岩石学报  2016, Vol. 32 Issue (4): 1219-1231   PDF    
青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据
胡培远1, 李才2, 吴彦旺2, 解超明2, 王明2, 李娇3    
1. 中国地质科学院地质研究所, 北京 100037;
2. 吉林大学地球科学学院, 长春 130061;
3. 中国科学院地质与地球物理研究所, 北京 100029
摘要: 本文报道了羌塘中部冈玛错钾长花岗岩的锆石U-Pb定年、岩石地球化学和锆石Hf同位素分析结果。钾长花岗岩中的锆石具岩浆生长环带,未见继承的老核,并且锆石Th/U比值大于0.5(0.58~1.05),显示出典型岩浆成因的锆石特征。锆石LA-ICP-MS定年结果为352.4±1.9Ma,表明其形成时代为早石炭世。钾长花岗岩富硅(SiO2=74.17%~77.88%),低铝(Al2O3=10.50%~11.98%),贫镁(MgO=0.23%~0.36%),富碱(Na2O+K2O=5.74%~7.24%),Na2O>K2O,K2O/Na2O=0.53~0.71,A/CNK=0.87~1.06,富集轻稀土元素和Zr、Hf、Rb、Th和U等元素,亏损Sr、Eu、P和Ti等元素,10000Ga/Al=3.12~4.14,显示出A2型花岗岩的地球化学特征。钾长花岗岩中锆石的εHf(t)值和Hf同位素两阶段模式年龄分别变化于+4.40~+12.14和549~985Ma,显示出正的、不均一的同位素组成,可能形成于壳-幔混合作用,其中幔源端元应当是伸展环境下上涌的地幔岩浆,而壳源端元则可能是扬子板块新元古代的新生地壳部分熔融形成的长英质岩浆。结合区域地质资料,认为该花岗岩可能形成于古特提斯洋壳对羌北-昌都板块北向俯冲引起的陆缘弧后拉张环境。
关键词: 青藏高原     羌塘中部     古特提斯洋     A型花岗岩     锆石U-Pb定年    
A back-arc extensional environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau: Evidences from A-type granites
HU PeiYuan1, LI Cai2, WU YanWang2, XIE ChaoMing2, WANG Ming2, LI Jiao3    
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. College of Earth Science, Jilin University, Changchun 130061, China;
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: This paper reports new zircon U-Pb age and Hf-isotope, and whole-rock major and trace element data from K-feldspar granites located in Gangmacuo area of Longmu Co-Shuanghu-Lancang River suture zone, central Qiangtang, northern Tibetan Plateau. Combined with high Th/U ratios (0.58~1.05), the zircons from K-feldspar granites show no euhedral crystals and have clear oscillatory zones, indicating a magmatic origin. Zircon LA-ICP-MS dating for K-feldspar granites yields a weighted mean age of 352.4±2.4Ma, suggesting that the crystallization age of Gangmacuo K-feldspar granites is Early Carboniferous. Petrological and geochemical study show that the intrusion is characterized by high silicon (SiO2=74.17%~77.88%) and low aluminum (Al2O3=10.50%~11.98%), depleted magnesium (MgO=0.23%~0.36%) and abundant alkali (Na2O+K2O=5.74%~7.24%, Na2O>K2O, K2O/Na2O=0.53~0.71, A/CNK=0.87~1.06). Enrichment of Zr, Hf, Rb, Th, U and REE, depletion of Sr, Eu, P and Ti with high 10000Ga/Al (3.12~4.14), indicate that the K-feldspar granites are aluminous A-type granite and further classified to A2 type. Their zircons have positive εHf(t) values (+4.40~+12.14) and old second stage Hf mode ages (tDM2=549~981Ma), indicating that they were generated by mixing of crust and mantle. Gangmacuo K-feldspar granites were formed in a back-arc extensional environment of an active continental margin which was resulted from the subduction of Paleo-Tethys Plate beneath the Qiangbei-Qamdo plate.
Key words: Tibetan Plateau     Qiangtang     Paleo-Tethys Ocean     A-type granite     Zircon U-Pb dating    
1 引言

近二十年的研究成果表明,龙木错-双湖-澜沧江板块缝合带代表了青藏高原范围内古特提斯洋闭合的残迹(李才,2008)。在该缝合带沿线,已经发现了多出蛇绿岩的信息,如角木日地区的二叠纪蛇绿岩(翟庆国等,2004),果干加年山和桃形湖等地的奥陶纪-石炭纪蛇绿岩(Zhai et al., 20102013b2015; 李才等,2008; 吴彦旺等,2009; 胡培远等,2009)。另外,在双湖地区发现了晚泥盆世法门期和二叠纪-三叠纪放射虫硅质岩(朱同兴等,2006),这些研究资料显示,羌塘中部地区古特提斯洋的演化时限为早古生代-早中生代。此外,羌塘中部印支期高压变质带(Li,1997; Li et al., 2006; Bao et al., 1999; Kapp et al., 19992000; Xia et al., 2001; 李才等,2002; Zhai et al., 2011ab)和同碰撞-后碰撞花岗岩的确立(黄小鹏等,2007; 胡培远等,2010),将该古特提斯洋碰撞闭合的时代限制在晚三叠世。这些研究成果为羌塘中部地区古特提斯洋的打开和闭合的时限提供了初步制约,然而一个大洋的形成→扩张→萎缩→碰撞闭合的演化历史,是一个漫长而复杂的地质过程,该大洋的演化过程依然存在很多空白,尚有许多地质问题没有解决,如:古特提斯洋由扩张转为消减的时代、洋壳俯冲消减的机制等。

通常认为,花岗岩与大地构造环境之间存在密切的关系(张旗等,2007)。在大洋演化过程中,洋壳的俯冲消减必然导致洋盆的萎缩,最终导致洋盆的闭合。在这一过程中可以形成多种类型的花岗岩,并且最终残留于板块缝合带中。对这些花岗岩的构造环境进行探索可以为古大洋的演化提供约束。A型花岗岩是一种较为特殊的花岗岩类型,形成于地壳伸展减薄的构造背景,具有特殊的构造意义(张旗等,2012)。新近在羌塘中部冈玛错地区识别出一个A型花岗岩岩体,本文试图通过对该岩体的全岩地球化学、同位素年代学以及锆石Hf同位素的研究,揭示其岩浆源区特征以及构造背景,从而为羌塘中部古特提斯洋演化研究提供新资料。

