,2001; 张国伟等,2001; 陆松年等,2003; 张成立等,2004),其中的放射虫硅质岩夹层中发现寒武-奥陶纪放射虫(崔智林等,1995);后来,西延在岩湾、关子镇、武山等地发现典型的N-MORB和E-MORB型蛇绿岩,并确定其形成时代主体为523~500Ma(Dong et al.,2011ab及其参考文献)。

3 样品产状与岩石学特征

该斜长角闪岩样品采自商南县西清油河镇以北的秦岭杂岩中(33°38.180′N,110°44.969′E)。商南清油河区段可见成分均匀,形态各异的变基性岩墙(或透镜体)与围岩片麻理呈现清晰的接触边界(图 2ab),这些变基性岩墙群一般数米宽,延伸数米、数十米,平行NWW向区域片麻理分布,具有强变形改造的显著特征,但因构造改变已不保存原始接触关系,其原始侵入产状也难以恢复,这些变基性岩墙群中还发育规模不等的长英质脉体(图 2b)。强烈变形变质改造的基性岩墙群,现今表现为暗灰绿色的斜长角闪岩,直接围岩为黑云母斜长片麻岩,并具透入性片麻理。该斜长角闪岩主要由角闪石和斜长石组成,含有少量的石英、石榴子石和单斜辉石(图 2cd),其中,角闪石(55%~60%)、斜长石(30%~35%),石英(5%~8%)、石榴子石(~5%)、单斜辉石(2%~5%)。岩石具粒状、柱状变晶结构与弱片麻状构造(图 2cd),其中角闪石与斜长石或石英平衡共生(图 2c-f),而石榴石(图 2c)和单斜辉石(图 2ef)均呈残斑状。

图 2 北秦岭清油河地区斜长角闪岩野外露头及显微照片
(a)斜长角闪岩呈岩墙状产出于片麻岩中;(b)斜长角闪岩中发育规模不等的脉体;(c)斜长角闪岩中局部可见残留的石榴子石;(d)斜长角闪岩主要矿物组成为角闪石+斜长石;(e、f)斜长角闪岩中残留的单斜辉石(标有序号点的电子探针成分见表4)
Fig. 2 Field occurrence and microtextures of Qingyouhe amphibolites from the North Qinling belt
(a) amphibolite occurs as dikes surrounded by gneiss; (b) different sizes of veins within amphibolite; (c) residual garnet grain; (d) Qinyouhe amphibolite mainly contains of amphibole and plagioclase; (e, f) residual clinopyroxene grains
4 地球化学分析测试方法

本次研究,除了锆石的分选工作是在河北廊坊诚信地质服务公司完成外,其它的分析测试均在西北大学地质学系大陆动力学国家重点实验室完成。

主量元素分析先将样品粉碎到200目,然后称取样品0.7±0.0001g,加入Li2B4O7 5.2±0.001g,作为助熔剂及脱模剂的LiF 0.4±0.001g,氧化剂NH4NO3 0.3±0.001g,将四者混和均匀后,放入铂金锅中,再加滴l~2滴脱模剂溴化锂。在1200℃下加热8min,至冷却后将玻璃熔片从锅中倒出,将玻璃熔片放入荧光光谱仪(XRF)自动进样系统进行测试。所得数据精密度(RSD)为5%左右。微量和稀土元素分析采用电感耦合等离子质谱仪完成,处理过程为:称取50mg的200目样品,置于密封容器中,加入1mL HF溶液,电热板蒸干去SiO2,再加入1mL HF和0.5mL HNO3,加盖放置烘箱中(170℃)分解24h,然后放在电热板蒸干,加入1mL HNO3和5mL去离子水,盖上盖子,130℃下溶解残渣3h,冷却后加入500Rh内标溶液,转移至50mL离心瓶中。上机测试的ICP-MS为Agilient公司新一代带有Shield Torch的Agilient 7500a,借用BHVO-2、AGV-2为标准参考物质,微量元素测试数据的相对误差(RE)优于10%。

锆石的分选工作,首先将样品破碎筛选,采用磁选和重液分离技术将锆石分离。对分离出来的锆石在双目镜下挑选出结晶好、透明度好、无裂隙、无包体的颗粒,用环氧树脂固定并抛光至锆石颗粒一半露出。锆石样品在测定之前用浓度为3%的稀HNO3清洗样品表面,以除去样品表面的污染。锆石的CL图象分析是在西北大学大陆动力学国家重点实验室的电子显微扫描电镜上完成。锆石的微量元素分析和U-Pb年龄测定在Hewlett packard公司最新一代带有Shield Torch的Agilient 7500a ICP-MS和德国Lambda Physik公司的ComPex102 Excimer激光器(工作物质ArF,波长193nm)以及MicroLas公司的GeoLas 200M光学系统的联机上进行,微量元素和U-Th-Pb同位素的测定在一个点上同时获得。激光束斑直径为25~30μm,激光剥蚀样品的深度为20~40μm。实验中采用He作为剥蚀物质的载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,采样方式为单点剥蚀,数据采集选用一个质量峰一点的跳峰方式(peak jumping),每完成4~5个测点的样品测定,加测标样一次。在所测锆石样品分析点前后各测2次NIST SRM610。锆石年龄采用国际标准锆石91500作为外标标准物质,元素含量采用NIST SRM610作为外标,29Si作为内标。用ICPMS-Date-Cal软件进行数据处理(Liu et al.,20082010b)。

锆石的激光拉曼包裹体分析采用英国Renshaw公司生产的型号为inVia的激光拉曼分析仪,仪器的重复性小于±2.0个波数,硅的三节峰性噪比大于101,空间分辨率横向为1μm,纵向为2μm,激光阻挡水平优于1014;全范围无等离子线,光谱范围100~9000。单矿物和锆石包裹体成分分析利用JEOL JXA-8230电子探针(EPMA)完成,加速电压15kV,电流20nA,束斑直径通常为1μm。矿物标样由SPI公司提供,不同矿物标样用于校正不同元素,硬玉校正Si、Al、Na,透辉石-Ca,橄榄石-Mg,透长石-K,钛铁矿-Fe,蔷薇辉石-Mn,金红石-Ti。

5 分析结果5.1 样品主、微量元素特征

清油河斜长角闪岩地球化学成分见表 1。其中,SiO2为48.94%~52.11%,Al2O3为12.87%~13.50%,CaO为10.87%~11.86%,较低的MgO为7.30%~8.60%,较高的Fe2O3为13.29%~13.97%,Mg#为56.0~59.8,高的TiO2(1.24%~1.56%),低的P2O5(0.11%~0.13%)、Na2O(1.13%~1.46%)和K2O(0.42%~0.52%),以及极低的K2O/Na2O值(0.35~0.46),中等的分馏指数((La/Yb)N=2.84~5.35),弱的Eu的负异常或无负异常(δEu=0.77~1.03)。在TAS和Zr/TiO2-Nb/Y图解中,所有样品均落在亚碱性拉班玄武岩区域(图 3ab);在球粒陨石标准化稀土模式配分图中具有弱的右倾模式(图 3c),在原始地幔标准化蛛网图上明显的亏损Ba、Sr和P,富集Rb、Th、U和Pb(图 3d)。几乎没有Nb、Ta和Ti的亏损,明显区别于岛弧玄武岩。这些特征与已报道的北秦岭官坡一带榴辉岩的化学特征(陈丹玲和刘良,2011; Wang et al.,2013)极其相似(图 3a-d)。

表 1 清油河斜长角闪岩主量(wt%)和微量元素(×10-6)组成 Table 1 Major (wt%) and trace (×10-6) elements compositions of the Qingyouhe amphibolites

图 3 TAS判别图解(a,据Le Bas et al.,1986)、Nb/Y-Zr/TiO2判别图解(b,据Winchester and Floyd,1977)、球粒陨石标准化稀土元素配分图(c)及原始地幔标准化微量元素蛛网图(d)(图c,d中标准化数值及OIB,N-MORB,E-MORB据Sun and McDonough,1989) Fig. 3 TAS diagram(a,after Le Bas et al.,1986),Nb/Y vs. Zr/TiO2 diagram(b,after Winchester and Floyd,1977),chondrite-normalized rare earth element diagram(c)and primitive mantle-normalized multi-element spider diagram(d)(chondrite and primitive mantle normalized values and OIB,N-MORB,E-MORB data in Fig. 3c,d are from Sun and McDonough,1989)

