角闪石是构造带基性糜棱岩中重要组成矿物,其变形行为及矿物成分变化特征是恢复构造带变形环境、构造演化的重要手段(纪沫等,2013; 曹淑云等,2007; 关会梅等,2003; 靳是琴和李鸿超,1986)。本文以洛南-栾川断裂带中基性糜棱岩和构造片岩中角闪石的显微变形特征分析为主线,利用角闪石和斜长石微区成分分析为主要手段解析该断裂带的变质变形环境及构造演化过程。 2 样品及区域地质背景
洛南-栾川断裂带是北秦岭与秦岭北缘的分界线,是发育在华北板块南缘的一条大型断裂(图 1),宽80~200m不等,产状为320°~355°∠67°~80°,为秦岭造山带的重要组成部分(宋传中等,2009; 钟大赉等,1989; 高洪学等,1989)。该带经历了多期构造活动,变形非常强烈(任升莲等, 2011,2010),但有一期强烈的塑性变形使南北两侧的宽坪群、陶湾群、栾川群、太华群等岩石卷入其中,发生了不同程度的糜棱岩化作用,形成不同成分的糜棱岩及构造片麻岩和构造片岩(任升莲等,2010; 宋子季和张维吉,1988)。发育在基性糜棱岩中的角闪石变质变形特征明显,具有明显的动态重结晶和成分环带,其成分变化也因原岩的不同及在构造带位置的不同而不同。本文以构造带基性糜棱岩中的角闪石为研究对象,以其显微变形和成分变化特征研究为主线,以此探讨构造带的变质变形条件以及所反映的构造背景。
![]() | 图 1 洛南-栾川断裂带及庙子构造剖面位置图Fig. 1 The geological sketch map of the Luonan-Luanchuan fault belt showing location of the Miaozi structural section |
本文研究的样品M5、M7-1、M7-3、M8取自栾川县庙子镇南侧的洛南-栾川断裂带典型剖面中的基性糜棱岩和斜长角闪片岩,其南侧、北侧分别以断裂与宽坪群的长英质糜棱岩和绿泥黑云石英片岩相接触(图 2),厚约50m,面理产状为43°∠70°,局部近直立(图 3a),构造透镜体运动学指向为北盘向上逆冲。
![]() | 图 2 庙子实测构造剖面图 ①灰岩;②脆性断层破碎带;③大理岩;④夹方解石脉构造片岩;⑤绿泥黑云片岩、斜长角闪片岩夹糜棱岩;⑥透闪方解云母片岩;⑦基性糜棱岩夹斜长角闪片岩;⑧糜棱岩化角闪片岩夹基性糜棱岩;⑨长英质糜棱岩;⑩老君山岩体Fig. 2 The structural section of Miaozi ① limestone; ② brittle fault belt; ③ marble; ④ tectonic schist with calcite vein; ⑤ chlorite biotite schist,amphibolite schist with mylonite; ⑥ tremolite calcite mica schist; ⑦ mafic mylonites with amphibolite schist; ⑧ mylonitization hornblende schist with mafic mylonites; ⑨ felsic mylonite; ⑩ Laojunshan rock |
![]() | 图 3 庙子构造剖面角闪石变形特征
(a)基性糜棱岩野外照片;(b、c)含透辉石角闪质糜棱岩中角闪石残斑变形和压力影中角闪石(M5);(d)基性糜棱岩中角闪石(M7-1);(e)斜长角闪片岩中角闪石核幔结构(M7-3);(f)角闪石片岩中角闪石变形(M8)Fig. 3 Deformation characteristics of the hornblende from the Miaozi structural section (a)field photos of mafic mylonites;(b,c)the deformation and pressure shadow of porphyroclastic hornblendes in diopside-amphibolite mylonite(M5);(d)hornblendes in mafic mylonite(M7-1);(e)the core-mantle structure of hornblende in plagioclase-amphibolite schist(M7-3);(f)deformation of hornblendes in hornblende schist(M8) |
显微变形研究是构造岩研究的重要手段(纪沫等,2008; 曹淑云等,2007; Passchier and Trouw, 2005; 胡玲,1998)。为了系统研究洛南-栾川断裂带上角闪石变质变形特征,对该剖面含角闪石糜棱岩进行了显微变形分析,主要变质变形岩石类型有基性糜棱岩、斜长角闪片岩和角闪石片岩等。
含透辉石角闪质糜棱岩(M5):主要矿物为斜长石、角闪石、透辉石、方解石等。糜棱结构,片状构造。长石强烈地绢云母化,团块状。角闪石浅灰绿色,眼球状残斑少量,条片状、长枣核状为多。眼球状残斑周边有很多长条状动态重结晶角闪石新晶(图 3b),与残斑形成核幔结构。残斑之间也常见拔丝状动态重结晶新晶(图 3c)。
基性糜棱岩(M7-1):主要矿物为斜长石、角闪石、绿帘石、石英、绿泥石等。糜棱结构,片状构造。角闪石残斑灰绿色,多为菱形块状,少量眼球状或长枣核状;角闪石新晶多在残斑周边,个体较小,为膨凸-亚颗粒式动态重结晶(图 3d)。石英呈透镜状,动态重结晶强烈,全部细粒化;斜长石呈条带状,细粒化;绿帘石、绿泥石多分布在角闪石周围。
斜长角闪片岩(M7-3):主要矿物为斜长石、角闪石、绿帘石、石英等。粒柱状变晶结构,片状构造。角闪石灰绿色,残斑条片状或长眼球状,边部有明显的亚颗粒式动态重结晶,形成核幔结构(图 3e)。石英残斑为长枣核状和条带状,重结晶强烈,具有核幔结构。长石不规则团块状,细粒化明显,绢云母化强烈。
糜棱岩化角闪片岩(M8):主要矿物为斜长石、角闪石、绿帘石,此外还含少量重晶石、硬石膏等。粒柱状变晶结构,片状构造。石英卵状-长卵状,可见棋盘格子消光即亚晶结构,细粒化,偶见长条带。长石强烈的绢云母化,柱状。角闪石浅灰绿色,眼球状残斑少量,条片状、长枣核状为多(图 3f)。
