宿松地块为大别造山带最南缘岩石单元,位于太湖-马庙断裂以南(Zhai and Cong, 1995; 翟明国等,1995),郯庐断裂以西(图 1a)。该地块岩石构成较为复杂,主要由石榴云母片岩、花岗片麻岩、石榴绿帘斜长角闪岩、角闪岩、白云质大理岩、石墨片岩、滑石片岩、浅粒岩和基性-超基性岩块组成(安徽省地质矿产局,1987; Liou et al., 1995; Zhai and Cong, 1995; 魏春景和单振刚,1997; 徐树桐等,2002)。然而,由于研究程度所限(Zheng, 2008,2012),该地块的变质属性和形成时限一直不是十分明朗,并直接影响了人们对整个大别造山带结构框架的正确理解。作为大别造山带重要组成部分的宿松地块,对其变质属性主要有高压蓝片岩相-榴辉岩相(张树业等,1989; 荆延仁等,1991; 刘雅琴等,1991; 刘雅琴和胡克,1999; Liou et al., 1995; 魏春景和单振刚,1997; 陈燕等,2005)和绿帘角闪岩相(翟明国等,1995; 王清晨等,1999; 石永红等, 2010,2012)两种不同认识,对其峰期变质时限的判定则差异更为显著(桑宝良等,1987; Xie et al., 2001; Chen et al., 2003; 江来利等,2003; 石永红等, 2012,图 1a)。此外,宿松地块的北界究竟位于太湖-马庙断裂附近(翟明国等,1995),还是位于柳林-缺月岭-山龙断裂附近(魏春景和单振刚,1997; 徐树桐等,2002)仍存在较多的疑义(图 1a)。而Xia et al.(2008,2009,2010)则将这两断裂之间的块体直接归属为南大别低温超高压地块。显然,这种差异性的认识是由于对这两断裂间块体的岩石类型构成及其变质条件和年代学研究的不足所致。为此,本次研究针对马庙-缺月岭之间的岩石类型进行了剖面性的研究和分析,确证了特征性的岩石——石榴石-蓝晶石-硬绿泥石片岩的存在,并参照Coggon and Holl and (2002)、Wei and Powell(2003,2006)和Smye et al.(2010)的研究,明确了该岩石类型经历了高压榴辉岩相变质,其形成时限略早于南大别变质地块。
![]() | 图 1 研究区地质简图(a)及剖面图(b)Fig. 1 Simplified geological map(a) and profile(b)across the study area |
大别造山带自北向南可分为:北淮阳地块、北大别地块、中大别地块、南大别地块和宿松地块(Zheng,2008; 图 1a中的插图)。本次研究的区域位于大别造山带东南缘,出露的岩石单元主要为中、南大别地块和宿松地块。其中,太湖-马庙断裂和柳林-缺月岭-山龙断裂之间的区域为研究的重点(图 1)。根据此次马庙至缺月岭的剖面性工作和早期的研究(魏春景和单振刚,1997; 徐树桐等,2002; 石永红等, 2010,2012),该区域出露的岩性主要为细粒花岗片麻岩,其间夹有石榴云母片岩、石榴角闪岩等岩石(图 1)。
本次研究分析的地质剖面位于大山东南和麻石沟北西,全长约300m,在此剖面上共采集标本11块(图 1b)。该剖面主要出露有四类岩石,其中主体为细粒花岗片麻岩,其间夹有3层石榴角闪岩,1层石榴云母片和1层石榴石-蓝晶石-硬绿泥石片岩。在剖面上,这些岩石均以单斜层形式展现(图 2a,c),片麻理、片理清晰,产状多在180°∠50°~210°∠70°之间。但在平面上,前一类岩石则沿走向稳定展布,而后三类岩石东西延伸<50m。野外调查显示,石榴角闪岩出露宽度在10~30m,其中①、③层夹于细粒花岗片麻岩中,②层与石榴石-蓝晶石-硬绿泥石片岩相接(图 1b),并在露头规模上,可见到石榴角闪岩中石榴石呈“σ”拉长变形,指示了向北逆冲作用(图 2b)。石榴云母片岩出露宽度为20~40m,发育有大量向南倾斜的微褶皱,同样指示了向北逆冲的特征(图 1b、图 2c)。石榴石-蓝晶石-硬绿泥石片岩位于剖面中段,夹持于石榴角闪岩和石榴云母片岩之间,出露宽度约为50~80m(图 1b、图 2c),露头规模可见厘米级的半自形-自形石榴石,未见明显的变形特征。