清油河斜长角闪岩具基性岩成分(SiO2为48.94%~52.11%),Mg#值(56.0~59.8)变化范围较窄,Eu异常不明显(δEu=0.77~1.03),指示原岩岩浆没有发生过明显的分离结晶作用。在AFM图解中,该岩石具有拉斑玄武岩的特征,在Ta/Yb-Th/Yb图解(Pearce,1982),Hf-Th-Ta图解(Wood,1980)和Zr-Zr/Y图解中(图 4),落在E-MORB和板内拉斑玄武岩区域内。在野外,清油河斜长角闪岩呈岩墙状赋存于副变质的石英二长片麻岩中(图 2a),围岩的性质暗示斜长角闪岩可能为陆壳岩石的一部分。另外,将清油河斜长角闪岩地球化学与秦岭杂岩中已报道的榴辉岩进行对比,二者具有非常相似的特征(图 3图 4),表明清油河斜长角闪岩与官坡榴辉岩的原岩都可能具有板内大陆拉斑玄武岩性质。

图 4 清油河斜长角闪岩地球化学判别图解
(a)Zr/Y-Zr图解(Pearce,1982);(b)Ta/Yb-Th/Yb图解(Pearce,1982);(c)AFM图解(Miyashiro,1974);(d)Hf-Th-Ta图解(Wood,1980). 图中:WPB:板内玄武岩;MORB:洋中脊玄武岩;IAB:岛弧玄武岩;IAT:岛弧拉斑系列;ICA:岛弧钙碱系列;SHO:岛弧橄榄玄粗岩系列;TH:拉斑玄武岩;TR:过渡性玄武岩;ALK:碱性玄武岩;A:N-MORB;B:E-MORB或板内拉斑玄武岩;C:碱性板内玄武岩;D1:岛弧玄武岩;D2:钙碱性玄武岩
Fig. 4 Tectonic discriminant diagrams for the Qinyouhe amphibolite from North Qinling belt
(a)Zr/Y vs. Zr diagram(Pearce,1982);(b)Ta/Yb vs. Th/Yb diagram(Pearce,1982);(c)AFM diagram(Miyashiro,1974);(d)Hf-Th-Ta diagram(Wood,1980). WPB: Within Plate Basalts; MORB: Mid Ocean Ridge Basalts; IAB: Island Arc Basalts; IAT: Island Arc Tholeiites; ICA:Island Arc Calc-alkaline Basalts; SHO: Island Arc Shoshonites; TH:Tholeiite series; TR: Transitional series; ALK: Alkaline series; A: N-MORB; B: E-MORB and within-plate tholeiites; C: alkaline within-plate basalts; D1: island-arc tholeiites; D2: calc-alkaline basalts
5.2 锆石CL图像、U-Pb年龄及其REE特征

依据CL图像可将该斜长角闪岩中的锆石分为三种类型:1)锆石岩浆震荡环带发育,为岩浆结晶锆石(图 5中1-3);2)锆石具有明显的核-边结构,核部仍然保存明显的岩浆锆石结晶环带,边部相对均匀,显示变质重结晶锆石的特点(图 5中4-6);3)锆石发光性较均匀,显示扇状(图 5中7)、云雾状、面状分带(图 5中8、9),为典型的变质锆石,部分变质成因锆石具有发光较暗的变质边(图 5中9)。

图 5 清油河斜长角闪岩中代表性锆石的CL图像 Fig. 5 Representative cathodoluminescence (CL) images of zircons from Qingyouhe amphibolite in the North Qinling belt

本次研究对60颗锆石的不同微区进行了LA-ICP-MS U-Pb定年测试,其中40个点的锆石U-Pb谐和度大于90%,其结果如表 2所示,U-Pb测定结果可以分为3组(图 6a)。第一组年龄数据主要为发育岩浆震荡环带的锆石(上述第一类锆石和第二类锆石的核部)的19个数据点,206Pb/238U年龄值变化于623~785Ma之间(表 2),在谐和线附近形成3个集中区,分别为637±7Ma、701±13Ma和774±13Ma(图 6a)。其中,774 ±13Ma(MSWD=6.1,n=6)(图 6ef),与不一致线上交点年龄(780±79Ma)一致,且误差较小,应代表原岩年龄的最佳估计值。该组年龄对应的锆石REE总量较高,ΣREE为569.4×10-6~4359×10-6,HREE明显富集,球粒陨石标准化模式配分图中显示HREE稀土富集的配分模式和相对明显的Eu负异常(δEu=0.46~0.71)(图 6g),Th/U值在0.43~0.67之间,具有典型继承性岩浆结晶锆石的特征,因此该斜长角闪岩的原岩形成时代为774±13Ma。而小于774±13Ma的其它2个集中区的测试点,或者因为激光剥蚀时与变质成因的锆石发生了混合,为混合年龄;或者由于后期变质事件,使得岩浆结晶锆石发生Pb丢失,这部分年龄可能并不具有实际的地质意义。

表 2 北秦岭清油河斜长角闪岩样品 LA-ICP-MS 锆石 U-Pb 定年分析结果 Table 2 Zircon U-Pb isotope data were obtained by LA-ICP-MS for amphibolites from Qinyouhe area,North Qinling

图 6 锆石U-Pb谐和图和球粒陨石标准化稀土元素配分图解
所有测点的锆石U-Pb年龄谐和图(a)和稀土配分图解(c);761~790Ma年龄集中区的锆石的CL图像(d),U-Pb年龄谐和图(e),年龄加权平均值(f)和锆石稀土配分图(g);487~497Ma年龄集中区的锆石CL图像(h),U-Pb年龄谐和图(i),年龄加权平均值(j)和锆石稀土配分图(k);441~459Ma年龄集中区的锆石的CL图像(l),U-Pb年龄谐和图(m),年龄加权平均值(n)和锆石稀土配分图(o)
Fig. 6 U-Pb concordant diagrams of zircons and REE-patterns in Qinyouhe amphibolite (normalization values from Sun and McDonough, 1989)
U-Pb concordia diagram (a) and REE patterns (c) of all zircon analysis from Qinyouhe amphibolite. U-Pb age concordia diagram (e) and REE-patterns (g) of the zircons with the age ranging from 761~790Ma, the weighted average age of 774±13Ma (f); U-Pb age concordia diagram (i) and REE-patterns (k) of the zircons with the age ranging from 487~497Ma, the weighted average age of 493±5Ma (j); U-Pb age concordia diagram (m) and REE-patterns (o) of the zircons with the age ranging from 441~459Ma, the weighted average age of 448±4Ma (n)

第二组年龄集中区的年龄数据主要为变质锆石的核部(图 6h),7个数据点的206Pb/238U年龄变化于487~498Ma之间,其加权平均年龄为493±5Ma(MSWD=0.43,n=7)(图 6ij),其Th/U值在0.02~0.13之间。与继承性岩浆锆石核部相比,该组锆石REE总量较低,ΣREE为33.79×10-6~62.79×10-6,在球粒陨石标准化模式配分图中HREE相对平坦(图 6k),几乎无Eu的异常(δEu=0.90~1.15),指示锆石生长时与石榴石共生但没有斜长石,具有与典型榴辉岩锆石完全一致的稀土特征,应为榴辉岩相的变质锆石(Rubatto,2002; Sun et al.,2002; Rubatto and Hermann,2003; Liu et al.,2006; Katayama and Maruyama,2009; Rubatto et al.,2011; Liu et al.,2012; 郑永飞等,2013)。

第三组年龄集中区的13个数据点主要来自变质锆石边部(图 6l),其206Pb/238U年龄变化于441~460Ma之间,加权平均年龄为448±4Ma(MSWD=1.3,n=13)(图 6mn),Th/U值在0.02~0.17之间。该组锆石REE总量较低,ΣREE为25.06×10-6~60.59×10-6,其HREE分配曲线相对平坦(图 6o),亦显示了与石榴石平衡共生的变质锆石的稀土特征,但其Eu的变化范围比较大(δEu=0.63~2.69)。Eu的负异常(0.63~0.92)说明该期锆石与斜长石平衡共生(Hermann et al.,2001; 吴元保和郑永飞,2004; Liu et al.,2012; 郑永飞等,2013),而一些测点出现明显的正异常(1.21~2.69)可能与该期锆石中含有细小的斜长石包体有关。

