岩石学报  2016, Vol. 32 Issue (2): 537-554   PDF    
新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义
刘亚然1,2, 简平1, 张维1, 石玉若1, 王义召3, 张履桥4, 刘敦一1    
1. 中国地质科学院地质研究所北京离子探针中心, 北京 100037;
2. 中国地质大学地球科学学院, 武汉 430074;
3. 云南省区域地质调查局, 玉溪 653100;
4. 内蒙古自治区地质研究所, 呼和浩特 010020
摘要: 本文为首次报道东准噶尔北塔山蛇绿混杂岩的锆石SHRIMP U-Pb年龄及氧同位素。北塔山蛇绿混杂岩出露于扎河坝-阿尔曼泰蛇绿混杂岩东南端,中蒙边境附近。岩石地球化学表明,其主要为岛弧玄武岩,稀土元素球粒陨石标准化模式表现为轻稀土相对富集,微量元素的N-MORB标准化蛛网图显示富集大离子亲石元素(LILE),存在Nb和Ta负异常,显示了受消减带影响的信息,其可能是准噶尔地区洋壳俯冲-消减的产物。东准噶尔北塔山蛇绿混杂岩中辉长岩的锆石获得了3组SHRIMP U-Pb年龄,第一组锆石的年龄为494±3Ma(n=14, χ2=1.16),对应δ18O加权平均值为5.2±0.3‰(1σ),与幔源锆石δ18O值(5.3±0.3‰)相一致,代表了辉长岩的形成年龄,亦代表了该蛇绿岩形成时代。辉长岩中第二组锆石的SHRIMP U-Pb年龄范围为412±13Ma和259~264Ma,对应锆石δ18O值为6.5±0.1‰~11.1±0.1‰,表明它们受到后期高δ18O壳源流体/熔体不同程度的改造。研究区与玄武岩呈侵入接触关系的花岗斑岩锆石SHRIMP U-Pb年龄为407±2Ma,代表了该花岗斑岩的形成年龄,并约束了阿尔曼泰洋盆的闭合时限可能为晚志留纪-早泥盆纪。而其对应锆石δ18O值为6.1±0.2‰(1σ),反映了岩浆物质可能主要来源于下伏玄武质洋壳。本文的研究结果不仅表明北塔山蛇绿岩形成于晚寒武世,而且进一步证明它是扎河坝-阿尔曼泰蛇绿岩带的东南延伸。更为重要的是,本文的研究还证明锆石O同位素研究与锆石SHRIMP定年研究相结合是合理解释蛇绿岩中锆石年龄复杂性的有效途径之一。
关键词: 北塔山     蛇绿混杂岩     辉长岩     花岗斑岩     锆石SHRIMP U-Pb年代     氧同位素     东准噶尔    
Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance
LIU YaRan1,2, JIAN Ping1, ZHANG Wei1, SHI YuRuo1, WANG YiZhao3, ZHANG LüQiao4, LIU DunYi1    
1. Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. School of Earth Sciences, China University Geosciences, Wuhan 430074, China;
3. Regional Geological Survey of Yunnan Province, Yuxi 653100, China;
4. Institute of Geology, Inner Mongolian, Hohhot 010055, China
Abstract: This paper firstly reports SHRIMP zircon U-Pb dating and O isotope composition of the Beitashan ophiolitic mélange in the East Junggar. Beitashan ophiolitic mélange is located in the southeastern end of the Zhaheba-Aermantai ophiolite belt, which southeasterly extends via the China-Mongolia border to Mongolia. Geochemical data show that most of basalts hold geochemical signatures of island arc magmatic rocks, such as enriched LREE relative to HREE in the chondrite-normalized REE pattern, and N-MORB normalized spider diagram shows enrichment in LILE and Nb, Ta negative anomalies, suggesting that they likely resulted from island arc magmatism. Zircons from a gabbro sample which from the ophiolite yielded three groups of SHRIMP U-Pb ages. The first group give a weighted mean age of 494±3Ma(n=14, χ2=1.16) and weighted mean δ18O value of 5.2±0.3‰(1σ), consistent with the mantle value of 5.3±0.3‰, and therefore we interpret the age of 494±3Ma as the formation age of the gabbro, as well as the ophiolite. The second and third groups, which yielded ages of 412±13Ma(n=6, χ2=0.21) and 259~264Ma with the δ18O values ranging from 6.5±0.1‰ to 11.1±0.1‰, significantly higher than the mantle value. We interpret the age of second group as results of varied degrees of modification by fluids or melts, which have the high δ18O values and the third group age as results of the hydrothermal fluids with high δ18O value. A granite porphyry, which intrudes ophiolite complex, yielded a weighted mean age of 407±2Ma and a weighted mean δ18O value of 6.1±0.2‰(1σ). We interpret the age as the formation time of the porphyry and the δ18O value as an indicator for the granitic melt originated from partial melting of basaltic oceanic crustal materials. The formation time of the porphyry constrained the closure of Aermantai ocean basin in the Late Silurian-Early Devonian. These results not only demonstrate that the Beitashan ophiolite formed during Late Cambrian but also further confirm that the Beitashan is the southeastern extension of the Zhaheba-Aermantai ophiolite belt. Importantly, our current research illustrates that combination of zircon O isotope analyses with zircon U-Pb dating is one of the most efficient technique to reasonably interpret the complexity of the age spectrum that has usually been detected in ophiolites.
Key words: Beitashan     Ophiolitic mé     lange     Gabbro     Granite porphyry     SHRIMP zircon dating     O isotope     East Junggar    
1 引言

蛇绿岩作为洋壳和上地幔的碎片,通常作为板块缝合带的主要标志(Dewey and Bird, 1971; Coleman,1977; Nicolas,1989; Robinson et al., 2008; Jian et al., 2010),以构造侵位的形式产在造山带中,对揭示造山带构造演化历史具有重要意义。尽管由于蛇绿岩可以形成于多种构造环境中而表现出其本身的复杂性,但是蛇绿岩中火山岩单元的地球化学特征表明,大部分蛇绿岩产生于俯冲消减带上(也即SSZ)。(Shervais et al., 2001; Pearce et al., 1984; Pearce, 20032008; Robinson et al., 2008; Luo et al., 2015; Niu et al., 2015)。蛇绿岩由形成到就位经历了板块间的俯冲、碰撞及其构造叠加等改造作用,此期间蛇绿岩经历多次岩浆活动及不同程度的变质作用(张旗等,1999),使得蛇绿岩的研究变得复杂而困难。越来越多的研究表明,锆石作为SiO2饱和的岩石中的副矿物,具有耐高温、耐熔、阴阳离子扩散速率低、化学稳定性好以及硬度大等特征,能有效地记录其结晶年龄和岩浆氧同位素(δ18O)信息(Monjzsis et al., 2001; Peck et al., 2001; Hanchar and Hoskin, 2003; Valley et al., 19982005; Valley,2003; Booth et al., 2005; Cavosie et al., 2011; Grimes et al., 2013; Liu et al., 2015; Chen et al., 2015),因此对于确定岩石的形成时代与岩浆源区特征及岩浆演化历史具有重要意义。特别是锆石O同位素研究,可以很好地指示岩浆物质来源、追踪地壳物质循环演化以及壳-幔相互作用等过程(Valley et al., 2005)。

