岩石学报  2016, Vol. 32 Issue (4): 976-1000   PDF    
郯庐断裂带张八岭隆起段晚中生代岩浆岩继承锆石U-Pb年代学:源区属性及构造意义
谢成龙1, 陈娟1, 刘友勤2, 朱晓超1, 牛漫兰1, 向必伟3     
1. 合肥工业大学资源与环境工程学院, 合肥 230009;
2. 云南地质工程勘察设计研究院, 昆明 650041;
3. 安徽大学资源与环境工程学院, 合肥 230601
摘要: 大别与苏鲁造山带之间的郯庐断裂带张八岭隆起段,构成了华北与扬子板块之间的断裂边界。该边界带的深部结构状态长期以来存在着不同的认识。本文利用张八岭隆起带沿线出露的晚中生代岩浆岩中继承锆石U-Pb年代学信息,结合地球物理资料及Nd、Pb、Hf同位素资料,分析了其深部的岩浆源区属性及结构状态。张八岭隆起带北段晚中生代岩浆岩继承锆石年龄以1.9~2.7Ga为主,最大峰值年龄为2.5Ga;南段继承锆石年龄以2.2~2.6Ga为主,峰值年龄也为2.5Ga;郯庐断裂带庐江段则以含大量新元古代锆石为特征,在0.7Ga形成显著的分布峰值,并有早元古和少量太古代年龄信息。分析结果表明,张八岭隆起带北段的晚中生代岩浆岩源区为华北下地壳,南段的源区兼有华北和扬子陆壳的信息,而更南部庐江段则以扬子地壳源区为特征。电法剖面揭示,郯庐断裂主边界在张八岭隆起带下向南东倾斜,从而深部存在华北地壳;而南部庐江段转变为向北西陡倾,从而深部皆为扬子地壳。郯庐断裂深部产状特征支持其印支期应为斜向汇聚边界。而其中三叠纪继承锆石的缺失指示隆起带上变质岩应为原地岩石,而非来自大别造山带。
关键词: 郯庐断裂带     张八岭隆起带     岩浆岩     继承锆石     晚中生代     深部结构    
Inherited zircon U-Pb geochronology of the Late Mesozoic igneous rocks from the Zhangbaling uplift segment of the Tan-Lu Fault Zone: Magma source affinity and its tectonic implications
XIE ChengLong1, CHEN Juan1, LIU YouQin2, ZHU XiaoChao1, NIU ManLan1, XIANG BiWei3    
1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
2. Yunnan Institute of Geological Engineering Survey and Design, Kunming 650041, China;
3. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Abstract: The Zhangbaling uplift segment of the Tan-Lu Fault Zone between the Dabie and Sulu orogenic belts constitutes a fault boundary between the North China and Yangtze plates. Deep texture of the boundary belt remains controversial for a long time. In this paper, we use geochronology data of inherited zircon from the Late Mesozoic igneous rocks along the belt, combined with geophysical and Nd, Pb, Hf isotope data, to analyze magma source affinity and its deep texture. The inherited zircon U-Pb ages of the Late Mesozoic igneous rocks from the northern part of the Zhangbaling uplift mainly range from 1.9 to 2.7Ga, and the peak age is about 2.5Ga, ages from the southern party mainly range from 2.2 to 2.6Ga, and the peak age is also about 2.5Ga, but ages from the Lujiang part have a distribution of peak at 0.7Ga, and also have Early Proterozoic and a small amount Archean information. These data show that the magma source is lower crust of the North China Plate for the Late Mesozoic igneous rocks in the northern part, mixture of the North China and Yangtze plates for the southern part and lower crust of the Yangtze Plate for the Lujiang part. Electrical profiles show that the Tan-Lu main boundary fault dips SE below the Zhangbaling uplift belt whereas it dips NW steeply below the Lujiang part, leading to the presence of the North China crust below the Zhangbaling uplift belt and only Yangtze crust below the Lujiang part. The deep attitudes of the Tan-Lu Fault Zone are consistent with features of the Indosinian oblique convergence boundary. The lack of Triassic inherited zircon suggests that metamorphic rocks in the Zhangbaling uplift belt belong to autochthonous rocks, rather than from the Dabie orogenic belt.
Key words: Tan-Lu fault zone     Zhangbaling uplift     Igneous rock     Inherited zircon     Late Mesozoic     Deep texture    
1 引言

众所周知,华北与华南板块在中三叠世发生碰撞造山,两者之间形成了著名的秦岭-大别-苏鲁造山带(Zhang et al., 2009; Wu and Zheng, 2013),并且大别和苏鲁造山带被郯庐断裂带大规模左行错开(图 1; 朱光等, 20062009; Zhu et al., 2009; Niu et al., 2015)。郯庐断裂带起源于华北与华南板块的碰撞造山过程中已被多数学者所认同(Lin and Fuller, 1990; Yin and Nie, 1993; Chang,1996; 万天丰和朱鸿,1996; Gilder et al., 1999; 肖文交等,2000; 张岳桥和董树文,2008; Zhu et al., 2009; 朱光等, 20042009),但是其起源方式以及这两大板块的碰撞过程却长期存在着不同的认识。介于大别与苏鲁造山带之间的郯庐断裂带张八岭隆起段,显然是揭示这些重要问题的关键地带,具有重要的研究价值。

图 1 郯庐断裂带中-南段及其周缘地质简图 Fig. 1 Geologic sketch map of the middle-southern segments of the Tan-Lu Fault Zone and its adjacent areas

郯庐断裂带张八岭隆起段构成了西侧华北板块与东侧扬子板块之间的断裂边界,正确认识该段断裂带的深部结构也是理解其起源方式的重要方面。然而,前人在这方面却存在着很大的认识上分歧,分别有陡立的走滑边界(Zhang et al., 1984; Watson et al., 1987; 张岳桥和董树文,2008; Zhu et al., 2009)、撕裂断层边界(Li,1994)、西倾的俯冲板块边界(Lin and Fuller, 1990; Yin and Nie, 1993; Gilder et al., 1999; 肖文交等,2000; Xu et al., 2002b)、深部华北地壳向东挤入的“鳄鱼咀”样式(Su et al., 2013)等观点。这些不同的观点反映了人们对该断裂带起源及华北与华南板块碰撞方式截然不同的认识。正确认识该断裂带的深部结构显然是解决这些认识上分歧的重要突破口。

岩浆活动能够将深部地质信息带至地表,壳源岩浆中的锆石U-Pb年龄及地球化学特征往往记录了丰 富的地壳属性与演化信息(Hartmann,2001; Wu et al., 2008; Wang et al., 2011; Zhang et al., 2015a)。本文利用张八岭隆起带及旁侧出露的晚中生代岩浆岩的继承锆石年龄数据,再结合地球化学与地球物理资料,讨论其深部的岩浆源区属性与特征,综合分析该断裂带的深部结构,为理解其起源方式提供重要的信息。

2 地质背景

郯庐断裂带张八岭隆起段也称为张八岭隆起带,是华北和华南板块之间特殊的板块构造边界,也是郯庐断裂带在大别和苏鲁造山带之间出露的部位(图 1),断裂带平面上将两大造山带左行错开约550km。该隆起带总体呈NNE向展布,其西侧为华北板块上的合肥盆地,两者浅部以西倾的控盆正断层为界;其东侧为扬子板块(华南板块北部)上的下扬子前陆变形带。

2.1 张八岭隆起带概况

张八岭隆起带总体上是一个变质岩出露带,带内主要出露低级变质的张八岭群和高级变质的肥东杂岩(图 2)。以北纬32°为界,张八岭隆起带大致可以分为南、北两段。其北段主要出露张八岭群,而南段主要出露肥东杂岩(在肥东杂岩东侧也有零星张八岭群出露)。张八岭群可以分为下部的西冷组和上部的北将军组,两者在剖面上自下而上变质程度逐渐降低(Zhang et al., 2007)。其中西冷组主要为一套中-高绿片岩相的中-酸性变火山岩,其原岩主要为流纹岩、安山岩与凝灰岩,原岩时代为748~754Ma(Zhao et al., 2014);北将军组主要是低绿片岩相的浅变质碎屑岩,以千枚岩与浅变质砂岩为主。肥东杂岩主要为一套低-中角闪岩相的高级变质岩(张青等,2008; 石永红等,2009; 聂峰等,2014),包括黑云斜长片麻岩、角闪斜长片麻岩、斜长角闪岩、角闪岩组成的正变质岩和白云石大理岩、云母片岩组成的副变质岩两大系列,肥东杂岩内正变质岩的原岩时代为800~745Ma(Zhao et al., 2014)。张八岭群与肥东杂岩变岩浆岩的新元古代原岩时代显然指示它们属于扬子板块的岩石(Zhao et al., 2014)。

图 2 张八岭隆起带北段地质图及采样位置(据Zhang et al., 2007; 张青等,2008修改) Fig. 2 Geologic map of the northern Zhangbaling uplift belt,showing sampling localities(modified after Zhang et al., 20072008)

此外,在张八岭隆起带北段,张八岭群东侧还依次出露有震旦系、寒武系和奥陶系(图 2)。其中下震旦统的岩性和变质程度(低绿片岩相)皆与北将军组类似,自下而上为周岗组(Z1z)千枚岩和浅变质粉砂岩、砂岩,苏家湾组(Z1s)含砾千枚岩、千枚岩等浅变质冰碛岩系。上震旦统自下而上为未变质的陡山沱组(Z2d)泥岩、泥灰岩与灰岩,灯影组(Z2d)白云岩。寒武-奥陶系地层为未变质的碳酸盐岩夹碎屑岩。这些震旦-奥陶系也明显指示属于扬子板块海相盖层。

张八岭隆起带为一个多期叠加的构造变形带,记录了郯庐断裂带的多期活动。在隆起带北段,张八岭群与下震旦统中主要发育上盘向SSW运动的印支期平缓韧性滑脱构造(Lin et al., 2005; Zhang and Teyssier, 2013; Zhao et al., 2014),其面理产状平缓而多变,局部有晚期(晚侏罗世)脆性平移断层的叠加。在隆起带的南段,其北部广泛发育晚侏罗-早白垩世初NNE向左行走滑韧性剪切带,早期构造被完全置换;而南部同期NNE向走滑韧性剪切带局部存在,其间仍保留有早期NEE-SWW向组构(Zhu et al., 2005; Zhao et al., 2014)。

早白垩世时期,中国东部开始进入大规模伸展构造背景之下,张八岭隆起带及周缘受区域伸展活动的控制(Zhu et al., 20102012),发育了断陷盆地和大规模的岩浆活动(图 1)。在张八岭隆起带的西缘,发育了NNE走向、西倾的大型正断层,控制了旁侧合肥盆地的发育。在张八岭隆起带北段东侧,还发育有早白垩世滁州火山岩盆地(谢成龙等, 20072009; 马芳和薛怀民,2011)和滁州岩体,而其西缘自北向南依次发育了早白垩世管店岩体、瓦屋刘岩体和瓦屋薛岩体(牛漫兰,2006; 资锋等,2008; Liu et al., 2010; 曹洋等,2010; 周力等,2014)。在张八岭隆起带的南段,也发育有一系列早白垩世花岗质岩体(牛漫兰等, 20082010; Liu et al., 2010),并有局火山岩出露。此外,在巢湖中庙至南岸的庐江地区,沿郯庐断裂带也零星分布有一些早白垩世火山岩(谢成龙等, 2008ab)。