表 3 北秦岭清油河斜长角闪岩样品LA-ICPMS锆石的微量元素分析结果(×10-6) Table 3 LA-ICPMS trace element analyses of zircon from Qingyouhe amphibolites, North Qinling (×10-6)

值得注意的是,该样品中的个别锆石核部具有密集的岩浆震荡环带(图 6b),锆石稀土δEu负异常明显区别其它锆石(图 6c),其206Pb/238U年龄值明显偏老(932±4Ma),表明斜长角闪岩原岩在成岩过程中可能捕获了围岩中的锆石。

5.3 锆石包裹体特征

利用拉曼光谱和电子探针确定该岩石中的锆石包裹体矿物主要有石榴子石、单斜辉石、斜长石、角闪石和石英等,包裹体矿物主要呈浑圆状-不规则形状,粒径约2~8μm不等。其中,不同矿物的分布特征如下:1)石榴子石:均产出在CL图像呈现为变质成因的锆石区域(如图 7a1a2b1b2),前述获得对应锆石区域的U-Pb年龄分别为446±4Ma和496±7Ma,说明~450Ma和~500Ma两期变质作用中均含有石榴子石,与前述锆石REE推断结果相吻合;2)单斜辉石:锆石中的单斜辉石包裹体相对较少,仅出现在具有双层结构变质锆石CL图像的核部(图 7c2),但由于该锆石颗粒较小(图 7c1)没有获得很好的谐和年龄,推测其对应的U-Pb年龄可能为~500Ma;3)角闪石:角闪石仅分布在锆石的变质边R区域(图 7d1d2d3),获得对应的U-Pb年龄为~450Ma(图 7d1);4)斜长石:与角闪石分布规律相似,主要分布在锆石变质边部区域(图 7d1),集中在锆石边部R(7d3),对应的U-Pb年龄为~450Ma;5)石英:石英包裹体比较多,在~500Ma和~450Ma的变质锆石区域中均有分布(图 7b1d3)。典型包体矿物的拉曼光谱见图 8

图 7 清油河斜长角闪岩中的锆石矿物包裹体
(a1, a2)为~450Ma这一期锆石中保存的Grt矿物包体;(b1, b2)为~500Ma这一期锆石中保存的Grt矿物包体;(c1, c2)锆石中保存的Cpx矿物包体;(d1, d2, d3)显示~450Ma这一期变质锆石中至少含有石榴子石、角闪石、斜长石矿物包裹体组合,且这些包体分布在锆石的边部(R).Grt-石榴子石,Cpx-单斜辉石,Zr-锆石
Fig. 7 Mineral inclusions within zircons from Qinyouhe amphibolite in North Qinling belt
(a1, a2) zircon contains Grt within the zircon domains of age at ~450Ma; (b1, b2) zircon contains Grt within the zircon domains of age at ~500Ma; (c1, c2) zircon contains Cpx; (d1, d2, d3) zircon contains Grt+Amp+Pl in the metamorphic zircon rim. Grt-garnet, Cpx-clinopyroxene, Zr-zircon

图 8 斜长角闪岩锆石中典型包体矿物激光拉曼光谱
(a)石榴子石特征峰值为909cm-1;(b)单斜辉石特征峰值为321cm-1、389cm-1、666cm-1、1013cm-1;(c)斜长石的特征峰值为511cm-1和478cm-1;(d)石英的特征峰值为464cm-1. Zr-锆石;Grt-石榴子石;Cpx-单斜辉石;Pl-斜长石;Q-石英
Fig. 8 Representative Raman spectras of mineral inclusions in zircon grains from Qinyouhe amphibolite
(a) garnet is characterized by the Raman spectra at 909cm-1; (b) the Raman spectra of clinopyroxene is at 321cm-1, 389cm-1, 666cm-1, 1013cm-1; (c) plagioclase is at 511cm-1 with a weaker peak of 478cm-1; (d) Raman spectra of quartz is at 464cm-1. Zr-zircon, Grt-garnet, Cpx-clinopyroxene, Pl-plagioclase, Q-quartz
5.4 矿物化学

该岩石主要组成矿物及其锆石包裹体矿物的电子探针分析结果见表 4,其特征分别如下:

表 4 清油河斜长角闪岩的矿物化学成分(wt%) Table 4 Respectively mineral composition of the amphibolite in Qingyouhe, North Qinling

单斜辉石(Cpx),岩石中残存的单斜辉石CaO的含量为22.42%~23.88%,Al2O3的含量为0.66%~1.15%,TiO2含量为0.06%~0.13%,Al+Si为1.98~2.04。在Al2O3对TiO2和Al2O3对(Si+Al)图解中本次所分析的18个测试点都落在变质Ca-辉石范围内(图 9ab),说明这些单斜辉石为变质成因。

图 9 清油河斜长角闪岩中单斜辉石的Al2O3-TiO2图解(a)及Al2O3-(Si+Al)图解(b)(据靳是琴和李鸿超,1986) Fig. 9 Al2O3 vs. TiO2 diagram(a)and Al2O3 vs.(Si+Al)diagram(b)of clinopyroxene from Qinyouhe amphibolite(after Jin and Li,1986)

角闪石(Amp),岩石基质中的角闪石Al2O3的含量为8.28%~12.76%,TiO2含量为0.83%~1.21%,CaO的含量为11.28%~12.13%,XMg=Mg/(Mg+Fe2+)为0.48~0.57;锆石中的角闪石包裹体Al2O3的含量为7.90%~11.04%,TiO2含量为0.72%~1.23%,CaO的含量为10.68%~11.98%,XMg为0.55~0.59;岩石石榴子石中的角闪石包裹体Al2O3的含量为10.87%~12.23%,TiO2含量为0.58%~1.44%,CaO的含量为10.95%~11.83%,XMg为0.49~0.61。在Si-Mg/(Mg+Fe2+)角闪石分类图解中,上述三类角闪石的大部分落在镁角闪石范围内,少部分落入与镁角闪石临近的亚铁角闪石区域(图 10)。综上所述,三类角闪石成分相近,可能为同一期变质作用的产物。另外,基质中角闪石成分上不存在环带。

图 10 清油河斜长角闪岩中角闪石分类图解(据Leake et al.,1997) Fig. 10 Amphibole classification of Qinyouhe amphibolite(after Leake et al.,1997)

斜长石(Pl),分布在基质中的斜长石和锆石包裹体中的斜长石成分差别不大,分别为An69-85Ab15-31和An66-84Ab16-34,基质中斜长石和锆石包裹体中的斜长石可能为同一期变质作用的产物。基质中的斜长石成分并不存在环带。

石榴子石(Grt),基质中石榴子石以高的铁含量和相对应的高铁铝榴石(Alm)端员组分为主要特征。其中,FeO=28.55%~29.58%;CaO=6.19%~7.08%;MgO=2.16%~3.23%;MnO=1.89%~2.44%之间。相对应的铁铝榴石(Alm)=0.63~0.66;钙铝榴石(Gro)=0.18~0.20;镁铝榴石(Pyr)=0.09~0.13;锰铝榴石(Spe)=0.04~0.06。石榴子石成分比较均匀,不具有明显成分环带特征,应该为石榴子石退变质作用后再平衡的产物。

6 讨论6.1 斜长角闪岩经历多期变质作用

493±5Ma这一期变质锆石CL图像为发光性较弱云雾状、冷杉状和面状分带,Th/U值在0.02~0.13之间(表 2),球粒陨石标准化模式配分图中,具有明显HREE平坦的分配模式,且无Eu的异常,表明该期锆石生长时与石榴子石平衡共生,但没有长石,与典型的榴辉岩相锆石稀土配分模式完全相似(Rubatto,2002; Sun et al.,2002; Rubatto and Hermann,2003; Liu et al.,2006; Katayama and Maruyama,2009; Rubatto et al.,2011; Liu et al.,2012; 郑永飞等,2013)。结合该岩石锆石包裹体中发现有Grt和Cpx共存(图 7b2c2),以及Wang et al.(2014)在该区斜长角闪岩的锆石中发现金刚石包体,共同表明北秦岭清油河地区的斜长角闪岩早期至少经历了榴辉岩相的变质作用,部分岩石的俯冲深度可能>120km。