蛇绿岩的精确定年是地质年代学研究中的一个“老大难”问题。虽然近年来由于SHRIMP定年技术的广泛应用,在这方面已取得了长足的进展,但同时也发现一些新的问题,其中最显著的一个问题是蛇绿岩存在“多组年龄”问题,例如简平等(2003)对东准噶尔扎河坝蛇绿岩研究时,获得辉长岩锆石的两组SHRIMP U-Pb年龄分别为489±4Ma和406±4Ma,并认为489±4Ma代表了蛇绿岩的形成年龄,而年轻一组年龄的出现代表了一次岩浆热事件,而张越(2012)测得扎河坝辉长岩年龄为409±9Ma,并结合前人研究成果得出扎河坝-阿尔曼泰地区既存在早古生代(寒武-中奥陶世)蛇绿岩,又存在晚古生代(早泥盆世)蛇绿岩;方爱民等(2015)对东准噶尔卡拉麦里蛇绿岩形成时代研究时,获得辉长岩的LA-ICP-MS锆石U-Pb年龄的3个峰值406±2Ma、514±5Ma和332±6Ma,并认为406±2Ma代表了卡拉麦里蛇绿岩的形成年龄,而最年轻的年龄332±6Ma与蛇绿岩的就位有关;然而,江帮耀(2009)测得卡拉麦里蛇绿岩中辉长岩锆石SHRIMP U-Pb年龄为330±2Ma,并认为其代表了蛇绿岩的形成年龄。而蛇绿岩辉长岩中锆石U-Pb年龄与O同位素相结合,可以对蛇绿岩的精确形成时代进行限定。

东准噶尔造山带为中亚造山带的重要组成部分,自古生代以来经历了大洋扩张、板块俯冲、碰撞和后碰撞等构造演化历史(何国琦等,1994; Windley et al., 2002; 李锦轶和徐新,2004; 李锦轶等,2006; Xiao et al., 2004),该造山带发育有两大蛇绿岩带:扎河坝-阿尔曼泰蛇绿岩带和卡拉麦里蛇绿岩带(李锦轶,1995; 李锦轶和徐新,2004; 李锦轶等,2006; Xiao et al., 2004; 肖文交等,2006),它们的研究对于恢复东准噶尔造山带形成过程具有关键性作用,对于研究中亚造山带演化史具有十分重要的意义。前人对两条蛇绿岩带形成时代进行了详细的研究(简平等,2003; Zeng et al., 2015; 黄萱等,1997; 肖文交等,2006; 方爱民等,2015; 唐红峰等,2007; Luo et al., 2015),获得扎河坝-阿尔曼泰蛇绿岩带的形成时代为489~510Ma,卡拉麦里蛇绿岩带的形成时代为373~406Ma。但是,处于扎河坝-阿尔曼泰蛇绿岩带东南端的北塔山蛇绿混杂岩却鲜有报导,其确切形成时代、岩石地球化学特征及其演化历史迄今尚不清楚。

因此,本文在对东准噶尔北塔山蛇绿混杂岩带野外调查基础上,对其中玄武岩、超基性岩等相关单元进行了全岩地球化学分析研究,首次对其中的辉长岩及侵入到玄武岩中的花岗斑岩进行了详细的锆石SHRIMP U-Pb年龄和氧同位素分析,并以此为基础对该蛇绿混杂岩的形成时代及其演化历史进行了初步探讨,力图为该区蛇绿岩的区域对比及深入认识东准噶尔造山带的演化历史提供约束。重要的是本文研究结果对蛇绿岩中存在多组锆石年龄的合理解释具有重要的启示意义。 2 区域地质背景与样品采集

东准噶尔造山带位于西伯利亚南缘阿尔泰造山带和天山造山带之间,其古生代以来的大地构造演化是古亚洲洋演化的重要阶段(肖文交等,2006; Windley et al., 2007)。该造山带由古生代俯冲-增生演化过程中形成的俯冲-增生杂岩构成,出露地层主要为泥盆系和石炭系,广泛分布有中基性侵入岩和晚古生代花岗岩(Coleman,1989; Feng et al., 1989; Şengör et al., 1993; Şengör and Natal’in,1996; Jahn,2004; Kröner et al., 2007; Xiao et al., 20082011; 柴凤梅等,2012)。该造山带由北向南依次分布有:都拉特岛弧、扎河坝-阿尔曼泰蛇绿岩、野马泉岛弧以及卡拉麦里蛇绿岩(图 1)。都拉特岛弧带出露地层主要为泥盆系和石炭系,泥盆系主要为中基性火山岩,其上被石炭系火山碎屑-沉积岩整合覆盖。野马泉岛弧地层组成主要为泥盆系和石炭系的火山岩及其碎屑岩。

图 1 东准噶尔造山带地质简图(据;Şengör et al., 1993; Jahn et al., 2000; Shen et al., 2011; Zeng et al., 2015)Fig. 1 Geological map of the East Junggar Orogenic Belt(modified after ;Şengör et al., 1993; Jahn et al., 2000; Shen et al., 2011; Zeng et al., 2015)

扎河坝-阿尔曼泰-北塔山蛇绿混杂岩带位于东准噶尔中部地区,处于都拉特岛弧和野马泉岛弧之间,呈北西-南东走向,从扎河坝地区经阿尔曼泰山北坡延伸至中蒙边界附近的北塔山北坡(李锦轶和徐新,2004),其主要由蛇绿岩残片、上覆岛弧火山岩、远洋沉积岩等组成。其中,蛇绿岩各单元岩性出露较全,包括蛇纹石化方辉橄榄岩、二辉岩、纯橄岩、堆晶辉长岩、斜长岩、斜长花岗岩、辉绿岩、玄武岩等,但在不同区段岩性出露存在一定差异。北塔山蛇绿混杂岩带位于准噶尔盆地的东北缘的奇台县牧业三队一带,分布于扎河坝-阿尔曼泰蛇绿岩带的东南部,整体呈北西-南东走向,沿断裂带零星分布于泥盆系北塔山组地层中(图 2)。北塔山组广泛分布于准噶尔地区,岩性较为复杂,主要包括海相中基性火山熔岩、火山碎屑岩、火山碎屑沉积岩以及少量碳酸盐岩等(韩宝福,1991; 张招崇等,2006),被认为是岛弧环境产物(陈毓川等,2004; 周汝洪等,2005; 张招崇等, 20052006; 苏慧敏等,2008; 柴凤梅等,2012)。北塔山蛇绿混杂岩带由于受到构造强烈肢解,出露零星,且各单元发育不全,主要包括蛇纹石化超基性岩(碳酸盐化强烈)、辉长岩、辉绿岩墙等。辉长岩以构造透镜体形式产于超基性岩块中,规模大的可达150m,其矿物粒度从粗粒到中粗粒不等,部分辉石斑晶可达2~3cm。辉长岩中发育细的斜长花岗岩脉。辉绿岩以岩墙形式侵入辉长岩块中(图 3c)。此外,玄武岩与超基性岩围岩呈构造接触,接触带上可见褐帘石-绿帘石化蚀变带,其出露规模2~15m不等。此外,玄武岩中可见疙瘩状碳酸盐化超基性岩(图 3b),并被花岗斑岩脉侵入。

图 2 北塔山地区地质简图及采样位置(底图据新疆地质局,1966)Fig. 2 Geological sketch map of Beitashan area and the location of the samples in this study

①新疆地质局.1966. 120万奥什克山幅地质图


图 3 北塔山蛇绿混杂岩相关岩性野外照片Fig. 3 Field photographs of rocks in the Beitashan the ophiolitic mélange

辉长岩(样品BTS01-1)为中粒结构,主要由辉石和斜长石组成,辉石含量高于斜长石。镜下观察可见辉长结构,斜长石高岭土化强烈,表面浑浊,呈土色(图 4ab)。玄武岩(样品BTS03-3)为间粒结构(图 4cd),斜长石格架中充填辉石。花岗斑岩(样品BTS03-1)为斑状结构,斑晶为斜长石(图 4ef),基质主要由长石和石英组成,含少量黑云母和副矿物磁铁矿及锆石。

图 4 北塔山蛇绿混杂岩相关岩性显微照片(a、b)辉长岩(BTS01-1);(c、d)玄武岩(BTS03-3);(e、f)花岗斑岩(BTS03-1).(–)表示单偏光;(+)表示正交偏光Fig. 4 Photographs showing petrographic features of ophiolitic mélange of Beitashan(a,b)gabbro(BTS01-1);(c,d)basalt(BTS03-3);(e,f)granite porphyry(BTS03-1).(-)under plane-polarized light;(+)under cross-polarized light
3 分析技术 3.1 全岩地球化学分析