2.2 岩浆岩发育特征

张八岭隆起带北段的滁州火山岩盆地,位于滁州市的西部,出露面积约80km2,呈NNE向展布(图 2)。盆地西部直接覆盖在震旦系灯影组之上,南部和东部不整合在下古生界地层之上,上部局部见上白垩统张桥组红层。该套火山岩分为上、下两个组。下部红花桥组以河湖相沉积为主,夹陆相中基性火山岩,厚度达260m;上部黄石坝组以陆相火山岩为主,夹河湖相沉积,厚度达2200m。火山岩类型主要包括安山岩、粗安岩、英安岩、辉石安山岩等,并有大套的安山质凝灰岩发育(谢成龙等,2009),其喷发时限为132~116Ma(谢成龙等,2007; 马芳和薛怀民,2011)。

张八岭隆起带北段西侧的管店岩体、瓦屋刘岩体和瓦屋薛岩体,皆以狭长带状平行于张八岭隆起带西缘呈NNE向展布(图 2)。岩体侵位于张八岭群变质岩中,与围岩侵入接触关系清晰,其中瓦屋刘岩体西侧和瓦屋薛岩体东侧主要为白垩纪红层覆盖。野外工作发现这些岩体未受郯庐走滑剪切带的影响,且受后期构造变形和破碎作用影响较小。这些岩体的岩石类型包括二长岩、石英二长岩和花岗岩等。管店岩体、瓦屋刘岩体和瓦屋薛岩体的侵位年龄分别为132Ma(资锋等,2008)、128Ma和120Ma(牛漫兰,2006)。最近在瓦屋刘岩体南端新发现的藕塘岩体,可能为瓦屋刘岩体的一部分,其侵位年龄为129~125Ma(Hu et al., 2014)。

张八岭隆起带南段的晚中生代岩体,零星出露于南部的肥东杂岩中(图 3),主要分布在锦张村、黑虎山、白马山、尖山、永丰水库、西花村、西徐村北等地。这些侵入体沿郯庐断裂带呈北北东向展布,岩体和变质岩的侵入接触关系明显。往往以岩株或小岩体的形式产出,主要岩石类型为二长花岗岩和正长花岗岩,其岩体侵位年龄为127~103Ma(牛漫兰等,2008)。

图 3 张八岭隆起带南段地质图及采样位置 Fig. 3 Geologic map of the southern Zhangbaling uplift belt,showing sampling localities

庐江段火山岩带主要发育于巢湖中庙至庐江万山镇一带,该地区也发育有张八岭群变质岩,因而可以看作是张八岭隆起带在巢湖以南的延伸部分。该火山岩带介于下扬子区的庐枞火山岩盆地与大别山北侧的北淮阳火山岩带之间,呈串珠状沿郯庐断裂带的西边界呈NNE向分布(图 4),指示火山喷发明显受郯庐深大断裂的控制。该处火山以喷溢作用为主,火山机构明显,为一系列独立的火山锥,主要岩石类型包括流纹岩、粗面岩和玄武岩、碱玄岩等,具有典型的双峰式火山岩的特征,火山喷发时间为125~93Ma(谢成龙等,2008b)。

图 4 郯庐断裂带庐江段地质图及采样位置 Fig. 4 Geologic map of the Lujiang segment of the Tan-Lu Fault Zone,showing sampling localities

上述沿张八岭隆起带分布的晚中生代岩体或火山岩盆地,多数呈NNE向展布,或沿NNE向呈串珠状分布。野外观测发现,这些岩浆岩本身并未受到区内广泛发育的NNE向左旋走滑构造所切割,指示岩浆活动发生于晚侏罗世-早白垩世初区域大规模走滑活动之后。锆石定年结果表明岩浆活动时间在132~93Ma之间,指示为早白垩世期间的岩浆活动产物。野外岩浆岩展布方位显示岩体侵位与火山喷发明显受NNE向的张八岭隆起带控制,为隆起带之下的地壳或壳-幔混源的岩浆产物(谢成龙等, 2008a2009; 资锋等,2008; Liu et al., 2010; 牛漫兰等,2010; Su et al., 2013),岩浆活动记录了深部的源区属性与演化信息。

3 样品特征与分析方法 3.1 样品特征

本文所选样品分别采自张八岭隆起北段滁州火山岩盆地(简称滁州火山岩)、南段早白垩世岩体和庐江段火山岩带(简称庐江火山岩)。对这些岩浆岩样品进行LA-ICP MS锆石U-Pb年代学测试,获取了岩体侵位年龄和火山喷发年龄,同时发现这些岩浆岩样品中往往含有大量的继承锆石。对其中部分样品进行了古老继承锆石的测年工作,获取了继承锆石的年龄数据。

滁州火山岩未见明显的变形、变质现象,样品均较新鲜。本次所选样品均为红色至暗灰色致密块状火山熔岩,所有样品均为斑状结构或似斑状结构,斑晶含量较低。基质多为细小的长石新晶和玻璃质构成,二者共同组成玻晶交织结构,有时呈粗面结构。测试中选择样品TLC04、TLC05和TLC10进行了继承锆石的年代学分析工作。其中TLC04为粗面岩、TLC05为英安岩、TLC10为粗安岩。

张八岭隆起南段岩体主要为花岗岩类,样品皆未遭受明显矿化和蚀变。所采集定年样品中,TLF02和TLF06为二长花岗岩,TLF03、TLF09和TLF11为正长花岗岩。这些样品皆为块状构造,具细粒花岗结构、似斑状结构或花岗结构。样品中主要矿物包括酸性斜长石、钾长石、石英及少量的黑云母组成,副矿物主要为磷灰石、锆石、榍石、褐帘石和磁铁矿等。

庐江段火山岩的岩性差异较大,本次进行继承锆石年代学分析的样品包括2个粗面岩样品(TLL03、TLL04)和1个玄武岩样品(TLL06)。样品TLL03具斑状结构(斑晶含量<4%),斑晶为透长石、斜长石和少量角闪石,基质为大量碱性长石和少量石英组成的粗面结构或间隐结构。样品TLL04具斑状结构、流动构造,斑晶主要为透长石和斜长石,基质为隐晶质或玻晶交织结构,主要为大量细小的石英和长石颗粒。TLL06具斑状结构,基质为粗玄结构;斑晶含量较少(低于3%),主要为少量的斜长石、辉石、橄榄石和磁铁矿,基质主要由大量斜长石微晶、似长石类、辉石及少量磁铁矿、玻璃质等组成。

3.2 分析方法

所选样品的锆石U-Pb定年工作采用LA-ICP MS法完成,分为选样、制靶、阴极发光照相、上机测试和数据后处理5个步骤。对野外采集的岩石样品经碎样机破碎后,采用浮选和电磁选等方法分离出单颗粒锆石,并在双目镜下手工挑纯以除去其他副矿物。然后选择晶形完好、无裂隙、色泽度好的锆石颗粒粘于环氧树脂表面,固化后抛光至锆石露出三分之二左右,进行透射光和反射光照相,依据照相结果选择晶型特征良好的锆石进行阴极发光照相,以了解锆石内部结构。上述选样工作在河北省区域地质矿产调查研究所实验室然完成,制靶和阴极发光照相工作在中国科学院地质与地球物理研究所实验室完成。

根据阴极发光照射结果,选择环带结构清晰的锆石颗粒进行U-Pb年代学测试,该工作在西北大学大陆动力学实验室完成的。其中ICP-MS 主机型号为PE公司的Elan 6100DRC,配套的激光剥蚀系统为GeoLas 200M深紫外193nm ArF 准分子激光剥蚀系统。测试中采用激光斑束直径为30μm,年龄外标采用哈佛大学标准锆石91500。

测试数据的后处理工作利用Glitter(4.0版)软件进行,普通铅校正采用Andersen方法(Andersen,2002)进行,年龄分析及成图采用Isoplot(Ver.3.70)进行(Ludwig,2012)。测试中的误差标准为1σ,具体的实验流程参见袁洪林等(2003)Yuan et al.(2004)

4 分析结果

本次所分析张八岭隆起带上的晚中生代岩浆岩,除庐江段的玄武岩和流纹岩样品未见古老锆石外,其余样品皆含有古老继承锆石。这些继承锆石大多具有较高的自形程度(庐江段火山岩中继承锆石普遍遭受显著熔蚀而呈浑圆状或不规则状,且普遍具有变质壳),多为短柱状或长柱状,轴比在3:2~3:1之间,明显比新生岩浆锆石粗大,多为无色或浅黄色,透明度较高。阴极发光照相显示,这些锆石多具有清晰的内部结构(图 5),往往发育岩浆振荡环带,并具有典型的核幔结构,且往往具有多期岩浆核(有时为变质核),核部常为半自形-他形,其外部一般具有较薄的增生边,内部有时存在暗色包体。对上述继承锆石进行年代学分析,共获取了110个分析点的有效数据(表 1)。

图 5 张八岭隆起带晚中生代岩浆岩中部分继承锆石阴极发光图 Fig. 5 Some cathode luminescence(CL)images of selected inherited zircons in the Late Mesozoic igneous rocks from the Zhangbaling uplift zone

表 1 张八岭隆起带晚中生代岩浆岩中继承锆石U-Pb年代学分析结果 Table 1 Inherited zircon U-Pb geochronology data for the Late Mesozoic igneous rocks from the Zhangbaling uplift belt

本次分析的锆石样品中,所有分析点获得的锆石Th/U比值中,仅有1个点小于0.2,大多数分析点的Th/U值在0.5以上(表 1),且所分析锆石岩浆环带清晰,指示这些继承锆石多为岩浆成因(Belousova et al., 2002; Hoskin and Schaltegger, 2003),为早期地壳演化的产物。所获得年龄数据中(大于1.0Ga的锆石取207Pb/206Pb年龄,小于1.0Ga的锆石取206Pb/238U年龄),各分析点的谐和度绝大部分在80~110之间,表明年龄数据较谐和(Gee et al., 2015; Tsunogae et al., 2015),可信度较高。

张八岭隆起北段滁州火山岩样品获得的38个继承锆石年龄中,除1个分析点的年龄较小外(757±4Ma),其余皆大于1.9Ga,主要分布在2.0~2.5Ga之间(表 1图 6a-c、图 7a),还有少数锆石具有3.0Ga以上的年龄,其中最大的年龄为3281Ma。南段岩体样品中,由于新生岩浆锆石数量较多、颗粒较大,因而其中的继承锆石比例较小,5个花岗岩样品中仅获得9个继承锆石的有效数据。这9个数据的锆石年龄皆大于1.0Ga(表 1图 7b),除1颗锆石具有1.3Ga年龄外,其余8个点年龄均在2.2~2.6Ga之间。庐江段火山岩样品中共获取63个继承锆石分析数据,其中样品TLL03(图 6d)和TLL04(图 6e)中的继承锆石年龄主要分布于0.5~3.1Ga和0.2~2.6Ga之间,最大年龄分别为3091Ma和2646Ma,并含有新元古代和三叠纪年龄信息(表 1)。庐江段样品TLL06(图 6f)以含有大量新元古代锆石为特征,13个点的年龄在624~748Ma之间,另有1颗锆石还具有209Ma的年龄。