448±4Ma这一期变质锆石CL图像为发光性呈较弱的云雾状或面状分带,Th/U值在0.02~0.17之间(表 2);球粒陨石标准化模式配分图中HREE分配曲线平坦,指示该期变质锆石可能与石榴子石平衡共生;Eu的变化范围比较大(δEu=0.63~2.69),Eu的异常说明该期锆石与斜长石平衡共生(Hermann et al.,2001; 郑永飞等,2013),岩石基质中角闪石、锆石中的角闪石包裹体以及石榴子石中的角闪石包裹体的电子探针成分分析(表 4)显示三类角闪石性质相近(图 10),据此推测基质、锆石和石榴子石中的角闪石都属于~450Ma这一期变质作用的产物;同理,基质和锆石中的斜长石也都属于~450Ma这一期变质作用的产物。前已述及,该岩石基质中的矿物组合为Grt+Cpx+Amp+Pl+Q(图 2c-f),本次研究在~450Ma这一期变质锆石的包裹体中找到了Grt+Amp+Pl+Q(图 7d3)的矿物组合和与Grt+Pl平衡共生锆石微量元素(REE)的证据,因此,可确定~450Ma这一期变质作用共生的矿物组合可能为Grt+Cpx+Amp+Pl+Q,代表了一个退变质作用的矿物组合(刘福来等,200520062011; Liu et al.,2010a; Liu and Liou,2011)。

Cheng et al.(2011)刘良等(2013)分别报道了清油河退变榴辉岩峰期变质年龄为480±6Ma和490±6Ma,与本文获得的斜长角闪岩锆石所记录的变质年龄493±5Ma以及Wang et al.(2014)在该区含金刚石包裹体的斜长角闪岩获得的490±6Ma的锆石U-Pb年龄值在误差范围内一致。本次研究斜长角闪岩中493±5Ma的锆石稀土特征与典型榴辉岩锆石稀土配分模式相似,其年龄值与前述同一剖面上的退变榴辉岩峰期年龄值(Cheng et al.,2011; 刘良等,2013; Wang et al.,2014)误差范围内一致,说明该岩石也可能经历与其它退变榴辉岩一致的变质作用。刘良等(2013)在清油河退变榴辉岩中还获得麻粒岩相退变质年龄453±9Ma,与本次研究斜长角闪岩锆石中变质年龄(448±4Ma)在误差范围内一致。因此,清油河地区现存的无论是含绿辉石(Cheng et al.,2011)和多硅白云母(刘良等,2013)的退变榴辉岩,还是含有金刚石包裹体的斜长角闪岩(Wang et al.,2014),以及本次研究的斜长角闪岩都经历了480~493Ma的榴辉岩相变质。我们现今看到的斜长角闪岩是后期(~450Ma)发生强烈退变质作用的产物,基质中的石榴子石、角闪石和斜长石均没有环带,说明先期的矿物可能已经被后期退变质作用彻底改造了。

6.2 原岩年龄、性质和成因

综合前述清油河地区斜长角闪岩地质产状、岩石结构构造、矿物组成及其中锆石CL图像特征,尤其是其残存单斜辉石在Al2O3-TiO2和Al2O3-(Si+Al)图解中全部落在变质Ca-辉石区域(图 9ab),说明该岩石为变质岩而不是岩浆作用的直接产物。其次,该斜长角闪岩中部分锆石存在残留岩浆核,其CL图像显示板状或条带状分带,轻重稀土分馏明显,重稀土部分明显上翘(图 6g),且稀土总量较高,Th/U值在0.29~1.36之间,具岩浆锆石的特征,上交点附近集中区加权平均年龄为774±13Ma,该年龄值代表了其原岩侵位/岩浆结晶的时代。另外,北秦岭地区不仅存在正变质的斜长角闪岩,还存在大量副变质的斜长角闪岩(游振东等,1991; 周鼎武和张国伟,1991; 张宗清等,1994)。基于以下几点分析,笔者认为本次研究的斜长角闪岩为正变质岩:1)岩石薄片中几乎不含黑云母矿物,为副变质的可能性不大;2)~774Ma这一期锆石CL图像呈板状或条带状,类似基性岩浆锆石,其上交点存在1个锆石U-Pb年龄集中区,且Th/U(大部分>0.4)值显示岩浆锆石特征,暗示该年龄可能代表了一期岩浆作用事件;3)全岩稀土模式配分图中,轻重稀土分馏不明显,Eu负异常较弱,部分出现正异常,这些特征与辉长岩的稀土模式很相似,明显区别于秦岭杂岩中前人已报道的副变质斜长角闪岩明显Eu负异常和轻稀土富集的配分模式(周鼎武和张国伟,1991; 张宗清等,1994);4)在野外,斜长角闪岩与围岩片麻岩是明显的截切关系,而非渐变过渡关系(图 2ab)。因此,本次研究获得的774±13Ma的年龄值代表秦岭杂岩中一部分正变质斜长角闪岩原岩的形成年龄/侵位年龄。

值得注意的是,闫全人等(2009)获得秦岭杂岩云英片岩中的斜长角闪岩锆石的SHRIMP U-Pb年龄值为449±11Ma,并认为这些斜长角闪岩是北秦岭晚奥陶世加里东期后造山期热收缩导致的地壳伸展或岩石圈拆离减薄背景下岩浆作用的产物;但万渝生等(2011)认为闫全人等(2009)获得449±11Ma的锆石为高角闪岩相-麻粒岩相变质锆石,其年龄值代表了一期变质事件,而不是斜长角闪岩原岩的形成/侵位时代。显然,我们本次研究的前述结果,不支持闫全人等(2009)的认识,而与万渝生等(2011)对449±11Ma年龄的解释相一致。此外,陈丹玲和刘良(2011)获得官坡榴辉岩的原岩年龄为791±6Ma,Wang et al.(2011)获得官坡和双槐树榴辉岩原岩年龄为796±13Ma和814±45Ma,与本次研究获得清油河斜长角闪岩原岩年龄774±13Ma在误差范围内一致(表 5)。前已述及,清油河地区斜长角闪岩与北秦岭的超高压榴辉岩具有一致的相似的地球化学特征,因此,清油河斜长角闪岩原岩与官坡等地区榴辉岩原岩可能均为新元古代同一构造背景下的产物。

表 5 北秦岭高压-超高压岩石锆石U-Pb年龄数据 Table 5 Geochronological data of zircons for HP/UHP rocks in different area from North Qinling
6.3 构造意义

1)Wang et al.(2014)在清油河斜长角闪岩中发现残存金刚石的报导,结合本次研究,共同说明北秦岭清油河斜长角闪岩经历了早期榴辉岩相(榴辉岩或石榴子石辉石岩)和晚期退变质作用,并暗示现今秦岭杂岩中出露的一些低级变质相岩石先期也可能经历了高压-超高压变质,只是由于后期强烈的退变质作用的改造而难于识别和辨认。因此,北秦岭早古生代经历了高压-超高压变质的岩石可能远比目前观察到的丰富。

2)目前,关于北秦岭高压-超高压岩石以及其峰期变质时代(~500Ma)与退变质时代(~450Ma)是同一期构造事件还是先后两期独立构造事件的产物存在争议(Cheng et al.,2011; 张建新等,2011; 刘良等,2013; Wu and Zheng,2013; Bader et al.,2013; Li et al.,2014; Liu et al.,2014; 向华等,2014)。由表 5可以看出,官坡-双槐树地区新确定的高压-超高压岩石的峰期变质时代介于484~508Ma(剔除精度较差的507±37Ma,Yang et al.,2003);清油河退变榴辉岩的峰期变质介于480~494Ma;松树沟高压-超高压岩石的峰期变质时代介于484~514Ma(剔除精度较差的518±19Ma,刘军锋和孙勇,2005);寨根为495~500Ma;西峡北为503Ma。显然,新确定的这些岩石的峰期变质年龄都具有一定的变化范围,但在变化范围之内无论是双槐树,官坡,清油河和寨根地区的峰期变质年龄(484~516Ma),还是松树沟地区的峰期变质年龄(484~514Ma)在误差范围内都是一致的,排除了分析误差与其它可能的不确定因素,共同表明它们应是同一期构造地质事件的产物。

