岩石学报  2016, Vol. 32 Issue (5): 1420-1436   PDF    
新疆西准噶尔玛依勒蛇绿岩中镁铁-超镁铁质岩的地球化学、年代学及其地质意义
翁凯1, 徐学义1, 马中平1** , 陈隽璐1, 孙吉明1, 张雪2    
1. 国土资源部岩浆作用成矿与找矿重点实验室, 西安地质调查中心, 西安 710054;
2. 长安大学地球科学与资源学院, 西安 710054
摘要:玛依勒蛇绿岩出露于玛依勒蛇绿混杂岩带中,该带位于西准噶尔造山带西南缘,是区内规模较大的一条蛇绿混杂岩带,蛇绿岩中镁铁-超镁铁质岩研究对探讨古亚洲洋古生代构造演化具有重要意义。本文选取玛依勒蛇绿岩中的镁铁-超镁铁质岩进行系统的岩石学、地球化学和年代学研究。结果表明,玛依勒蛇绿混杂岩中超镁铁质岩以富集Al2O3、CaO为特征,TiO2含量与俯冲带之上地幔橄榄岩中含量相当,稀土配分曲线为轻稀土富集型,微量元素受蚀变作用影响,呈现出两种不同的曲线特征。镁铁质岩石可分为两组:I组镁铁质岩具有高MgO、低Al2O3,LREE轻微富集,富集大离子亲石元素,亏损Nb、Ta的特征,形成于消减带相关的岛弧环境;Ⅱ组镁铁质岩具有富碱、TiO2,且呈LREE显著富集的右倾稀土配分曲线特征,富集大离子亲石元素,Nb、Ta正异常特征,代表了洋盆中海山或洋岛的残片。I组镁铁质岩中两个辉长岩岩块的LA-ICP-MS锆石U-Pb年龄分别为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),与巴尔鲁克蛇绿岩、唐巴勒蛇绿岩中镁铁质岩岩块获得的锆石U-Pb年龄相吻合,且这三条蛇绿岩都具有SSZ型蛇绿岩的地球化学特征,可能为不同环境下同一洋盆的演化产物。
关键词西准噶尔     玛依勒蛇绿岩     锆石U-Pb测年     地球化学     古亚洲洋    
The geochemistry and chronology characteristics and the geological significance of ultramafic rock in Mayile ophiolite, West Junggar, Xinjiang
WENG Kai1, XU XueYi1, MA ZhongPing1** , CHEN JunLu1, SUN JiMing1, ZHANG Xue2    
1. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an Center of Geological Survey, Xi'an 710054, China;
2. School of Earth Science & Resources, Chang'an University, Xi'an 710054, China
Abstract: Mayile ophiolitic mélange belt is located in the southwest of the West Junggar orogenic belt, which is the largest ophiolitc mélange belt in the region. The ultramafic and mafic rocks of the ophiolite are crucial to study the tectonic evolutionary history of the Paleo-Asian. This article selects the ultramafic rock in Mayile ophiolite that makes systematic petrology, geochemistry and chronology study. The result shows that the ultramafic rock in Mayile ophiolite is characterized by abundant Al2O3 and CaO, and the content of TiO2 is equal to the mantle peridotite's of subduction zone. The curve of REE is LREE-enriched type, and trace element is affected by corrosion, which presents two different kinds of curve characteristic. Mafic rock is divided into two groups. The first is high in MgO and low in Al2O3, and slightly rich in LREE and rich in lithophile elements and loss in Nb and Ta, which formed the island environment with the related subduction zone. The second is rich in alkali and TiO2 and characterized significantly by the right deviation rare earth distribution curve, and rich in large ion lithophile elements. The Nb and Ta are positive anomaly characteristic, which represents the fragments of the seamount and ocean island. In the first one, the LA-ICP-MS zircon U-Pb age of two gabbro rocks are 512.1±7.2Ma (MSWD=0.014) and 531±12Ma (MSWD=0.17), which are consistent with the Baerluke ophiolite's and Tangbale ophiolite ultramafic rock's. These three ophiolite all characterized by the SSZ ophiolite of geochemical, which can be the the product of the one ocean basin in different environment.
Key words: West Junggar     Mayile ophiolite     Zircon U-Pb dating     Geochemistry     Paleo-Aisan ocean    
1 引言

新疆西准噶尔造山带是中亚古生代俯冲-增生造山带的重要组成部分(Coleman,1989; Şengör et al.,1993; Jahn et al.,2006; 韩宝福等,2006; Windley et al.,2007; 朱永峰等,2008; Xiao et al.,2008; 徐学义等,2014; Zong et al.,2015; Cao et al.,2016),其内出露的多条古生代蛇绿岩,是古亚洲洋形成与演化的重要地质演化记录,对于研究西准噶尔乃至整个中亚造山带的构造演化有着重要意义(杨瑞瑛等,2000; 徐新等,20062010; 朱永峰和徐新,2006; 朱永峰等,2007; 李锦轶等,2006; 何国琦等,2007; 陈博和朱永峰,2010; 刘希军等,2009; 尹继元等,2011; 陈石和郭召杰,2010; 雷敏等,2008; 辜平阳等,20092011; Xu et al.,2012; 白建科等,2015; Yang et al.,2015)。根据已有的研究资料,西准噶尔西南部主要分布有三条蛇绿混杂岩带,分别为唐巴勒、巴尔鲁克和玛依勒蛇绿混杂岩带。对于唐巴勒蛇绿岩,肖序常等(1992)依据唐巴勒蛇绿岩中斜长花岗岩榍石Pb-Pb年龄(508±20Ma)和硅质岩中产出的早奥陶世放射虫化石,认为唐巴勒蛇绿岩形成时代下限应该不晚于早奥陶世;Jian(2005)通过辉长岩锆石SHRIMP U-Pb测年获得了531Ma的形成年龄。唐巴勒玄武岩兼有N-MORB和IAB的特征,被认为形成于弧后盆地环境(杨宝凯,2011)或与消减带相关的岛弧环境(郝梓国等,1989; Wang et al.,2003),且其内还含有OIB型玄武岩岩块(冯益民等,1991)。唐巴勒蛇绿岩带可能是伊特穆伦德-秋尔库拉姆蛇绿岩带的东延部分,形成于哈萨克斯坦板块向泛塔里木板块俯冲过程中(张立飞,1997)。巴尔鲁克蛇绿混杂岩带发现较晚,研究程度较低,其内碎裂辉长岩LA-ICP-MS锆石U-Pb年龄为512.3±7.2Ma、角闪斜长花岗岩LA-ICP-MS锆石U-Pb年龄500±1.6Ma(赵文平,2012),其中的玄武岩岩块也具有典型的OIB地球化学特征,形成于弧后盆地的海山环境,认为巴尔鲁克一带的古洋盆是西准噶尔古洋盆向北收缩过程中的残余洋盆(杨高学等,2012)。