图 6 张八岭隆起带晚中生代岩浆岩单样品继承锆石年龄频率分布图 Fig. 6 Frequency distribution of inherited zircon ages of the Late Mesozoic igneous rocks along the Zhangbaling uplift belt

图 7 张八岭隆起带各区段晚中生代岩浆岩继承锆石年龄频率分布图 Fig. 7 Frequency distribution of inherited zircon ages of the Late Mesozoic igneous rocks along each parts of the Zhangbaling uplift belt
5 问题讨论 5.1 源区属性

放射性同位素是记录地壳多期演化的有效载体,其中Sr、Nd、Pb、Hf、O等同位素是最常用的地壳演化示踪剂。然而,由于岩浆混染、混合及新生地壳物质的加入等因素的影响,全岩同位素体系在示踪地壳演化中往往具有不确定性,且无法识别出精细的地壳多阶段演化过程(刘富等,2009; Ali et al., 2015; Kröner et al., 2015)。由于锆石具有较高的结晶温度和热稳定性,在地壳演化中能够很好的保存下来,因而是示踪大陆地壳演化的最佳研究对象,利用锆石中的Hf-O同位素组成、U-Pb年龄均能有效识别关键的地壳演化阶段和过程(Zhang et al., 2006a; Wu et al., 2008; 焦文放等,2009),其中继承锆石U-Pb年龄记录的信息最为直观和丰富,已成为研究大陆地壳演化阶段、鉴别陆壳属性的最重要手段之一(Hartmann,2001; Wang et al., 2011; Zhang et al., 2012; Huang et al., 2013; Liu et al., 2013)。

华北与华南板块在前印支期具有不同的地壳演化历史,因而具有显著不同的地壳物质特征。华北板块具有较老的地壳生长和再造历史,普遍出露有太古宙地壳岩石,具有高达3.8Ga的古老锆石年龄(吴福元等,2005),并具有~3.2Ga、~2.5Ga、~1.8Ga等主要时间段的锆石年龄,对应于华北陆壳增生与再造的几个关键阶段(Zhao et al., 2004; Zheng et al., 2004; 沈其韩等,2005; 刘敦一等,2007; Grant et al., 2009; 刘富等,2009; 万渝生等,2010; 董春艳等,2010; 第五春荣等,2012; Diwu et al., 2013; Liu et al., 2013; 胡波等,2013; Wang et al., 2014a2014b; Shan et al., 2015)。华北板块以~2.5Ga为最主要年龄阶段,2.7Ga以上的锆石尽管存在但比例偏少(沈其韩等,2005; 刘敦一等,2007; Grant et al., 2009),并缺乏新元古代锆石年龄信息。

关于华南板块,早期的研究认为较为缺乏太古宙-古元古代年龄信息,往往以含有大量新元古代锆石年龄信息为特征(Wu et al., 2006; Zhang et al., 2006b; Zheng et al., 2007; Wang et al., 2015)。新元古代锆石年龄信息已广泛被当作识别华南板块的标志(Wu et al., 2012; 薛怀民等,2012; Yang and Zhang, 2012; Yang et al., 2014)。然而,近十余年来,华南板块上陆续发现了大量太古宙锆石(Zhang et al., 2006b; Zheng et al., 2006; Zheng and Zhang, 2007; 焦文放等,2009; Tang et al., 2012; Zhang and Zheng, 2013; Guo et al., 2014; Li et al., 2014c; Wang et al., 2015; Zhao et al., 2015),因而目前普遍认为华南板块也具有太古宙基底。另外,华南板块上古元古代锆石也不断被报道,指示也经历过古元古代(~2.0Ga)地壳生长事件(Zhang et al., 2006a; Zheng et al., 2007; 彭敏等,2009; Tang et al., 2012; Zhang and Zheng, 2013; Wang et al., 2015)。但是,尽管华南板块也具有古老的地壳基底年龄信息,其分布特征却与华北板块具有较大的差异。在扬子陆块发现的太古宙-古元古代锆石年龄谱中,~2.5Ga锆石年龄与~2.0Ga、~2.9Ga年龄往往具有大致相当的分布比例(Zheng and Zhang, 2007; Zhang and Zheng, 2013),或者缺乏~2.5Ga锆石年龄信息(Tang et al., 2012; Li et al., 2014a);而华北板块则以~2.5Ga为最主要的峰值年龄(沈其韩等,2005; Grant et al., 2009; Shi et al., 2012; Liu et al., 2013; Shan et al., 2015),其比例明显高于其他阶段年龄信息。

5.1.1 张八岭隆起北段

位于张八岭隆起带北段东侧的滁州火山岩,3个样品中的继承锆石年龄皆在~2.5Ga附近分布最广,且形成最强的概率分布峰值(图 6a-c图 7a),显示具有华北地壳古老锆石的年龄分布特征(沈其韩等,2005; Grant et al., 2009; Shi et al., 2012; Liu et al., 2013; Shan et al., 2015)。各样品小于2.5Ga的数据在谐和图上形成了不一致线,指示这些锆石曾在1.8Ga时经历过华北板块标志性的峰期变质事件(Zheng et al., 2004; 董春艳等,2010; Liu et al., 2013)而发生了铅丢失。在TLC04样品中,还发现一颗新元古代(757±4Ma)的锆石。由于滁州火山岩发育于张八岭隆起东侧,其下伏地层包括了原岩时代为新元古代(Zhao et al., 2014)的张八岭群和肥东杂岩,推断该颗新元古代锆石为岩浆喷发过程中于浅部捕获的扬子陆壳锆石。此外,滁州火山岩具有低的εNd(t)值(-22.8~-13.4)、低的放射性成因Pb(其中206Pb/204Pb(t)=15.896~16.689、207Pb/204Pb(t)=15.273~15.417、208Pb/204Pb(t)=36.170~37.00)等特征(谢成龙等,2009),也指示其源区属于华北板块(Liu et al., 2010; Su et al., 2013; Yang et al., 2014)。综上所述,滁州火山岩虽地表位于扬子板块上,但其具有华北地壳岩浆源区特征。

张八岭隆起带北段西缘的晚中生代瓦屋刘、瓦屋薛和管店岩体,也以含大量太古宙-古元古代继承锆石,但未发现新元古代锆石(牛漫兰未发表数据),也指示源区为华北陆壳。张八岭隆起带北段晚中生代岩体皆以低的全岩εNd(t)值(-18~-12)、低的全岩放射性成因Pb和低的锆石εHf(t)值(-26~-16)为特征(资锋等, 20072008; Liu et al., 2010; 曹洋等,2010; Su et al., 2013; Wang et al., 2013; Yang et al., 2014)。这些特征显示张八岭隆起带北段晚中生代岩体与同期滁州火山岩一样,皆具有华北下地壳源区特征(Su et al., 2013图 8a图 9ab图 10a)。值得指出的是,部分学者依据华北和下扬子地壳在同位素特征上有重叠区域而认为不能依此判别块体属性(Zeng and Yan, 2014)。但是,从晚中生代岩浆岩的大量统计数据来看,华北和扬子板块(下扬子区)同位素重叠区域较小(图 8图 9图 10),因而从统计学的角度仍然能够有效区分岩浆的源区归属。

图 8 张八岭隆起带各区段晚中生代岩浆岩全岩εNd(t)值分布图 下扬子地区Nd同位素数据引自Chen et al., 2001; Xu et al., 2002a; 王元龙等,2004; Wang et al., 200320042006; 谢智等,2007; 袁峰等,2008; Li et al., 2009; Hou et al., 2010; 薛怀民等, 20092010; 赵海杰等,2010; 王斌等,2012; Xie et al., 2012; 闫峻等, 20052012; Su et al., 2013; 汪晶等,2014;华北板块Nd同位素数据巫祥阳等,2003; 杨进辉等,2003; Zhang et al., 2004; 胡芳芳等,2005; 杨德彬等,2006; 李全忠等,2007; 闫峻和陈江峰,2007; Liu et al., 2012; Yang et al., 200420102012; 柯昌辉等,2013; Li et al., 2014b;张八岭隆起带Nd同位素数据引自Chen et al., 2001; 童劲松等,2008; 资锋等, 200720082011; 谢成龙等, 2008ab2009; Liu et al., 2010; 牛漫兰等, 20022010; Su et al., 2013 Fig. 8 Distribution diagrams of εNd(t)values for the Late Mesozoic igneous rocks along the Zhangbaling uplift belt

图 9 沿张八岭隆起带不同区段晚中生代岩浆岩全岩206Pb/204Pb(t)、208Pb/204Pb(t)值分布图 数据来源参见图 8中Nd同位素数据部分文献及闫峻等(2003) Fig. 9 Distribution diagrams of 206Pb/204Pb(t) and 208Pb/204Pb(t)values for the Late Mesozoic igneous rocks along the Zhangbaling uplift belt

图 10 张八岭隆起带不同区段晚中生代岩浆岩锆石εHf(t)值分布图 下扬子地区Hf同位素数据刘园园等,2009; 侯可军和袁顺达,2010; 胡劲平和蒋少涌,2010; Wu et al., 2012; Yang and Zhang, 2012; 李瑞玲等,2012; 闫峻等,2012; 张俊杰等,2012; Su et al., 2013; Wang et al., 2013;华北板块Hf同位素数据胡芳芳等,2005; 徐义刚等,2007; 杨德彬等, 20062007; 郭波等,2009; Liu et al., 2012; 高昕宇等,2012; 林博磊和李碧乐,2013; 刘跃等,2014;张八岭隆起带Hf同位素数据资锋等,2008; Su et al., 2013; Wang et al., 2013 Fig. 10 Distribution diagrams of zircon εHf(t)values for the Late Mesozoic igneous rocks along the Zhangbaling uplift belt
5.1.2 张八岭隆起南段

位于张八岭隆起南段的晚中生代岩体,所获取的仅有的9个继承锆石年龄数据中,主要为古元古代早期年龄信息(2.2~2.5Ga),仅有一颗锆石具有中元古代年龄(1.3Ga),且未见新元古代锆石年龄信息(表 1)。这些锆石年龄在~2.5Ga附近形成概率分布峰值(图 7b),指示其岩浆源区可能为华北板块。该处岩体具有较低的全岩εNd(t)值(-25~-12)、锆石εHf(t)值(-23~-18)和全岩放射性成因Pb等特征(Liu et al., 2010; 牛漫兰等,2010; Su et al., 2013; Wang et al., 2013),也与华北板块内部同期岩浆岩类似,而与下扬子地区同期岩浆岩高Pb、高εNd(t)、高εHf(t)的特征明显不同(图 8b9cd10b)。然而,最近在该带早白垩世岩脉中发现大量新元古代锆石(未发表数据),指示部分岩浆岩也具有扬子地壳源区的特征。因而,我们认为张八岭隆起南段晚中生侵入岩可能兼具有华北和扬子板块的岩浆源区。