北秦岭高压-超高压岩石的退变质时代也有不少报道,Ratschbacher et al.(2003)报道了官坡榴辉岩中角闪石40Ar/39Ar年龄为420±30Ma,代表了伸展阶段角闪岩相冷却年龄;Bader et al.(2013)获得了官坡榴辉岩中榍石的U-Pb年龄为~470Ma,认为其代表了榴辉岩发生退变质的时间;Cheng et al.(2011)获得了清油河地区退变榴辉岩全岩-石榴石-角闪石Sm-Nd和Lu-Hf等时线年龄分别为400±8Ma和416±5Ma,指示了一期退角闪岩相的退变质年龄;刘良等(2013)综合锆石Cl图像、微量(稀土)元素特征获得了清油河退变榴辉岩、松树沟超高压长英质片麻岩、寨根石榴辉石岩和西峡北榴闪岩的两期退变质年龄分别为~450Ma和~420Ma;Li et al.(2014)在松树沟地区的石榴石辉石岩和榴闪岩中获得了两期榍石年龄分别为~470Ma和~420Ma,认为这两期年龄分别代表了高压/超高压岩石折返的年龄和区域角闪岩相变质作用的年龄;于红和张宏福(2014)利用锆石SIMS方法获得松树沟地区的长英质片麻岩、石榴斜长角闪岩和榴闪岩的峰期变质和退变质年龄分别为490Ma与460Ma;Liao et al.(2016)获得寨根退变榴辉岩两期退变质时代分别为470~450Ma和~425Ma。本次研究综合锆石CL图像、微量(稀土)元素及其锆石中的包裹体矿物组合,获得清油河斜长角闪岩的退变质时代为448±4Ma。另外,依据刘良等(2013)的综述性研究,清油河、松树沟和寨根高压-超高压岩石的峰期变质时代和两期退变质时代主体来自同一个样品中单颗粒锆石的不同部位,明确指示这些岩石峰期变质之后又遭受了连续两期退变质作用的叠加。综合上述这些定年结果,以及北秦岭高压/超高压岩石峰期变质之后普遍经历多期退变质作用叠加和改造的岩相学观察,本文认为区内高压/超高压岩石在经历~484~516Ma的峰期变质之后,又分别在~470~450Ma和~430~420Ma遭受了两期退变质作用的叠加,是一个从俯冲到折返(两次抬升)的连续过程。

3)该斜长角闪岩与区内榴辉岩原岩地球化学属性相似,均具有大陆拉斑玄武岩特征(陈丹玲和刘良,2011; Wang et al.,2013),许多研究者论证提出其形成主体是早古生代陆壳深俯冲作用的产物(杨经绥等,20022003; Liu et al.,20032010c; 陈丹玲和刘良,2011; 张建新等,2011; 刘良等,2013)。本次研究将野外产状与岩石地球化学判别相结合,进一步确定了该斜长角闪岩的原岩具有大陆拉斑玄武岩特征,和围岩都是陆壳岩石的一部分,为秦岭杂岩早古生代陆壳俯冲提供了又一有力证据。

4)通常,基底地块内基性岩墙群的出现不仅指示在其形成之前曾有一相当规模的刚性、半刚性已固结陆块发育,而且是陆块拉张、裂谷形成作用的重要证据(Windley,1984; 周鼎武等,19982000)。本次研究厘定了清油河斜长角闪岩原岩具有大陆拉斑玄武岩性质,呈岩墙状赋存于秦岭杂岩中,可能给我们以下启示:斜长角闪岩原岩年龄为774±13Ma,秦岭杂岩中已确定的榴辉岩、石榴子石辉石岩、榴闪岩等高压-超高压岩石原岩年龄也集中在650~850Ma(表 5),与全球Rodinia超大陆裂(Hoffman,1991; Condie,2001; 李献华等,2008)时限一致,表明这些高压-超高压岩石的原岩可能是Rodinia超大陆裂事件的产物。

7 结论

(1)北秦岭清油河地区斜长角闪岩先期经历了榴辉岩相变质和后期退变质作用的改造,其早期变质(493±5Ma)与晚期(448±4Ma)退变质时代与区内高压-超高压岩石的峰期及麻粒岩相-高角闪岩相退变质时代完全一致,暗示该斜长角闪岩可能曾经是北秦岭高岩-超高压变质岩带的一部分。据此,并结合Wang et al.(2014)在清油河斜长角闪岩中发现残存金刚石的研究成果可以推测现今秦岭杂岩中出露的一些低级变质相岩石先期也可能经历了高压-超高压变质,只是由于后期强烈的退变质作用的改造而难于识别和辨认,北秦岭高压-超高压岩石的分布可能远比目前观察到的丰富。

(2)清油河斜长角闪岩原岩年龄为774±13Ma,具有大陆拉斑玄武岩特征,其直接围岩为石英二长片麻岩,均是陆壳岩石的一部分,这些资料为进一步论证北秦岭早古生代高压-超高压岩石(包括榴辉岩、长英质片麻岩、石榴子石辉岩、榴闪岩和部分斜长角闪岩等)是陆壳俯冲-深俯冲作用的产物提供了新的证据。