样品的主量和微量元素分析测试在中国地质科学院国家地质实验中心进行,主量元素分析采用的是标准XRF技术进行测定,分析误差小于5%。稀土和微量元素含量采用的是双聚焦高分辨率ICP-MS技术测定,检测限优于5×10-9,而相对标准偏差优于5%。 3.2 锆石SHRIMP U-Pb定年

锆石的分选、制靶和U-Pb 定年分析均在中国地质科学院北京离子探针中心完成。锆石分选采用常规重选和磁选分离技术,之后在双目显微镜下挑纯。然后,将被测锆石和标准锆石TEM(417Ma)一并制靶,将靶磨至大约锆石的中心,以使其内部结构暴露;分析之前,先对锆石进行反射光、透射光显微镜照相和阴极发光(CL)成像,以揭示锆石的形态和内部结构特征,并为随后SHRIMP U-Pb分析点的选取提供依据。

锆石SHRIMP U-Pb分析在北京离子探针中心SHRIMP Ⅱ上完成。锆石SHRIMP U-Pb测年的具体分析流程,与Compston et al.(1992)和Williams(1998)描述的相似。实验过程中,我们选择标准锆石TEM(417Ma)进行同位素分馏校正,使用标准锆石M257(年龄为561.3Ma,U含量为840×10-6)对待测锆石样品及TEM标样(417Ma)的U、Th、Pb含量进行标定。测试过程中仪器质量分辨率大约为5000,一次离子流O2-强度约为4.5~6.5nA,束斑直径为25~30μm,每3个样品分析点之间测定一次标样(TEM),每个分析点进行5次扫描。数据处理采用RSES PRAWN软件,应用实测的204Pb进行普通铅的校正,具体的数据处理参见简平等(2003)3.3 锆石SHRIMP 氧同位素分析

锆石氧同位素分析在北京离子探针中心多接受二次离子质谱(SHRIMP Ⅱe-MC)上完成。在对锆石进行氧同位素测试之前,对已经进行过年龄测试的靶进行抛光,镀金等预处理。锆石氧同位素原位测试分析点与U-Pb年龄测试分析点位置相同,以保证测得的氧同位素值与年龄值相对应。

SHRIMP锆石氧同位素的测试使用Cs离子源。约3nA的Cs+离子束通过10kV加速电压轰击锆石样品表面,并聚焦至约20μm范围内,产生约100pA 16O-二次离子,经过30eV能量过滤窗后,进入多接收器(16O和18O同时接受)。锆石单点测定值为10组单组18O/16O值,且单组18O/16O数据精度一般优于0.2‰~0.3‰(1σ)(Ickert et al., 2008),最后通过对10组数据的进一步处理获得相应测点的结果。具体分析流程及原理详见Ickert et al.(2008)。本次分析过程中,每3个样品点之间,测定一次标样锆石(TEM,δ18O=8.2‰),以监控仪器的稳定性,同时对被测样品进行校正。

4 分析结果 4.1 全岩地球化学特征

北塔山蛇绿混杂岩中2个玄武岩样品(表 1),SiO2含量分别为49.97%和46.33%,Al2O3分别为15.18%和13.24%,MgO分别为7.36%和5.70%,CaO为4.89%和8.37%,FeOT为8.79%和14.59%,TiO2分别为2.15%和3.49%,全碱含量分别为6.30%和4.08%,稀土总量(∑REE)分别为162.3×10-6和159.4×10-6。(La/Yb)N分别为7.35和3.79,Nb/Ta比值分别为16和15.34,Zr/Hf比值分别为39.63和39.06,其均高于大陆地壳值(Hofmann et al., 1986; Taylor and McLeman, 1985),与地幔值(Sun and McDonough, 1989)较为接近。在玄武岩全岩碱-硅(TAS)分类图中,落入碱性玄武岩区域(图 5)。与此同时,在球粒陨石REE标准化分配模式图(图 6a)中,表现出重稀土较轻稀土相对亏损;在微量元素N-MORB标准化分配模式图(图 6b)中表现出明显的Nb和Ta负异常。在Ba-Ba/Nb和La-La/Nb图解(图 7)中,其落在IAB和IAB与OIB的过渡区域 内。北塔山超基性岩样品SiO2含量为42.34%,MgO为30.92%,FeOT为8.99%,∑REE为28.8×10-6,(La/Yb)N为6.72,轻稀土相对富集,δEu为0.97。辉长岩样品的SiO2含量为48.32%,K2O含量为2.58%,Na2O含量为1.4%。辉长岩的∑REE较低,为5.87×10-6,且稀土元素球粒陨石标准化配分图存在明显的Eu正异常(图 6e),反映出辉长岩中长石为堆晶;(La/Yb)N为0.23,轻稀土相对亏损。花岗斑岩样品SiO2含量为72.31%,Al2O3含量较高,为15.45%,Na2O/K2O>1,轻、重稀土分馏强烈,配分曲线强烈右倾,微量元素N-MORB标准图解显示出其明显的Nb、Ta及Ti的负异常(图 6e,f)。在Rb-(Y+Nb)和Rb-(Yb+Ta)构造环境判别图(图 8)中,花岗斑岩落入火山弧花岗岩区。

表 1 北塔山蛇绿岩的岩石地球化学(主量元素:wt%;稀土和微量元素:×10-6) Table 1 Representatives of chemical compositions of the rocks from ophilite in Beitashan(major elements: wt%; trace elements: ×10-6)

图 5 北塔山蛇绿混杂岩中玄武岩全岩碱-硅(TAS)分类图Ir-Irvie分界线,上方为碱性,下方为亚碱性;BTS:包括BTS03-3和BTS05-3;03Z,04Z,牛贺才等,2009;AMT,张越,2012Fig. 5 Whole rock alkali versus siliceous diagram of the basalts from the Beitashan ophiolitic mélangeIr-Irvie divide,above the divide-alkaline,below the divide-sub-alkaline. BTS: include BTS03-3 and BTS05-3; 03Z,04Z,reference from Niu et al., 2009; AMT reference from Zhang,2012

图 6 北塔山蛇绿混杂岩带中相关岩性球粒陨石标准化REE分配模式图(a、c、e)和N-MORB标准化微量元素蛛网图(b、d、f)PXIXWL2(辉长辉绿岩)张全等,2013;03Z22-2、03Z15、03Z17、04Z06、04Z57、04Z29、04Z24(玄武岩)牛贺才等,2009;AMT11-1~AMT11-5(玄武岩),张越,2012Fig. 6 Chondrite-normalized REE pattern(a,c,e) and N-MORB normalized spider diagram(b,d,f)for rocks in Beitashan ophiolitic mélangePXIXWL2(diabasic grabbro),reference from Zhang et al., 2013; 03Z22-2,03Z15,03Z17,04Z06,04Z57,04Z29,04Z24(basalts)reference from Niu et al., 2009; AMT11-1~AMT11-5(basalts)reference from Zhang,2012

图 7 北塔山蛇绿混杂岩带玄武岩Ba-Ba/Nb和La-La/Nb图解(据李曙光,1993)IAB-岛弧玄武岩,MORB-洋中脊玄武岩,OIB-洋岛玄武岩;BTS:BTS03-5、BTS05-3、PXIXWL2,张全等,2013;03Z、04Z,牛贺才等,2009;AMT,张越,2012Fig. 7 The Ba-Ba/Nb and La-La/Nb for basalts from Zhaheba-Aermantai-Beitashan ophiolitic mélange(after Li,1993)IAB-Isl and Arc Basalt,MORB-Mid-Ocean-Rige Basalt,OIB-Ocean Isl and Basalt,BTS: BTS03-5,BTS05-3: PXIXWL2,reference from Zhang et al., 2013; 03Z22-2,03Z15,03Z17,04Z06,04Z57,04Z29,04Z24 reference from Niu et al., 2009; AMT reference from Zhang,2012