5.1.3 庐江段

庐江段火山岩位于巢湖南岸至庐江之间,属于张八岭隆起带的南延部分。该带3个火山岩样品中,皆含有大量的新元古代锆石(图 6d-f图 7c),指示为扬子地壳源区。样品TLL03和TLL04中还含有古元古代-太古宙锆石年龄(图 6de),其中样品TLL04缺乏~2.5Ga年龄信息,也表明该样品具有扬子陆壳源区特征。而TLL03样品在2.5Ga附近形成最强分布峰值,指示其可能还兼有华北陆壳源区的特征。样品TLL06中含有新元古代继承锆石(年龄皆小于800Ma),但不含古元古代-太古宙锆石,也指示源区属于扬子陆壳。而在全岩Nd、Pb同位素分布图上(图 8c图 9ef),庐江火山岩样品除落入典型的下扬子岩浆岩区及其与华北板块的叠置区域外,也有部分样品落入华北岩浆源区内,表明部分火山岩可能还含有华北源区特征。

此外,作为大别造山带东北缘的庐江段,其中样品TLL04和TLL06中还具有209Ma和237Ma的中、晚三叠世年龄信息(图 7图 8)。样品TLL03还具有211Ma的不一致线交点年龄。这些皆指示庐江火山岩的岩浆源区还遭受了印支期造山事件的影响。这些特征与大别-苏鲁造山带内的同期岩浆岩具有相似性(赵子福等,2013)。但是,北部的张八岭隆起带南段与北段则均未发现印支期造山事件年龄信息。

综上所述,沿张八岭隆起带分布的晚中生代岩浆岩显示了不同的岩浆源区属性。其北段具有华北地壳岩浆源区特征,南段兼有华北和扬子地壳源区特征,而更南部的庐江段则明显具有扬子地壳源区特征(部分样品可能受后期走滑事件影响而卷入有华北源区物质)。

5.2 主边界断层产状

张八岭隆起带浅部所出露变质的张八岭群与肥东杂岩,原岩主要为火山岩或侵入岩,具有新元古代年龄(图 11Zhao et al., 2014),属扬子板块岩石。因而,该带浅部扬子与华北板块的边界位于隆起带西缘。西侧华北板块浅部的合肥盆地,充填了厚达8km的侏罗-古近系(Zhu et al., 2009),下伏古生代海相盖层。由此可见,该隆起带西侧华北板块在上地壳为低电阻率的沉积层,而隆起带本身为高电阻率的正变质岩,从而可以利用电法剖面有效地识别出华北与扬子板块之间的边界产状及其变化。

图 11 张八岭隆起带变质岩中锆石年龄频率分布图 数据来源据Zhao et al., 2014; 赵田等,2014 Fig. 11 Frequency distribution of zircon ages for metamorphic rocks from the Zhangbaling uplift belt

胜利油田完成的三条张八岭隆起带电法剖面分别切过北段、南段与庐江段(图 12)。这些剖面显示现今郯庐断裂带的主边界断裂位于张八岭隆起西缘,代表了华北与扬子板块的断裂边界。该边界带浅部为西倾的盆缘正断层,局部见(图 12)盆地反转期逆冲断层的切割。而在浅部正断层之下,该主边界断层在电法剖面上明显呈现为高、低阻体之间的界线,代表了深部(上地壳范围内)华北与扬子板块之间的边界状态。这三条不同位置的电法剖面,显示了边界断面产状沿走向上发生了明显的变化。在张八岭隆起带北段(图 12a,EMAP365线,E-W向剖面),主边界断层表现为向SE倾斜、断面倾角中等,指示深部华北板块作为下盘向东显著延伸至张八岭隆起带所在的扬子板块之下。在张八岭隆起带南段(图 12b,EMAP340线,E-W向剖面),主边界断层也向SE倾斜,但断面倾角明显变陡,地震剖面也清楚的反映了这一特征(Zhang et al., 2015b)。在南部庐江段(图 12c,EMAP748,S-N向剖面),主边界断层转变为向NW倾斜,且断面倾角陡立,在张八岭隆起之下不再有华北陆壳的插入。

图 12 张八岭隆起带EMAP电法二维连续介质反演剖面解释及其位置图(据董波等,2005; Zhang et al., 2015b) Fig. 12 2D continuum inversion EMAP electrical profiles across the Zhangbaling uplift belt(after Dong et al., 2005; Zhang et al., 2015b)

上述电法剖面清楚地显示了张八岭隆起带西缘华北与扬子板块边界断层的产状及其空间变化。该产状由北部向SE中等倾斜、中部向SE陡倾转变为南端向NW陡倾(图 13)。这种陡倾的特征及倾向的变化与斜向汇聚边界相吻合。而其北部倾角变缓可能与接近苏鲁造山带而受影响所致。

图 13 郯庐断裂带张八岭隆起段产状变化示意图 Fig. 13 Attitude variation model for the Zhangbaling uplift segment of the Tan-Lu Fault Zone

需要说明的是,尽管电法剖面反映的是张八岭隆起带现今的地壳结构状况,但区域上印支造山运动以后的构造事件主要为晚侏罗世期间滨太平洋构造域下的NNE向的左行平移活动,该构造事件对晚三叠世的构造形迹并未产生根本性破坏,地表露头构造现象清楚的记录了两者的叠加关系。因而现今的地壳结构应能大致代表印支期以来的总体地壳结构状况。

5.3 深部结构与岩浆源区变化的原因

尽管上述电法剖面涉及的地壳深度仅有15km(上地壳),但各剖面下部边界断层稳定的产状可以推断其在下地壳与岩石圈地幔内应具有相似的状态。郯庐断裂带已有的大量地球物理勘探及其对幔源岩浆的控制(朱光等,2002),指示其应切穿了整个岩石圈。作为华北与扬子板块之间的边界断层,郯庐断裂带也应是岩石圈断裂。

通过对比分析发现,上述电法剖面揭示的地壳深部结构信息,与晚中生代岩浆岩继承锆石揭示的信息相吻合,不但揭示了岩浆源区沿走向上变化的原因,也共同限定了张八岭隆起带的深部结构。电法剖面显示张八隆起南段与北段郯庐主边界断层皆向SE倾(图 13),并且向北倾角变缓。这一深部结构使得张八岭隆起带浅部为扬子地壳,而深部为华北地壳,从而下地壳源区就为华北地壳(图 14)。随着向SE倾的主边界产状变陡,会出现华北与扬子下地壳源区的并置。张八岭隆起北段晚中生代岩浆岩显示的华北地壳源区及南段显示的华北与扬子地壳源区的混合显然与其产状北缘缓南陡相吻合。该板块边界断层在庐江段转变为向NW陡倾,从而该段深部皆为扬子地壳,并与其中晚中生代岩浆岩显示扬子陆壳源区相吻合。由此可见,正是由于郯庐边界断层在深部产状的变化,导致了深部结构的变化,从而造成了岩浆源区的相应变化。

图 14 郯庐断裂带张八岭隆起北段示意剖面与岩浆源区模式图(位置见图 12d) Fig. 14 Schematic cross-section and magma source model for the northern Zhangbaling uplift segment of the Tan-Lu Fault Zone(location seen in Fig. 12d)
5.4 构造意义

通过本次工作的综合分析,显示郯庐边界断层产状沿走向上出现了明显变化,并且总体以陡倾为特征。这一产状特征不支持其为西倾俯冲边界(Xu et al., 2002b)或“鳄鱼咀”式边界(Su et al., 2013)观点。这一倾向与倾角的较大变化与典型的平移断层特征(如陆内转换断层)也不吻合,平移断层一般具有产状陡立而稳定的特征。该边界总体陡立且产状多变的现象与斜向汇聚边界特征相吻合。斜向汇聚边界的走滑运动使其产状陡立,但常利用原始边界而发育又使其会产状多变。由此可见,郯庐断裂带的深部结构支持其印支期属于华北与扬子板块之间的斜向汇聚边界,与前人提出的华北与扬子板块的嵌入式碰撞模式(Yin and Nie, 1993)或嵌合式碰撞模式(Zhao et al., 2014)相吻合。

张八岭隆起带变质岩属于被错移的大别造山带岩片还是扬子板块边缘上原地的岩层以往也存着不同的观点(Xu et al., 1987; Xu and Zhu, 1994; 张青等,2008)。最近Zhao et al.(2014)通过其中变岩浆岩的锆石定年及其与上覆地层年代与变形上的连续性,认为它们属于扬子板块边缘原地变形、变质的岩层,代表了斜向汇聚边界上的变形-变质带。本次晚中生代岩浆岩继承锆石分析发现,张八岭隆起南、北段皆没有三叠纪的继承锆石,与大别造山带内同期岩浆岩内大量三叠纪继承锆石形成鲜明对照(陈道公等,2001; Zhao et al., 2007; Liu and Liou, 2011; 赵子福等,2013; Chen et al., 2015)。这也支持张八岭隆起变质岩属于扬子板块边缘原地变质岩层的观点。而庐江段三叠纪继承锆石的存在应是其紧邻大别造山带的结果。

6 结论

(1)继承锆石年龄分布特征特征表明,张八岭隆起带北段晚中生代岩浆源区为华北下地壳;南段兼有华北与扬子地壳源区特征;而隆起带以南庐江段则以扬子地壳源区为特征。晚中生代岩浆岩的Nd-Pb-Hf同位素特征也支持这一观点。

(2)锆石年龄反映的地壳结构信息,也得到了电法剖面的印证。电法剖面揭示,华北与扬子板块之间的郯庐断裂深部边界具有变化的产状。张八岭隆起北段向SE中等倾斜,南段向SE陡倾,而更南部庐江段侧转变为向NW陡倾。这种板块边界产状决定了张八岭隆起带之下具有华北地壳,而庐江段之下皆为扬子地壳,从而导致了晚中生岩浆源区的相应变化。

(3)郯庐断裂深部产状特征,支持其印支期应为斜向汇聚边界,符合华北与扬子板块的嵌入式碰撞模式。张八岭隆起带上晚中生代岩浆岩内三叠纪继承锆石的缺失也支持其为斜向汇聚边界,并指示隆起带上变质岩应为扬子板块西缘原地变形、变质岩层。

致谢  感谢中国科学院地质与地球物理研究所马玉光、毛骞等,西北大学第五春荣、戴梦宁等为分析测试工作提供的大量帮助。野外工作得到了向必伟和胡召齐博士的帮助,审稿人在审稿过程中付出了辛勤的劳动,在此一并表示感谢。