由镜下观察可见,洛南-栾川断裂带上的角闪石主要以残余变斑晶和基质中的新生晶两种形式出现,变形程度各有不同。残斑角闪石两组解理发育,形态多为长菱形或眼球状,多呈褐绿-褐黄色多色性;基质中的角闪石新晶为条片状,多呈黄绿-蓝绿色多色性。有的残斑边部只出现早期的膨凸式动态重结晶;而更多的是残斑周边已经形成长条片状亚颗粒式动态重结晶新晶,形成核幔结构。并随构造变形产生弯曲变形现象,变形更强烈的已不见角闪石残斑,只见长条状同构造角闪石新晶。有些角闪石残斑具环带结构,内核的多色性很弱,淡黄绿-无色,具阳起石的颜色特征,外环的多色性极明显,深蓝绿色-浅黄绿色,颜色渐变过渡。在近50m范围内的角闪石变形有明显不同,说明洛南-栾川断裂带是一个构造变形非常复杂的断裂带,是由若干条强弱相间的强变形带和夹持其间的弱变形域组成。但角闪石的这些变形都属于不同程度的塑性变形。
角闪石的变形是一种复杂的过程,破裂、晶体塑性变形和溶解、沉淀可能在不同条件下起着不同的作用(纪沫等,2013; Tatham et al., 2008; Liu,1999; Fliervoet et al., 1997; Skrotzki,1992; Drury and Urai, 1990; Allison and La Tour,1977; Dollinger and Blacic, 1975)。通常认为在绿片岩相及低于绿片岩相条件下,角闪石表现为脆性(Díaz Aspiroz et al., 2007; Rooney et al., 1975);在角闪岩相和麻粒岩相条件下,由于化学驱动力和流体的作用,角闪石的变形机制转变为晶内塑性变形,并对构造带的力学性质和流变学属性起着控制作用(胡玲等,2009; 纪沫等,2008; 关会梅等,2003; De Meer et al., 2002; Imon et al., 2002,2004; Hanmer,2000; Berger and Stünitz,1996; Babaie and La Tour,1994; Chen et al., 2015)。所以,从洛南-栾川断裂带角闪石的变形特征和动态重结晶变形型式上可以看出其变形环境应为角闪岩相。 4 角闪石的化学成分特征
通过镜下观察可见残斑角闪石具有明显的消光环带,其背散射图像也清晰可见,说明角闪石在韧性剪切变形过程中其化学成分也随之产生一定的变化(Leloup et al., 1993; Nyman et al., 1992; Cumbest et al., 1989; Triboulet and Audren, 1988)。因此,对角闪石环带成分进行分析可获得其变质变形环境的变化。
角闪石探针分析结果见表 1,按2001年国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告中角闪石的分类,所测角闪石全部为阳起石(图 4)(角闪石专业委员会全体成员,2001)。角闪石晶体化学-成因图解(刘劲鸿,1986)显示:M5、M7-1、M7-3均落在基性岩浆成因亚区及相应正变质成因亚区;M8的一部分点落在超基性岩浆成因亚区及相应正变质成因亚区,另一部分落在接触变质成因区。显示出这些角闪石原为岩浆成因(图 5)。
| 表 1 庙子地区洛南-栾川断裂带角闪石探针成分(wt%) Table 1 Microprobe analyses of hornblendes in Luonan-Luanchuan fault in Miaozi area(wt%) |
![]() | 图 4 角闪石分类图Fig. 4 The classification chart of hornblendes |
![]() | 图 5 角闪石晶体化学-成因图解(据刘劲鸿,1986) Ⅰ:岩浆成因区(正变质成因区):Ⅰ1-1、Ⅰ1-2-超基性岩浆成因亚区及相应正变质成因亚区;Ⅰ2-基性岩浆成因亚区及相应正变质成因亚区;Ⅰ3-中性岩浆成因亚区及相应正变质成因亚区.Ⅲ:接触变质成因区(多为碳酸盐岩热接触变质)Fig. 5 The genesis illustration of Crystal chemistry of hornblende(after Liu,1986) Ⅰ: magma genesis area: Ⅰ1-1,Ⅰ1-2-ultrabasic magma genesis area and the corresponding orthometamorphic genesis area; Ⅰ2-basic magma genesis area and the corresponding orthometamorphic genesis area; Ⅰ3-intermediate-basic magma genesis area and the corresponding orthometamorphic genesis area. Ⅲ: contact metamorphic genesis area |
为了了解角闪石在断裂带韧性变形过程中的成分变化,对角闪石进行了成分剖面分析。分析显示其内核和外环成分有明显的差异,与核部相比,幔和边部的SiO2、MgO明显变高,而Al2O3、FeO、Na2O、CaO则明显减少。角闪石的(Na+K)-Ti变异图显示其变质变形环境主要为角闪岩相,少数为绿片岩相和麻粒岩相(图 6)。角闪石TiO2-Al2O3图解显示角闪石核部成分偏壳幔混合型,而边部成分偏壳源型(图 7),反映出角闪石在由深及浅的构造活动过程中的成分变化。
![]() | 图 6 角闪石的(Na+K)-Ti变异图(转靳是琴和李鸿超,1986) 图中坐标为以23个氧原子为基础的角闪石分子式中的阳离子数Fig. 6 The variation chart of(Na+K)-Ti in hornblendes(after Jin and Li, 1986) The coordinate means cation number in molecular formula of hornblende based 23 oxygen atoms |