图 8 北塔山蛇绿混杂岩中花岗岩斑岩Rb-(Y+Nb)和Rb-(Yb+Ta)图解(据Pearce et al., 1984)10XJ引自Li,2012Fig. 8 Rb-(Y+Nb) and Rb-(Y+Nb)diagrams of the Beitashan granite prophyry of ophiolitic mélange(after Pearce et al., 1984)10XJ reference from Li,2012
4.2 锆石SHRIMP U-Pb定年和O同位素

本次对北塔山蛇绿混杂岩带中的1个辉长岩样品和1个侵入玄武岩的花岗斑岩样品进行了SHRIMP锆石U-Pb定年和O同位素分析,二者的分析点位置相同,分析结果列于表 2

表 2 北塔山蛇绿岩中辉长岩(BTS01-1)和花岗斑岩(BTS03-1)锆石SHRIMP年龄及锆石δ18OO/值Table 2 SHRIMP U-Pb and δ18O data for zircons from gabbro(BTS01-1) and granite porphyry(BTS03-1)in Beitashan ophiolitic mélange
4.2.1 辉长岩

辉长岩样品(BTS01-1)中的锆石多数呈浑圆状或短柱状,少数为长柱状或不规则状,且发育较好的带状振荡环带(图 9)。在CL图像上,大部分锆石发育发光强弱不同的晶域,其中发光较弱的晶域具可见的环状或带状环带,而发光较强的晶域则环带不可见,并以不规则“补丁”状出现,与中基性岩浆岩锆石特征相符(吴元保和郑永飞,2004; 李长民,2009)。对北塔山辉长岩样品共进行了25个点的分析(表 2),获得了较为复杂的年龄谱,大致可分为3组。第1组包括14个分析点,其206Pb/238U表面年龄范围为520~482Ma,其加权平均年龄为494±3Ma(χ2=1.16)(图 10a)。第2组包括6个分析点,其表面年龄较为427~396Ma,加权平均值为412±13Ma(χ2=0.21)。第3组包括2个分析点,其年龄值为259~264Ma。

图 9 北塔山蛇绿岩中辉长岩(BTS01-1)锆石阴极发光图像Fig. 9 Cathodoluminescence(CL)images of zircons from gabbro of ophiolitic mélange in Beitashan

图 10 北塔山蛇绿混杂岩中辉长岩(a、b)及花岗斑岩(c、d)中锆石SHRIMP U-Pb年龄谐和图(a、c)与锆石O同位素分布直方图(b、d)Fig. 10 Concordia age(a,c) and oxygen isotope histogram(b,d)diagrams of zircons from gabbro(a,b) and granite porphyry(c,d)in Beitashan ophiolitic mélange

辉长岩中锆石的δ18O值与年龄有密切关系,而与U含量没有明显相关性(表 2图 11ab)。年龄为494Ma左右的第1组锆石除1颗锆石(分析点3.1)给出较低的δ18O值(4.4±0.1‰)之外,其它点的分析结果较为一致,δ18O值范围为5.0‰~5.8‰,加权平均值为5.2±0.3‰(1σ),与地幔δ18O值(5.3±0.3‰; Valley et al., 2005)基本一致(图 10b图 11a)。年龄为412Ma左右的第2组锆石的δ18O值变化较大,为7.6‰~11.1‰。年龄为259~264Ma的第3组锆石的δ18O值为6.8‰~9.6‰。

图 11 锆石SHRIMP年龄-δ18O投点图(a、c)和U含量-δ18O投点图(b、d)Fig. 11 Plots of SHRIMP age vs. δ18O(a,c) and U content vs. δ18O(b,d)
4.2.2 花岗斑岩

花岗岩斑岩样品(BTS03-1)中的锆石多为短柱状,发育较好的韵律环带;个别锆石发育发光较强的“补丁”(图 12)。对该样品共进行了26个点的分析(表 2),其中有22个分析点给出近一致的结果,其206Pb/238U表面年龄范围为389~431Ma,其加权平均年龄为407±2Ma(χ2=-0.94)(图 10c)。在余下的4个分析点中,有1个分析点(点15)给出该样品中的最老年龄为454±5Ma,2个分析点(点12和18)给出相近的年龄,加权平均值为364±5Ma(χ2=0.04),还有1个分析点(点3.1)给出本样品最年轻的年龄312±4Ma。

图 12 北塔山蛇绿岩中花岗斑岩(BTS03-1)锆石阴极发光图像Fig. 12 Representative CL images of zircons from granite prophyry intruding the Beitashan ophiolitic mélange in East Junggar

与辉长岩锆石相似,花岗斑岩的锆石δ18O值同样与年龄有密切关系,而与U含量没有明显相关性(图 11c,d)。年龄为407±2Ma的一组锆石的δ18O值为5.3‰~7.7‰,加权平均值为6.1±0.2‰(1σ),略大于地幔δ18O值(5.3±0.3‰)。该组中部分锆石δ18O值与幔源锆石(δ18O=5.3±0.3‰)基本一致,部分锆石δ18O值高于幔源锆石。最老一颗锆石(454±5Ma)的δ18O值为5.9±0.1‰。较年轻两颗锆石给出δ18O值分别为10.2±0.1‰到10.3±0.1‰,明显大于地幔δ18O值。年龄为312Ma的锆石δ18O值为5.8±0.1‰。

5 讨论 5.1 辉长岩时代及其演化

如前所述,所测定的北塔山蛇绿混杂岩中辉长岩存在3组年龄,分别为494±3Ma、412±13Ma和259~264Ma。第一组锆石的U和Th含量为117×10-6~679×10-6,U/Th为0.47~1.55,结合锆石CL图像下内部结构特征,均显示了岩浆结晶锆石的特点。该组锆石加权平均年龄为494±3Ma(n=14,χ2=1.16),其相对应锆石的δ18O加权平均值为5.2±0.3‰(1σ),与幔源锆石氧同位素值一致(δ18O幔源=5.3±0.3‰),表明该组锆石是幔源岩浆结晶的产物,所以该组年龄代表了辉长岩的结晶年龄,亦代表了北塔山蛇绿岩的形成时代。北塔山蛇绿混杂岩的SHRIMP U-Pb年龄与前人获得的扎河坝蛇绿岩形成年龄(503~489Ma)(简平等,2003; 肖文交等,2006)以及阿尔曼泰蛇绿岩年龄为(503±7Ma)(肖文交等,2006)基本一致。辉长岩中还发育一组年轻锆石412±13Ma,其年龄与扎河坝蛇绿岩辉长岩较年轻一组锆石年龄(406±4Ma,简平等,2003)基本一致,揭示了北塔山蛇绿岩与扎河坝-阿尔曼泰蛇绿带形成与演化的同步性,进一步确定扎河坝-阿尔曼泰-北塔山蛇绿岩带为同一条蛇绿岩带。

北塔山辉长岩中第二组锆石(年龄为412Ma),在CL图像下发现其退晶化明显,部分锆石退晶化不彻底,隐约可见环带残留,部分锆石退晶化较彻底,其与重结晶锆石特征相符(吴元保和郑永飞,2004; 李长民,2009)。该组锆石δ18O值分布在6.5±0.1‰到11.1±0.1‰之间,可能是由于锆石发生重结晶以及遭受了后期不同程度壳源蚀变热液(流体)(δ18O大于10‰,Peck et al., 2001; Valley,2003; Valley et al., 2005; Cavosie et al., 2011)的改造。考虑到该组锆石年龄和侵入到玄武岩中花岗斑岩年龄(407±2Ma)较为接近,我们推测其可能与扎河坝-阿尔曼泰-北塔山洋盆汇聚闭合过程中岛弧区受到挤压而产生岩浆热事件有关。辉长岩中第三组锆石年龄值259~264Ma,相应锆石δ18O值为6.8±0.1‰到9.6±0.1‰,该组锆石出现的可能情况有二:一种情况与第二组锆石一样受到流体改造的结果,然而该组锆石年龄最小,氧同位素值却介于前两者之间,且锆石带状环带清晰,这些特征均不支持这种情况;第二种情况,该组年轻锆石是后期事件中的新生锆石,而我们在辉长岩中观察到后期岩脉,而锆石具有的清晰带状环带这一特征也与变质流体活动过程中形成的脉体中的锆石特征相一致(吴元保和郑永飞,2004; 李长民,2009),所以本文认为该组锆石可能与后期岩脉有关。 5.2 花岗斑岩时代及源区