致谢 成文过程中与周鼎武教授进行了有益讨论;审稿人吴元保教授、刘福来教授、向华博士提出了重要的修改意见;在此一并致以衷心的感谢。

参考文献
[1] Bader T, Franz L, Ratschbacher L, de Capitani C, Webb AAG, Yang Z, Pfnder JA, Hofmann M and Linnemann U. 2013. The heart of China revisited: Ⅱ Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonics, 32(4): 922-947
[2] Chen DL, Liu L, Sun Y, Zhang AD, Liu XM and Luo JH. 2004. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance. Chinese Science Bulletin, 49(21): 2296-2304
[3] Chen DL and Liu L. 2011. New data on the chronology of eclogite and associated rock from Guanpo area, North Qinling orogeny and its constraint on nature of North Qinling HP-UHP eclogite terrane. Earth Science Frontiers, 18(2): 158-169 (in Chinese with English abstract)
[4] Chen DL, Ren YF, Gong XK, Liu L and Gao S. 2015. Identification and its geological significance of eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7), 1841-1854 (in Chinese with English abstract).
[5] Cheng H, Zhang C, Vervoort JD, Li XH, Li QL, Zheng S and Cao DD. 2011. Geochronology of the transition of eclogite to amphibolite facies metamorphism in the North Qinling orogen of central China. Lithos, 125(3-4): 969-983
[6] Cheng H, Zhang C, Vervoort JD, Li XH, Li QL, Wu YB and Zheng S. 2012. Timing of eclogite facies metamorphism in the North Qinling by U-Pb and Lu-Hf geochronology. Lithos, 136-139: 46-59
[7] Condie KC. 2001. Continental growth during formation of Rodinia at 1.35-0.9Ga. Gondwana Research, 4(1): 5-16
[8] Cui ZL, Sun Y and Wang XR. 1996. A discovery of radiolaria from Danfeng ophiolites, North Qinling and its tectonic significance. Chinese Science Bulletin, 41(11): 916-919
[9] Dong YP, Zhang GW, Hauzenberger C, Neubauer F, Yang Z and Liu XM. 2011a. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1-2): 39-56
[10] Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011b. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237
[11] Hermann J, Rubatto D, Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82
[12] Hoffman PF. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252(5011): 1409-1412
[13] Hu NG, Zhao DL, Xu BQ and Wang T. 1995. Discovery of coesite-bearing eclogites from the northern Qinling and its significances. Chinese Science Bulletin, 40(2): 174-176
[14] Hu NG, Zhao DL, Xu BQ and Wang T. 1995. Petrography and metamorphism study on high-ultrahigh pressure eclogite from Guanpo area, northern Qinling Mountain. Journal of Mineralogy and Petrology, 15(4): 1-9 (in Chinese with English abstract)
[15] Jin SQ and Li HC. 1986. Overview of Genetic Mineralogy. Changchun: Jilin University Press, 187-227 (in Chinese)
[16] Katayama I and Maruyama S. 2009. Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: An excellent tracer of metamorphic history. Journal of the Geological Society, 166(4): 783-796
[17] Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750
[18] Leake BE, Woolley AR, Arps CES et al. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineralogical Magazine, 61: 295-321
[19] Li XH, Wang XC, Li WX and Li ZX. 2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: From orogenesis to intracontinental rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract)
[20] Li Y, Zhou HW, Zhong ZQ, Xiang H, Zeng W, Qi DM and Zhang L. 2012. Two Eopaleozoic metamorphic events in North Qinling: Petrology and zircon U-Pb geochronology evidences from basic rocks in the Songshugou area. Earth Science, 37(Suppl.1): 111-124 (in Chinese with English abstract)
[21] Li Y, Zhou HW, Li QL, Xiang H, Zhong ZQ and Brouwer FM. 2014. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology. Journal of Asia Earth Sciences, 92: 77-91
[22] Liao XY, Liu L, Wang YW, Cao YT, Chen DL and Dong YP. 2016. Multi-stage metamorphic evolution of retrograde eclogite with a granulite-facies overprint in the Zhaigen area of the North Qinling Belt, China. Gondwana Research, 30: 79-96
[23] Liu FL, Xu ZQ, Yang JS and Xue HM. 2005. The boundary between UHP and HP metamorphic belts in southwestern Sulu terrane, eastern China: Evidence from mineral inclusions in zircons from metamorphic rocks. Acta Petrologica et Mineralogica, 24(1): 32-46 (in Chinese with English abstract)
[24] Liu FL, Xue HM, Xu ZQ, Liang FH and Gerdes A. 2006. SHRIMP U-Pb zircon dating from eclogite lens in marble, Shuanghe area, Dabie UHP terrane: Restriction on the prograde, UHP and retrograde metamorphic ages. Acta Petrologica Sinica, 22(7): 1761-1778 (in Chinese with English abstract)
[25] Liu FL, Robinson PT, Gerdes A, Xue HM, Liu PH and Liou JG. 2010a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 117(1-4): 247-268
[26] Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39
[27] Liu FL, Shi JR, Liu JH, Ye JG, Liu PH and Wang F. 2011. Protolith and ultranhigh-pressure (UHP) metamorphic ages of ultramafic rocks in Weihai area, North Sulu UHP terrane. Acta Petrologica Sinica, 27(4): 1075-1084 (in Chinese with English abstract)
[28] Liu JF and Sun Y. 2005. New data on the "Hot" emplacement age of ultramafic rocks from the Songshugou area in the eastern Qinling. Geological Review, 51(2): 189-192 (in Chinese with English abstract)
[29] Liu L and Zhou DW. 1995. Discovery and study of high-pressure basic granulites in Songshugou area of Shangnan, East Qinling. Chinese Science Bulletin, 40(5): 400-404
[30] Liu L, Zhou DW, Dong YP, Zhang HF, Liu YJ and Zhang ZJ. 1995. High pressure metabasites and their retrograde metamorphic P-T-t path from Songshugou area, eastern Qinling Mountain. Acta Petrological Sinica, 11(2): 127-136 (in Chinese with English abstract)
[31] Liu L, Zhou DW, Wang Y, Chen DL and Liu Y. 1996. Study and implication of the high-pressure felsic granulite in the Qinling complex of East Qinling. Science in China (Series D), 39(Suppl.1): 60-68
[32] Liu L, Chen DL, Sun Y, Zhang AD and Luo JH. 2003. Discovery of relic majoritic garnet in felsic metamorphic rocks of Qinling complex, North Qinling orogenic belt, China. In: Alice Wain Memorial Western Norway Eclogite Field Symposium. Selje, Western Noway: 82
[33] Liu L, Yang JX, Chen DL, Wang C, Zhang CL, Yang WQ and Cao YT. 2010c. Progress and controversy in the study of HP-UHP metamorphic terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581-597
[34] Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ and Zhu XH. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10-26
[35] Liu L, Liao XY, Zhang CL, Chen DL, Gong XK and Kang L. 2013. Multi-matemorphic timings of HP-UHP rocks in the North Qinling and their geological implications. Acta Petrologica Sinica, 29(5): 1634-1656 (in Chinese with English abstract)
[36] Liu Q, Wu YB, Wang H, Gao S, Qin ZW, Liu XC, Yang SH and Gong HJ. 2014. Zircon U-Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications. Journal of Metamorphic Geology, 32(2): 177-193
[37] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
[38] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
[39] Lu SN, Li HK, Chen ZH, Hao GJ, Zhou HY, Guo JJ, Niu GH and Xiang ZQ. 2003. Meso-Neoproterozoic Geological Evolution of the Qinling and Its Respondence to Rodinia Event. Beijing: Geological Publishing House, 1-194 (in Chinese)