![]() | 图 7 角闪石TiO2-Al2O3图解 C为壳源;MC为壳幔混源;M为幔源Fig. 7 The TiO2-Al2O3 diagram of hornblendes C-crust source; MC-crust-mantle mixing source; M-mantle source |
上述成分分析显示角闪石全部为阳起石,核部成分为壳幔混合型,显示角闪石是深部壳幔岩浆活动的产物;在洛南-栾川断裂带活动过程中产生剪切变形,并导致其成分产生变化形成退变质成分环带——壳源特征的角闪石幔和退变质边部(Brodie,1998)。 5 角闪石的变形温压条件
角闪石附近的斜长石残斑和围绕其周边的新生斜长石也具有明显的化学成分差异,残斑斜长石成分为An50-An88,属基性培长石-拉长石;而围绕残斑周围的新生斜长石成分为An17-An7,属酸性斜长石(表 2、图 8),由斜长石残斑到周边的新生斜长石成分由基性变化为酸性。斜长石较好的成分环带是其形成过程中与不同环境相平衡的结果(Tullis et al., 1990; Tullis,1983; Tracy et al., 1976)。因此,通过对具有环带特征的斜长石进行成分剖面分析,发现从斜长石的核部-幔部-边部的成分变化有一定的规律。即从晶体的中心至边部,斜长石由偏基性向偏酸性变化。由此可见,早期区域变质作用下的角闪石矿物共生是阳起石+培长石-拉长石(基性斜长石);随着洛南-栾川断裂带剪切作用的发生,岩石发生退变质作用形成了阳起石+更长石+钠长石(酸性斜长石)、绿帘石、绿泥石和石英等典型的退变质矿物共生组合,反映了构造应力作用导致变质环境的变化(Brodie and Rutter, 1985)。
| 表 2 庙子地区洛南-栾川断裂带斜长石探针成分表(wt%) Table 2 Microprobe analyses of feldspar of the Luonan-Luanchuan fault in Miaozi area(wt%) |
![]() | 图 8 斜长石分类图Fig. 8 The classification chart of plagioclases |
Holl and and Blundy(1994)根据角闪石的相平衡实验及天然共生组合资料,研究了角闪石在不同的结晶位置上及其相互之间的阳离子替代作用,认为元素之间的含量与其形成环境有相关性;之后诸多学者的研究都表明角闪石中的Al总量与温度和压力都有关,可以作为温度计和压力计(Holdaway,2004; Kohn and Spear, 2000; Anderson and Smith, 1995; Hiroi et al., 1998; Holl and and Blundy,1994; Schmidt,1992; Blundy and Holl and ,1990; Johnson and Rutherford, 1989; Hollister et al., 1987; Hammarstrom and Zen, 1986);为了准确计算角闪石变形的温度和压力,选取达到重结晶平衡的角闪石和斜长石颗粒微区成分进行分析,利用斜长石-角闪石地质温度计及角闪石全铝压力计(Plyusnina,1982),得到上述各种角闪石的变形温压条件(图 9)。
![]() | 图 9 斜长石-角闪石实验地质温压计图(底图据 Plyusnina,1982) Ⅰ、Ⅱ、Ⅲ分别对应低、中、高压相系Fig. 9 Thermobarometry of amphibole-plagioclase(the base map after Plyusnina,1982) Ⅰ: low-pressure phase system; Ⅱ: medium-pressure facies series; Ⅲ: high-pressure phase system |
利用相邻角闪石和斜长石的核、幔、边(或基质)的成分对应计算,获得核部的温压为620~640℃,0.4~0.7GPa;幔部的温压为490~520℃,0.15~0.65GPa;边部的温压为465~482℃;0.5~0.8GPa。由此可见,核部的形成温度相对较高,反映角闪石原岩中的区域变质温度;而幔、边部的温度较低,可能是后期洛南-栾川断裂带活动过程中产生退变质和变形作用,形成了相对于核部来说的低温、高压的角闪石边部。 6 结论
通过上述对洛南-栾川断裂带庙子剖面的角闪质构造岩中角闪石的分析,认为角闪石的变质变形特征有如下几点:
(1)角闪石的显微变形特征主要为膨凸式和亚颗粒式动态重结晶,显示其变形环境应为角闪岩相。
(2)探针成分分析显示角闪石全部属阳起石,大多数具有岩浆角闪石特征。角闪石在断裂带韧性剪切过程中产生了变质变形作用,形成了成分环带,幔和边部的SiO2、MgO明显偏高,而Al2O3、FeO、Na2O、CaO则明显减少。角闪石Al2O3-TiO2图解显示其核部成分偏壳幔混合型,边部成分偏壳源型。
(3)角闪石的(Na+K)-Ti变异图显示角闪石遭受的变质变形环境属角闪岩相,经历构造应力作用后,角闪石的幔部和边部退变质为绿片岩相。
(4)与角闪石共生的斜长石在构造应力作用下也发生了明显的成分分带性变化,即从残斑斜长石-核幔结构的幔部长石新生晶的成分为An50-An88~An17-An7,即由基性斜长石,酸性新生斜长石。
(5)用斜长石-角闪石实验地质温压计计算核部温压为620~640℃,0.4~0.7GPa;幔部的温压度为490~520℃,0.15~0.65GPa;边部的温压为465~482℃;0.5~0.8GPa。
通过对庙子基性糜棱岩中角闪石的变质变形分析,认为庙子基性糜棱岩中角闪石的核部形成于偏幔源成分的深部环境,为岩浆成因角闪石;后在板块碰撞的区域变质作用过程中形成了变质成因角闪石;边部是受韧性剪切带剪切作用而形成偏壳源成分的退变质环带,由角闪石生长成分的变化反映出由深及浅的过程。角闪石的变质变形特征显示其变质环境由角闪岩相逐渐退变质为绿片岩相。所以,角闪石的变质变形特征均说明断裂带在构造活动过程中有一定的抬升,是造山带隆起的结果。因此,角闪石的变质变形特征分析不仅可以揭示断裂带构造活动环境的变化,还可以深化古大陆边缘断裂带的变形作用与变质作用之间的内在联系,对研究造山带中断裂带的活动条件及演化有重要意义。