2 地质概况

冈玛错位于改则县城北约200km(图 1a),地处龙木错-双湖-澜沧江板块缝合带中西段。区内断裂构造发育,主要以东西向断裂为主,并且表现为一系列的大型南向逆冲断裂(图 1b)。区内出露的地层时代主要为晚古生代,岩石总体变质程度较低,大面积分布的是冈瓦纳相上石炭统-下二叠统展金组(C2-P1z),而在冈玛错以东的地区出露有扬子型的上石炭统日湾茶卡组(C1r)和望果山组(C1w)。望果山组为一套弧火山岩组合,岩性主要为玄武岩、安山岩和英安岩等,其中安山岩的锆石U-Pb定年结果为346~350Ma(Jiang et al., 2015),而日湾茶卡组为整合于望果山组之上的一套浅水台型石灰岩和碎屑岩沉积,产丰富的蜓、珊瑚和腕足类等化石(姜建军等,1991)。该地区的蛇绿混杂岩在驼背岭和黑脊山一带露头较好,岩石端元也比较齐全,主要岩石类型为蛇纹岩、堆晶辉长岩、斜长花岗岩、枕状玄武岩和硅质岩,时代主要为奥陶纪(Zhai et al., 2010)和石炭纪(Zhai et al., 2013b)。区内还出露有高压变质带,岩性包括榴辉岩、大理岩和石榴石白云母片岩,为羌塘中部高压变质带的一部分,记录了扬子板块与冈瓦纳板块俯冲碰撞以及折返的过程(李才,2008)。本文研究的花岗岩体出露于冈玛错以南约5km处,四周均被古近系康托组以角度不整合覆盖。岩石手标本总体呈肉红色(图 2a),具细粒花岗结构,块状构造。经镜下鉴定,室内定名为钾长花岗岩,主要矿物组成为石英(25%~30%)、碱性长石(35%~45%)和斜长石(20%~25%);碱性长石主要为条纹长石,与石英相互交生,发育显微文象结构;斜长石主要为钠长石,普遍发育聚片双晶;副矿物有锆石、磷灰石、褐帘石和榍石等(图 2b)。

图 1 青藏高原构造划分简图(a)和羌塘中部冈玛错地区地质简图(b) 1-古近系和第四系;2-上石炭统-下二叠统展金组(C2-P1z);3-下石炭统日湾茶卡组(C1r);4-下石炭统望果山组(C1w);5-蛇绿混杂岩;6-高压变质带;7-早石炭世花岗岩;8-断层;9-同位素年龄 Fig. 1 Simplified tectonic map of the Tibetan Plateau(a) and geological sketch map of the Gangmacuo area in the central Qiangtang(b)

图 2 冈玛错钾长花岗岩的野外露头照片(a)和镜下照片(b) Q-石英;Pl-斜长石;Kfs-碱性长石 Fig. 2 Field characteristic(a) and photomicrograph(b)of Gangmacuo K-feldspar granites
3 样品测试方法

锆石U-Pb测年样品中锆石的分选在河北省区域地质调查院完成,采用常规的重液和磁选方法进行分选,最后在双目显微镜下挑纯。样品靶的制备在中国地质科学院地质研究所完成,制成的样品靶直径为25mm。样品靶打磨时,需要将大多数锆石颗粒中心部位暴露出来,然后抛光,待下一步的工作。锆石的阴极荧光图像分析在北京大学物理学院电镜室的阴极荧光分析系统(FEI公司生产的Quatan 200F型场发射环境扫描电镜+Gatan公司Mono CL3阴极荧光谱仪)上完成,分析方法和条件参阅参考文献(陈莉等,2005)。

花岗岩样品的锆石U-Th-Pb分析在中国地质大学地学实验中心元素地球化学研究室完成,分析仪器为美国New Wave Research Inc.公司生产的193nm激光剥蚀进样系统(UP 193SS)和美国AGILENT科技有限公司生产的Agilent 7500a型四级杆等离子体质谱仪联合构成的激光等离子体质谱仪(LA-ICP-MS)。本次分析193nm激光器工作频率为10Hz,剥蚀物质载气为高纯度He气,流量为0.7L/min;Angilent等离子质谱仪工作条件:冷却气(Ar)流量1.13L/min;测试点束斑直径为36mm,剥蚀采样时间为45s,具体分析流程见Yuan et al.(2004)。锆石91500(Wiedenbeck et al., 1995)作为外部标准来校正分析过程中的同位素分馏,NIST610作为外部标准来获得分析点的Th和U的含量,普通Pb的校正采用Anderson(2002)的方法进行。锆石U-Pb年龄用澳大利亚Glitter 4.4数据处理软件计算获得,加权平均年龄的计算和谐和图的绘制采用ISOPLOT 3.0程序(Ludwig et al., 2003)。

原位微区锆石Hf同位素比值测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)利用激光剥蚀多接收杯等离子体质谱仪(LA-MC-ICP-MS)完成。激光剥蚀系统为GeoLas 2005(Lambda Physik,德国),MC-ICP-MS为Neptune Plus(Thermo Fisher Scientific,德国)。采用单点剥蚀模式,斑束固定为44μm。详细仪器操作条件和分析方法可参照Hu et al.(2012)。分析数据的离线处理(包括对样品和空白信号的选择、同位素质量分馏校正)采用软件ICPMSDataCal(Liu et al., 2010)完成。

地球化学样品的主量元素、微量元素和稀土元素的分析均在中国地质大学(北京)地学实验中心。主量元素采用X-射线荧光光谱仪(XRF-1500)分析。微量元素和稀土元素化学预处理采用两酸(HNO3+HF)高压反应釜溶样方法,分析仪器为Agilent 7500a型等离子质谱仪,实验室分析详细方法见参考文献(Han et al., 2007)。