出露于西准噶尔玛依勒山地区的玛依勒蛇绿混杂岩带,是区内规模较大的一条蛇绿岩混杂岩带。对于该蛇绿岩的形成时代,前人依据蛇绿岩与周围地层的接触关系,认为其形成于早古生代(白文吉,1995; 冯益民,1991)或志留纪(何国琦,19941995);朱宝清等(1987)曾获得其中的火山岩Rb-Sr等时线年龄为421Ma;近年来魏荣珠(2010)也获得了该带内枕状熔岩Rb-Sr等时线年龄为435.3±6.5Ma和432.5±7.4Ma。Rb-Sr同位素测年受变质作用影响较大,一般获得的年龄代表岩石的变质年龄。杨高学等(2013)采用LA-ICP-MS法在玛依勒辉长岩中获得锆石U-Pb年龄为572.2±9.2Ma,认为该蛇绿岩形成于早震旦世。玛依勒蛇绿混杂岩带主要由基质和岩块组成,岩块主要有蛇绿岩岩块、火山岩岩块、碎屑岩岩块,基质为一套火山碎屑岩和碎屑岩组合,现已划归为中-晚志留统的一部分,过去均认为是蛇绿岩的围岩。岩块和基质呈典型的网格状结构。其中蛇绿岩岩块包括超镁铁质岩(辉橄岩、蛇纹石化纯橄岩、二辉橄榄岩)、镁铁质岩(辉长岩、辉绿岩和枕状玄武岩),火山岩岩块有玄武岩、安山玄武岩,碎屑岩岩块为含粉砂泥质硅质岩。该蛇绿混杂岩带中岩块成分复杂,表明其形成于复杂的构造环境,对其形成环境的研究对限定西准噶尔古生代构造演化有着重要的意义。已有的研究在蛇绿岩形成环境方面,对于该蛇绿岩有洋中脊环境(张弛和黄萱,1992)、洋岛或者海山(魏荣珠,2010)、小洋盆(韩松等,2004)、岛弧(何国琦和李茂松,2001; Wang et al.,2003)、弧后、弧前盆地(肖序常等,1991; Peng,1996)、陆缘裂谷环境(李荣社等,2012)等不同认识,并且,有学者指出玛依勒蛇绿混杂岩中的超基性岩和枕状玄武岩不具有蛇绿构造岩片的特征(曹荣龙,1994; 李荣社等,2012)。鉴于以上问题,本次研究重点对该地区玉什塔斯东蚀变超镁铁质堆晶岩、辉长岩、枕状玄武岩和库甫乡东与深海硅质岩紧密伴生的枕状玄武岩、辉长岩岩块进行全岩地球化学研究,并对玉什塔斯东的两个辉长岩岩块进行了LA-ICP-MS锆石U-Pb同位素年代测试,以期对该蛇绿岩的形成时代和构造背景进行研究探讨。

2 区域地质概况

新疆西准噶尔造山带由一系列增生杂岩带和岩浆弧构成,其内部断裂构造发育,由北向南依次为塔斯特、玛依勒、拉巴-达拉布特和克拉玛依-乌尔禾四条呈NE-SW走向的弧形断裂。区内发育多条蛇绿岩带和规模不等的花岗岩侵入体,其分布受区域大断裂控制。蛇绿岩带主要有唐巴勒、玛依勒、巴尔鲁克、克拉玛依和达拉布特蛇绿岩带,出露规模大,呈NE-SW走向带状延伸。花岗岩分布广泛,多以大岩基形式产出,主要有庙儿沟、克拉玛依、哈图和包古图岩体(图 1)。在玛依勒山-巴尔鲁克山地区出露的古生代地层主要为奥陶纪-泥盆纪地层。其中,中奥陶统科克萨组以中酸性-中基性火山喷发岩和硅质岩为主,夹有浅变质泥质粉砂岩;中-上志留统玛依拉山群可以分为两个亚群,下亚群为一套次深海相基性熔岩、火山碎屑岩、碎屑岩夹硅质岩组合;上亚群为滨海-浅海相火山碎屑岩、碎屑岩夹火山熔岩组合。中泥盆统巴尔鲁克组为一套滨浅海相泥质粉砂岩、粉砂岩、硅质岩夹火山碎屑岩。下泥盆统铁列克提组为一套含砾含生物碎屑以粗砂岩为主的滨岸相碎屑岩沉积,据西准噶尔地区2012年新完成的1:25万托里幅区域地质调查资料(新疆区域地质调查院,2012(①新疆区域地质调查院. 2012. 1:25万托里幅区域地质调查报告)),下-中泥盆统库鲁木提组角度不整合覆盖于含蛇绿岩残块的中-上志留统玛依拉山群地层之上。

图 1 西准噶尔地区地质简图及玛依勒蛇绿混杂岩分布图(a)西准噶尔地理位置图;(b)西准噶尔区域地质简图(据Shen et al.,2012);(c)玛依勒蛇绿混杂岩分布图 Fig. 1 The West Junggar geological diagram and the distribution of ophiolitic mélange(a)West Junggar geographic location;(b)West Junggar regional geological diagram(after Shen et al.,2012);(c)Mayile ophiolitic mélange distribution

玛依勒蛇绿混杂岩带主要出露于西准噶尔玛依勒山地区的尚德布拉克、卡拉也一带,沿玛依勒大断裂呈北东-南西向断续分布,混杂岩带内的蛇绿岩各组成单元也多被肢解为不连续出露的蛇绿岩残块,混杂分布于中-上志留统玛依拉山群复理石地层中,但局部地段可见较为连续的变质橄榄岩-超镁铁质或镁铁质堆晶杂岩-席状辉绿岩墙群-枕状熔岩-(硅质岩)组合,构成典型的“蛇绿岩套”(图 2)。其中,超镁铁质堆晶岩类主要由辉橄岩、纯橄岩、二辉橄榄岩等组成,多发生蛇纹石化;镁铁质堆晶岩主要为辉长岩;火山熔岩类整体变形较弱,多发育枕状构造,其单个枕状体直径多在30~60cm之间,最大枕状体直径可达100~120cm,部分地段可见有块状玄武岩、安山玄武岩,多发生弱的褐铁矿化、绿泥石化和帘石化。

图 2 玛依勒蛇绿混杂岩中玉什塔斯东(a)和库甫乡东(b)蛇绿混杂岩剖面 Fig. 2 Geological sections of the Mayile ophiolitic mélanges are the Yushendong(a)and Kufuxiangdong(b)
3 岩石学特征