| [1] | Allison I and La Tour TE. 1977. Brittle deformation of hornblende in a mylonite:A direct geometrical analogue of ductile deformation by translation gliding. Canadian Journal of Earth Sciences, 14(8):1953-1958 |
| [2] | Anderson JL and Smith DR. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6):549-559 |
| [3] | Babaie HA and La Tour TE. 1994. Semibrittle and cataclastic deformation of hornblende-quartz rocks in a ductile shear zone. Tectonophysics, 229(1-2):19-30 |
| [4] | Berger A and Stünitz H. 1996. Deformation mechanisms and reaction of hornblende:Examples from the Bergell tonalite(Central Alps). Tectonophysics, 257(2-4):149-174 |
| [5] | Blundy JD and Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2):208-224 |
| [6] | Brodie KH and Rutter EH. 1985. On the relationship between deformation and metamorphism, with special reference to the behavior of basic rocks. In:Thompson AB and Rubie DC(eds.). Metamorphic Reactions:Kinetics, Textures, and Deformation. New York:Springer, 138-179 |
| [7] | Brodie KH. 1998. Retrogressive mylonitic metabasic fault rocks. In:Snoke A, Tullis J and Todd VR(eds.). Fault Related Rocks:A Photographic Atlas. New Jersey:Princeton University Press, 402-403 |
| [8] | Cao SY, Liu JL and Hu L. 2007. Micro-and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende:Case study of high-grade mylonites from Diancangshan, western Yunnan. Science in China(Series D), 50(10):1459-1470 |
| [9] | Chen YP, Wei CJ, Zhang JR and Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707 |
| [10] | Cumbest RJ, Drury MR, van Roermund HLM and Simpson C. 1989. Dynamic recrystallization and chemical evolution of clinoamphibole from Senja, Norway. Contributions to Mineralogy and Petrology, 101(3):339-349 |
| [11] | De Meer S, Drury MR, De Bresser JHP et al. 2002. Current issues and new developments in deformation mechanisms, rheology and tectonics. In:De Meer S, Drury MR and De Bresser JHP(eds.). Deformation Mechanisms, Rheology and Tectonics:Current Status and Future Perspectives. Geological Society, London, Special Publications, 200:1-27 |
| [12] | Díaz Aspiroz M, Lloyd GE and Fernández C. 2007. Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions:A SEM/EBSD study of metabasites from the Aracena metamorphic belt(SW Spain). Journal of Structural Geology, 29(4):629-645 |
| [13] | Dollinger G and Blacic JD. 1975. Deformation mechanisms in experimentally and naturally deformed amphiboles. Earth and Planetary Science Letters, 26(3):409-416 |
| [14] | Drury MR and Urai JL. 1990. Deformation-related recrystallization processes. Tectonophysics, 172(3-4):235-253 |