[40] Lu SN, Yu HF, Li HK, Chen ZH, Wang HC, Zhang CL and Xiang ZQ. 2006. Early Paleozoic suture zones and tectonic divisions in the "Central China Orogen". Geological Bulletin of China, 25(12): 1368-1380 (in Chinese with English abstract)
[41] Lu SN, Yu HF, Li HK, Chen ZH, Wang HC and Zhang CL. 2009. Precambrian Geology of the West and Middle Central China Orogen. Beijing: Geological Publishing House: 76-98 (in Chinese)
[42] Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen, Central China. Tectonophysics, 323(3-4): 183-196
[43] Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355
[44] Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester: Wiley, 525-548
[45] Qian JH, Yang XQ, Liu L, Cao YT, Chen DL and Yang WQ. 2013. Zircon U-Pb dating, mineral inclusion, Lu-Hf isotopic data and their geological significance of garnet amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087-3098 (in Chinese with English abstract)
[46] Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53
[47] Rubatto D and Williams IS. 2000. Imageing, trace element geochemistry and mineral inclusions: Linking U-Pb ages with metamorphic conditions. EOS, 21: 25
[48] Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138
[49] Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187
[50] Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M and McAlpine SRB. 2011. Yo-yo subduction recorded by accessory minerals in the Italian, Western Alps. Nature Geoscience, 4(5): 338-342
[51] Shi Y, Yu JH, Xu XS, Qiu JS and Chen LH. 2009. Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen. Acta Petrologica Sinica, 25(10): 2651-2670 (in Chinese with English abstract)
[52] Shi Y, Yu JH and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 213: 19-60
[53] Su L, Song SG, Song B, Zhou DW and Hao JR. 2004. SHRIMP zircon U-Pb ages of garnet pyroxenite and Fushui gabbroic complex in Songshugou region and constraints on tectonic evolution of Qinling Orogenic belt. Chinese Science Bulletin, 49(12): 1307-1310
[54] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
[55] Sun WD, Willians IS and Li SG. 2002. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: Evidence for protracted convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873-886
[56] Wan YS, Liu DY, Dong CY and Yin XY. 2011. SHRIMP zircon dating of mesa-sedimentary rock from the Qinling Group in the north of Xixia, North Qinling Orogenic Belt: Constraints on complex histories of source region and timing of deposition and metamorphism. Acta Petrologica Sinica, 27(4): 1172-1178 (in Chinese with English abstract)
[57] Wang H, Wu YB, Gao S, Liu XC, Gong HJ, Li QL, Li XH and Yuan HL. 2011. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019-1031
[58] Wang H, Wu YB, Gao S, Liu XC, Liu Q, Qin ZW, Xie SW, Zhou L and Yang SH. 2013. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 230: 13-30
[59] Wang H, Wu YB, Gao S, Zheng JP, Liu Q, Liu XC, Qin ZW, Yang SH and Gong HJ. 2014. Deep subduction of continental crust in accretionary orogen: Evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos, 190-191: 420-429
[60] Wang XR, Hua H and Sun Y. 1995. A study on microfossils of the Erlangping Group in Wantan area Xixia County, Henan Province. Journal of Northwest University (Natural Science Edition), 25(4): 353-358 (in Chinese with English abstract)
[61] Wang ZQ, Yan Z, Wang T, Gao LD, Yan QR, Chen JL, Li QG, Jiang CF, Liu P, Zhang YL, Xie CL and Xiang ZJ. 2009. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt. Acta Geoscientica Sinica, 30(5): 561-570 (in Chinese with English abstract)
[62] Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
[63] Windley BF. 1984. The Evolving Continents. 2nd Edition. London: John Wiley & Sons Lte.
[64] Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30
[65] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1554-1569
[66] Wu YB and Zheng YF. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428
[67] Xiang H, Zhong ZQ, Li Y, Zhou HW, Qi M, Lei HC, Lin YH and Zhang ZM. 2014. Early Paleozoic polymetamorphism and anatexis in the North Qinling orogen: Evidence from U-Pb zircon geochronology. Acta Petrologica Sinica, 30(8): 2421-2434 (in Chinese with English abstract)
[68] Yan QR, Wang ZQ, Yan Z, Chen JL, Xiang ZJ, Wang T and Zhang HY. 2009. Tectonic affinity and timing of two types of amphibolites within the Qinling Group, North Qinling orogenic belt. Acta Petrologica Sinica, 25(9): 2177-2194 (in Chinese with English abstract)
[69] Yang JS, Xu ZQ, Pei XZ, Shi RD, Wu CL, Zhang JX, Li HB, Meng FC and Rong H. 2002. Discovery of diamond in North Qinling: Evidence for a giant UHPM Belt across Central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica, 76(4): 484-495 (in Chinese with English abstract)
[70] Yang JS, Xu ZQ, Dobrzhinetskaya LF, Green HW, Shi RD, Wu CL, Wooden JL, Zhang JX, Wan YS and Li HB. 2003. Discovery of metamorphic diamonds in central China: An indication of a >4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova, 15: 370-379
[71] Yang JS, Liu FL, Wu CL, Wan YS, Zhang JX, Shi RD and Chen SY. 2003. Two ultrahigh pressure metamorphic events recognized in the Central Orogenic Belt of China: Evidence from the U-Pb dating of coesite-bearing zircons. Acta Geologica Sinica, 77(4), 463-477 (in Chinese with English abstract)
[72] Yang JS, Liu FL, Wu C, Xu Z, Shi RD, Chen SY, Deloule E and Wooden JL. 2005. Two ultrahigh-pressure metamorphic events recognized in the Central Orogenic Belt of China: Evidence from the U-Pb dating of coesite-bearing zircons. International Geology Review, 47(4): 327-343
[73] Yang L, Chen FK, Yang YZ, Li SQ and Zhu XY. 2010. Zircon U-Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain. Acta Petrologica Sinica, 26(5): 1589-1603 (in Chinese with English abstract)
[74] Yang Y, Cheng NS, Lu Q and Zhou HW. 1994. Characteristics of composition zoning of garnet and amphibole and metamorphic processes of garnet-amphibole rocks from Songshugou area, Shangnan, Saanxi Province. Acta Petrologica Sinica, 10(4): 401-412 (in Chinese with English abstract)
[75] You ZD, Suo ST, Han YJ, Zhong ZQ and Chen NS. 1990. Themetamorphic and deformational history of the Qinling complex. In: Liu GH and Zhang SG (eds.). Geological Memoirs of the Qinling-Daba Mountains (1): Metamorphic Geology. Beijing: Beijing Scientific and Technical Publishing House, 1-9 (in Chinese)
[76] You ZD, Suo ST, Han YJ et al. 1991. The Metamorphic Progresses and Tectonic Analyses in the Core Complex of an Orogenic Belt: An Example from Eastern Qunling Mountains. Wuhan: China University of Geosciences Press (in Chinese)
[77] Yu H and Zhang HF. 2014. The subduction-collision-uplifting process of the Orogenic Belt recorded in zircons from the metamorphic rocks in Qinling Group. In: Proceedings of Orogenic Process and Deep Subduction. Beijing: Annual Meeting of Chinese Geoscience Union, 2014 (in Chinese)
[78] Zhang CL, Liu L, Zhang GW, Wang T, Chen DL, Yuan HL, Liu XM and Yan YX. 2004. Determination of Neoproterozoic post-collisional granites in the North Qinling Mountains and its tectonic significance. Earth Science Frontiers, 11(3): 33-42 (in Chinese with English abstract)