玛依勒蛇绿混杂岩带中蛇绿岩残块包括超镁铁质岩和镁铁质岩,其主要以岩块形式产出,分布于变质碎屑岩基质中。蛇绿岩残块中的超镁铁质岩主要为辉橄岩和二辉橄榄岩,后期均遭受不同程度的蛇纹石化。堆晶岩主要为橄榄二辉辉石岩和辉长岩。辉长岩多呈宽窄不等的岩脉状侵入到玄武岩和中酸性凝灰岩中,还有少量辉长岩呈岩块状产出于二辉橄榄岩中。辉绿岩岩墙在区内发育,局部可见不对称的冷凝边。玄武岩多呈枕状,以岩块形式存在于变质碎屑岩基质中(图 2图 3)。

图 3 玛依勒蛇绿混杂岩野外和镜下照片
(a)褶皱变形硅质岩、玄武岩野外照片;(b)蚀变辉橄岩正交显微镜下照片;(c)不等粒二辉橄榄岩正交显微镜下照片;(d)堆晶辉长岩野外照片;(e)堆晶蚀变辉长岩正交显微镜下照片;(f)杏仁状玄武岩正交显微镜下照片
Fig. 3 Field and microscopic images of the Mayile ophiolitic mélange
(a)the fold deformation siliceous rock and basalt wild photos;(b)the altered augite peridotite rocks orthogonal microscope photos;(c)seriate lherzolite orthogonal microscope photos;(d)cumulate gabbro rock field photographs;(e)cumulate alteration gabbro orthogonal microscope photos;(f)amygdaloidal basalt orthogonal microscope photos

辉橄岩呈岩块状产出,墨绿色,具块状构造,半自形粒状镶嵌结构。其矿物成分主要由橄榄石(40%)与辉石(60%)组成。橄榄石呈粒状,粒径0.2~5mm,多以较大晶体出现,矿物晶体多以次生蚀变被细小滑石交代,呈变余网环状结构。辉石呈粒状或柱状,粒径大小一般在0.15~0.25mm之间,矿物种属主要为单斜辉石,少量为斜方辉石,多数晶体未发生明显的次生蚀变,少部分晶体被绿泥石或纤维状次生闪石交代,局部见到辉石晶体包裹橄榄石小晶体形成包橄结构(图 3b)。

二辉橄榄岩呈岩块产出,墨绿色,具有块状构造,不等粒结构。岩石的矿物成分主要由橄榄石与辉石组成。橄榄石含量约占40%,矿物晶体形态多呈不规则状,少数呈粒状,粒径大小不等(2~6mm),晶体多呈破碎状,并常被蛇纹石、滑石交代,析出铁质呈变余网环状结构。辉石含量约60%,晶体呈粒状,粒径大小在1.5~2.5mm之间。矿物种属有斜方辉石与单斜辉石两种。斜方辉石为顽火辉石,平行消光,干涉色一级。单斜辉石为透辉石,干涉色达二级(图 3c)。

辉长岩呈透镜状岩块产出,深灰色,矿物成分为辉石和斜长石,微定向构造,粒度较粗(粒径2~6mm),具有典型的堆晶结构。辉石含量约占40%~45%,晶体形态多呈长柱状或粒状,晶体多具方向性排列,矿物种属为单斜辉石,晶体多数新鲜,约占三分之一的晶体被绿泥石、闪石交代,但保留矿物假象。辉石晶体之间主要被斜长石充填,斜长石均已次生分解,被绢云母与帘石交代,充填物中还见少量的角闪石、黑云母和石英(图 3de)。

玄武岩多呈枕状,少数为块状,露头连续分布集中。玄武岩为灰绿色,杏仁状构造,少斑结构,基质为间隐结构。岩石中斑晶粒径也较小,一般在0.4~0.7mm之间,零星分布。基质由斜长石、火山玻璃、金属矿物组成。斜长石晶体多呈细长的小板条状,交错杂乱分布,其晶体间隙被火山玻璃充填,形成间隐结构。金属矿物含量约占10%~12%,晶体呈叶片状或粒状,粒径细小,一般0.05~0.2mm之间,在岩石中呈散分布,晶体常被榍石交代。岩石中有较多气孔,其面积约占12%,气孔形态呈圆形或不规则状,常被石英、方解石、绿泥石充填(图 3f)。

4 同位素年代学

本次研究挑选玛依勒蛇绿岩中2个新鲜的辉长岩岩块选取锆石,样品采集坐标为:11WJE-33(45°34.402′N、83°12.883′E),11WJE-38(45°34.313′N、83°13.110′E)。采用LA-ICP-MS方法在西北大学大陆动力学国家重点实验室进行锆石U-Pb同位素定年测试。采回的新鲜样品粉碎至80目,经人工淘选,然后在双目镜下挑纯。将挑出的锆石用环氧树脂固定,经磨制抛光后制成样品靶。在锆石U-Pb原位定年之前,用扫描电镜对样品靶进行阴极发光图像照射,揭示锆石的内部结构。锆石U-Pb原位定年分析所采用的ICP-MS为Elan 6100DRC,测试所用的激光剥蚀系统为Geolas 200M深紫外(DUV)193nm ArF标准分子(excimer)激光剥蚀系统,激光斑束半径为15μm。在数据处理时,以Si为内标、NIST610为外标进行U、Th、Pb含量的计算,以91500标准锆石为外标进行年代校正。具体过程参考文献(Ludwig,1998; Andersen,2002; Yuan et al.,2004; Wang et al.,2006),本次分析结果见表 1表 2

表 1 辉长岩(样品11WJE-33)锆石U-Pb同位素分析结果 Table 1 Gabbro (Sample 11WJE-33) zircon U-Pb isotope analysis result

表 2 辉长岩(样品11WJE-38)锆石U-Pb同位素分析结果 Table 2 Gabbro (Sample 11WJE-38) zircon U-Pb isotope analysis result

辉长岩的锆石多为长柱状或等粒状,半自形到自形,粒径多为50~200μm,具有较大的长宽比值。CL图像(图 4图 5)揭示出锆石具有复杂的内部结构,普遍形成于较高温条件下,具有较宽的结晶环带,依据锆石CL图像内部结构的差异,可将锆石分为四类。第一类锆石边部发育较宽的强度差异明显的韵律环带,属于高温条件下结晶的锆石,如11WJE-33样品的1、3~5、7~10、12、15~17、19~21和11WJE-38样品的1、3、9、10、12~14、16、17、19~21、23号锆石;第二类锆石边部形成较窄的韵律环带,如11WJE-33样品的2、14和11WJE-38样品的2、5、6号锆石;第三类锆石无明显的韵律环带,如11WJE-33样品的18、22和11WJE-38样品的4、7、8、11、15号锆石;第四类锆石具有清楚的面形分带特征,如11WJE-33样品的6、13和11WJE-38样品的18、22号锆石。从表 1表 2中可知,11WJE-33和11WJE-38两个辉长岩样品锆石的Th/U比值变化范围较小,多在0.23~0.4之间,个别达0.55左右,Th、U含量具有良好的正相关性(图 6),属于典型的岩浆锆石。锆石内部的结构差异受多种因素的影响,如锆石结晶时岩浆的温度、动力学变化、元素的饱和度和扩散速率等因素(Corfu et al.,2003; 吴元保和郑永飞,2004)。本次研究所测的两个辉长岩样品的锆石为岩浆结晶锆石,所有测点的单个锆石206Pb/238U、207Pb/235U表面年龄基本一致,两个样品的锆石数据点在各自的锆石U-Pb年龄谐和图上构成比较集中的锆石群。锆石206Pb/238U表面年龄的加权平均值为512.1±7.2Ma(MSWD=0.014)(11WJE-33样品)和531±12Ma(MSWD=0.17)(11WJE-38样品)(图 7)。