| [15] | Fliervoet TF, White SH and Drury MR. 1997. Evidence for dominant grain-boundary sliding deformation in greenschist-and amphibolite-grade polymineralic ultramylonites from the Redbank Deformed Zone, Central Australia. Journal of Structural Geology, 19(12):1495-1520 |
| [16] | Gao HX, Li SL and Cheng XT. 1989. The characteristics of the petrochemistry and the trace elements in the Kuanping Group of the middle Proterozoic erathem. Geology of Shaanxi, 7(1):11-27(in Chinese with English abstract) |
| [17] | Guan HM, Liu JL, Zhang S et al. 2003. Mechanisms of development and components of foliations in metamorphosed mafic rocks(amphibolites) from lower crust:Taking the metamorphic mafic rocks from Haicheng, Liaodong Peninsula for example. Global Geology, 22(4):344-351(in Chinese with English abstract) |
| [18] | Hammarstrom JM and Zen EA. 1986. Aluminum in hornblende:An empirical igneous geobarometer. American Mineralogist, 71(11-12):1297-1313 |
| [19] | Hanmer S. 2000. Matrix mosaics, brittle deformation, and elongate porphyroclasts:Granulite facies microstructures in the Striding-Athabasca mylonite zone, western Canada. Journal of Structural Geology, 22(7):947-967 |
| [20] | Hiroi Y, Kishi S, Nohara T et al. 1998. Cretaceous high-temperature rapid loading and unloading in the Abukuma metamorphic terrane, Japan. Journal of Metamorphic Geology,16(1):67-81 |
| [21] | Holdaway MJ. 2004. Optimization of some key geothermobarometers for pelitic metamorphic rocks. Mineralogical Magazine, 68(1):1-14 |
| [22] | Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4):433-447 |
| [23] | Hollister LS, Grissom GC, Peters EK et al. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4):231-239 |
| [24] | Hu L. 1998. An Introduction to Micro-Structural Geology. Beijing:Geological Publishing House, 46-47(in Chinese) |
| [25] | Hu L, Liu JL, Ji M et al. 2009. Identification Manual of Deformation Microstructures. Beijing:Geological Publishing House, 5-71(in Chinese) |
| [26] | IMA-CNMMN. 2001. Nomenclature of amphiboles. Acta Petrologica et Mineralogica, 20(1):84-100(in Chinese with English abstract) |
| [27] | Imon R, Okudaira T and Fujimoto A. 2002. Dissolution and precipitation processes in deformed amphibolites:An example from the ductile shear zone of the Ryoke metamorphic belt, SW Japan. Journal of Metamorphic Geology, 20(3):297-308 |
| [28] | Imon R, Okudaira T and Kanagawa K. 2004. Development of shape-and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. Journal of Structural Geology, 26(5):793-805 |
| [29] | Ji M, Hu L, Liu JL et al. 2008. Dynamic recrystallization and metamorphic conditions of main rock-forming minerals. Earth Science Frontiers, 15(3):226-233(in Chinese with English abstract) |