通过地球化学数据分析发现,北塔山花岗斑岩表现为高硅(73.21%)、富钠(9.47%)、贫钙(0.38%)和贫钾(0.13%),在SiO2-K2O图中落于低钾拉斑系列,无正Eu异常和稀土总量低(19.16×10-6),轻、重稀土分异强烈((La/Yb)N=19.16),富集LILE,贫HFSE的特点,且在微量元素N-MORB标准图解中Nb、Ta以及La相对亏损,证明其可能形成于岛弧环境。同时,其富Na低Y、Nb、Yb以及低Ga/Al比值,表明其与形成于地壳加厚背景下的富钠花岗岩的地球化学特征相似。在(Yb+Ta)-Rb和(Y+Nb)-Rb构造环境判断图(图 8)中落于火山弧花岗岩区。综上分析,我们认为北塔山花岗斑岩可能形成于阿尔曼泰洋盆消减闭合过程中导致俯冲带岛弧区地壳加厚背景中。北塔山花岗斑岩中较老一组锆石大部分呈等轴状或柱状,阴极发光图像显示韵律条带(图 10),锆石Th/U为0.25~1.42,表现出岩浆结晶成因锆石特征,所以其年龄407±2Ma代表了花岗斑岩的结晶年龄,相对应的锆石的δ18O值为5.3‰~7.7‰,加权平均值为6.1±0.2‰(1σ),略大于地幔δ18O值(5.3±0.3‰),表明其岩浆主要来源于下伏玄武质洋壳,其富Na低K的特征也支持这一结论。花岗斑岩的锆石δ18O值进一步验证了其可能为岛弧区地壳增厚、下伏洋壳物质部分熔融的岩浆演化产物。与此同时,前人在该蛇绿岩带南北两侧也识别出一系列志留纪-早泥盆纪花岗岩(张招崇等,2006; 郭丽爽等,2009; 李亚萍等,2009; 张永等,2010; Li,2012; 郭晓俊等,2013),揭示了东准噶尔地区在志留纪-早石炭纪存在一次重要的花岗岩岩浆活动事件。部分学者对该区部分花岗岩(年龄为413±3Ma)的地球化学研究时,亦认为这些花岗岩形成于俯冲带岛弧区碰撞过程中地壳增厚背景环境(Li,2012; 郭晓俊等,2013)。

花岗斑岩中存在的两组较为年轻的锆石年龄分别为364±5Ma以及312±4Ma,对应锆石δ18O值分布于10.2±0.1‰到10.3±0.1‰之间,其可能代表着花岗斑岩形成后的研究区内两期构造演化事件。据前人研究资料,在北塔山蛇绿混杂岩北侧地区,存在354~379Ma花岗岩类(张招崇等,2006; 吕书君等,2012),揭示了在该时期存在一次岩浆活动事件。本文在花岗斑岩中测得一组年龄为364±5Ma的锆石,可能与该期的岩浆热事件相关。该组锆石δ18O值为10.2±0.1‰到10.3±0.1‰,通过锆石阴极发光(CL)图像可见其明显受到强烈的热液蚀变,其可能导致了锆石δ18O值较高(Valley,2003; Valley et al., 2005)。韩宝福等(2006)对准噶尔晚古生代后碰撞深成岩浆活动厘定的时限为:早石炭纪中-晚维宪期开始,于早二叠世末期结束。所以,花岗斑岩中312±4Ma的年轻锆石可能形成于晚古生代后碰撞造山运动引发的岩浆热事件。 6 构造意义

扎河坝-阿尔曼泰-北塔山蛇绿混杂岩作为东准噶尔地区残余古洋壳,其为与俯冲带相关的SSZ型蛇绿岩,对于其确切的形成环境,大部分学者认为其形成于弧后盆地(肖序常等,1992; Wang et al., 2003; Xiao et al., 2009; Zeng et al., 2015),也有学者认为其形成于弧前环境(Luo et al., 2015),综合前人在该蛇绿混杂岩带获得地球化学数据,发现该蛇绿混杂岩带主要存在两种类型玄武岩,其中一类玄武岩的轻稀土亏损,不存在或存在弱的Nb和Ta负异常,具有N-MORB的地球化学特征;在Ba-Ba/Nb和La-La/Nb图解(图 7)中,其落在MORB和IAB的过渡区内;而另一类玄武岩为洋壳俯冲-消减过程中形成的岛弧火山岩,其以非蛇绿岩组分覆于蛇绿岩带之上(柴凤梅等,2012; 龙晓平等,2006; 袁超等,2006; 张海祥等,2004),而扎河坝-阿尔曼泰-北塔山蛇绿岩构成了岛弧基底。结合前人研究资料(Wang et al., 2003; Xiao et al., 2009; Zeng et al., 2015; Luo et al., 2015),本文认为该蛇绿岩可能形成于弧前环境。该蛇绿岩带所代表的阿尔曼泰洋盆作为古亚洲洋演化的阶段性产物(肖序常等,1990; 黄汲清等,1990; 龙晓平等,2006; 何国琦等,2001; 徐新等,2007),其起始俯冲时限,存在寒武纪中期(徐新等,2007),晚寒武纪-早奥陶纪(肖文交等,2006),晚奥陶纪(何国琦等,2001)多种观点。本次我们测得北塔山蛇绿岩的形成时代为494±3Ma,结合前人研究成获得的扎河坝和阿尔曼泰地区蛇绿岩的形成年龄(分别为489±4Ma和503±7Ma; 简平等,2003; 肖文交等,2006),表明了该洋盆俯冲-消减体系始于晚寒武纪-早奥陶纪。而该洋盆的闭合时限,存在着晚奥陶世(肖序常等,1992)、志留纪中期(李锦轶等,2001)、早泥盆纪(徐新等,2007; 何国琦等,2001)、泥盆纪(王道永和邓江红,1995)闭合的多种观点。但该洋盆消减闭合的较为精确的年龄至今缺乏研究。本文在北塔山蛇绿混杂岩中发现的花岗斑岩地球化学特征表明其可能形成于该洋盆消减闭合过程中岛弧区地壳增厚背景,所以花岗斑岩形成年龄407±2Ma,标志着阿尔曼泰洋盆可能于志留世-早泥盆世汇聚闭合,进入到碰撞构造演化阶段。东准噶尔扎河坝-阿尔曼泰-北塔山混杂岩及其上覆与俯冲-消减相关的岛弧火山岩共同记录了古亚洲洋自俯冲消减至汇聚闭合复杂的演化历史。 7 结论

根据以上讨论,本文可以得出以下结论:

(1)东准噶尔北塔山蛇绿岩堆晶辉长岩中较老锆石的SHRIMP U-Pb年龄为494±3Ma,对应锆石δ18O值为5.2±0.3‰(1σ),与地幔δ18O值(5.3±0.3‰)一致,表明这些锆石是结晶自幔源岩浆,因此辉长岩年龄代表北塔山蛇绿岩的形成年龄,即形成于晚寒武世。辉长岩中年轻锆石的SHRIMP U-Pb年龄412±13Ma,对应锆石δ18O值为6.5‰~11.1‰,明显大于地幔δ18O值,表明它们受到了后期壳源流体/熔体不同程度的改造,因此这些年龄不能代表辉长岩的形成年龄。