图 4 辉长岩(样品11WJE-33)锆石CL图像 Fig. 4 CL images of zircons from gabbro(Sample 11WJE-33)

图 5 辉长岩(样品11WJE-38)锆石CL图像 Fig. 5 CL images of zircons from gabbro(Sample 11WJE-38)

图 6 辉长岩锆石Th-U相关性图解 Fig. 6 Th vs. U correlation diagram of zircons from gabbro

图 7 辉长岩(样品11WJE-33(a)和11WJE-38(b))锆石U-Pb谐和图 Fig. 7 U-Pb concordia diagram of zircons from gabbro(samples 11WJE-33(a)and 11WJE-38(b))
5 地球化学特征

本次对玛依勒蛇绿混杂岩中的辉橄岩、辉长岩和枕状玄武岩进行了岩石地球化学研究,测试分析在国土资源部岩浆作用成矿与找矿重点实验室完成。在测试前对样品进行去风化面处理,选取较为新鲜的样品磨制1~2mm,用5%的HNO3和HCl在超声波清洗仪中清洗,去除杏仁体和碳酸盐化的影响,随后用研钵将样品磨制200目备用。主量元素采用XRF玻璃熔饼法完成,精度优于5%,微量元素采用ICP-MS完成,精度优于10%,分析结果见表 3

表 3 超镁铁岩-镁铁质岩主量元素(wt%)、微量元素(×10-6)分析结果 Table 3 The ultramafic rock main elements(wt%)and trace elements(×10-6)analysis results
5.1 超镁铁质岩

3件超镁铁质岩样品的SiO2=43.09%~45.88%,Na2O+K2O含量为0.35%~0.97%,平均值为0.61%,Na2O/K2O=1.2~6,MgO=17.27%~26.37%,Mg#在64.7~86.7,CaO平均值为9.32%,Al2O3平均值为6.81%。与McDonough and Sun(1995)估算的原始地幔相比,玛依勒超镁铁质岩以富集Al2O3、CaO为特征。与大洋中脊二辉橄榄岩的CaO(3.47%)和Al2O3(2.26%)相比明显偏高(张旗等,1992),在蛇绿岩套的CaO-MgO-Al2O3图(图 8)中,11WJE-31和11WJE-32两个辉橄岩样品落入超镁铁质堆积岩区,与岩相学特征一致,11WJE-34二辉橄榄岩样品落入科马提岩区。样品TiO2含量为0.12%~0.23%,与俯冲带之上的地幔橄榄岩的TiO2含量相当(Rollinson,1993),表明其可能来源于俯冲带之下的上地幔。

图 8 超镁铁质岩的CaO-MgO-Al2O3图解(MAR是洋脊玄武岩的平均成分) Fig. 8 CaO-MgO-Al2O3 diagram for the ultramafic rocks(MAR is average composition of oceanic ridge basalt)

超镁铁质岩∑REE总量为15.74×10-6~21.41×10-6,是球粒陨石(3.29×10-6)的4.78~6.51倍,LREE/HREE为3.01~6.05,稀土配分曲线(图 9a)可以分为两部分:从La到Eu大致是平坦型,轻稀土分馏不明显,而从Eu到Lu则为负斜率,总体上表现出轻稀土富集型特征。δEu=0.85~1.22,具有弱的Eu负异常和正异常,但Ce均表现出微弱的负异常特征(δCe=0.92~0.99),可能是由于俯冲深海沉积物和海水对地幔的交代作用引起的(Neal and Taylor,1989)。微量元素比值蛛网图(图 9b)明显分为两类:11WJE-34二辉橄榄岩样品中大离子亲石元素富集,高场强元素Nb、Hf亏损,可能来源于亏损较弱的地幔源区。其余两个辉橄岩样品具有大离子亲石元素(活动性元素)亏损的特征,与MORB玄武岩特征一致(Ellam and Hawkesworth,1988)。辉橄岩样品与二辉橄榄岩样品相比,K、Sr、Rb、Ba等元素明显亏损,这可能是由于变质作用使得活泼性元素发生元素迁移所致。岩相学研究也表明,辉橄岩样品的蚀变程度要强于二辉橄榄岩,矿物晶体多已发生次生蚀变。

图 9 球粒陨石标准化的稀土元素配分模式(a、c、e)和原始地幔标准化的多元素蛛网图(b、d、f)(标准化值据Sun and McDonough,1989) Fig. 9 Chondrite normalized rare earth elements distribution patterns(a,c,e)and primitive mantle normalized multi-element spider diagrams(b,d,f)of the samples(normalization values after Sun and McDonough,1989)
5.2 镁铁质岩

镁铁质岩地球化学特征是讨论岩浆形成环境的最佳依据。玛依勒蛇绿混杂岩中的镁铁质岩主要为辉长岩和玄武岩,根据7件样品(其中P2GS-1和P2GS-6魏荣珠,2010)的地球化学特征,可将其分为两组:Ⅰ组镁铁质岩(11WJE-33、11WJE-36和11WJE-38)TiO2(0.16%~0.35%)与岛弧火山岩TiO2(<1.0%)含量相似,P2O5含量较低,为0.01%~0.06%;Ⅱ组镁铁质岩(11WJE-22、11WJE-23、P2GS-1和P2GS-6)TiO2大于2.5%,为2.79%~3.27%,类似于洋岛玄武岩的TiO2含量特征,P2O5含量也较高,为0.44%~0.53%。

Ⅰ组镁铁质岩SiO2含量47.73%~49.91%,MgO(7.52%~15.05%),Al2O3(10.44%~20.08%),TiO2(平均0.23%),与岛弧钙碱性玄武岩相似(Morrison,1980)。Mg#为61.97~66.83,,介于印度洋辉长岩Mg#值范围(32~88)内,属于蛇绿岩中的镁铁质堆晶岩(Coleman,1977)。在全岩硅碱图(图 10a)上,样品都落入玄武岩区,属亚碱性系列。结合AFM图解(图 10b)判别,样品主要属钙碱性系列。

图 10 镁铁质岩的全碱-硅(a)和AFM(b)图解 Fig. 10 Total alkali-silicon(a)and AFM(b)illustrations for the mafic rocks