参考文献
[1] Ali KA, Kröner A, Hegner E, Wong J, Li SQ, Gahlan HA and Abu El Ela FF. 2015. U-Pb zircon geochronology and Hf-Nd isotopic systematics of Wadi Beitan granitoid gneisses, South Eastern Desert, Egypt. Gondwana Research, 27(2): 811-824
[2] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
[3] Belousova E, Griffin W, O'reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
[4] Cao Y, Niu ML, Xie CL, Xie WY and Wang JL. 2010. Discussion of petrogenesis on late mesozoic intrusions from the northern segment of Zhangbaling uplift belt along the Tan-Lu fault. Journal of Hefei University of Technolgy, 33(3): 415-420 (in Chinese with English abstract)
[5] Chang EZ. 1996. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13(3-5): 267-277
[6] Chen DG, Li BX, Xia QK, Wu YB and Cheng H. 2001. Zircon U/Pb frame geochronology of ultra-high pressure zone rocks for Dabie orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 253-255 (in Chinese with English abstract)
[7] Chen JF, Yan J, Xie Z, Xu X and Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: Constraints on sources. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731
[8] Chen RX, Ding BH, Zheng YF and Hu ZC. 2015. Multiple episodes of anatexis in a collisional orogen: Zircon evidence from migmatite in the Dabie orogen. Lithos, 212-215: 247-265
[9] Diwu CR, Sun Y and Wang Q. 2012. The crustal growth and evolution of the North China Craton: Revealed by HF isotopes in detrital zircons from modern rivers. Acta Petrologica Sinica, 28(11): 3520-3530 (in Chinese with English abstract)
[10] Diwu CR, Sun Y, Gao JF and Fan LG. 2013. Early Precambrian tectonothermal events of the North China Craton: Constraints from in situ detrital zircon U-Pb, Hf and O isotopic compositions in Tietonggou Formation. Chinese Science Bulletin, 58(31): 3760-3770
[11] Dong B. 2005. Electric property features of the Tan-Lu fault at the eastern margin fringe of Hefei Basin and their genesis interpretation. Geology of Anhui, 15(1): 44-47 (in Chinese with English abstract)
[12] Dong CY, Wang SJ, Liu DY, Wang JG, Xie HQ, Wang W, Song ZY and Wan YS. 2010. Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica, 27(6): 1699-1706 (in Chinese with English abstract)
[13] Gao XY, Zhao TP, Gao JF, Xue LW and Yuan ZL. 2012. LA-ICP-MS zircon U-Pb ages, Hf isotopic composition and geochemistry of adakitic granites in the Xiaoqinling region, the south margin of the North China block. Geochimica, 41(4): 303-325 (in Chinese with English abstract)
[14] Gee DG, Andréasson PG, Lorenz H, Frei D and Majka J. 2015. Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden: The Sveconorwegian connection. Precambrian Research, 265: 40-56
[15] Gilder SA, Leloup PH, Courtillot V, Chen Y, Coe RS, Zhao XX, Xiao WJ, Halim N, Cogné JP and Zhu RX. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 104(B7): 15365-15390
[16] Grant ML, Wilde SA, Wu FY and Yang JH. 2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 261(1-2): 155-171
[17] Guo B, Zhu LM, Li B, Gong HJ and Wang JQ. 2009. Zircon U-Pb age and Hf isotope composition of the Huashan and Heyu granite plutons at the southern margin of North China Craton: Implications for geodynamic setting. Acta Petrologica Sinica, 25(2): 265-281 (in Chinese with English abstract)
[18] Guo JL, Gao S, Wu YB, Li M, Chen K, Hu ZC, Liang ZW, Liu YS, Zhou L, Zong KQ, Zhang W and Chen HH. 2014. 3.45Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242: 82-95
[19] Hartmann LA. 2001. SHRIMP U-Pb isotopic analyses of zircon as applied to metallogeny and crustal evolution. Gondwana Research, 4(2): 227-230
[20] Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62
[21] Hou KJ and Yuan SD. 2010. Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications. Acta Petrologica Sinica, 26(3): 888-902 (in Chinese with English abstract)
[22] Hou T, Zhang ZC, Encarnacion J, Du YS, Zhao ZD and Liu JL. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, eastern China: Constraints on petrogenesis and iron sources. Lithos, 119(3-4): 330-344
[23] Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ and Zhang HD. 2013. Late Palaeoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing. Acta Petrologica Sinica, 29(7): 2508-2536 (in Chinese with English abstract)
[24] Hu FF, Fan HR, Yang JH, Zhai MG, Jin CW, Xie LW and Yang YH. 2005. Magma mixing for the origin of granodiorite: Geochemical, Sr-Nd isotopic and zircon Hf isotopic evidence of dioritic enclaves and host rocks from Changshannan granodiorite in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 21(3): 569-586 (in Chinese with English abstract)
[25] Hu JP and Jing SY. 2010. Zircon U-Pb dating and Hf isotopic compositions of porphyrites from the Ningwu basin and their geological implications. Geological Journal of China Universities, 16(3): 294-308 (in Chinese with English abstract)
[26] Hu ZL, Yang XY, Duan LA and Sun WD. 2014. Geochronological and geochemical constraints on genesis of the adakitic rocks in Outang, South Tan-Lu Fault Belt (northeastern Yangtze Block). Tectonophysics, 626: 86-104
[27] Huang XL, Wilde SA and Zhong JW. 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research, 233: 337-357
[28] Jiao WF, Wu YB, Peng M, Wang J and Yang SH. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China (Series D), 52(9): 1393-1399
[29] Ke CH, Wang XX, Li JB, Yang Y, Qi QJ and Zhou XN. 2013. Zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic geochemistry of the intermediate-acid rocks from the Heishan-Mulonggou area in the southern margin of North China Block. Acta Petrologica Sinica, 29(3): 781-800 (in Chinese with English abstract)
[30] Kröner A, Kovach VP, Kozakov IK, Kirnozova T, Azimov P, Wong J and Geng HY. 2015. Zircon ages and Nd-Hf isotopes in UHT granulites of the Ider Complex: A cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia. Gondwana Research, 27(4): 1392-1406
[31] Li JW, Zhao XF, Zhou MF, Ma CQ, De Souza ZS and Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409
[32] Li LM, Lin SF, Davis DW, Xiao WJ, Xing GF and Yin CQ. 2014a. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255: 30-47
[33] Li QZ, Xie Z, Chen JF, Gao TS, Yu G and Qian H. 2007. Pb-Sr-Nd isotopic characteristics of the gabbros from Jinan and Zouping and the contribution of the lower crust to the magma source. Geological Journal of China Universities, 13(2): 297-310 (in Chinese with English abstract)
[34] Li RL, Zhu QQ, Hou KJ and Xie GQ. 2012. Zircon U-Pb dating and Hf isotopic compositions of granite porphyry and rhyolite porphyry from Jingniu basin in the Middle-Lower Yangtze River Belt and its geological significance. Acta Petrologica Sinica, 28(10): 3347-3360 (in Chinese with English abstract)
[35] Li SG, Wang SJ, Guo SS, Xiao YL, Liu YC, Liu SA, He YS and Liu JL. 2014b. Geochronology and geochemistry of leucogranites from the southeast margin of the North China Block: Origin and migration. Gondwana Research, 26(3-4): 1111-1128
[36] Li XH, Li ZX and Li WX. 2014c. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Research, 25(3): 1202-1215
[37] Li ZX. 1994. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22(8): 739-742
[38] Lin BL and Li BL. 2013. Geochemistry, U-Pb dating, Lu-Hf isotopic analysis and geological significance of Linglong granite in Jiaodong Peninsula. Journal of Chengdu University of Technology (Science & Technology Edition), 40(2): 147-160 (in Chinese with English abstract)
[39] Lin JL and Fuller M. 1990. Palaeomagnetism, North China and South China collision, and the Tan-Lu fault. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 331(1620): 589-598
[40] Lin W, Faure M, Wang QC, Monié P and Panis D. 2005. Triassic polyphase deformation in the Feidong-Zhangbaling Massif (eastern China) and its place in the collision between the North China and South China blocks. Journal of Asian Earth Sciences, 25(1): 121-136
[41] Liu DY, Wan YS, Wu JS, Wilde SA, Dong CY, Zhou HY and Yin XY. 2007. Archean crustal evolution and the oldest rocks in the North China craton. Geological Bulletin of China, 26(9): 1131-1138 (in Chinese with English abstract)
[42] Liu F, Guo JH, Lu XP and Diwu CR. 2009. Crustal growth at 2.5Ga in the North China Craton: Evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Chinese Science Bulletin, 54(24): 4704-4713
[43] Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39
[44] Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013. The growth, reworking and metamorphism of early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303
[45] Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178
[46] Liu SA, Li SG, Guo SS, Hou ZH and He YS. 2012. The Cretaceous adakitic-basaltic-granitic magma sequence on south-eastern margin of the North China Craton: Implications for lithospheric thinning mechanism. Lithos, 134-135: 163-178
[47] Liu Y, Deng J, Wang ZL, Zhang L, Zhang C, Liu XD, Zheng XL and Wang XD. 2014. Zircon U-Pb age, Lu-Hf isotopes and petrogeochemistry of the monzogranites from Xincheng gold deposit, northwestern Jiaodong Peninsula, China. Acta Petrologica Sinica, 30(9): 2559-2573 (in Chinese with English abstract)
[48] Liu YY, Ma CQ, Zhang C, She ZB and Zhang JY. 2009. Petrogenesis of Yueshan pluton: Zircon U-Pb dating and Hf isotope evidence. Geological Science and Technology Information, 28(5): 22-30 (in Chinese with English abstract)