(2)北塔山蛇绿混杂岩中侵入玄武岩中的花岗斑岩的锆石SHRIMP U-Pb年龄407±2Ma,代表了花岗斑岩的形成年龄,对应锆石δ18O值为6.1±0.2‰(1σ),反映了其岩浆物质来源以下伏玄武质洋壳为主。花岗斑岩形成年龄与辉长岩中较年轻一组锆石年龄基本一致,其均可能形成于扎河坝-阿尔曼泰-北塔山洋盆汇聚闭合过程中,为限定该洋盆闭合时限提供了新的依据。

(3)北塔山蛇绿混杂岩中辉长岩和侵入到玄武岩中的花岗斑岩多期演化年龄的存在,结合相应锆石δ18O值的变化,对于限定中亚造山带的构造演化及其物质来源亦具有重要意义。扎河坝-阿尔曼泰-北塔山蛇绿岩带沿东南向延伸至中蒙边界,该蛇绿岩带的研究为区域包括蒙古境内蛇绿岩的对比奠定了基础。

(4)东准噶尔北塔山蛇绿混杂岩中出露的玄武岩地球化学特征显示其主要为岛弧玄武岩,与扎河坝蛇绿混杂岩中的富铌玄武(安山)岩相似,其可能是准噶尔地区洋壳俯冲-消减过程中岛弧火山作用的产物。