本组镁铁质岩∑REE为19.47×10-6~30.34×10-6,LREE/HREE为2.71~3.72,δEu为0.98~1.25,球粒陨石标准化的分配模式(图 9c)为LREE轻微富集型,类似于E型MORB的稀土分配曲线(Sun and McDonough,1989)。从原始地幔标准化微量元素蛛网图(图 9d)中可以看出,岩石具有富集Ba、Rb、K、Sr等大离子亲石元素,亏损高场强元素Nb、Ta的特征,与岛弧火山岩的微量元素蛛网图相似,指示熔岩来自消减带之下的岩石圈(史仁灯,2005)。

Ⅱ组镁铁质岩岩石SiO2(45.42%~47.61%)、CaO(均值5.54%)、MgO(均值5.79%)、FeO(均值9.05%)、Mg#(28.97~36.23),与侯增谦报道的三江OIB型玄武岩相似(侯增谦等,1996)。本组样品具有高钠、钛低钾的特征,Na2O含量为2.46%~4.31%,K2O含量为0.54%~2.15%,Na2O+K2O含量为3.99%~5.42%,接近于巴尔鲁克OIB型玄武岩(3.15%~3.62%,杨高学,2012),TiO2含量为2.79%~3.27%,明显高于MORB(1.5%)的含量。在硅碱图(图 10a)上,样品都落入了碱玄岩、粗面玄武岩和玄武岩区,属碱性系列。

本组镁铁质岩∑REE为164.25×10-6~227.03×10-6,明显高于洋脊玄武岩(39.11×10-6),LREE/HREE为5.31~7.16,球粒陨石标准化的分配模式(图 9e)为斜率较大的右倾曲线,具有LREE强烈富集和弱的Eu负异常(δEu为0.85~1)特征,表明其不同于E型MORB,而相似于洋岛碱性玄武岩的特征。原始地幔标准化微量元素蛛网图(图 9f)呈现出Ba、Rb、K、Sr等大离子亲石元素富集,Nb、Ta正异常的特征,Sm-Yb段为负斜率,具有洋岛玄武岩的典型特征。样品具有明显高的Ti/Yb和Zr/Yb比值(均值分别为6651.02、90.46),与洋岛玄武岩相似(Weaver,1991)。Zr/Hf比值为39.81~47.64,略高于OIB(35.9)和原始地幔(36.27),远高于大陆地壳(11)。总体上本组微量元素特征与OIB相似,与E-MORB有着明显的区别。

6 讨论6.1 形成时代

玛依勒蛇绿岩是西准噶尔地区规模较大的一条古生代蛇绿岩,对研究西准噶尔古生代地质构造演化有着重要的意义。新疆第一区调大队在该蛇绿岩建造上部细碎屑岩中发现大量中晚志留世笔石化石,而将玛依勒蛇绿岩的形成时代确定为中志留世(何国琦等,1994)。玛依勒蛇绿岩中的火山岩Rb-Sr等时线年龄结果普遍在421Ma到435Ma之间(朱宝清等,1987; 魏荣珠,2010),时代为志留纪。近年的锆石U-Pb同位素测年给出了早震旦世(572.2±9.2Ma)的信息(杨高学等,2013)。本次研究选取玛依勒蛇绿岩Ⅰ组镁铁质岩中两个辉长岩岩块进行锆石U-Pb同位素测年,测年结果分别为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),属于早-中寒武世。综上所述,玛依勒蛇绿岩代表了震旦纪-志留纪时期的洋盆残余,该洋盆演化时期较长,在寒武纪时期可能与唐巴勒(531Ma、508±20Ma)、巴尔鲁克(512.3±7.2Ma、500±1.6Ma)蛇绿岩代表的洋盆相通,这三条蛇绿岩可能为不同环境下同一洋盆的演化的地质记录。

6.2 构造环境

蛇绿岩可以形成于多种构造环境中,既可以形成于洋中脊、弧后盆地、弧前盆地、岛弧、大陆裂谷、转换断层或小洋盆等(张旗和周国庆,2001; Pearce et al.,1984; Pearce,2003; Robertson,2002; Zhang et al.,2003)。玛依勒蛇绿混杂岩中超镁铁质堆晶-镁铁质堆晶岩-枕状或块状玄武岩-硅质岩构成了典型的蛇绿岩组合。镁铁质岩地球化学特征可以有效的对其形成环境进行判别(Rollinson,1993)。采用抗蚀变元素进行构造环境判别,在Hf/3-Th-Nb/16判别图(图 11a)中,Ⅰ组镁铁质岩样品落入岛弧钙碱性玄武岩区,Ⅱ组镁铁质岩落入E-MORB和板内玄武岩区。在TiO2-MnO×10-P2O5×10判别图解(图 11b)中,I组镁铁质岩仍表现出岛弧钙碱性玄武岩特征,Ⅱ组镁铁质岩则落入洋岛碱性玄武岩区域。Ⅰ组镁铁质岩在Ti/100-Zr-Y×3图解(图 11c)和Nb×2-Zr/4-Y图解(图 11d)中表现出N-MORB和火山弧玄武岩特征,Ⅱ组镁铁质岩样品都落入板内玄武岩区域。玛依勒蛇绿混杂岩具有两组不同地球化学特征的镁铁质岩,Ⅰ组镁铁质岩具有火山岛弧玄武岩的地球化学特征,Ⅱ组镁铁质岩具有OIB型玄武岩的地球化学特征。

图 11 镁铁质岩Hf/3-Th-Nb/6(a)、TiO2-Mn×10-P2O5×10(b)、Ti/100-Zr-Y×3(c)和Nb×2-Zr/4-Y(d)图解(底图分别据Wood,1980; Mullen,1983; Pearce and Cann,1973; Meschede,1986) Fig. 11 Hf/3-Th-Nb/6(a),TiO2-Mn×10-P2O5×10(b),Ti/100-Zr-Y×3(c)and Nb×2-Zr/4-Y(d)discrimination diagrams for the ultramafic rocks(the base map after Wood,1980; Mullen,1983; Pearce and Cann,1973; Meschede,1986,respectively)
6.3 大地构造意义