[49] Ludwig KR. 2012. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley CA: Berkeley Geochronology Center Special Publication, 5: 1-75
[50] Mang F and Xue HM. 2011. SHRIMP zircon U-Pb age of Late Mesozoic volcanic rocks from the Chuzhou basin, eastern Anhui Province, and its geological significance. Acta Petrologica et Mineralogica, 30(5): 924-934 (in Chinese with English abstract)
[51] Nie F, Shi YH, Wang J, Kang T and Cao S. 2014. Investigation on the metamorphic conditions and geochronology for the magnet garnet amphibole in the Tan-Lu Fault Zone (Anhui segment), and discussion of its tectonic attribution. Acta Petrologica Sinica, 30(6): 1718-1730 (in Chinese with English abstract)
[52] Niu ML, Zhu G, Liu GS, Wang DX and Song CZ. 2002. Tectonic setting and deep processes of Mesozoic magmatism in middle-south segment of the Tan-Lu fault. Chinese Journal of Geology, 37(4): 393-404 (in Chinese with English abstract)
[53] Niu ML. 2006. 40Ar-39Ar dating of biotite from the Mesozoic intrusions in Zhangbaling area and its geological significance. Chinese Journal of Geology, 41(2): 217-225 (in Chinese with English abstract)
[54] Niu ML, Zhu G, Xie CL, Liu XM, Cao Y and Xie WY. 2008. LA-ICP MS zircon U-Pb ages of the granites from the southern segment of the Zhangbaling uplift along the Tan-Lu Fault Zone and their tectonic significances. Acta Petrologica Sinica, 24(8): 1839-1847 (in Chinese with English abstract)
[55] Niu ML, Zhu G, Xie CL, Wu Q and Liu GS. 2010. Geochemistry of Late Mesozoic intrusions from the southern segment of Zhangbaling uplift along the Tan-Lu Fault Zone and its implications for the lithospheric thinning. Acta Petrologica Sinica, 26(9): 2783-2804 (in Chinese with English abstract)
[56] Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf: New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 60(18): 1598-1616
[57] Peng M, Wu YB, Wang J, Jiao WF, Liu XC and Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54(6): 1098-1104
[58] Shan HX, Zhai MG, Oliveira EP, Santosh M and Wang F. 2015. Convergent margin magmatism and crustal evolution during Archean-Proterozoic transition in the Jiaobei terrane: Zircon U-Pb ages, geochemistry, and Nd isotopes of amphibolites and associated grey gneisses in the Jiaodong complex, North China Craton. Precambrian Research, 264: 98-118
[59] Shen QH, Geng YS, Song B and Wan YS. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks, and Qinling-Dabie orogenic belt. Acta Geologica Sinica, 79(5): 616-627 (in Chinese with English abstract)
[60] Shi YH, Zhu G and Wang DX. 2009. Metamorphic P-T evolution for the garnet amphibolite from Feidong Group in the south of Zhangbaling uplift across Tan-Lu fault and its influence on tectonics. Acta Petrologica Sinica, 25(12): 3335-3345 (in Chinese with English abstract)
[61] Shi YR, Wilde SA, Zhao XT, Ma YS, Du LL and Liu DY. 2012. Late Neoarchean magmatic and subsequent metamorphic events in the northern North China Craton: SHRIMP zircon dating and Hf isotopes of Archean rocks from Yunmengshan Geopark, Miyun, Beijing. Gondwana Research, 21(4): 785-800
[62] Su YP, Zheng JP, Griffin WL, Zhao JH, O'Reilly SY, Tang HY, Ping XQ and Xiong Q. 2013. Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks. Lithos, 175-176: 333-350
[63] Tang HY, Zheng JP, Griffin WL, Su YP, Yu CM and Ren HW. 2012. Complex Precambrian crustal evolution beneath the northeastern Yangtze Craton reflected by zircons from Mesozoic volcanic rocks of the Fanchang basin, Anhui Province. Precambrian Research, 220-221: 91-106
[64] Tong JS, Lu YL, Guan YC, Chu DR and Geng XG. 2008. Geochemical characteristics of Yanshanian high-Mg intermediate-acid intrusive rocks in eastern Anhui and their dynamic significance. Geology in China, 35(1): 18-31 (in Chinese with English abstract)
[65] Tsunogae T, Yang QY and Santosh M. 2015. Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes and tectonic implications. Precambrian Research, 266: 467-489
[66] Wan TF and Zhu H. 1996. The maximum sinistral strike-slip and its forming age of Tancheng-Lujiang fault zone. Geological Journal of Universities, 2(1): 14-27 (in Chinese with English abstract)
[67] Wan YS, Miao PS, Liu DY, Wang W, Wang HC, Wang ZJ, Dong CY, Du LL and Zhou HY. 2010. Formation ages and source regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons: Resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(13): 1278-1284
[68] Wang B, Xie Z, Chui YR, Chen JF and Zhou TX. 2012. The source composition inversion of the Late Mesozoic granitoids in Lower Yangtze region. Geological Journal of China Universities, 18(4): 623-638 (in Chinese with English abstract)
[69] Wang FY, Liu SA, Li SG and He YS. 2013. Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu-Au mineralization. Lithos, 156-159: 97-111
[70] Wang J, Wu MA, Li XD, Zhang S, Zhao WG and Wei GH. 2014. Zircon U-Pb dating, Geochemical characteristics of Early-Cretaceous diorite-porphyrites in Luzhong basin and their implications for mineralizaion. Acta Geologica Sinica, 88(4): 547-561 (in Chinese with English abstract)
[71] Wang JQ, Shu LS, Santosh M and Xu ZQ. 2015. The Pre-Mesozoic crustal evolution of the Cathaysia Block, South China: Insights from geological investigation, zircon U-Pb geochronology, Hf isotope and REE geochemistry from the Wugongshan complex. Gondwana Research, 28(1): 225-245
[72] Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China (Series D), 46(8): 801-815
[73] Wang Q, Xu JF, Zhao ZH, Bao ZW, Xu W and Xiong XL. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5): 417-434
[74] Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446
[75] Wang QY, Zheng JP, Pan YM, Dong YJ, Liao FX, Zhang Y, Zhang L, Zhao G and Tu ZB. 2014a. Archean crustal evolution in the southeastern North China Craton: New data from the Huoqiu Complex. Precambrian Research, 255: 294-315
[76] Wang W, Zhai MG, Li TS, Santosh M, Zhao L and Wang HZ. 2014b. Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane. Precambrian Research, 241: 146-160
[77] Wang X, Chen J, Griffin WL, O'reilly SY, Huang PY and Li X. 2011. Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: Implications for the syn-collisional granites of the Dabie-Sulu UHP orogenic belt and the climax of movement on the Tan-Lu fault. Lithos, 122(3-4): 201-213
[78] Wang YL, Wang Y, Zhang Q, Jia XQ and Han S. 2004. The geochemical characteristics of Mesozoic intermediate-acid intrusives of the Tongling area and its metallogenesis-geodynamic implications. Acta Petrologica Sinica, 20(2): 325-338 (in Chinese with English abstract)
[79] Watson MP, Hayward AB, Parkinson DN and Zhang ZM. 1987. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 4(3): 205-225
[80] Wu FY, Yang JH, Liu XM, Li TS, Xie LW and Yang YH. 2005. Hf isotopes of the 3.8Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473-2480
[81] Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362
[82] Wu FY, Ji WQ, Sun DH, Yang YH and Li XH. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150: 6-25
[83] Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM and Wu FY. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212
[84] Wu XY, Xu YG, Ma JL, Xu JF and Wang Q. 2003. Geochemistry and petrogenesis of the Mesozoic high-Mg diorites from western Shandong. Geotectonica et Metallogenia, 27(3): 228-236 (in Chinese with English abstract)
[85] Wu YB and Zheng YF. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428
[86] Xiao WJ, Zhou YX, Yang ZY and Zhao XX. 2000. Multiple rotation and amalgamation processes of Dabie-Tanlu-Sulu orogen. Advance in Earth Sciences, 15(2): 147-153 (in Chinese with English abstract)
[87] Xie CL, Zhu G, Niu ML and Wang YS. 2007. LA-ICP MS zircon U-Pb ages of the Mesozoic volcanic rocks from Chuzhou area and their tectonic significances. Geological Review, 53(5): 642-655 (in Chinese with English abstract)
[88] Xie CL, Zhu G, Niu ML and Liu XM. 2008a. Geochemistry of Late Mesozoic volcanic rocks from the Chaohu-Lujiang segment of the Tan-Lu fault zone and lithospheric thinning processes. Acta Petrologica Sinica, 24(8): 1823-1838 (in Chinese with English abstract)
[89] Xie CL, Zhu G, Niu ML, Wang YS, Xiang BW and Hu SQ. 2008b. Zircon U-Pb geochronology of the Late Mesozoic volcanic rocks from the Chaohu-Lujiang segment of the Tan-Lu fault zone. Chinese Journal of Geology, 43(2): 294-308 (in Chinese with English abstract)
[90] Xie CL, Zhu G, Niu ML and Liu XM. 2009. Geochemistry of Late Mesozoic volcanic rocks from Chuzhou area and its implication for the lithospheric thinning beneath the Tan-Lu fault zone. Acta Petrologica Sinica, 25(1): 92-108 (in Chinese with English abstract)
[91] Xie JC, Yang XY, Sun WD and Du JG. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China: Implications for the tectonic settings. Lithos, 150: 49-61
[92] Xie Z, Li QZ, Chen JF and Gao TS. 2007. The geochemical characteristics of the Early-Cretaceous volcanics in Luzhong region and their source significances. Geological Journal of China Universities, 13(2): 235-249 (in Chinese with English abstract)
[93] Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002a. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust? Geology, 30(12): 1111-1114