4 分析结果 4.1 锆石LA-ICP-MS U-Pb年代学

本文对样品中30个锆石进行了U-Pb分析,测试结果见表 1。锆石阴极荧光照片显示,样品中锆石具有较典型的岩浆振荡环带结构(图 3a),且晶形比较完整,呈自形晶-半自形晶,长约50~100μm,长/宽比为12~13,显示出岩浆锆石的特点,未见继承的老核。锆石测点的Th含量为67×10-6~340×10-6,U为100×10-6~324×10-6,Th、U含量呈现出较好的正相关关系,Th/U比值介于0.58和1.05之间,为典型的岩浆锆石(吴元保和郑永飞,2004)。其中7号测点的三组年龄明显不一致,并且207Pb/206Pb>207Pb/235U>206Pb/238U,明显发生了较强的放射性铅丢失,可能是受到了后期热事件的影响,余下的测点在U-Pb协和图(图 3b)上集中落在协和线上或其附近,获得352.4±2.4Ma的206Pb/238U加权平均年龄,代表钾长花岗岩的岩浆结晶年龄,即早石炭世。

表 1 冈玛错钾长花岗岩的锆石LA-ICP-MS U-Pb-Th分析结果 Table 1 LA-ICP-MS U-Pb-Th data for zircons from Gangmacuo K-feldspar granites

图 3 冈玛错钾长花岗岩中典型锆石的阴极荧光图像及其206Pb/238U年龄和εHf(t)值(a)和锆石的U-Pb谐和图(b)实线圈和虚线圈分别代表了LA-ICP-MS U-Pb测年和Hf同位素分析的测点位置 Fig. 3 CL images and 206Pb/238U ages of typical zircons(a) and U-Pb zircon concordia diagram(b)of Gangmacuo K-feldspar granites
4.2 锆石Hf同位素

样品的锆石Lu-Hf同位素是在锆石U-Pb定年的同一颗锆石的相同部位或相同结构的临近部位测定的,共选取典型锆石分析了16个测点,测点位置和测试结果分别见图 3a表 2。样品中锆石的176Yb/177Hf和176Lu/177Hf比值变化范围分别为0.008840~0.107934和0.000229~0.002443,176Lu/177Hf比值非常接近或小于0.002,表明这些锆石形成以后,基本没有明显的放射性成因Hf的积累,所测定的176Hf/177Hf比值可以代表其形成锆石时体系的Hf同位素组成(吴福元等,2007)。根据每个锆石的U-Pb年龄计算,εHf(t)值介于+4.40和+12.14之间(图 4),变化范围较大;二阶段Hf模式年龄(tDM2)变化范围为549~985Ma,平均值为769Ma。

表 2 冈玛错钾长花岗岩的锆石Hf同位素组成 Table 2 Hf isotopic compositions for zircons of Gangmacuo K-feldspar granites

图 4 冈玛错钾长花岗岩中锆石的εHf(t)分布直方图 Fig. 4 εHf(t)spectra diagram of zircons in Gangmacuo K-feldspar granites
4.3 地球化学

主量元素分析表明(表 3),所有样品均表现为高硅、富碱、贫铝、贫钙和弱过铝质的特征,其中SiO2含量为74.17%~77.88%;Al2O3为10.50%~11.98%;K2O+Na2O为5.74%~7.24%,K2O/Na2O比值为0.53~0.71;MgO含量为0.23%~0.36%,CaO为0.59%~2.07%;A/CNK变化于0.87~1.06之间,NK/A变化于0.79~0.92之间。在SiO2-K2O图上,样品投点落在钙碱性系列区(图 5a)。在A/CNK-A/NK铝饱和指数图解(图 5b)上,多数样品点均落在准铝质花岗岩区域内,只有1个样品点落在过铝质的区域。所有样品的碱度率AR在2.68~4.10之间,与铝质A型花岗岩相似(2.70~4.60)(刘昌实等,2003),FeOT/MgO比值为4.35~7.32,高于全球典型的I型(2.27)、S型(2.38)和M型(2.37)花岗岩的FeOT/MgO值(Whalen et al., 1987)。

表 3 冈玛错钾长花岗岩的全岩地球化学分析结果(主量元素:wt%;稀土和微量元素:×10-6) Table 3 Concentrations of major elements and trace elements of Gangmacuo K-feldspar granites(major elements: wt%; trace elements: ×10-6)

图 5 冈玛错钾长花岗岩的SiO2-K2O图解(a)和A/CNK-A/NK铝饱和指数图解(b) Fig. 5 SiO2 vs. K2O diagram(a) and A/CNK vs. A/NK diagram(b)of Gangmacuo K-feldspar granites

样品的ΣREE总体含量较低,在223×10-6~283×10-6之间,LREE相对HREE元素富集,LREE/HREE比值为3.44~4.60,平均4.15。在稀土元素球粒陨石标准化模式图(图 6a)上,所有样品的曲线一致性较好,均表现为右倾的海鸥型,(La/Yb)N比值为2.67~3.82,同时具有弱到中性负Eu异常,Eu/Eu*比值为0.45~0.51。在岩石微量元素原始地幔标准化蛛网图(图 6b)上,样品略微亏损Nb、Ta、Ba元素,强烈亏损Ti、P和Sr元素,富集Zr、Hf、Rb、Th和U等元素。

图 6 冈玛错钾长花岗岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns(b)of Gangmacuo K-feldspar granites(normalization values after Sun and McDonough, 1989)
5 讨论 5.1 岩石成因类型

花岗岩的分类及其成因一直是地质学界的一个研究热点。花岗岩通常被分为I型、S型、M型和A型,前三种主要根据其源岩性质划分,A型花岗岩则是一类具有特殊的地球化学特征以及特定构造背景的花岗岩。冈玛错钾长花岗岩富SiO2(>75%)、贫Al2O3(<12%),亏损Sr、Eu、Ti和P等元素,高10000Ga/Al比值(3.12~4.14),REE配分曲线呈现燕式分布和明显的负Eu异常,在A型花岗岩的判别图解中(Whalen et al., 1987)(图 7),样品全部落入A型花岗岩的区域内。这些特征与A型花岗岩和高分异的I型花岗岩比较类似,明显不同于S型和M性的花岗岩,因为S型花岗岩通常为强过铝质的,而M型花岗岩则一般具有低K2O(通常<1%)的特点。