西准噶尔西南缘存在三条早古生代蛇绿岩,分别为玛依勒、唐巴勒和巴尔鲁克蛇绿岩,为早古生代同一洋盆演化的地质记录。该区获得最古老的蛇绿岩年龄为572.2±9.2Ma,表明该洋盆在早震旦世已经打开。唐巴勒蛇绿混杂岩中发现高压变质蓝片岩,张立飞(1997)测得蓝片岩中钠质角闪岩的40Ar/39Ar坪年龄为458~470Ma,认为其变质作用至少发生在中-晚奥陶世之前。近期地质调查中在巴尔鲁克蛇绿混杂岩中发现一些反映深俯冲作用存在的特殊岩石(蓝闪白云母片岩、绿帘角闪岩),与唐巴勒蛇绿混杂岩带中的蓝片岩为同期变质作用的产物(赵文平等,2012),表明该洋盆在中-晚奥陶世之前就开始俯冲消减。我们最近在伊犁陆块北缘厘定出早志留世被动陆缘沉积系统,佐证了该洋盆向北俯冲消减。玛依勒蛇绿岩中的超镁铁质岩和镁铁质岩大都以构造岩块的形式出现在中-上志留统玛依拉山群复理石碎屑岩基质中,中-上志留统玛依拉山岩群与下-中泥盆统库鲁木迪组呈角度不整合接触,且库鲁木迪组下部为一套陆相沉积建造,表明该洋盆在早-中泥盆世已经闭合。本次对玛依勒蛇绿混杂岩进行地球化学、同位素年代学和形成环境的研究,认为其具有岛弧型和洋岛型两类镁铁质岩,在岛弧型镁铁质岩中获得两个锆石U-Pb年龄为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),推测在玛依勒地区洋盆洋壳物质向北俯冲增生就位,早期洋盆中的洋岛以俯冲刮削拼贴的形式存在于增生体中,现今的玛依勒蛇绿混杂岩中很可能包括早期洋盆中的海山、洋岛和洋壳等组分。

7 结论

(1)玛依勒蛇绿混杂岩具有两组不同地球化学特征的镁铁质岩,Ⅰ组镁铁质岩具有岛弧型玄武岩地球化学特征,Ⅱ组镁铁质岩显示出OIB型玄武岩地球化学特征。

(2)玛依勒蛇绿混杂岩Ⅰ组镁铁质岩中两个辉长岩岩块的锆石U-Pb同位素年龄为512.1±7.2Ma(MSWD=0.014)和531±12Ma(MSWD=0.17),属于早-中寒武世。

(3)玛依勒蛇绿岩可以与唐巴勒、巴尔鲁克蛇绿岩进行对比,其形成年代相近(玛依勒:512.1±7.2Ma、531±12Ma;唐巴勒:531Ma、508±20Ma;巴尔鲁克:512.3±7.2Ma、500±1.6Ma),都具有SSZ型蛇绿岩的特征,可能为不同环境下同一洋盆的演化产物。该洋盆洋壳物质以向北俯冲增生的形式就位,其闭合时限早于早-中泥盆世。