![]() | 图 2 野外和显微照片(a、c)石榴石-蓝晶石-硬绿泥石片岩以及细粒花岗片麻岩、石榴角闪岩和石榴云母片岩野外照片;(b)石榴角闪岩中石榴石“σ”组构;(d-g)细粒花岗片麻岩、石榴角闪岩和石榴云母片岩显微特征;(h)石榴石-蓝晶石-硬绿泥石片岩中峰期矿物石榴石+蓝晶石+多硅白云母+硬绿泥石+金红石Fig. 2 Photographs of outcrops and micro-structures of representative rocks(a,c)photographs of outcrop of garnet-kyanite-chloritoid schist and fine-grain granitic gneiss,garnet-amphibolite,garnet-mica schist;(b)“σ” fabric structure of garnet in garnet-amphibolite;(d-g)plane-polarized microphotographs for garnet-kyanite-chloritoid schist and fine-grain granitic gneiss,garnet-amphibolite,garnet-mica schist;(h)the peak metamorphic minerals of garnet+kyanite+phengite+chloritoid+rutile in garnet-kyanite-chloritoid schist |
对这四类岩石的岩相学研究显示:
(1)细粒花岗片麻岩(样品MD005、MD007):主要由微斜长石(35%~40%)、斜长石(40%~50%)、石英(25%~30%)、多硅白云母(1%~5%)构成(图 2d),矿物粒径多在0.3~0.5mm,除多硅白云母多呈自形外,其余矿物多为他形,显示了粒状变晶结构。
(2)石榴角闪岩(样品MD002、MD006、MD008):其主要有石榴石(20%~25%)、楔尔马克闪石(35%~40%)、斜长石(15%~20%)、石英(20%~25%)、帘石(5%~10%)和金红石(3%~5%)构成(图 2e)。石榴石多呈他形-半自形,粒径1~20mm,内部含有大量的早期包体;楔尔马克闪石粒径在0.2~0.8mm,多为他形-半自形;斜长石呈他形,粒径0.1~0.6mm;石英则为他形,粒径为0.1~0.5mm;帘石呈细小颗粒产出,多为他形,粒径~0.1mm;金红石为他形,粒径0.1~0.3mm。
(3)石榴云母片岩(样品MD003、MQ024-2、MQ024-5):主要由石榴石(20%~25%)、白云母(15%~20%)、黑云母(20%~25%)、斜长石(10%~15%)、石英(15%~20%)、帘石(5%~10%)和金红石(1%~5%)组成(图 2f,g)。其中石榴石呈他形-半自形,内部多含石英包体(图 2g),粒径0.3~2mm;白云母呈自形-半自形,粒径0.5~2mm;黑云母为他形-半自形,粒径0.3~0.8mm;斜长石多为他形,粒径0.1~0.6mm;石英呈他形,粒径0.1~0.3mm;帘石粒径0.1~0.3mm,多为半自形-他形;金红石则颗粒细小~0.03~0.1mm。
(4)石榴石-蓝晶石-硬绿泥石片岩:为本次研究的重点岩石,其主要由石榴石(10%~15%)、蓝晶石(5%~10%)、硬绿泥石(5%~10%)、多硅白云母(25%~30%)、石英(35%~40%)、金红石(5%)构成,并显示了平衡变晶结构特征(图 2h)。石榴石粒径粗大,粒径可达2~10mm,呈半自形-自形,其内部含有早期矿物包体,多破裂;蓝晶石呈他形-半自形,粒径可达0.5~5mm,内含金红石包体;硬绿泥石多为自形-半自形,粒径为0.3~2mm,偶尔可见其边缘绿泥石反应边;多硅白云母呈半自形-自形,粒径可达0.5~1mm;石英则呈他形,粒径大小不一,多为0.1~0.5mm;金红石颗粒细小,粒径多<0.3mm,呈他形。