图 7 冈玛错钾长花岗岩的Nb、FeOT/MgO与10000Ga/Al判别图和(Na2O+K2O)/CaO、FeOT/MgO与Zr+Nb+Ce+Y判别图(底图据Whalen et al., 1987) Fig. 7 Nb,FeOT/MgO vs. 10000Ga/Al and (Na2O+K2O)/CaO,FeOT/MgO vs. Zr+Nb+Ce+Y discrimination diagrams of Gangmacuo K-feldspar granites(base map after Whalen et al., 1987)

A型花岗岩和高分异的I型花岗岩相对比较难以区分。王强等(2000)提出了区分高分异I型花岗岩和A型花岗岩的几个标准:(1)A型花岗岩全铁(FeOT)含量高,一般大于1.00%,而高分异的I型花岗岩一般小于1.00%;(2)高分异的的I型花岗岩具有高的Rb含量,大于270×10-6,并且具有相对低的Ba、Sr、Zr+Nb+Ce+Y、Ga含量和10000Ga/Al值;(3)高分异I型花岗岩的形成温度较低(均值764℃),而A型花岗岩一般较高,通常大于800℃,实验岩石学也证明了这一特点(Skjerlie and Johnston, 1992; Clemens et al., 1986)。如前所述,冈玛错钾长花岗岩具有较高的全铁(FeOT)含量(1.59%~1.93%,平均1.79%)、较低的Rb含量(64×10-6~83×10-6,平均74×10-6)和较高的Ba、Zr+Nb+Ce+Y和10000Ga/Al值(变化范围分别为337×10-6~523×10-6、561×10-6~730×10-6和3.12~4.14),明显不符合高分异I型花岗岩的特征,而与A型花岗岩更为相似。样品的形成温度可以通过锆石饱和温度计来估算,因为锆石是花岗岩中结晶较早的矿物,锆石中锆的分配系数受温度控制较为明显,其锆石饱和温度可以近似为岩浆结晶温度。依据Waston and Harrison(1983)的公式,用岩石主要元素和Zr含量计算得到样品的锆石饱和温度在857~898℃,与A型花岗岩形成于高温条件这一特征相吻合。同时,样品中锆石的阴极荧光图像显示并没有继承的锆石核,与一般的S型或I型花岗岩常见的继承核明显不同,这也从矿物学上反应了熔体的高温特征。此外,Whalen et al.(1987)提出可以利用Rb/Ba-(Zr+Ce+Y)的判别图解来区分A型花岗岩与分异的I型花岗岩,分异的I型花岗岩具有明显的负相关性,而A型花岗岩则具有分散的特征。虽然后来李小伟等(2010)提出这一图解只适用于区分未分异或分异不明显的A型花岗岩与分异的其他类型花岗岩,但是本文的研究的样品都具有较高的Zr含量(363×10-6~508×10-6,全部大于200×10-6),属于未分异或者分异不明显的范畴,因而该图解应该是适用的,并且投点结果(图略)符合A型花岗岩的特点。上述讨论表明本文研究的钾长花岗岩应当属于A型花岗岩。

A型花岗岩传统上是指一套具有三A特征,即碱性(Alkaline)、贫水(Anhydrous)和非造山(Anorogenic)的碱性花岗岩类(Loiselle and Wones, 1979)。后来,A型花岗岩的概念又得到了越来越多的扩展。Bonin(2007)提出,A型花岗岩是指在Frost et al.(2001)花岗岩分类方案中属于铁质,碱性-碱钙性,准铝质、弱过铝质或过碱质的一大类岩石,对碱性的要求不再严格。冈玛错钾长花岗岩的K2O含量(平均2.63%)相对于典型的A型花岗岩(通常为4%~6%)偏低,但是在Frost et al.(2001)花岗岩分类方案中落入铁质、碱钙性区域内(图略),如果按照Bonin(2007)的建议仍然可以归为A型花岗岩。刘昌实等(2003)将A型花岗岩划分成过碱性(AAG)和铝质(ALAG)两类,其中AAG型花岗岩为碱性或过碱性,通常含有铁橄榄石、钙铁辉石、霓石、钠闪石、钠铁闪石等镁铁质矿物,而ALAG型花岗岩则为准铝质-弱过铝质的,以含碱性长石和斜长石两类长石矿物为主,不一定含有碱性暗色矿物。冈玛错钾长花岗岩为准铝质-弱过铝质,所有样品的碱度率AR在铝质A型花岗岩的范围内(2.70~4.60)(刘昌实等,2003),并且成岩矿物主要为石英、碱性长石和斜长石,应当属于铝质A型花岗岩(ALAG)。

5.2 构造环境

Eby(19901992)在总结前人工作和分析大量典型构造背景下产出的A型花岗岩的基础上,把A型花岗岩划分为A1和A2两种类型,其中A1型代表了一种非造山环境(anorogenic),在大陆裂谷时期或板内岩浆作用(如热点、地幔柱的活动)侵入;A2型形成的构造环境范围比较广泛,主要是后碰撞伸展环境(post-orogenic)。新近的研究成果表明A2型花岗岩也可以形成于岛弧环境,例如板片俯冲引起的岩石圈伸展环境(周红升等,2008; 郭芳放等,2008; 蒋少涌等,2008)。Eby(1992)同时也提出了可以运用Y-Nb-Ce、Y-Nb-Ga×3三角图解来判别A1型和A2型花岗岩,但是其前提是用于判别的样品在Pearce et al.(1984)的判别图解中均落在“板内环境”区,同时还要落入Whalen et al.(1987)提出的相关图解中A型花岗岩的范围。由图 7图 8a,b可见,冈玛错钾长花岗岩是满足这些前提条件的,因而可以利用Eby(1992)提出的图解来判定冈玛错钾长花岗岩的岩石成因类型。由图 8c,d可见所有样品投点均落在A2型花岗岩区域。