参考文献
[1] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
[2] Bai JK, Chen JL, Yan Z et al. 2015. The timing of opening and closure of the Mayile oceanic basin: Evidence from the angular unconformity between the Middle Devonian and its underlying geological body in the southern West Junggar. Acta Petrologica Sinica, 31(1): 133-142 (in Chinese with English abstract)
[3] Bai WJ, Robinson P, Yang JS et al. 1995. Tectonic evolution of different dating ophiolites in the western Junggar, Xinjiang. Acta Petrologica Sinica, 11(Suppl.): 62-72 (in Chinese with English abstract)
[4] Cao MJ, Qin KZ, Li GM et al. 2016. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Lithos, 246-247: 13-30
[5] Cao RL. 1994. Ophiolite and basic ultrabasic rocks in the northern Xinjiang. Xinjiang Geology, 12(1): 25-31 (in Chinese)
[6] Chen B and Zhu YF. 2010. Petrology and geochemistry of gabbro in Baikouquan, Keramay (Xinjiang, NW China): Implication of magmatic evolution. Acta Petrologica Sinica, 26(8): 2287-2298 (in Chinese with English abstract)
[7] Chen S and Guo ZJ. 2010. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica, 26(8): 2336-2344 (in Chinese with English abstract)
[8] Coleman RG. 1977. Ophiolites: Ancient Oceanic Lithosphere. Berlin, Heidelberg: Springer-Verlag, 1-140
[9] Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-625
[10] Corfu F, Hanchar JM, Hoskin PWO et al. 2003. Atlas of zircon textures. In: Hanchar JM and Hoskin PWO (eds.). Reviews in Mineralogy and Geochemistry. Washington: Mineralogical Society of America, 53: 469-500
[11] Ellam RM and Hawkesworth CJ. 1988. Elemental and isotopic variations in subduction related basalts: Evidence for a three component model. Contributions to Mineralogy and Petrology, 98(1): 72-80
[12] Feng YM, Zhu BQ, Xiao XC et al. 1991. Mountains Tectonic Evolution in West Junggar, Xinjiang, China. Beijing: Beijing Science and Technology Press, 66-91 (in Chinese)
[13] Gu PY, Li YJ, Zhang B et al. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China. Acta Petrologica Sinica, 25(6): 1364-1372 (in Chinese with English abstract)
[14] Gu PY, Li YJ, Wang XG et al. 2011. Geochemical evidences and tectonic significances of Dalabute SSZ-type ophiolitic mélange, western Junggar Basin. Geological Review, 57(1): 36-44 (in Chinese with English abstract)
[15] Han BF, Ji JQ, Song B et al. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract)
[16] Han S, Dong JQ, Yu FS et al. 2004. Trace element geochemistry of the opiolite from Mayila mountain-Saleinohai of West Junggar, Xinjiang. Xinjiang Geology, 22(3): 290-295 (in Chinese with English abstract)
[17] Hao ZG, Wang XB, Bao PS et al. 1989. Geological characteristics and genetic study on ophiolites of the two types in the western Zhungeer, Xinjiang Uygur Autonomous Region. Acta Petrologica et Mineralogica, 8(4): 299-310 (in Chinese with English abstract)
[18] He GQ, Li MS, Liu DQ et al. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's House, 1-437 (in Chinese)
[19] He GQ, Liu DQ, Li MS et al. 1995. The five-stage model of crust evolution and metallogenic series of chief orogenic belts in Xinjiang. Xinjiang Geology, 13(2): 99-176, 178-196 (in Chinese with English abstract)
[20] He GQ and Li MS. 2001. Significance of paleostructure and paleogeography of Ordovician-Silurian rock associations in northern Xinjiang, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(1): 99-110 (in Chinese with English abstract)
[21] He GQ, Liu JB, Zhang YQ et al. 2007. Keramay ophiolitic mélange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica, 23(7): 1573-1576 (in Chinese with English abstract)
[22] Hou ZQ, Mo XX, Zhu QW et al. 1996. Mantle plume in the Sanjiang Paleo-Tethyan lithosphere: Evidence from mid-ocean ridge basalts. Earth Science, 17(4): 362-375 (in Chinese with English abstract)
[23] Jahn BM, Wang T and Litvinovsky BA. 2006. Crustal growth in the central Asian orogenic belt (the Altaids): Nd isotope evidence. Geochimica et Cosmochimica Acta, 70(18 S1): A287
[24] Jian P, Liu DY, Shi YR et al. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the Central Asian orogenic belt. In: Sklyarov EV (ed.). Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment; Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. Irkutsk: Institute of the Earth Crust, Siberian Branch of Russian Academy of Sciences, 246
[25] Lei M, Zhao ZD, Hou QY et al. 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of the Dalabute ophiolite, Xinjiang: Comparison between the Paleo-Asian Ocean and the Tethyan mantle domains. Acta Petrologica Sinica, 24(4): 661-672 (in Chinese with English abstract)
[26] Li JY, He GQ, Xu X et al. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
[27] Li RS, Ji WH, Xiao PX et al. 2012. The periodical achievement and new cognitions of regional geological survey, northern Xinjiang. Xinjiang Geology, 30(3): 253-257 (in Chinese with English abstract)
[28] Liu XJ, Xu JF, Wang SQ et al. 2009. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica, 25(6): 1373-1389 (in Chinese with English abstract)
[29] Ludwig RK. 1998. ISOPLOT: A plotting and regression program for radiogenic-isotope data, Version 2.96. US Geological Survey Open File Report (91-445), 1-40
[30] McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253
[31] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218
[32] Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97-108
[33] Mullen ED. 1983. MnO-TiO2-P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62
[34] Neal CR and Taylor LA. 1989. A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimica Acta, 53(5): 1035-1040
[35] Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300
[36] Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society, London, Special Publication, 77-94
[37] Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. In: Dilek Y and Newcomb S (eds.). Ophiolite Concept and the Evolution of Geological Thought. Geological Society of American Special Paper. Colorado: Geological Society of America, 269-293
[38] Peng GY. 1996. Podiform chromite and associated ophiolitic rocks in West Junggar, Xinjiang, NW China. Ph. D. Dissertation. Washington: George Washington University, 1-369
[39] Robertson AHF. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67
[40] Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific & Technical, 1-352
[41] Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307
[42] Shen P, Shen YC, Pan HD et al. 2012. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115
[43] Shi RD. 2005. Comment on the progress in and problems on ophiolite study. Geological Review, 51(6): 681-693 (in Chinese with English abstract)
[44] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 313-345
[45] Wang XL, Zhou JC, Qiu JS et al. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: Implications for tectonic evolution. Precambrian Research, 145(1-2): 111-130
[46] Wang ZH, Shun S, Li JL et al. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and Geochronological constraints from the ophiolites. Tectonics, 22(2), doi: 10.1029/2002TC001396
[47] Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397
[48] Wei RZ. 2010. The Mayileshang pillow lavas (western Junggar, Xinjiang) and their tectonic implications: Constraints from the geological and geochemical characteristics and Rb-Sr isochron ages. Xinjiang Geology, 28(3): 229-235 (in Chinese with English abstract)
[49] Windley BF, Alexeiev D, Xiao W et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47
[50] Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30
[51] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569
[52] Xiao WJ, Han CM, Yuan C et al. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117