[79] Zhang CL, Liu L, Wang T, Wang XX, Li L, Gong QF and Li XF. 2013. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chinese Science Bulletin, 58(35): 4405-4410
[80] Zhang GW, Zhang ZQ and Dong YP. 1995. Nature of main tectono-lithostratigraphic units of the Qinling orogen: Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101-114 (in Chinese with English abstract)
[81] Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese)
[82] Zhang JX, Yu SY and Meng FC. 2011. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt. Acta Petrologica Sinica, 27(4): 1179-1190 (in Chinese with English abstract)
[83] Zhang Q, Zhang ZQ, Sun Y and Han S. 1995. Trace element and isotopic geochemistry of metabasalts from Dafeng Group (DFG) in Shangxian-Danfeng area, Shaanxi Province. Acta Petrologica Sinica, 11(1): 43-54 (in Chinese with English abstract)
[84] Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press, 16-22 (in Chinese)
[85] Zhang SG, Wan YS, Liu GH, Cong YX and Zhao ZR. 1991. Metamorphic Geology of the Kuanping Group in Northern Qinling Mountains. Beijing: Beijing Science and Technology Press (in Chinese)
[86] Zhang ZQ, Liu DY and Fu GM. 1994. Isotopic Geochronology Metamorphic Strata in the North Qinling Orogenic Belt. Beijing: Geological Publishing House, 1-191 (in Chinese)
[87] Zhao J, Chen DL, Tan QH, Chen M, Zhu XH, Guo CL and Liu L. 2012. Zircon LA-ICP-MS U-Pb dating of basic volcanics from Erlangping Group of the North Qinling, eastern Qinling Mountains and its geological implications. Earth Science Frontiers, 19(4): 118-125 (in Chinese with English abstract)
[88] Zheng YF, Zhang LF, Liu L and Chen YX. 2013. Progress in the study of continental deep subduction and ultrahigh pressure metamorphism. Bulletin of Mineralogy, Petrology and Geochemistry, 32(2): 135-158 (in Chinese with English abstract)
[89] Zhou DW and Zhang GW. 1991. Further division of the Qinling group and the Jining movement in the Qinling orogenic belt. In: A Selection of Papers Presented at the Conference on the Qinling Orogrnic Belt. Xi’an: Northwestern University Press, 15-25 (in Chinese)
[90] Zhou DW, Zhang CL, Liu L, Wang JL, Liu YY and Zhang ZQ. 1998. Sm-Nd dating of basic dykes from Wudang Block and a discussion of related-questions. Acta Geoscinetia Sinica, 19(1): 25-30 (in Chinese with English abstract)
[91] Zhou DW, Zhang CL, Liu L, Wang JL, Wang Y and Liu JP. 2000. Synthetic study on Proterozoic basic dyke swarms in the Qinling Orogenic Belt and its adjacent block as well as a discussion about some questions related to them. Acta Petrologica Sinica, 16(1): 22-28 (in Chinese with English abstract)
[92] Zhu XY, Chen FK, Li SQ, Yang YE, Nie H, Siebel W and Zhai MG. 2011. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gonwana Research, 20(1): 194-204
[93] 陈丹玲, 刘良, 孙勇, 张安达, 柳小明, 罗金海. 2004. 北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义. 科学通报, 49(18): 1901-1908
[94] 陈丹玲, 刘良. 2011. 北秦岭榴辉岩及相关岩石年代学的进一步确定及其对板片俯冲属性的约束. 地学前缘, 18(2): 158-169
[95] 陈丹玲, 任云飞, 宫相宽, 刘良, 高胜. 2015. 北秦岭松树沟榴辉岩的确定及其地质意义. 岩石学报, 31(7): 1841-1854
[96] 崔智林, 孙勇, 王学仁. 1995. 秦岭丹凤蛇绿岩带放射虫的发现及其地质意义. 科学通报, 40(18): 1686-1688
[97] 胡能高, 赵东林, 徐柏青, 王涛. 1994. 北秦岭含柯石英榴辉岩的发现及其意义. 科学通报, 39(21): 2013
[98] 胡能高, 赵东林, 徐柏青, 王涛. 1995. 北秦岭官坡地区高压-超高压榴辉岩岩相学及变质作用研究. 矿物岩石, 15(4): 1-9
[99] 靳是琴, 李鸿超. 1986. 成因矿物学概论. 长春: 吉林大学出版社, 187-227
[100] 李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398
[101] 李晔, 周汉文, 钟增球, 向华, 曾雯, 祁冬梅, 张利. 2012. 北秦岭早古生代两期变质作用: 来自松树沟基性岩岩石学及锆石U-Pb年代学的记录. 地球科学, 37(增1): 111-124
[102] 刘福来, 许志琴, 杨经绥, 薛怀民. 2005. 南苏鲁超高压带和高压带边界的准确限定——来自变质锆石中矿物包体的证据. 岩石矿物学杂志, 24(1): 32-46
[103] 刘福来, 薛怀民, 许志琴, 梁风华, Gerdes A. 2006. 大别超高压变质带的进变质、超高压和退变质时代的准确限定: 以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例. 岩石学报, 22(7): 1761-1778
[104] 刘福来, 施建荣, 刘建辉, 叶建国, 刘平华, 王舫. 2011. 北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代. 岩石学报, 27(4): 1075-1084
[105] 刘军锋, 孙勇. 2005. 东秦岭松树沟超基性岩体"热"侵位时代新知. 地质论评, 51(2): 189-192
[106] 刘良, 周鼎武. 1994. 东秦岭商南松树沟高压基性麻粒岩的发现及初步研究. 科学通报, 39(17): 1599-1601
[107] 刘良, 周鼎武, 董云鹏, 张宏法, 刘养杰, 张泽军. 1995. 东秦岭松树沟高压变质基性岩石及其退变质作用的PTt演化轨迹. 岩石学报, 11(2): 127-136
[108] 刘良, 周鼎武, 王焰, 陈丹玲, 刘雁. 1996. 东秦岭秦岭杂岩中的长英质高压麻粒岩及其地质意义初探. 中国科学(D辑), 26(增1): 56-63
[109] 刘良, 廖小莹, 张成立, 陈丹玲, 宫相宽, 康磊. 2013. 北秦岭高压-超高压岩石的多期变质时代及其地质意义. 岩石学报, 29(5): 1634-1656
[110] 陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社, 1-194
[111] 陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林, 相振群. 2006. "中央造山带"早古生代缝合带及构造分区概述. 地质通报, 25(12): 1368-1380
[112] 陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林. 2009. 中央造山带(中-西部)前寒武地质. 北京: 地质出版社, 76-98
[113] 钱加慧, 杨秀清, 刘良, 曹玉亭, 陈丹玲, 杨文强. 2013. 北秦岭松树沟榴闪岩锆石U-Pb定年、矿物包裹体和Lu-Hf同位素特征及其地质意义. 岩石学报, 29(9): 3087-3098
[114] 时毓, 于津海, 徐夕生, 邱检生, 陈立辉. 2009. 秦岭造山带东段秦岭岩群的年代学和地球化学研究. 岩石学报, 25(10): 2651-2670
[115] 苏犁, 宋述光, 宋彪, 周鼎武, 郝建荣. 2004. 松树沟地区石榴辉石岩和富水杂岩SHRIMP锆石U-Pb年龄及其对秦岭造山带构造演化的制约. 科学通报, 49(12): 1209-1211
[116] 万渝生, 刘敦一, 董春艳, 殷小艳. 2011. 西峡北部秦岭群变质沉积岩错石SHRIMP定年: 物源区复杂演化历史和沉积、变质时代确定. 岩石学报, 27(4): 1172-1178
[117] 王学仁, 华洪, 孙勇. 1995. 河南西峡湾潭地区二郎坪群微体化石研究. 西北大学学报(自然科学版), 25(4): 353-358
[118] 王宗起, 闫臻, 王涛, 高联达, 闫全人, 陈隽璐, 李秋根, 姜春发, 刘平, 张英利, 谢春林, 向忠金. 2009. 秦岭造山带主要疑难地层时代研究的新进展. 地球学报, 30(5): 561-570
[119] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
[120] 向华, 钟增球, 李晔, 周汉文, 祁敏, 雷恒聪, 林彦蒿, 张泽明. 2014. 北秦岭造山带早古生代多期变质与深熔作用: 锆石U-Pb年代学证据. 岩石学报, 30(8): 2421-2434
[121] 闫全人, 王宗起, 闫臻, 陈隽璐, 向忠金, 王涛, 张宏远. 2009. 秦岭岩群中两类斜长角闪岩的性质和时代及其地质意义. 岩石学报, 25(9): 2177-2194
[122] 杨经绥, 许志琴, 裴先治, 史仁灯, 吴才来, 张建新, 李海兵, 孟繁聪, 戎合. 2002. 秦岭发现金刚石: 横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报, 76(4): 484-495
[123] 杨经绥, 刘福来, 吴才来, 万渝生, 张建新, 史仁灯, 陈松永. 2003. 中央碰撞造山带中两期超高压变质作用: 来自含柯石英锆石的定年证据. 地质学报, 77(4): 463-477
[124] 杨力, 陈福坤, 杨一增, 李双庆, 祝禧艳. 2010. 丹凤地区秦岭岩群片麻岩锆石U-Pb年龄: 北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录. 岩石学报, 26(5): 1589-1603
[125] 杨勇, 陈能松, 陆琦, 周汉文. 1994. 松树沟榴闪岩中的石榴石和角闪石成分环带特征及岩石变质过程. 岩石学报, 10(4): 401-412
[126] 游振东, 索书田, 韩郁菁, 钟增球, 陈能松. 1990. 秦岭杂岩变质变形史. 见: 刘国惠, 张寿广编. 秦岭-大巴山地质论文集(一): 变质地层. 北京: 北京科学技术出版社, 1-9
[127] 游振东, 索书田, 韩郁菁等. 1991. 造山带核部杂岩变质过程与构造解析——以东秦岭为例. 武汉: 中国地质大学出版社
[128] 于红, 张宏福. 2014. 秦岭群变质岩中锆石纪录的造山带俯冲-碰撞-抬升过程. 见: 造山过程与深俯冲作用论文集. 北京: 中国地球联合学术年会, 2014
[129] 张成立, 刘良, 张国伟, 王涛, 陈丹玲, 袁洪林, 柳小明, 晏云翔. 2004. 北秦岭新元古代后碰撞花岗岩的确定及其构造意义. 地学前缘, 11(3): 33-42
[130] 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101-114
[131] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855
[132] 张建新, 于胜尧, 孟繁聪. 2011. 北秦岭造山带的早古生代多期变质作用. 岩石学报, 27(4): 1179-1190
[133] 张旗, 张宗清, 孙勇, 韩松. 1995. 陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学. 岩石学报, 11(1): 43-54
[134] 张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 16-22
[135] 张寿广, 万俞生, 刘国惠, 丛曰祥, 赵子然. 1991. 北秦岭宽坪群变质地质. 北京: 北京科学技术出版社
[136] 张宗清, 刘敦一, 付国民. 1994. 北秦岭变质地层同位素年代学研究. 北京: 地质出版社, 1-191
[137] 赵姣, 陈丹玲, 谭清海, 陈淼, 朱小辉, 郭彩莲, 刘良. 2012. 北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义. 地学前缘, 19(4): 118-125
[138] 郑永飞, 张立飞, 刘良, 陈伊翔. 2013. 大陆深俯冲与超高压变质研究进展. 矿物岩石地球化学通报, 32(2): 135-158
[139] 周鼎武, 张国伟. 1991. "秦岭群"的再解体和秦岭造山带中的晋宁运动. 见: 秦岭造山带学术讨论会论文选集. 西安: 西北大学出版社, 15-25
[140] 周鼎武, 张成立, 刘良, 王居里, 刘颖宇, 张宗清. 1998. 武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论. 地球学报, 19(1): 25-30
[141] 周鼎武, 张成立, 刘良, 王居里, 王焰, 刘金平. 2000. 秦岭造山带及相邻地块元古代基性岩墙群研究综述及相关问题探讨. 岩石学报, 16(1): 22-28