根据剖面分析和岩相学研究可以看出,石榴石-蓝晶石-硬绿泥石片岩似乎与其他岩石呈构造接触,以透镜体的形式产出,并以含高压矿物——蓝晶石和不含斜长石矿物,明显不同于其他三类岩石,这暗示了该类岩石形成条件的特殊性。 3 主要矿物化学成分及P-T条件评价
本次矿物成分测试由中国科学院地质与地球物理研究所电子探针分析实验室完成,仪器型号为CAMECA SX51,工作条件为加速电压15kV,电子束流20nA,代表性矿物分析数据见表 1。矿物简写据Whitney and Evans(2010)。
| 表 1 石榴石-蓝晶石-硬绿泥石片岩、石榴黑云母片岩和石榴角闪岩中代表性矿物成分(wt%) Table 1 Representative mineral compositions of garnet-kyanite-chloritoid schist,garnet-mica schist and garnet amphibolite(wt%) |
因本次研究重点是针对石榴石-蓝晶石-硬绿泥石片岩,故对该类岩石中的主要矿物石榴石、多硅白云母和硬绿泥石进行详细的成分剖面解析(图 3)。研究显示:(1)石榴石呈明显的进变质环带变化特征,自核部至边部,XFe(0.73核→0.91边)明 显增高,XMg(0.02核→0.06边)轻微增高,相反XCa(0.18核→0.03边)和XMn(0.07核→0.01边)显著降低(图 3a);(2)多硅白云母则显示了退变质环带特征,自核部至边部,Si4+(3.19核→3.05边)逐渐降低,Al3+(2.56核→2.74边)则渐次增高,而Fe2+和Mg2+则呈平坦变化特征(图 3b);(3)硬绿泥石中的Fe2+和Mg2+则呈镜像变化关系,自核部至边部,Fe2+(0.88核→0.95边)略微增高,Mg2+(0.10核→0.06边)轻微降低(图 3c)。根据前述的岩相学分析,以及Wei and Powell(2003,2006)的分析,这种变化关系可能反映了一种退变质作用。
![]() | 图 3 石榴石-蓝晶石-硬绿泥石片岩中主要矿物成分剖面图Fig. 3 Compositional profiles for the major minerals of garnet-kaynite-chloritoid schist |
岩相学分析表明,石榴石-蓝晶石-硬绿泥石片岩(样品MQ024-1)、石榴云母片岩(样品MQ024-5)和石榴角闪岩(样品MD008)发育完好的平衡矿物组合,为P-T估计奠定了基础。本文统一应用Thermocalc version 3.33(Holl and and Powell,1998)的Average PT法(方法1)对这三类岩石进行了P-T评价。同时,为便于比较,本文依据矿物组合的不同,对石榴云母片岩和石榴角闪岩,分别应用石榴石-黑云母温度计(Holdaway,2000; 方法2)和石榴石-黑云母-斜长石-石英压力计(Wu et al., 2004; 方法3)、角闪石-斜长石温度计(Holl and and Blundy,1994; 方法4)和石榴石-角闪石-斜长石压力计(Dale et al., 2000; 方法5)对其进一步评价。
在矿物峰期成分选择方面,就石榴石-蓝晶石-硬绿泥石片岩而言,依据矿物成分剖面的分析(图 3),并遵循Carswell et al.(1997)、Massonne and Schreyer(1989)和Wei and Powell(2003,2006)的研究,石榴石边部高XMg、多硅白云母核部高Si4+和硬绿泥石核部高Mg2+的部分作为峰期成分进行计算。而石榴云母片和石榴角闪岩岩峰期成分选择则根据Wu et al.(2004)的建议和我们早期的研究进行选取(石永红等, 2010,2012)。此外,为保证计算的统计学意义,对石榴石-蓝晶石-硬绿泥石片岩(样品MQ024-1)、石榴云母片岩(样品MQ024-5)和石榴角闪岩(样品MD008)分别选取4、12和8个矿物对进行P-T计算。分析结果见表 2。
| 表 2 石榴石-蓝晶石-硬绿泥石片岩、石榴黑云母片岩和石榴角闪岩P(GPa)-T(℃)条件 Table 2 P-T conditions of garnet-kaynite-chloritoid schist,garnet-mica schist and garnet amphibolite,respectively |