[53] Xiao XC, Tang YQ, Li JY et al. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture. Beijing: Science and Technology Press, 1-29 (in Chinese)
[54] Xiao XC, Tang YQ, Feng YM et al. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House, 1-169 (in Chinese)
[55] Xu X, He GQ, Li HQ et al. 2006. Basic characteristics of the Karamay ophiolitic mélange, Xinjiang, and its zircon SHRIMP dating. Geology in China, 33(3): 470-475 (in Chinese with English abstract)
[56] Xu X, Zhou KF and Wang Y. 2010. Study on extinction of the remnant oceanic basin and tectonic setting of West Junggar during Late Paleozoic. Acta Petrologica Sinica, 26(11): 3206-3214 (in Chinese with English abstract)
[57] Xu XY, Li RS, Chen JL et al. 2014. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area. Acta Petrologica Sinica, 30(6): 1521-1534 (in Chinese with English abstract)
[58] Xu Z, Han BF, Ren R et al. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos, 132-133: 141-161
[59] Yang BK. 2011. The study of Tangbale ophiolitic in West Junggar, Xinjiang. Master Degree Thesis. Xi'an: Chang'an University, 1-35 (in Chinese)
[60] Yang GX, Li YJ, Yang BK et al. 2012. Geochemistry of basalt from the Barleik ophiolitic mélange in West Junggar and its tectonic implications. Acta Geologica Sinica, 86(1): 188-197 (in Chinese with English abstract)
[61] Yang GX, Li YJ, Yang BK et al. 2013. Zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar and implications for source nature. Acta Petrologica Sinica, 29(1): 303-316 (in Chinese with English abstract)
[62] Yang GX, Li YJ, Xiao WJ et al. 2015. OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Science Reviews, 150: 477-496
[63] Yang RY, Tang HF, Liu CQ et al. 2000. Geochemistry of mafic rocks from Dalabute ophiolite in western Junggar, Xinjiang, NW China. Acta Mineralogica Sinica, 20(4): 363-370 (in Chinese with English abstract)
[64] Yin JY, Yuan C, Wang YJ et al. 2011. Magmatic records on the Late Paleozoic tectonic evolution of western Junggar, Xinjiang. Geotectonica et Metallogenia, 35(2): 278-291 (in Chinese with English abstract)
[65] Yuan HL, Gao S, Liu XM et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370
[66] Zhang C and Huang X. 1992. The ages and tectonic settings of ophiolites in West Junggar, Xinjiang. Geological Review, 38(6): 507-524 (in Chinese with English abstract)
[67] Zhang LF. 1997. The 40Ar/39Ar metamorphic ages of Tangbale blueschists and their geological significance in West Junggar of Xinjiang. Chinese Science Bulletin, 42(22): 1902-1904
[68] Zhang Q, Zhang KW and Li DZ. 1992. Mafic-Ultramafic Rocks in the Hengduan Mountains Region. Beijing: Science Press, 1-216 (in Chinese)
[69] Zhang Q and Zhou GQ. 2001. Chinese Ophiolite. Beijing: Geological Publishing House, 1-182 (in Chinese)
[70] Zhang Q, Wang Y, Zhou GQ et al. 2003. Ophiolites in China: Their distribution, ages and tectonic settings. In: Dile KY and Robinson PT (eds.). Ophiolites in Earth History. Geological Society, London, Special Publications, 541-566
[71] Zhao WP, Jia ZK, Wen ZG et al. 2012. The discovery of the blueschists from the Baerluke ophiolitic mélange belt in western Junggar, Xinjiang. Northwestern Geology, 45(2): 136-138 (in Chinese with English abstract)
[72] Zhu BQ, Wang LS and Wang LX. 1987. Paleozoic era ophiolite of south west part in western Junggar, Xinjiang, China. Bulletin of the Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (17): 3-64 (in Chinese with English abstract)
[73] Zhu YF and Xu X. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833-2842 (in Chinese with English abstract)
[74] Zhu YF, Xu X, Wei SH et al. 2007. Geochemistry and tectonic significance of OIB-type pillow basalts in western Mts. of Karamay City (western Junggar), NW China. Acta Petrologica Sinica, 23(7): 1739-1748 (in Chinese with English abstract)
[75] Zhu YF, Xu X, Chen B et al. 2008. Dolomite marble and garnet amphibolite in the ophiolitic mélange in western Junggar: Relics of the Early Paleozoic oceanic crust and its deep subduction. Acta Petrologica Sinica, 24(12): 2767-2777 (in Chinese with English abstract)
[76] Zong RW, Wang ZZ, Gong YM et al. 2015. Ordovician radiolarians from the Yinisala ophiolitic mélange and their significance in western Junggar, Xinjiang, NW China. Science China (Earth Sciences), 58(5): 776-783
[77] 白建科, 陈隽璐, 闫臻等. 2015. 西准噶尔南部玛依勒洋盆开启、闭合时限: 来自中泥盆统与下伏地质体之间角度不整合关系的证据. 岩石学报, 31(1): 133-142
[78] 白文吉, Robinson P, 杨经绥等. 1995. 西准噶尔不同时代蛇绿岩及其构造演化. 岩石学报, 11(增): 62-72
[79] 曹荣龙. 1994. 新疆北部蛇绿岩及基性-超基性杂岩. 新疆地质, 12(1): 25-31
[80] 陈博, 朱永峰. 2010. 新疆克拉玛依百口泉蛇绿混杂岩中辉长岩岩石学和地球化学研究. 岩石学报, 26(8): 2287-2298
[81] 陈石, 郭召杰. 2010. 达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论. 岩石学报, 26(8): 2336-2344
[82] 冯益民, 朱宝清, 肖序常等. 1991. 中国新疆西准噶尔山系构造演化. 北京: 北京科学技术出版社, 66-91
[83] 辜平阳, 李永军, 张兵等. 2009. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年. 岩石学报, 25(6): 1364-1372
[84] 辜平阳, 李永军, 王晓刚等. 2011. 西准噶尔达尔布特SSZ型蛇绿杂岩的地球化学证据及构造意义. 地质论评, 57(1): 36-44
[85] 韩宝福, 季建清, 宋彪等. 2006. 新疆准噶尔晚古生代陆壳垂向生长(I)-后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086
[86] 韩松, 董金泉, 于福生等. 2004. 新疆西准噶尔玛依拉山-萨雷诺海蛇绿岩岩石地球化学特征. 新疆地质, 22(3): 290-295
[87] 郝梓国, 王希斌, 鲍佩声等. 1989. 新疆西准噶尔地区两类蛇绿岩的地质特征及其成因研究. 岩石矿物学杂志, 8(4): 299-310
[88] 何国琦, 李茂松, 刘德权等. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社, 1-437
[89] 何国琦, 刘德权, 李茂松等. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, 13(2): 99-176, 178-196
[90] 何国琦, 李茂松. 2001. 中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义. 北京大学学报(自然科学版), 37(1): 99-110
[91] 何国琦, 刘建波, 张越迁等. 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23(7): 1573-1576
[92] 侯增谦, 莫宣学, 朱勤文等. 1996. "三江"古特提斯地幔热柱-洋中脊玄武岩证据. 地球科学, 17(4): 362-375
[93] 雷敏, 赵志丹, 侯青叶等. 2008. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比. 岩石学报, 24(4): 661-672
[94] 李锦轶, 何国琦, 徐新等. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168
[95] 李荣社, 计文化, 校培喜等. 2012. 北疆区域地质调查阶段性成果与新认识. 新疆地质, 30(3): 253-257
[96] 刘希军, 许继峰, 王树庆等. 2009. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义. 岩石学报, 25(6): 1373-1389
[97] 史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考. 地质论评, 51(6): 681-693
[98] 魏荣珠. 2010. 西准噶尔玛依勒山枕状熔岩地质特征及大地构造意义. 新疆地质, 28(3): 229-235
[99] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
[100] 肖序常, 汤耀庆, 李锦轶等. 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 科学技术出版社, 1-29
[101] 肖序常, 汤耀庆, 冯益民等. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社, 1-169
[102] 徐新, 何国琦, 李华芹等. 2006. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息. 中国地质, 33(3): 470-475
[103] 徐新, 周可法, 王煜. 2010. 西准噶尔晚古生代残余洋盆消亡时间与构造背景研究. 岩石学报, 26(11): 3206-3214
[104] 徐学义, 李荣社, 陈隽璐等. 2014. 新疆北部古生代构造演化的几点认识. 岩石学报, 30(6): 1521-1534
[105] 杨宝凯. 2011. 新疆西准噶尔唐巴勒蛇绿岩及其构造意义. 硕士学位论文. 西安: 长安大学, 1-35
[106] 杨高学, 李永军, 杨宝凯等. 2012. 西准噶尔巴尔雷克蛇绿混杂岩带中玄武岩地球化学特征及大地构造意义. 地质学报, 86(1): 188-197
[107] 杨高学, 李永军, 杨宝凯等. 2013. 西准噶尔玛依勒蛇绿混杂岩锆石U-Pb年代学、地球化学及源区特征. 岩石学报, 29(1): 303-316
[108] 杨瑞瑛, 唐红峰, 刘丛强等. 2000. 达拉布特蛇绿岩带镁铁质岩的地球化学. 矿物学报, 20(4): 363-370
[109] 尹继元, 袁超, 王毓婧等. 2011. 新疆西准噶尔晚古生代大地构造演化的岩浆活动记录. 大地构造与成矿学, 35(2): 278-291
[110] 张弛, 黄萱. 1992. 新疆西准噶尔蛇绿岩形成时代和环境的探讨. 地质评论, 38(6): 507-524
[111] 张立飞. 1997. 新疆西准噶尔唐巴勒蓝片岩40Ar/39Ar年龄及其地质意义. 科学通报, 42(20): 2178-2181
[112] 张旗, 张魁武, 李达周. 1992. 横断山区镁铁-超镁铁岩石. 北京: 科学出版社, 1-216
[113] 张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 地质出版社, 1-182
[114] 赵文平, 贾振奎, 温志刚等. 2012. 新疆西准噶尔巴尔鲁克蛇绿混杂岩带发现蓝闪片岩. 西北地质, 45(2): 136-138
[115] 朱宝清, 王来生, 王连晓. 1987. 西准噶尔西南地区古生代蛇绿岩. 中国地质科学院西安地质矿产研究所所刊, (17): 3-64
[116] 朱永峰, 徐新. 2006. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩. 岩石学报, 22(12): 2833-2842
[117] 朱永峰, 徐新, 魏少妮等. 2007. 西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究. 岩石学报, 23(7): 1739-1748
[118] 朱永峰, 徐新, 陈博等. 2008. 西准噶尔蛇绿混杂岩中的白云石大理岩和石榴角闪岩: 早古生代残余洋壳深俯冲的证据. 岩石学报, 24(12): 2767-2777