图 8 冈玛错钾长花岗岩的构造环境判别图解(a,b,据Pearce et al., 1984;c,d,据Eby,1992;e,f,据Verma et al., 2012) WPG-板内花岗岩;VAG-火山弧花岗岩;Syn-COLG-同碰撞花岗岩;ORG-洋脊花岗岩;CA-陆缘弧环境;IA-岛弧环境;CR-板内裂谷环境;Col-板块碰撞环境 Fig. 8 Tectonic discrimination diagrams of Gangmacuo K-feldspar granites(a,b,after Pearce et al., 1984; c,d,after Eby,1992; e,f,after Verma et al., 2012)

由于A2型花岗岩形成的构造环境范围比较广泛,所以要确定其形成的构造环境必须与区域地质背景相结合。冈玛错钾长花岗岩出露于羌南-保山板块北侧、龙木错-双湖-澜沧江板块缝合带内,并且区域内与蛇绿岩、高压变质带等相伴产出,在时空分布上明显受到古特提斯洋演化的制约,形成的构造背景也应当与此有关。如果冈玛错钾长花岗岩形成于后造山或造山后的环境,其年龄应该稍晚于古特提斯洋的闭合时代,但是沉积地层(李才等,2007)、高压变质带(董永胜等,2009; 张修政等,2010)和碰撞型花岗岩(Kapp et al., 2000; 黄小鹏等,2007; 胡培远等,2010)的研究成果表明,羌塘中部的古特提斯洋闭合于晚三叠世,而且目前也已经有了二叠纪的蛇绿岩的报道(翟庆国等,2004; 吴彦旺等,2010),因此冈玛错钾长花岗岩不可能形成于后造山或造山后的环境。与此对应的是,Zhai et al.(2013b)报道羌塘中部果干加年山地区和桃形湖地区出露有早石炭世的蛇绿岩,并且具有洋中脊型和SSZ型的双重地球化学特征,表明古特提斯洋在早石炭世存在一定规模的洋盆。同时,在果干加年山地区(施建荣等,2009)和黑脊山地区(胡培远等,待刊)的蛇绿岩中都发现了具有岛弧花岗岩特征的早石炭世花岗岩侵入体,研究区内望果山组弧火山岩也获得了340~350Ma的安山岩年龄(Jiang et al., 2015),说明在早石炭世古特提斯洋很有可能处于板块消减阶段。关于俯冲消减的极性,Zhai et al.(2013a)对沿龙木错-双湖-澜沧江板块缝合带北侧分布的那底岗日组火山岩进行了系统的年代学和地球化学研究,认为羌塘中部古特提斯洋壳的俯冲消减是向北进行的。此外,古地磁数据表明,藏东滇西地区的古特提斯洋盆在志留纪打开,并且早泥盆世末(约390Ma)达到最大宽度(李朋武等,2009),说明在390Ma左右古特提斯洋壳已经开始消减。虽然古地磁资料为藏东滇西地区,但是与羌塘同属一个构造带,其演化历史应当是基本同步的。在Verma et al.(2012)新近提出的酸性岩构造环境判别图上,样品投点落入陆缘弧(CA)区(图 8e,f)。上述资料表明冈玛错钾长花岗岩可能形成于活动大陆边缘的弧内或弧后的拉张环境。最近,吴彦旺(2013)探讨了羌塘中部地区早石炭世蛇绿岩的成因,认为其主要形成于弧后盆地环境,因而本文倾向于认为冈玛错钾长花岗岩形成于古特提斯洋壳对羌北-昌都板块北向俯冲引起的陆缘弧后拉张环境。

5.3 岩浆源区

Hf同位素分析结果表明,本文报道的A型花岗岩的εHf(t)值为+4.40~+12.14,Hf同位素变化范围高于数据测试过程中所引起的变化范围,因此,该花岗岩中锆石具有正的、不均一的Hf同位素组成。由于锆石的Hf同位素比值不会随着部分熔融或分离结晶变化,因此锆石的Hf同位素的不均一性很可能指示更具有放射性成因Hf的幔源和有相对较少放射性成因Hf的壳源这两种端元之间的相互作用(Bolhar et al., 2008)。陆缘弧后拉张环境下,玄武岩底侵造成上覆的下地壳岩石发生部分熔融形成长英质岩浆,继而发生地幔岩浆与长英质岩浆的岩浆混合作用(蒋少涌等,2008),可能正是这种混合作用导致了样品中锆石具有不均一的Hf同位素组成。此外,样品中锆石的二阶段Hf模式年龄为549~985Ma,平均值为769Ma,时代为新元古代。前人对扬子板块中碎屑锆石的Hf同位素的研究结果表明,新元古代的碎屑锆石普遍具有正的εHf(t)值,原因在于有一系列大规模的岩浆活动,比如910~890Ma左右扬子和华夏板块的拼合导致洋壳俯冲形成了具有高εHf(t)的岩浆岩,随后在830~795Ma和780~745Ma还有两期地幔柱事件(谢士稳等,2009)。该花岗岩很可能是起源于这些新元古代形成的新生地壳。另外,如前文所述,冈玛错钾长花岗岩属于钠质花岗岩,其K2O/Na2O比值为0.53~0.71,说明其源岩很可能具有低钾的特点。综合上述分析,本文报道的A型花岗岩可能形成于壳-幔混合作用,其中幔源端元应当是陆缘弧后拉张环境下上涌的地幔岩浆,而壳源端元则可能是新元古代形成的新生地壳。