[94] Xu JW, Zhu G, Tong WX, Cui KR and Liu Q. 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134(4): 273-310
[95] Xu JW and Zhu G. 1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review, 36(8): 771-784
[96] Xu WL, Wang DY, Liu XC, Wang QH and Lin JQ. 2002b. Discovery of eclogite inclusions and its geological significance in Early Jurassic intrusive complex in Xuzhou-northern Anhui, eastern China. Chinese Science Bulletin, 47(14): 1212-1216
[97] Xu YG, Wu XY, Luo ZY, Ma JL, Huang XL and Xie LW. 2007. Zircon Hf isotope compositions of Middle Jurassic-Early Cretaceous intrusions in Shandong Province and its implications. Acta Petrologica Sinica, 23(2): 307-316 (in Chinese with English abstract)
[98] Xue HM, Wang YG, Ma F, Wang C, Wang DE and Zuo YL. 2009. The Huangshan A-type granites with tetrad REE: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton? Acta Geologica Sinica, 83(2): 247-259 (in Chinese with English abstract)
[99] Xue HM, Dong SW and Ma F. 2010. Geochemistry of shoshonitic volcanic rocks in the Luzong Basin, Anhui Province (eastern China): Constraints on Cretaceous lithospheric thinning of the Lower Yangtze region. Acta Geologica Sinica, 84(5): 664-681 (in Chinese with English abstract)
[100] Xue HM, Dong SW and Ma F. 2012. Zircon SHRIMP U-Pb ages of volcanic rocks in the Luzong basin, Middle and Lower Yangtze River reaches: Constraints on the model of Late Mesozoic lithospheric thinning of the eastern Yangtze Craton. Acta Geologica Sinica, 86(10): 1569-1583 (in Chinese with English abstract)
[101] Yan J, Chen JF, Yu G, Qian H and Zhou TX. 2003. Pb isotopic characteristics of Late Mesozoic mafic rocks from the Lower Yangtze Region: Evidence for enriched mantle. Geological Journal of China Universities, 9(2): 195-206 (in Chinese with English abstract)
[102] Yan J, Chen JF, Xie Z, Yang G, Yu G and Qian H. 2005. Geochemistry of Late Mesozoic basalts from Kedoushan in the Middle and Lower Yangtze regions: Constraints on characteristics and evolution of the lithospheric mantle. Geochimica, 34(5): 455-469 (in Chinese with English abstract)
[103] Yan J and Chen JF. 2007. Geochemistry of Qingshan Formation volcanic rocks from Jiaolai Basin, eastern Shandong Province: Petrogenesis and geological significance. Geochimica, 36(1): 1-10 (in Chinese with English abstract)
[104] Yan J, Peng G, Liu JM, Li QZ, Chen ZH, Shi L, Liu XQ and Jiang ZZ. 2012. Petrogenesis of granites from Fanchang district, the Lower Yangtze region: Zircon geochronology and Hf-O isotopes constrains. Acta Petrologica Sinica, 28(10): 3209-3227 (in Chinese with English abstract)
[105] Yang DB, Xu WL, Wang QH, Pei FP and Ji WQ. 2006. Petrogenesis of Late Jurassic Jingshan granite in Bengbu uplift, Anhui Province: Constraints from geochemistry and Hf isotope of zircons. Acta Petrologica Sinica, 22(12): 2923-2932 (in Chinese with English abstract)
[106] Yang DB, Xu WL, Wang QH, Pei FP and Ji WQ. 2007. Petrogenesis of the Mesozoic granite in Bengbu uplift: Constraints from zircon Hf isotope. Acta Petrologica Sinica, 23(2): 381-392 (in Chinese with English abstract)
[107] Yang DB, Xu WL, Wang QH and Pei FP. 2010. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China: Constraints on the tectonic evolution of the eastern North China Craton. Lithos, 114(1-2): 200-216
[108] Yang DB, Xu WL, Pei FP, Yang CH and Wang QH. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246-260
[109] Yang JH, Zhu MF, Liu W and Zhai MG. 2003. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 19(4): 692-700 (in Chinese with English abstract)
[110] Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160
[111] Yang W and Zhang HF. 2012. Zircon geochronology and Hf isotopic composition of Mesozoic magmatic rocks from Chizhou, the Lower Yangtze Region: Constraints on their relationship with Cu-Au mineralization. Lithos, 150: 37-48
[112] Yang YZ, Chen FK, Siebel W, Zhang H, Long Q, He JF, Hou ZH and Zhu XY. 2014. Age and composition of Cu-Au related rocks from the Lower Yangtze River belt: Constraints on paleo-Pacific slab roll-back beneath eastern China. Lithos, 202-203: 331-346
[113] Yin A and Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia. Tectonics, 12(4): 801-813
[114] Yuan F, Zhou TF, Fan Y, Lu SM, Qian CC, Zhang LJ, Duan C and Tang MH. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract)
[115] Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421
[116] Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370
[117] Zeng L and Yan LL. 2014. Petrogenesis and geochronology of Cretaceous adakitic, I- and A-type granitoids in the NE Yangtze block: Constraints on the eastern subsurface boundary between the North and South China blocks: Comment. Lithos, 196-197: 376-379
[118] Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015a. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136
[119] Zhang HF, Sun M, Zhou MF, Fan WM, Zhou XH and Zhai MG. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: Evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geological Magazine, 141(1): 55-62
[120] Zhang HF, Yang YH, Santosh M, Zhao XM, Ying JF and Xiao Y. 2012. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Research, 22(1): 73-85
[121] Zhang JD, Hao TY, Dong SW, Chen XH, Cui JJ, Yang XY, Liu CZ, Li TJ, Xu Y, Huang S and Re FL. 2015b. The structural and tectonic relationships of the major fault systems of the Tan-Lu fault zone, with a focus on the segments within the North China region. Journal of Asian Earth Sciences, 110: 85-100
[122] Zhang JJ, Wang GJ, Yang XY, Sun WD and Dai SQ. 2012. The petrogenesis of the Jingde granodiorite and its MMEs: Constraints from geochemistry, zircon U-Pb dating and Hf isotopic compositions. Acta Petrologica Sinica, 28(12): 4047-4063 (in Chinese with English abstract)
[123] Zhang Q, Teyssier C, Dunlap J and Zhu G. 2007. Oblique collision between North and South China recorded in Zhangbaling and Fucha Shan (Dabie-Sulu transfer zone). In: Till AB, Roeske SM, Sample JC and Foster DA (eds.). Exhumation Associated with Continental Strike-Slip Fault Systems: Special Paper (Geology Society of America). London: Geological Society of America, 434: 167-206
[124] Zhang Q, Zhu G, Liu GS, Teyssier C and Dunlap WJ. 2008. Sinistral transpressive deformation in the northern part of Zhangbaling uplift in the Tan-Lu fault zone and its 40Ar/39Ar dating. Earth Science Frontiers, 15(3): 234-249 (in Chinese with English abstract)
[125] Zhang Q and Teyssier C. 2013. Flow vorticity in Zhangbaling transpressional attachment zone, SE China. Journal of Structural Geology, 48: 72-84
[126] Zhang RY, Liou JG and Ernst WG. 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16(1): 1-26
[127] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006a. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288
[128] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006b. Zircon U-Pb age and Hf isotope evidence for 3.8Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71
[129] Zhang SB and Zheng YF. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23(4): 1241-1260
[130] Zhang YQ and Dong SW. 2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: Advances and new understanding. Geological Bulletin of China, 27(9): 1371-1390 (in Chinese with English abstract)
[131] Zhang ZM, Liou JG and Coleman RG. 1984. An outline of the plate tectonics of China. Geological Society of America Bulletin, 95(3): 295-312
[132] Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT and Ke YF. 2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract)
[133] Zhao L, Zhou XW, Zhai MG, Santosh M and Geng YS. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research, 28(1): 246-261
[134] Zhao T, Zhu G, Lin SZ, Yan LJ and Jiang QQ. 2014. Protolith ages and deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone. Science China: Earth Sciences, 57(11): 2740-2757
[135] Zhao T, Zhu G, Lin SZ and Song LH. 2014. Protolith ages of metamorphic rocks of the Zhangbaling Group along the southern segment of the Tan-Lu Fault Zone and their tectonic implications. Geological Review, 60(6): 1265-1283 (in Chinese with English abstract)
[136] Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502
[137] Zhao ZF, Zheng YF, Wei CS and Wu YB. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248-272
[138] Zhao ZF, Zheng YF and Dai LQ. 2013. Origin of residual zircon and the nature of magma source for postcollisional granite in continental collision zone. Chinese Science Bulletin, 58(23): 2285-2289 (in Chinese)
[139] Zheng JP, Lu FX, Yu CM and Tang HY. 2004. An in situ zircon Hf isotopic, U-Pb age and trace element study of banded granulite xenolith from Hannuoba basalt: Tracking the early evolution of the lower crust in the North China craton. Chinese Science Bulletin, 49(3): 277-285
[140] Zheng JP, Griffin WL, O'reilly SY, Zhang M, Pearson N and Pan YM. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34(6): 417-420
[141] Zheng YF and Zhang SB. 2007. Formation and evolution of Precambrian continental crust in South China. Chinese Science Bulletin, 52(1): 1-12
[142] Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX and Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96(1-2): 127-150