致谢     北京离子探针中心杨淳、甘伟林对样品靶进行了制作,周慧、车晓超帮助锆石阴极发光照相,刘建辉保障SHRIMP仪器正常工作;北京离子探针中心万渝生研究员、王彦斌研究员、颉颃强副研究员、董春艳副研究员在成文过程中给予的宝贵意见和帮助;审稿专家及编辑仔细审阅了本稿,并提出了宝贵的修改意见;在此一并表示衷心的感谢!
参考文献
[1] Booth AL, Kolodny Y, Chamberlain CP, Mcwilliams M, Schmitt AK and Wooden J. 2005. Oxygen isotopic composition and U-Pb discordance in zircon. Geochimica et Cosmochimica Acta, 69(20):4895-4905
[2] Cavosie AJ, Valley JW, Kita NT, Spicuzza MJ, Ushikubo T and Wilde SA. 2011. The origin of high δ18O zircons:Marbles, megacrysts, and metamorphism. Contributions to Mineralogy and Petrology, 162(5):961-974
[3] Chai FM, Yang FQ, Liu F, Geng XX, Lü SJ, Jiang LP, Zang M and Chen B. 2012. Geochronology and genesis of volcanic rocks in Beitashan Formation at the northern margin of the Junggar, Xinjiang. Acta Petrologica Sinica, 28(7):2183-2198(in Chinese with English abstract)
[4] Chen YP, Wei CJ, Zhang JR and Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707
[5] Chen YC, Liu DQ, Wang DH, Tang YL, Zhou RH and Chen ZY. 2004. Discovery and geological significance of picritic rocks in North Junggar, Xinjiang. Geological Bulletin of China, 23(11):1059-1065(in Chinese with English abstract)
[6] Coleman RG. 1977. Ophiolites. Berlin, Heidelberg:Springer-Verlag, 1-220
[7] Coleman RG. 1989. Continental growth of northwest China. Tectonics, 8(3):621-635
[8] Compston W, Williams IS, Kirschvink JL, Zhang ZC and Guogan MA. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2):171-184
[9] Dewey JF and Bird JM. 1971. Origin and emplacement of the ophiolite suite:Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14):3179-3206
[10] Fang AM, Wang SG, Zhang JM, Zang M, Fang JH and Hu JM. 2015. The U-Pb ages of zircons from the gabbro in the Kalamaili ophiolite, North Xinjiang and its tectonic significances. Chinese Journal of Geology, 50(1):140-154(in Chinese with English abstract)
[11] Feng Y, Coleman RG, Tilton G and Xiao X. 1989. Tectonic evolution of the West Junggar Region, Xinjiang, China. Tectonics, 8(4):729-752
[12] Grimes CB, Ushikubo T, Kozdon R and Valley JW. 2013. Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos, 179:48-66
[13] Guo LS, Zhang R, Liu YL, Xu FJ and Su L. 2009. Zircon U-Pb age of Tonghualing intermediate-acid intrusive rocks, Eastern Junggar, Xinjiang. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(5):819-824(in Chinese with English abstract)
[14] Guo XJ, Zhang CL, Li L and Zhao J. 2013. Determination of Silurian granitic plutons in the Balikun area, Xinjiang and its implications. Chinese Journal of Geology, 48(4):1050-1068(in Chinese with English abstract)
[15] Han BF. 1991. The Middle Devonian bimodal association of volcanic rocks in the northern area of East Junggar, Xinjiang. Acta Geologica Sinica,(4):317-328(in Chinese with English abstract)
[16] Han BF, Ji JQ, Song B, Chen LH and Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China(PartⅠ):Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5):1077-1086(in Chinese with English abstract)
[17] Hanchar JM and Hoskin PWO. 2003. Zircon:Reviews in Mineralogy and Geochemistry, Vol. 53. Washington, DC:Mineralogical Society of America/Geochemical Society, 500
[18] He GQ, Li MS, Liu DQ et al. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi:Xinjiang People's Publishing House(in Chinese)
[19] He GQ, Li MS, Jia JD and Zhou H. 2001. A discussion on age and tectonic significance of ophiolite in Eastern Junggar, Xinjiang. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6):852-858(in Chinese with English abstract)
[20] Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts:New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2):33-45
[21] Huang JQ, Jiang CF and Wang ZX. 1990. On the Opening-closing tectonics and accordion movement of plate in Xinjiang and adjacent regions. Geosciences of Xinjiang, 1:3-16(in Chinese with English abstract)
[22] Huang X, Jin CW, Sun BS, Pan J and Zhang RH. 1997. Study on the age of Armantai ophiolite, Xinjiang by Nd-Sr isotope geology. Acta Petrologica Sinica, 13(1):85-91(in Chinese with English abstract)
[23] Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schram N, Foster JJ and Clement SW. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ:Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1-2):114-128
[24] Jahn BM, Wu FY and Chen B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2):82-92
[25] Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In:Malpas J, Fletcher CJN, Ali JR and Aitchison JC(eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226:73-100
[26] Jian P, Liu DY, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite. Earth Science Frontiers, 10(4):439-456(in Chinese with English abstract)
[27] Jian P, Kröner A, Windley BF, Shi YR, Zhang FQ, Miao LC, Tomurhuu D, Zhang W and Liu DY. 2010. Zircon ages of the Bayankhongor ophiolite mélange and associated rocks:Time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia. Precambrian Research, 177(1-2):162-180
[28] Jiang BY. 2009. Study of Karamaili ophiolite complex and Jiangbasitao Formaition volcanic rocks in East Junggar of Xinjiang. Master Degree Thesis. Xi'an:Chang'an University, 12-14(in Chinese)
[29] Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A and Wingate MTD. 2007. Accretionary growth and crust formation in the central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. In:Hatcher Jr RD, Carlson MP, McBride JH and Martínez Catalán JR(eds.). 4-D Framework of Continental Crust. Geological Society of America Memoir, 200:181-209
[30] Li CM. 2009. A review on the minerageny and situ microanalytical dating techniques of zircons. Geological Survey and Research, 32(3):161-174(in Chinese with English abstract)
[31] Li JY. 1995. Main characteristics and emplacement processes of the East Junggar ophiolites, Xinjiang, China. Acta Petrologica Sinica, 11(Suppl.):73-84(in Chinese with English abstract)
[32] Li JY and Xu X. 2004. Major problems on geologic structures and metallogenesis of northern Xinjiang, Northwest China. Xinjiang Geology, 22(2):119-124(in Chinese with English abstract)
[33] Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1):148-168(in Chinese with English abstract)
[34] Li L. 2012. Silurian granitic magmatism and dynamic significance in Eastern Junggar, Xinjiang. Master Degree Thesis. Chicago:Northwestern University, 14-40
[35] Li SG. 1993. Ba-Th-Nb-La diagrams used to identify tectonic environments of ophiolite. Acta Geologica Sinica, 9(2):146-157(in Chinese with English abstract)
[36] Li YP, Li JY, Sun GH, Zhu ZX and Song B. 2009. Determination of the Early Devonian granite in East Junggar, Xinjiang, China and its geological implications. Geological Bulletin of China, 28(12):1885-1893(in Chinese with English abstract)
[37] Liu PJ, Li XH, Chen SM, Lan ZW, Yang B, Shang XD and Yin CY. 2015. New SIMS U-Pb zircon age and its constraint on the beginning of the Nantuo glaciation. Science Bulletin, 60(10):958-963
[38] Long XP, Sun M, Yuan C, Xiao WJ, Chen HL, Zhao YJ, Cai KD and Li JL. 2006. Genesis of Carboniferous volcanic rocks in the eastern Junggar:Constraints on the closure of the Junggar Ocean. Acta Petrologica Sinica, 22(1):31-40(in Chinese with English abstract)
[39] Luo J, Xiao WJ, Wakabayashi J, Han CM, Zhang JE, Wan B, Ao SJ, Zhang ZY, Tian ZH, Song DF and Chen YC. 2015. The Zhaheba ophiolite complex in Eastern Junggar(NW China):Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Research, doi:10.1016/j.gr.2015.04.004
[40] Lü SJ, Yang FQ, Chai FM, Zhang XB, Jing LP, Liu F, Zhang ZX, Geng XX and Ouyang LJ. 2012. Zircon U-Pb dating for intrusions in Laoshankou ore district in northern margin of East Junggar and their significances. Geological Review, 58(1):149-164(in Chinese with English abstract)
[41] Mojzsis SJ, Harrison TM and Pidgeon RT. 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the earth's surface 4300Myr ago. Nature, 409(6817):178-181
[42] Nicolas A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Netherlands:Springer, 367
[43] Niu HC, Shan Q, Yu XY, Zhang B, Luo Y and Yang WB. 2009. Geochemistry of the Nb-enriched basalt and its significances in Zaheba ophiolite melange. Acta Petrologica Sinica, 25(4):916-924(in Chinese with English abstract)
[44] Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 60(18):1598-1616
[45] Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956-983
[46] Pearce JA. 2003. Supra-subduction zone ophiolites:The search for modern analogues. In:Dilek Y and Newcomb S(eds.). Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Papers, 373:269-293
[47] Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4):14-48
[48] Peck WH, Valley JW, Wilde SA and Graham CM. 2001. Oxygen Isotope ratios and rare earth elements in 3.3 to 4.4Ga zircons:Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochemica et Cosmochimica Acta, 65(22):4215-4229
[49] Robinson RT, Malpas J, Dilek Y and Zhou MF. 2008. The significance of sheeted dike complexes in ophiolites. GSA Today, 18(11):4-10
[50] Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435):209-304
[51] Şengör AMC and Natal'in BA. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1):263-337
[52] Shen XM, Zhang HX, Wang Q, Wyman DA and Yang YH. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China:Petrogenesis and implications for tectonic setting of ""A2-type"" granites. Journal of Asian Earth Sciences, 42(5):986-1007