5.4 构造意义

冈玛错钾长花岗岩是龙木错-双湖-澜沧江板块缝合带上首次发现的A型花岗岩。这一发现进一步确认了羌塘中部古特提斯洋存在早石炭世陆缘弧后拉张,从而增进了对该地区古特提斯洋演化历史的认识。蛇绿岩的年龄资料表明,羌塘中部地区的古特提斯洋在早古生代已经打开(Zhai et al., 2010; 李才等,2008; 王立全等,2008; 吴彦旺等,2009; 胡培远等,2009; Hu et al., 2014; Wang et al., 2015);在390~358Ma,古特提斯洋壳以低角度向羌北-昌都板块俯冲消减,形成了沿龙木错-双湖-澜沧江板块缝合带北侧分布的望果山组弧火山岩(Jiang et al., 2015)(图 9);在350Ma左右,在重力牵引下俯冲板片的倾角增大,造成岩浆带向海洋方向迁移(Zhu et al., 2009),形成了350Ma左右的岛弧花岗岩(施建荣等,2009; 胡培远等,2013),与此同时,俯冲板片的后退引起陆缘弧后拉张和软流圈上涌,形成了早石炭世的弧后盆地蛇绿岩(吴彦旺,2013);在陆缘弧后拉张的伸展环境下,底侵的幔源岩浆造成上覆的新元古代新生地壳发生部分熔融形成长英质岩浆;这些长英质岩浆与幔源岩浆发生混合作用,从而形成了本文研究的A型花岗岩(图 9);随后,洋壳的俯冲消减一直持续至晚二叠世-中三叠世,形成了沿龙木错-双湖-澜沧江板块缝合带北侧分布的那底岗日组火山岩(翟庆国和李才,2007; Zhai et al., 2013a);古特提斯洋最终闭合于中晚三叠世,形成了羌塘中部地区的高压变质带(Li,1997; Li et al., 2006; Bao et al., 1999; Kapp et al., 19992000; Xia et al., 2001; 李才等,2002; Zhai et al., 2011ab)和碰撞型花岗岩(黄小鹏等,2007; 胡培远等,2010)。

图 9 冈玛错钾长花岗岩的形成构造演化模式 Fig. 9 Cartoons showing the petrogenesis of Gangmacuo K-feldspar granites
6 结论

综合上述分析讨论,初步得出以下结论:

(1)冈玛错钾长花岗岩的LA-ICP-MS锆石U-Pb定年的结果为352.4±2.4Ma,时代为早石炭世。

(2)地球化学特征显示,冈玛错钾长花岗岩为A型花岗岩,进一步划分属于A2亚类,是龙木错-双湖-澜沧江板块缝合带上首次发现的A型花岗岩。结合区域上前人的研究成果,其可能形成于古特提斯洋壳对羌北-昌都板块北向俯冲引起的陆缘弧后拉张环境。

(3)锆石Hf同位素分析结果显示,冈玛错钾长花岗岩具有正的、不均一的同位素组成,可能形成于壳-幔混合作用,其中幔源端元应当是陆缘弧后拉张环境下上涌的地幔岩浆,而壳源端元则可

致谢 参加野外工作的还有董永胜教授、徐锋老师、杨韩涛老师,以及吴浩,范建军等同学。锆石样品制备、阴极发光照相、LA-ICP-MS U-Pb定年和全岩地球化学分析得到了北京地质大学地学实验中心苏犁教授的帮助。在此一并致以衷心的感谢。