| [30] | Ji M, Hu L, Liu JL, Shen L, Zou YX, Song HL and Miao PS. 2013. The process and mechanisms of metamorphism and deformation of hornblende:An example from the Hengshan Mountains, Shanxi Province. Science China(Earth Sciences), 55(12):1987-1995 |
| [31] | Jin SQ and Li HC. 1986. Introduction to Genetic Mineralogy. Changchun:Jilin University Press, 221-222(in Chinese) |
| [32] | Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera(California) volcanic rocks. Geology, 17(9):837-841 |
| [33] | Kohn MJ and Spear F. 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, 28(12):1127-1130 |
| [34] | Leloup PH, Harrison TM, Ryerson FJ et al. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research, 98(B4):6715-6743 |
| [35] | Liu JH. 1986. Genetic classification of hornblendes and its application. Journal of Changchun College of Geology,(1):41-48(in Chinese with English abstract) |
| [36] | Liu YC. 1999. Crystallographic preferred orientation and slip system of hornblende in the Florence shear zone, Central Australia. Journal of Mineralogy and Petrology, 19(3):1-7 |
| [37] | Nyman MW, Law RDS and Melik EA. 1992. Cataclastic deformation mechanism for the development of core-mantle structures in amphibole. Geology, 20(5):455-458 |
| [38] | Passchier CW and Trouw RAJ. 2005. Microtectonics. 2nd Edition. Berlin:Springer, 60-61, 367 |
| [39] | Plyusnina LP. 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology, 80(2):140-146 |
| [40] | Ren SL, Song CZ, Li JH, Chen ZC, Huang WC, Zhang HR and Zhang H. 2010. Petromorphology of the Shiren Mountain block in the Qinling orogenic belt and its significance. Geology in China, 37(2):347-356(in Chinese with English abstract) |
| [41] | Ren SL, Song CZ, Lin SF, Li JH, Zhang HR, Tu WC and Zhang JJ. 2011. Mineralogy characteristics and rheological analysis of Funiushan tectonic belt in Qinling orogenic belt. Chinese Journal of Geology, 46(2):376-391(in Chinese with English abstract) |
| [42] | Rooney TP, Riecker RE and Gavasci AT. 1975. Hornblende deformation features. Geology, 3(7):364-366 |
| [43] | Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3):304-310 |
| [44] | Skrotzki W. 1992. Defect structure and deformation mechanisms in naturally deformed hornblende. Physica Status Solid(A), 131(2):605-624 |
| [45] | Song CZ, Ren SL, Li JH, Chen ZC, Lian Y and Cai ZC. 2009. The strain partition in the southern margin of the North China plate:A study of Luonan-Luanchuan fault belt and the strong deformation belt in the northern margin of the Qinling orogenic belt. Earth Science Frontiers, 16(3):181-189(in Chinese with English abstract) |