[53] Shervais JW. 2001. Birth, death, and resurrection:The life cycle of suprasubduction zone ophiolites. Geochemisty, Geophysics, Geosystems, 2(1), doi:10.1029/2000GC000080
[54] Su HM, Zhang DY, Ai Y and Zhang ZC. 2008. Mineralogy of clinopyroxene from the Middle Devonian volcanic rocks in the south margin of the Altay Mountains and its geological significances. Acta Geologica Sinica, 82(11):1602-1612(in Chinese with English abstract)
[55] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345
[56] Tang HF, Su YP, Liu CQ, Hou GS and Wang YB. 2007. Zircon U-Pb age of the plagiogranite in Kalamaili belt, northern Xinjiang and its tectonic implications. Geotectonica et Metallogenia, 31(1):110-117(in Chinese with English abstract)
[57] Taylor SR and McLeman SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford:Blackwell, 1-312
[58] Valley JW, Kinny PD, Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2):1-11
[59] Valley JW. 2003. Oxygen isotopes in zircon. In:Hanchar JM and Hoskin PWO(eds.). Zircon. Reviews in Mineralogy and Geochemistry. Washington, DC:Mineralogical Society of America and the Geochemical Society, 53:343-385
[60] Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation:Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6):561-580
[61] Wang DY and Deng JH. 1995. Characteristics and evolution of the plate tectonics in Eastern Junggar, Xinjiang. Journal of Chengdu Institute of Technology, 22(4):38-45(in Chinese with English abstract)
[62] Wang ZH, Sun S, Li JL, Hou QL, Qin KZ, Xiao WJ and Hao J. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China:Geochemical and geochronological constraints from the ophiolites. Tectonics, 22(2):1014
[63] Williams IS. 1998. U-Th-Pb geochronology by microprobe. In:Mckibben MA, Shanks WC Ⅲ and Ridley WI(eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Lancaster, PA:Economic Geology Pub. Co.
[64] Windley BF, Kröner A, Gao JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China:New zircon age data and tectonic evolution. The Journal of Geology, 110(6):719-737
[65] Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society(London), 164(1):31-47
[66] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15):1554-1569
[67] Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ and Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia. Journal of the Geological Society, 161(3):339-342
[68] Xiao WJ, Windley BF, Yan QR, Qin KZ, Chen HL, Yuan C, Sun M, Sun JL and Sun S. 2006. SHRIMP zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications. Acta Geologica Sinica, 80(1):32-37(in Chinese with English abstract)
[69] Xiao WJ, Han CH, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4):102-117
[70] Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL and Sun S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3):221-270
[71] Xiao XC, Tang YQ, Li JY, Zhao M, Feng YM and Zhu BQ. 1990. On the tectonic evolution of Northern Xinjiang. Xinjiang Journal of Geology,(1):47-68(in Chinese)
[72] Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY and Zhao M. 1992. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions. Beijing:Geological Publishing House(in Chinese)
[73] Xiao Y, Zhang HF, Shi JA, Su BX, Sakyi PA, Lu XC, Hu Y and Zhang Z. 2011. Late Paleozoic magmatic record of East Junggar, NW China and its significance:Implication from zircon U-Pb dating and Hf isotope. Gondwana Research, 20(2-3):532-542
[74] Xu X, Zhu YF and Chen B. 2007. Petrology of the Kamste ophiolite mélange from East Junggar, Xinjiang, NW China. Acta Petrologica Sinica, 23(7):1603-1610(in Chinese with English abstract)
[75] Yuan C, Xiao WJ, Chen HL, Li JL and Sun M. 2006. Zhaheba Potassic basalt, Eastern Junggar(NW China):Geochemical characteristics and tectonic implications. Acta Geologica Sinica, 80(2):254-263(in Chinese with English abstract)
[76] Zeng LJ, Niu HC, Bao ZW, Shan Q, Li H, Li NB and Yang WB. 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar Orogen, Xinjiang, China. Journal of Asian Earth Sciences, 113(Part 1):137-150
[77] Zhang HY, Niu HC, Sato H, Shan Q, Yu XY, Ito J and Zhang Q. 2004. Late Paleozoic adakite and Nb-enriched basalt from northern Xinjiang:Evidence for the southward subduction of the Paleo-Asian Ocean. Geological Journal of China Universities, 10(1):106-113(in Chinese with English abstract)
[78] Zhang Q, Qian Q, Wang Y, Jia XQ and Han S. 1999. Geochemistry of ophiolites. Geological Review, 45(Suppl.):101-107(in Chinese with English abstract)
[79] Zhang Q, Huang M, Fan HY and Li MC. 2013. Features and age and evolution of tectonic mélange in the northern Tarshan area, Xinjiang. Contributions to Geology and Mineral Resources Research, 28(2):268-274(in Chinese with English abstract)
[80] Zhang Y, Liang GL, Qu X, Du SJ, Wu Q, Zhang ZF, Dong LH and Xu XW. 2010. Evidence of U-Pb age and Hf isotope of zircons for Early Paleozoic magmatism in the Qiongheba arc, East Junggar. Acta Petrologica Sinica, 26(8):2389-2398(in Chinese with English abstract)
[81] Zhang Y. 2012. The study about the composition, the structure, the emplacement mechanism and significance of tectonic of the Armantai ophiolite mélange, East Junggar, Xinjiang, China. Master Degree Thesis. Xi'an:Chang'an University, 53-63(in Chinese)
[82] Zhang ZC, Yan SH, Chen BL, Zhou G, He YK, Chai FM and He LX. 2005. Middle Devonian picrites of south margin of Altay Orogenic Belt and implications for tectonic setting and petrogenesis. Earth Science, 30(3):289-297(in Chinese with English abstract)
[83] Zhang ZC, Yan SH, Chen BL, Zhou G, He YK, Chai FM, He LX and Wan YS. 2006. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of East Jungaar, Xinjiang. Chinese Science Bulletin, 51(8):952-962
[84] Zhou RH, Ying LJ, Liang T, Liu DQ, Tang YL and Wang DH. 2005. Picrite construct and it's tectonic significance in Qiaoxiahala-Laoshankou, North Junggar, Xinjiang, China. Xinjiang Geology, 23(4):319-325(in Chinese with English abstract)
[85] 柴凤梅, 杨富全, 刘峰, 耿新霞, 吕书君, 姜丽萍, 藏梅, 陈斌. 2012. 新疆准噶尔北缘北塔山组火山岩年龄及岩石成因. 岩石学报, 28(7):2183-2198
[86] 陈毓川, 刘德权, 王登红, 唐延龄, 周汝洪, 陈振宇. 2004. 新疆北准噶尔苦橄岩的发现及其地质意义. 地质通报, 23(11):1059-1065
[87] 方爱民, 王世刚, 张俊敏, 藏梅, 方佳虎, 胡建民. 2015. 新疆北部卡拉麦里蛇绿岩中辉长岩的锆石U-Pb年龄及其构造意义. 地质科学, 50(1):140-154
[88] 郭丽爽, 张锐, 刘玉琳, 许发军, 苏犁. 2009. 新疆东准噶尔铜华岭中酸性侵入体锆石U-Pb年代学研究. 北京大学学报(自然科学版), 45(5):819-824
[89] 郭晓俊, 张成立, 李雷, 赵娇. 2013. 新疆巴里坤地区志留纪花岗岩的确定及其地质意义. 地质科学, 48(4):1050-1068
[90] 韩宝福. 1991. 新疆东准噶尔北部地区中泥盆世双峰式火山岩组合. 地质学报,(4):317-328
[91] 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5):1077-1086
[92] 何国琦, 李茂松, 刘德权等. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐:新疆人民出版社
[93] 何国琦, 李茂松, 贾进斗, 周辉. 2001. 论新疆东准噶尔蛇绿岩的时代及其意义. 北京大学学报(自然科学版), 37(6):852-858
[94] 黄汲清,江春发,王作勋. 1990. 新疆及邻区板块开合构造及手风琴式运动. 新疆地质科学,1:3-16
[95] 黄萱, 金成伟, 孙宝山, 潘均, 张仁祜. 1997. 新疆阿尔曼太蛇绿岩时代的Nd-Sr同位素地质研究. 岩石学报, 13(1):85-91
[96] 简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年. 地学前缘, 10(4):439-456
[97] 江帮耀. 2009. 新疆东准噶尔卡拉麦里蛇绿岩及姜巴斯套组火山岩研究. 硕士学位论文. 西安:长安大学, 12-14
[98] 李长民. 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3):161-174
[99] 李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史. 岩石学报, 11(S1):73-84
[100] 李锦轶, 徐新. 2004. 新疆北部地质构造和成矿作用的主要问题. 新疆地质, 22(2):119-124
[101] 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1):148-168
[102] 李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图. 岩石学报, 9(2):146-157
[103] 李亚萍, 李锦轶, 孙桂华, 朱志新, 宋彪. 2009. 新疆东准噶尔早泥盆世早期花岗岩的确定及其地质意义. 地质通报, 28(12):1885-1893
[104] 龙晓平, 孙敏, 袁超, 肖文交, 陈汉林, 赵永久, 蔡克大, 李继亮. 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22(1):31-40
[105] 吕书君, 杨富全, 柴凤梅, 张希兵, 姜丽萍, 刘锋, 张志欣, 耿新霞, 欧阳刘进. 2012. 东准噶尔北缘老山口铁铜金矿区侵入岩LA-ICP-MS锆石U-Pb定年及地质意义. 地质论评, 58(1):149-164
[106] 牛贺才, 单强, 于学元, 张兵, 罗勇, 杨武斌. 2009. 扎河坝蛇绿混杂岩内富铌玄武(安山)岩的地球化学特征及其地质意义. 岩石学报, 25(4):916-924
[107] 苏慧敏, 张东阳, 艾羽, 张招崇. 2008. 阿尔泰南缘中泥盆世北塔山组火山岩中单斜辉石的矿物学研究及其地质意义. 地质学报, 82(11):1602-1612
[108] 唐红峰, 苏玉平, 刘丛强, 侯广顺, 王彦斌. 2007. 新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义. 大地构造与成矿学, 31(1):110-117
[109] 王道永, 邓江红. 1995. 东准噶尔地区板块构造特征及演化. 成都理工学院学报, 22(4):38-45
[110] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16):1589-1064
[111] 肖文交, Windley BF, 阎全人, 秦克章, 陈汉林, 袁超, 孙敏, 李继亮, 孙枢. 2006. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义. 地质学报, 80(1):32-37
[112] 肖序常, 汤耀庆, 李锦轶, 赵民, 冯益民, 朱宝清. 1990. 试论新疆北部大地构造演化. 新疆地质科学,(1):47-68
[113] 肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992. 新疆北部及其邻区大地构造. 北京:地质出版社
[114] 徐新, 朱永峰, 陈博. 2007. 卡姆斯特蛇绿混杂岩的岩石学研究及其地质意义. 岩石学报, 23(7):1603-1610
[115] 袁超, 肖文交, 陈汉林, 李继亮, 孙敏. 2006. 新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义. 地质学报, 80(2):254-263
[116] 张海祥, 牛贺才, Sato H, 单强, 于学元, Ito J, 张旗. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据. 高校地质学报, 10(1):106-113
[117] 张全, 黄猛, 樊航宇, 李明辰. 2013. 新疆北塔山构造混杂岩(带)特征、形成时代及发展演化. 地质找矿论丛, 28(2):268-274
[118] 张旗, 钱青, 王焰, 贾秀琴, 韩松. 1999. 蛇绿岩的地球化学研究. 地质论评, 45(增):101-107
[119] 张永, 梁广林, 屈讯, 杜世俊, 吴琪, 张征峰, 董连慧, 徐兴旺. 2010. 东准噶尔琼河坝岛弧早古生代岩浆活动的锆石U-Pb年龄和Hf同位素证据. 岩石学报, 26(8):2389-2398
[120] 张越. 2012. 新疆东准噶尔阿尔曼太蛇绿混杂岩组成、结构、就位机制及大地构造意义研究. 硕士学位论文. 西安:长安大学, 53-63
[121] 张招崇, 闫升好, 陈柏林, 周刚, 何永康, 柴凤梅, 何立新. 2005. 阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义. 地球科学, 30(3):289-297
[122] 张招崇, 闫升好, 陈柏林, 周刚, 何永康, 柴凤梅, 何立新, 万渝生. 2006. 新疆东准噶尔北部俯冲花岗岩的SHRIMP U-Pb锆石定年. 科学通报, 51(13):1565-1574
[123] 周汝洪, 应立娟, 梁婷, 刘德权, 唐延龄, 王登红. 2005. 新疆北准噶尔乔夏哈拉-老山口苦橄岩建造及其构造意义. 新疆地质, 23(4):319-325