参考文献
[1] Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
[2] Bao PS, Xiao XC, Wang J, Li C and Hu K. 1999. Studies on the blueschist belt in the Shuanghu region, central northern Tibet and its tectonic implications. Continental Dynamics, 4(2): 51-64
[3] Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD and Cole JW. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4): 312-324
[4] Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29
[5] Chen L, Xu J and Su L. 2005. Characteristics of microspectrofluorimeter at STEM and it geological applications on zircon study. Progress in Natural Science, 15(11): 1403-1408 (in Chinese)
[6] Clemens JD, Holloway JR and White AJR. 1986. Origin of an A-type granite: Experimental constraints. American Minerologist, 71(3-4): 317-324
[7] Dong YS, Zhang XZ, Shi JR and Wang SY. 2009. Petrology and metamorphism of garnet-muscovite schist from high pressure metamorphic belt in central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1201-1206 (in Chinese with English abstract)
[8] Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculation on their petrogenesis. Lithos, 26(1-2): 115-134
[9] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644
[10] Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048
[11] Guo FF, Jiang CY, Su CK, Xia MZ, Xia ZD and Wei W. 2008. Tectonic settings of A-type granites of Shaerdelan area, southeastern margin of Junggar block, Xinjiang, western China. Acta Petrologica Sinica, 24(12): 2778-2788 (in Chinese with English abstract)
[12] Han YG, Zhang SH, Pirajno F and Zhang YH. 2007. Evolution of the Mesozoic granites in the Xiong'ershan-Waifangshan region, western Henan Province, China, and its tectonic implications. Acta Geologica Sinica, 81(2): 253-265
[13] Hu PY, Li C, Li LQ, Xie CM and Wu YW. 2009. Geochemical characteristics of Early Palaeozoic plagioclase granite from ophiolitic cumulate in central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1297-1308 (in Chinese with English abstract)
[14] Hu PY, Li C, Yang HT, Zhang HB and Yu H. 2010. Characteristic, zircon dating and tectonic significance of late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China. Geological Bulletin of China, 29(12): 1825-1832 (in Chinese with English abstract)
[15] Hu PY, Li C, Xie CM, Wu YW, Wang M and Su L. 2013. Albite granites in Taoxinghu ophiolite in central Qiangtang, Qinghai-Tibet Plateau, China: Evidences of Paleo-Tethys oceanic crust subduction. Acta Petrologica Sinica, 29(12): 4404-4414 (in Chinese with English abstract)
[16] Hu PY, Li C, Wu YW, Xie CM, Wang M and Li J. 2014. Opening of the Longmu Co-Shuanghu-Lancangjiang Ocean: Constraints from plagiogranites. Chinese Science Bulletin, 59(25): 3188-3199
[17] Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399
[18] Huang XP, Li C and Zhai QG. 2007. Geochemistry and tectonic settings of Indosinian granites in the Mayêr Kangri area, central Qiangtang, Tibet, China. Geological Bulletin of China, 26(12): 1646-1653 (in Chinese with English abstract)
[19] Jiang JJ, Yang SP and Fan YN. 1991. Early Carboniferous biostratigraphy and brachiopods of Gerze and Xainza, North Tibet. Geoscience, 5(3): 227-238 (in Chinese with English abstract)
[20] Jiang QY, Li C, Su L, Hu PY, Xie CM and Wu H. 2015. Carboniferous arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 100: 132-144
[21] Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and genesis of Mesozoic a-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract)
[22] Kapp P, Yin A and Manning CE. 1999. U-Pb geochronology of the Qiangtang metamorphic belt: Implications for crustal structure of northern Tibet. EOS (Transactions, American Geophysical Union), 80: 975
[23] Kapp P, Yin A, Manning CE, Murphy M, Harrison TM, Spurlin M, Lin D, Deng XG and Wu CM. 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28(1): 19-22
[24] Li C. 1997. The 40Ar/39Ar age and its significance of the crossite from the blueschists in the Mid-Qiangtang area, Tibet. Chinese Science Bulletin, 42(1): 88
[25] Li C, Li YT, Lin YX, Wang TW, Yang DM and He ZH. 2002. Sm-Nd dating of the protolith of blueschist in the Shuanghu area, Tibet. Geology in China, 29(4): 355-359 (in Chinese with English abstract)
[26] Li C, Zhai QG, Dong YS and Huang XP. 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Science Bulletin, 51(9): 1095-1100
[27] Li C, Zhai QG, Chen W, Dong YS and Yu JJ. 2007. Geochronology evidence of the closure of Longmu Co-Shuanghu suture, Qinghai-Tibet Plateau: Ar-Ar and zircon SHRIMP geochronology from ophiolite and rhyolite in Guoganjianian. Acta Petrologica Sinica, 23(5): 911-918 (in Chinese with English abstract)
[28] Li C. 2008. A review on 20 Years' study of the Longmu Co-Shuanghu-Lancang River suture zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119 (in Chinese with English abstract)
[29] Li C, Dong YS, Zhai QG, Wang LQ, Yan QR, Wu YW and He TT. 2008. Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence from SHRIMP U-Pb dating and its tectonic implications. Acta Petrologica Sinica, 24(1): 31-36 (in Chinese with English abstract)
[30] Li PW, Gao R, Guan Y and Li QS. 2009. Paleomagnetic constraints on the closure time of Paleo-Tethys: Implications for the tectonic setting of formation of Triassic Songpan-Ganzi Flysch Complex. Acta Geoscientica Sinica, 30(1): 39-50 (in Chinese with English abstract)
[31] Li XW, Mo XX, Zhao ZD and Zhu DC. 2010. A discussion on how to discriminate A-type granite. Geological Bulletin of China, 29(2-3): 278-285 (in Chinese with English abstract)
[32] Liu CS, Chen XM, Chen PR, Wang RC and Hu H. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract)
[33] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
[34] Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11(7): 468
[35] Ludwing KR. 2003. Isoplot/Ex Version 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 4: 1-70
[36] Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983
[37] Shi JR, Dong YS and Wang SY. 2009. Dating and tectonic significance of plagiogranite from Guoganjianian Mountain, central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1236-1243 (in Chinese with English abstract)
[38] Skjerlie KP and Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, 21(4): 336-342
[39] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders D and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 4(1): 313-345
[40] Verma SK, Pandarinath K and Verma SP. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3): 325-347
[41] Wang LQ, Pan GT, Li C, Dong YS, Zhu DC, Yuan SH and Zhu TX. 2008. SHRIMP U-Pb zircon dating of Eoaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet: Considering the evolvement of Proto-and Paleo-Tethys. Geological Bulletin of China, 27(12): 2045-2056 (in Chinese with English abstract)
[42] Wang M, Li C and Fan JJ. 2015. Geochronology and geochemistry of the Dabure basalts, central Qiangtang, Tibet: Evidence for -550Ma rifting of Gondwana. International Geology Review, 57(14): 1791-1805