| [46] | Song ZJ and Zhang WJ. 1988. A discusion on the primary rock formation and forming conditions of the Kuanping Group. Acta Petrologica et Mineralogica, 7(2):118-126(in Chinese with English abstract) |
| [47] | Tatham DJ, Lloyd GE, Butler RWH and Casey M. 2008. Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 267(1-2):118-128 |
| [48] | Tracy RJ, Robinson P and Thompson AB. 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61(7-8):762-775 |
| [49] | Triboulet C and Audren C. 1988. Controls on P-T-t deformation path from amphibole zonation during progressive metamorphism of basic rocks(estuary of the River Vilaine, South Brittany, France). Journal of Metamorphic Geology, 6(2):117-133 |
| [50] | Tullis J. 1983. Deformation of feldspars. In:Ribbe PH(ed.). Reviews in Mineralogy:Feldspar Mineralogy. Mineralogical Society of America, 2:297-323 |
| [51] | Tullis J, Dell'Angelo L and Yund RA. 1990. Ductile shear zones from brittle precursors in feldspathic rocks:The role of dynamic recrystallization. In:Hobbs BE and Heard HC(eds.). Mineral and Rock Deformation:Laboratory Studies. AGU Geophysical Monogr. Ser., 56:67-81 |
| [52] | Zhong DL, Tapponnier P, Wu HW et al. 1990. Large-scale strike slip fault:The major structure of intracontinental deformation after collision. Chinese Science Bulletin, 35(4):304-309 |
| [53] | 曹淑云, 刘俊来, 胡玲. 2007. 角闪石高温脆-韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例. 中国科学(D辑), 37(8):1004-1013 |
| [54] | 高洪学, 李栓禄, 成学涛. 1989. 中元古界宽坪群岩石化学及微量元素特征. 陕西地质, 7(1):11-27 |
| [55] | 关会梅, 刘俊来, 张崧等. 2003. 深部地壳镁铁质岩石(斜长角闪岩)叶理的组成及形成机制分析——以辽东海城地区变质镁铁质岩石为例. 世界地质, 22(4):344-351 |
| [56] | 胡玲. 1998. 显微构造地质学概论. 北京:地质出版社, 46-47 |
| [57] | 胡玲, 刘俊来, 纪沫等. 2009. 变形显微构造识别手册. 北京:地质出版社, 5-71 |
| [58] | 角闪石专业委员会全体成员. 2001. 角闪石命名法——国际矿物学协会新矿物及矿物命名委员会:角闪石专业委员会的报告. 岩石矿物学杂志, 20(1):84-100 |
| [59] | 纪沫, 胡玲, 刘俊来等. 2008. 主要造岩矿物动态重结晶作用及其变质条件. 地学前缘, 15(3):226-233 |
| [60] | 纪沫, 胡玲, 刘俊来, 申亮, 邹运鑫, 宋鸿林, 苗培森. 2013. 角闪石变形变质过程及其变形机制——以山西恒山地区斜长角闪岩为例. 中国科学(地球科学), 43(1):52-60 |
| [61] | 靳是琴, 李鸿超. 1986. 成因矿物学概论. 长春:吉林大学出版社, 221-222 |
| [62] | 刘劲鸿. 1986. 角闪石成因矿物族及其应用. 长春地质学院学报,(1):41-48 |
| [63] | 任升莲, 宋传中, 李加好, 陈泽超, 黄文成, 张浩然, 张华. 2010. 秦岭石人山岩块的构造岩石学特征及其意义. 中国地质, 37(2):347-356 |
| [64] | 任升莲, 宋传中, Lin SF, 李加好, 张浩然, 涂文传, 章骏杰. 2011. 秦岭伏牛山构造带的矿物岩石学特征与流变学分析. 地质科学, 46(2):376-391 |
| [65] | 宋传中, 任升莲, 李加好, 陈泽超, 连芸, 蔡志川. 2009. 华北板块南缘的变形分解:洛南-栾川断裂带与秦岭北缘强变形带研究. 地学前缘, 16(3):181-189 |
| [66] | 宋子季, 张维吉. 1988. 宽坪群的原岩建造及其形成环境浅析. 岩石矿物学杂志, 7(2):118-126 |
| [67] | 钟大赉, Tapponnier P, 吴海威等. 1989. 大型走滑断层——碰撞后陆内变形的重要形式. 科学通报, 34(7):526-529 |
2016, Vol. 32