[143] Zhou L, Zhang J, Wang J and Sun T. 2014. Genesis of Guandian pluton and its relationship with Shangcheng gold deposit from Zhangbaling area, Anhui Province. Geological Science and Technology Information, 33(1): 32-40 (in Chinese with English abstract)
[144] Zhu G, Song CZ, Niu ML, Liu GS and Wang YS. 2002. Lithospheric textures of the Tan-Lu fault zone and their genetic analysis. Geological Journal of China Universities, 8(3): 248-256 (in Chinese with English abstract)
[145] Zhu G, Wang YS, Niu ML, Liu GS and Xie CL. 2004. Synorogenic movement of the Tan-Lu fault zone. Earth Science Frontiers, 11(3): 169-182 (in Chinese with English abstract)
[146] Zhu G, Wang YS, Liu GS, Niu ML, Xie CL and Li CC. 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology, 27(8): 1379-1398
[147] Zhu G, Wang YS, Wang DX, Niu ML, Liu GS and Xie CL. 2006. Constraints of foreland sedimentation and deformation on synorogenic motion of the Tan-Lu Fault Zone. Chinese Journal of Geology, 41(1): 102-121 (in Chinese with English abstract)
[148] Zhu G, Liu GS, Niu ML, Xie CL, Wang YS and Xiang BW. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences, 98(1): 135-155
[149] Zhu G, Zhang L, Xie CL, Niu ML and Wang YS. 2009. Geochronological constraints on tectonic evolution of the Tan-Lu Fault Zone. Chinese Journal of Geology, 44(4): 1327-1342 (in Chinese with English abstract)
[150] Zhu G, Niu ML, Xie CL and Wang YS. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277-293
[151] Zhu G, Jiang DZ, Zhang BL and Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103
[152] Zi F, Wang Q, Dai SQ, Xu W, Xu JF, Qiu HN, Liang XR, Tu XL and Liu Y. 2007. Geochronology and geochemistry of Chuzhou and Shangyaopu adakitic intrusive rocks in the eastern area of Anhui Province: Implications for petrogenesis and mineralization. Acta Petrologica Sinica, 23(6): 1485-1500 (in Chinese with English abstract)
[153] Zi F, Wang Q, Tang GJ, Song B, Xie LW, Yang YH, Liang XR, Tu XL and Liu Y. 2008. SHRIMP U-Pb zircon geochronology and geochemistry of the Guandian pluton in central Anhui, China: Petrogenesis and geodynamic implications. Geochimica, 37(5): 462-480 (in Chinese with English abstract)
[154] Zi F, Wang Q, Liu XH and Qiu HN. 2011. Geochronology and geochemistry of the Yeshan and Shanlichen adakitic intrusive rocks in the eastern Yangtze Block: Petrogenesis and its geodynamic implications. Acta Mineralogica Sinica, 31(2): 185-200 (in Chinese with English abstract)
[155] 曹洋, 牛漫兰, 谢成龙, 谢文雅, 王敬欣. 2010. 郯庐断裂带张八岭隆起北段晚中生代岩体的成因. 合肥工业大学学报(自然科学版), 33(3): 415-420
[156] 陈道公, 李彬贤, 夏群科, 吴元保, 程昊. 2001. 大别超高压碰撞造山带岩石锆石U-Pb同位素框架年代学. 矿物岩石地球化学通报, 20(4): 253-255
[157] 第五春荣, 孙勇, 王倩. 2012. 华北克拉通地壳生长和演化: 来自现代河流碎屑锆石Hf同位素组成的启示. 岩石学报, 28(11): 3520-3530
[158] 董波. 2005. 合肥盆地东缘郯庐断裂带的电性特征与成因解释. 安徽地质, 15(1): 44-47
[159] 董春艳, 王世进, 刘敦一, 王金光, 颉颃强, 王伟, 宋志勇, 万渝生. 2010. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约-胶东地区变质中-基性侵入岩锆石SHRIMP U-Pb定年. 岩石学报, 27(6): 1699-1706
[160] 高昕宇, 赵太平, 高剑峰, 薛良伟, 原振雷. 2012. 华北陆块南缘小秦岭地区早白垩世埃达克质花岗岩的LA-ICP-MS锆石U-Pb年龄、Hf同位素和元素地球化学特征. 地球化学, 41(4): 303-325
[161] 郭波, 朱赖民, 李犇, 弓虎军, 王建其. 2009. 华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景. 岩石学报, 25(2): 265-281
[162] 侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 26(3): 888-902
[163] 胡波, 翟明国, 彭澎, 刘富, 第五春荣, 王浩铮, 张海东. 2013. 华北克拉通古元古代末-新元古代地质事件-来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据. 岩石学报, 29(7): 2508-2536
[164] 胡芳芳, 范宏瑞, 杨进辉, 翟明国, 金成伟, 谢烈文, 杨岳衡. 2005. 胶东文登长山南花岗闪长岩体的岩浆混合成因: 闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位素证据. 岩石学报, 21(3): 569-586
[165] 胡劲平, 蒋少涌. 2010. 宁芜盆地浅成侵入岩的锆石U-Pb年代学和Hf同位素研究及其地质意义. 高校地质学报, 16(3): 294-308
[166] 焦文放, 吴元保, 彭敏, 汪晶, 杨赛红. 2009. 扬子板块最古老岩石的锆石U-Pb年龄和Hf同位素组成. 中国科学(D辑), 39(7): 972-978
[167] 柯昌辉, 王晓霞, 李金宝, 杨阳, 齐秋菊, 周晓宁. 2013. 华北地块南缘黑山-木龙沟地区中酸性岩的锆石U-Pb年龄、岩石化学和Sr-Nd-Hf同位素研究. 岩石学报, 29(3): 781-800
[168] 李全忠, 谢智, 陈江峰, 高天山, 喻钢, 钱卉. 2007. 济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献. 高校地质学报, 13(2): 297-310
[169] 李瑞玲, 朱乔乔, 侯可军, 谢桂青. 2012. 长江中下游金牛盆地花岗斑岩和流纹斑岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 28(10): 3347-3360
[170] 林博磊, 李碧乐. 2013. 胶东玲珑花岗岩的地球化学、U-Pb年代学、Lu-Hf同位素及地质意义. 成都理工大学学报(自然科学版), 40(2): 147-160
[171] 刘敦一, 万渝生, 伍家善, Wilde SA, 董春艳, 周红英, 殷小艳. 2007. 华北克拉通太古宙地壳演化和最古老的岩石. 地质通报, 26(9): 1131-1138
[172] 刘富, 郭敬辉, 路孝平, 第五春荣. 2009. 华北克拉通2.5Ga地壳生长事件的Nd-Hf同位素证据: 以怀安片麻岩地体为例. 科学通报, 54(17): 2517-2526
[173] 刘跃, 邓军, 王中亮, 张良, 张潮, 刘向东, 郑小礼, 王旭东. 2014. 胶西北新城金矿床二长花岗岩岩石地球化学、锆石U-Pb年龄及Lu-Hf同位素组成. 岩石学报, 30(9): 2559-2573
[174] 刘园园, 马昌前, 张超, 佘振兵, 张金阳. 2009. 安徽月山闪长岩的成因探讨-锆石U-Pb定年及Hf同位素证据. 地质科技情报, 28(5): 22-30
[175] 马芳, 薛怀民. 2011. 皖东滁州盆地晚中生代火山岩的SHRIMP锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 30(5): 924-934
[176] 聂峰, 石永红, 王娟, 康涛, 曹晟. 2014. 郯庐断裂带(安徽段)内磁铁石榴角闪岩的形成条件、年代学及构造归属的探究. 岩石学报, 30(6): 1718-1730
[177] 牛漫兰, 朱光, 刘国生, 王道轩, 宋传中. 2002. 郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程. 地质科学, 37(4): 393-404
[178] 牛漫兰. 2006. 张八岭地区中生代岩体中黑云母的40Ar-39Ar年龄及其地质意义. 地质科学, 41(2): 217-225
[179] 牛漫兰, 朱光, 谢成龙, 柳小明, 曹洋, 谢文雅. 2008. 郯庐断裂带张八岭隆起南段花岗岩LA-ICP MS锆石U-Pb年龄及其构造意义. 岩石学报, 24(8): 1839-1847
[180] 牛漫兰, 朱光, 谢成龙, 吴齐, 刘国生. 2010. 郯庐断裂带张八岭隆起南段晚中生代侵入岩地球化学特征及其对岩石圈减薄的指示. 岩石学报, 26(9): 2783-2804
[181] 彭敏, 吴元保, 汪晶, 焦文放, 刘小驰, 杨赛红. 2009. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义. 科学通报, 54(5): 641-647
[182] 沈其韩, 耿元生, 宋彪, 万渝生. 2005. 华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息. 地质学报, 79(5): 616-627
[183] 石永红, 朱光, 王道轩. 2009. 郯庐断裂带张八岭隆起南段肥东群石榴角闪岩变质P-T演化史对其构造属性的制约. 岩石学报, 25(12): 3335-3345
[184] 童劲松, 路玉林, 管运才, 储东如, 耿小光. 2008. 皖东地区燕山期高镁中酸性侵入岩地球化学特征及动力学意义. 中国地质, 35(1): 18-31
[185] 万天丰, 朱鸿. 1996. 郯庐断裂带的最大左行走滑断距及其形成时期. 高校地质学报, 2(1): 14-27
[186] 万渝生, 苗培森, 刘敦一, 杨崇辉, 王伟, 王惠初, 王泽九, 董春艳, 杜利林, 周红英. 2010. 华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源: 碎屑锆石SHRIMP U-Pb同位素年代学制约. 科学通报, 55(7): 572-578
[187] 王斌, 谢智, 崔玉荣, 陈江峰, 周泰禧. 2012. 下扬子地区晚中生代花岗质岩石的源区物质组成反演. 高校地质学报, 18(4): 623-638
[188] 汪晶, 吴明安, 李小东, 张舒, 赵文广, 魏国辉. 2014. 庐枞盆地早白垩世闪长玢岩锆石U-Pb年龄、地球化学特征及其成矿指示意义. 地质学报, 88(4): 547-561
[189] 王元龙, 王焰, 张旗, 贾秀琴, 韩松. 2004. 铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿-地球动力学意义. 岩石学报, 20(2): 325-338
[190] 吴福元, 杨进辉, 柳小明, 李铁胜, 谢烈文, 杨岳衡. 2005. 冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代. 科学通报, 50(18): 1996-2003
[191] 巫祥阳, 徐义刚, 马金龙, 许继峰, 王强. 2003. 鲁西中生代高镁闪长岩的地球化学特征及其成因探讨. 大地构造与成矿学, 27(3): 228-236
[192] 肖文交, 周烑秀, 杨振宇, 赵西西. 2000. 大别-郯庐-苏鲁造山带复合旋转拼贴作用. 地球科学进展, 15(2): 147-153
[193] 谢成龙, 朱光, 牛漫兰, 王勇生. 2007. 滁州中生代火山岩LA-ICP MS锆石U-Pb年龄及其构造地质学意义. 地质论评, 53(5): 642-655
[194] 谢成龙, 朱光, 牛漫兰, 柳小明. 2008a. 郯庐断裂带巢湖-庐江段晚中生代火山岩地球化学特征与岩石圈减薄过程. 岩石学报, 24(8): 1823-1838
[195] 谢成龙, 朱光, 牛漫兰, 王勇生, 向必伟, 胡召齐. 2008b. 郯庐断裂带巢湖-庐江段晚中生代火山岩的锆石U-Pb年代学. 地质科学, 43(2): 294-308
[196] 谢成龙, 朱光, 牛漫兰, 柳小明. 2009. 滁州火山岩地球化学及其对郯庐断裂带内岩石圈减薄的指示. 岩石学报, 25(1): 92-108
[197] 谢智, 李全忠, 陈江峰, 高天山. 2007. 庐枞早白垩世火山岩的地球化学特征及其源区意义. 高校地质学报, 13(2): 235-249
[198] 徐义刚, 巫祥阳, 罗震宇, 马金龙, 黄小龙, 谢烈文. 2007. 山东中侏罗世-早白垩世侵入岩的锆石Hf同位素组成及其意义. 岩石学报, 23(2): 307-316
[199] 薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙. 2009. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?地质学报, 83(2): 247-259
[200] 薛怀民, 董树文, 马芳. 2010. 安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束. 地质学报, 84(5): 664-681
[201] 薛怀民, 董树文, 马芳. 2012. 长江中下游庐枞盆地火山岩的SHRIMP锆石U-Pb年龄: 对扬子克拉通东部晚中生代岩石圈减薄机制的约束. 地质学报, 86(10): 1569-1583
[202] 闫峻, 陈江峰, 喻钢, 钱卉, 周泰禧. 2003. 长江中下游晚中生代中基性岩的铅同位素特征: 富集地幔的证据. 高校地质学报, 9(2): 195-206
[203] 闫峻, 陈江峰, 谢智, 杨刚, 喻钢, 钱卉. 2005. 长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究: 岩石圈地幔性质与演化的制约. 地球化学, 34(5): 455-469
[204] 闫峻, 陈江峰. 2007. 鲁东青山组中性火山岩的地球化学特征: 岩石成因和地质意义. 地球化学, 36(1): 1-10
[205] 闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因: 锆石年代学和Hf-O同位素制约. 岩石学报, 28(10): 3209-3227
[206] 杨德彬, 许文良, 王清海, 裴福萍, 纪伟强. 2006. 安徽蚌埠荆山晚侏罗世花岗岩岩体成因-来自地球化学和锆石Hf同位素的制约. 岩石学报, 22(12): 2923-2932
[207] 杨德彬, 许文良, 王清海, 裴福萍, 纪伟强. 2007. 蚌埠隆起区中生代花岗岩的岩石成因: 锆石Hf同位素的证据. 岩石学报, 23(2): 381-392
[208] 杨进辉, 朱美妃, 刘伟, 翟明国. 2003. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因. 岩石学报, 19(4): 692-700
[209] 袁峰, 周涛发, 范裕, 陆三明, 钱存超, 张乐骏, 段超, 唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702
[210] 袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520
[211] 张俊杰, 王光杰, 杨晓勇, 孙卫东, 戴圣潜. 2012. 皖南旌德花岗闪长岩与暗色包体的成因: 地球化学、锆石U-Pb年代学与Hf同位素制约. 岩石学报, 28(12): 4047-4063
[212] 张青, 朱光, 刘国生, Teyssier C, Dunlap WJ. 2008. 郯庐断裂带张八岭隆起北段的左旋走滑挤压变形及其40Ar/39Ar定年. 地学前缘, 15(3): 234-249
[213] 张岳桥, 董树文. 2008. 郯庐断裂带中生代构造演化史: 进展与新认识. 地质通报, 27(9): 1371-1390
[214] 赵海杰, 毛景文, 向君峰, 周振华, 魏克涛, 柯于富. 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784
[215] 赵田, 朱光, 林少泽, 宋利宏. 2014. 郯庐断裂带南段张八岭群变质岩的原岩时代及其构造意义. 地质论评, 60(6): 1265-1283
[216] 赵子福, 郑永飞, 戴立群. 2013. 大陆碰撞造山带花岗岩中继承锆石成因与岩浆源区性质. 科学通报, 58(23): 2285-2289
[217] 周力, 张均, 王健, 孙腾. 2014. 安徽张八岭地区管店岩体成因及其与上成金矿床的关系. 地质科技情报, 33(1): 32-40
[218] 朱光, 宋传中, 牛漫兰, 刘国生, 王勇生. 2002. 郯庐断裂带的岩石圈结构及其成因分析. 高校地质学报, 8(3): 248-256
[219] 朱光, 王勇生, 牛漫兰, 刘国生, 谢成龙. 2004. 郯庐断裂带的同造山运动. 地学前缘, 11(3): 169-182
[220] 朱光, 王勇生, 王道轩, 牛漫兰, 刘国生, 谢成龙. 2006. 前陆沉积与变形对郯庐断裂带同造山运动的制约. 地质科学, 41(1): 102-121
[221] 朱光, 张力, 谢成龙, 牛漫兰, 王勇生. 2009. 郯庐断裂带构造演化的同位素年代学制约. 地质科学, 44(4): 1327-1342
[222] 资锋, 王强, 戴圣潜, 许卫, 许继峰, 邱华宁, 梁细荣, 涂湘林, 刘颖. 2007. 皖东滁州、上腰铺埃达克质侵入岩年代学及地球化学特征: 岩石成因与成矿意义. 岩石学报, 23(6): 1485-1500
[223] 资锋, 王强, 唐功建, 宋彪, 谢烈文, 杨岳衡, 梁细荣, 涂湘林, 刘颖. 2008. 皖中管店岩体的SHRIMP锆石U-Pb年代学与地球化学: 岩石成因和动力学意义. 地球化学, 37(5): 462-480
[224] 资锋, 王强, 刘新华, 邱华宁. 2011. 扬子东部冶山和山里陈埃达克质侵入岩年代学与地球化学: 岩石成因和动力学意义. 矿物学报, 31(2): 185-200