[43] Wang Q, Zhao ZH and Xiong XL. 2000. The ascertainment of Late-Yanshanian A-type Granite in Tongbai-Dabie orogenic Belt. Acta Petrologica et Mineralogica, 19(4): 297-306 (in Chinese with English abstract)
[44] Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304
[45] Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
[46] Wiedenbeck M, Allé P, Corfu F et al. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23
[47] Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
[48] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1544-1569
[49] Wu YW, Li C, Dong YS, Xie CM and Hu PY. 2009. Petrological characteristics of Taoxinghu Early Paleozoic ophiolite in central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1290-1296 (in Chinese with English abstract)
[50] Wu YW, Li C, Xie CM, Wang M and Hu PY. 2010. Petrology and geochronology of Guoganjianianshan Permian ophiolite in central Qiangtang, Qinghai-Tibet Plateau, China. Geological Bulletin of China, 29(12): 1773-1780 (in Chinese with English abstract)
[51] Wu YW. 2013. The evolution record of Longmuco-Shuanghu-Lancang ocean: Cambrian-Permian ophiolites. Ph. D. Dissertation. Changchun: Jilin University, 1-162 (in Chinese with English summary)
[52] Xia BD, Li C and Ye HF. 2001. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet: Comment and reply: Comment. Geology, 29(7): 633-634
[53] Xie SW, Gao S, Liu XM and Gao RS. 2009. U-Pb Ages and Hf isotopes of detrital zircons of Nanhua sedimentary rocks from the Yangtze Gorges: Implications for genesis of Neoproterozoic magmatism in South China. Earth Science, 34(1): 117-126 (in Chinese with English abstract)
[54] Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370
[55] Zhai QG, Li C, Cheng LR and Zhang YC. 2004. Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geological Bulletin of China, 23(12): 1228-1230 (in Chinese with English abstract)
[56] Zhai QG and Li C. 2007. Zircon SHRIMP dating of volcanic rock from the Nadigangri Formation in Juhuashan, Qiangtang, northern Tibet and its geological significance. Acta Geologica Sinica, 81(6): 795-800 (in Chinese with English abstract)
[57] Zhai QG, Wang J, Li C and Su L. 2010. SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau. Science in China (Series D), 53(5): 657-664
[58] Zhai QG, Jahn BM, Zhang RY, Wang J and Su L. 2011a. Triassic subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370
[59] Zhai QG, Zhang RY, Jahn BM, Li C, Song SG and Wang J. 2011b. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path. Lithos, 125(1-2): 173-189
[60] Zhai QG, Jahn BM, Su L, Wang J, Mo XX, Lee HY, Wang KL and Tang SH. 2013a. Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63: 162-178
[61] Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013b. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199
[62] Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH and Tang Y. 2015. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Geological Society of America Bulletin, doi:10.1130/B31296.1
[63] Zhang Q, Pan GQ, Li CD, Jin WJ and Jia XQ. 2007. Are discrimination diagrams always indicative of correct technic settings of granites? Some crucial questions on granite study (3). Acta Petrologica Sinica, 23(11): 2683-2698 (in Chinese with English abstract)
[64] Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract)
[65] Zhang XZ, Dong YS, Shi JR and Wang SY. 2010. Formation and significance of jadeite-garnet-mica schist newly discovered in Longmu Co-Shuanghu suture zone, central Qiangtang. Earth Science Frontiers, 17(1): 93-103 (in Chinese with English abstract)
[66] Zhou HS, Ma CQ, Zhang C, Chen L, Zhang JY and Yu ZB. 2008. Yanshanian alnminous A-type granitoids in the Chunshui of Biyang, south margin of North China Craton: Implications from petrology, geochronology and geochemistry. Acta Petrologica Sinica, 24(1): 49-64 (in Chinese with English abstract)
[67] Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312
[68] Zhu TX, Zhang QY, Dong H, Wang YZ, Yu YS and Feng XT. 2006. Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic mélanges in the Cêdo Caka area, Shuanghu, northern Tibet, China. Geological Bulletin of China, 25(12): 1413-1418 (in Chinese with English abstract)
[69] 陈莉, 徐军, 苏犁. 2005. 场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用. 自然科学进展, 15(11): 1403-1408
[70] 董永胜, 张修政, 施建荣, 王生云. 2009. 藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征. 地质通报, 28(9): 1201-1206
[71] 郭芳放, 姜常义, 苏春乾, 夏明哲, 夏昭德, 魏巍. 2008. 准噶尔板块东南缘沙尔德兰地区A型花岗岩构造环境研究. 岩石学报, 24(12): 2778-2788
[72] 胡培远, 李才, 李林庆, 解超明, 吴彦旺. 2009. 藏北羌塘中部早古生代蛇绿岩堆晶岩中斜长花岗岩的地球化学特征. 地质通报, 28(9): 1297-1308
[73] 胡培远, 李才, 杨韩涛, 张海波, 于红. 2010. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征、锆石定年及其构造意义. 地质通报, 29(12): 1825-1832
[74] 胡培远, 李才, 解超明, 吴彦旺, 王明, 苏犁. 2013. 藏北羌塘中部桃形湖蛇绿岩中钠长花岗岩-古特提斯洋壳消减的证据. 岩石学报, 29(12): 4404-4414
[75] 黄小鹏, 李才, 翟庆国. 2007. 西藏羌塘中部玛依岗日地区印支期花岗岩的地球化学特征及其形成环境. 地质通报, 26(12): 1646-1653
[76] 姜建军, 杨式溥, 范影年. 1991. 西藏申扎和改则地区早石炭世地层及腕足类研究. 现代地质, 5(3): 227-238
[77] 蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509
[78] 李才, 李永铁, 林源贤, 王天武, 杨德明, 和钟铧. 2002. 西藏双湖地区蓝闪片岩原岩Sm-Nd同位素定年. 中国地质, 29(4): 355-359
[79] 李才, 翟庆国, 陈文, 董永胜, 于介江. 2007. 青藏高原龙木错-双湖板块缝合带闭合的年代学证据-来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约. 岩石学报, 23(5): 911-918
[80] 李才. 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54(1): 105-119
[81] 李才, 董永胜, 翟庆国, 王立全, 阎全人, 吴彦旺, 何彤彤. 2008. 青藏高原羌塘早古生代蛇绿岩-堆晶辉长岩的锆石SHRIMP定年及其意义. 岩石学报, 24(1): 31-36
[82] 李朋武, 高锐, 管烨, 李秋生. 2009. 古特提斯洋的闭合时代的古地磁分析: 松潘复理石杂岩形成的构造背景. 地球学报, 30(1): 39-50
[83] 李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(2-3): 278-285
[84] 刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591
[85] 施建荣, 董永胜, 王生云. 2009. 藏北羌塘中部果干加年山斜长花岗岩定年及其构造意义. 地质通报, 28(9): 1236-1243
[86] 王立全, 潘桂堂, 李才, 董永胜, 朱弟成, 袁四化, 朱同兴. 2008. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄-兼论原-古特提斯洋的演化. 地质通报, 27(12): 2045-2056
[87] 王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297-306
[88] 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220
[89] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604
[90] 吴彦旺, 李才, 董永胜, 解超明, 胡培远. 2009. 藏北羌塘中部桃形湖早古生代蛇绿岩的岩石学特征. 地质通报, 28(9): 1290-1296
[91] 吴彦旺, 李才, 解超明, 王明, 胡培远. 2010. 青藏高原羌塘中部果干加年山二叠纪蛇绿岩岩石学和同位素定年. 地质通报, 29(12): 1773-1780
[92] 吴彦旺. 2013. 龙木错-双湖-澜沧江洋历史记录-寒武纪-二叠纪的蛇绿岩. 博士学位论文. 长春: 吉林大学, 1-162
[93] 谢士稳, 高山, 柳小明, 高日胜. 2009. 扬子克拉通南华纪碎屑锆石U-Pb年龄、Hf同位素对华南新元古代岩浆事件的指示. 地球科学, 34(1): 117-126
[94] 翟庆国, 李才, 程立人, 张以春. 2004. 西藏羌塘角木日地区二叠纪蛇绿岩的地质特征及意义. 地质通报, 23(12): 1228-1230
[95] 翟庆国, 李才. 2007. 藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义. 地质学报, 81(6): 795-800
[96] 张旗, 潘国强, 李承东, 金惟俊, 贾秀勤. 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三. 岩石学报, 23(11): 2683-2698
[97] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626
[98] 张修政, 董永胜, 施建荣, 王生云. 2010. 羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义. 地学前缘, 17(1): 93-103
[99] 周红升, 马昌前, 张超, 陈玲, 张金阳, 余振兵. 2008. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类: 年代学、地球化学及其启示. 岩石学报, 24(1): 49-64
[100] 朱同兴, 张启跃, 董瀚, 王玉净, 于远山, 冯心涛. 2006. 藏北双湖地区才多茶卡一带构造混杂岩中发现晚泥盆世和晚二叠世放射虫硅质岩. 地质通报, 25(12): 1413-1418