P-T估计显示:当方法1被应用时,石榴石-蓝晶石-硬绿泥石片岩的峰期温度、压力范围为T=551~569℃和P=1.96~2.47GPa;而石榴云母片岩和石榴角闪岩的峰期温度、压力分别为T=550~617℃、P=0.90~1.06GPa和T=547~588℃、P=0.81~0.87GPa。当方法2 & 3应用于石榴云母片岩时,其温、压范围为T=488~515℃、P=0.67~0.94GPa;当方法4 & 5应用于石榴角闪岩时,其温、压范围则为T=640~665℃、P=0.79~0.93GPa(表 2)。
由图 4不难看出,石榴石-蓝晶石-硬绿泥石片岩的P-T条件位于黝帘石、角闪石榴辉岩亚相,为典型的高压榴辉岩相产物,而石榴云母片岩和石榴角闪岩则落入绿帘-角闪岩相、高压角闪岩相范围(图 4)。对于后两类岩石而言,其形成的P-T条件有些差异,特别是温度差异可达~150℃(图 4、表 2)。推测造成这种差异的原因可能是由于Fe2+的校正,以及分析误差和温压计缺陷所致(Worley and Powell, 2000; Powell and Holl and ,2008)。相比较而言,压力较为一致,无论应用何种方法,其压力估算值基本在0.7~1.0GPa范围内。换言之,压力评价较为确切。若如此,可以看出石榴石-蓝晶石-硬绿泥石片岩与石榴云母片岩、石榴角闪岩存在明显的压力差异,差值至少~1.0GPa(图 4)。这似乎暗示了它们应形成于不同的深度,可能是由于构造作用并置在一起,这一结果似乎与野外地质剖面分析一致。
![]() | 图 4 石榴石-蓝晶石-硬绿泥石片岩、石榴云母片岩和石榴角闪岩P-T条件Fig. 4 P-T conditions of garnet-kyanite-chloritoid schist,garnet-amphibolite and garnet-mica schist |
本次锆石U-Pb定年仅针对石榴石-蓝晶石-硬绿泥石片岩(样品MQ024-1),样品重约3~5kg。锆石单矿物挑选由河北省地勘局廊坊实验室完成,挑选的锆石颗粒数约在100~200粒。锆石制靶由合肥工业大学LA-ICPMS实验室完成,阴极发光(CL)照射则在中国科学院地质与地球物理研究所扫描电镜实验室进行,仪器型号为MiniCL。锆石中矿物包体的测试由中国地质科学院拉曼实验室的Renishaw-2000拉曼光谱分析仪完成。锆石U-Pb定年则由合肥工业大学LA-ICPMS实验室完成,激光剥蚀束斑设定为32μm,每测5个样品分析点,测两次标准锆石91500以优化仪器,锆石年龄的分馏校正和计算采用ICPMSDataCal 7.5软件(Ludwig,2003),所有年龄结果均以204Pb含量做了普通铅校正。年龄分析数据见表 3。
| 表 3 样品MQ024-1锆石U-Pb年龄数据 Table 3 Zircon U-Pb age data for sample MQ024-1 |
样品MQ024-1共测试分析38个数据点,获得22个谐和年龄数据(表 3)。该样品中的锆石多为浑圆状、柱状和锥状,粒径为30~220μm,长短轴比约1:1.5~1:3(图 5)。阴极发光(CL)图显示,基本上所有的锆石均具核、边结构,其中核部呈亮白色,具微弱的振荡环带和面状分带,显示了岩浆成因特征;而边部则多为暗灰至黑色,呈面状分带或弱分带(图 5a-e,g,i,k)。从测试分析的结果看,该样品的年龄大致可分为3组(表 3、图 6):(1)第一组有13个谐和数据点,均位于锆石核部,年龄范围在567±15.4Ma~804.8±21Ma(表 3、图 6a),其Th/U比值为0.50~1.73,均大于0.4,结合CL图分析(d-e),可以认定这些锆石应为岩浆锆石,其年龄代表了成岩年龄。而从年龄跨度和石榴石-蓝晶石-硬绿泥石片岩的原岩为泥质岩看,这些年龄反映的是碎屑锆石年龄,即代表的是不同物源的年龄;(2)第二组有4个谐和数据点,均位于锆石边部,年龄范围在241±1.4Ma~243.6±2.6Ma,Th/U比值为0.004~0.058,加权平均年龄为242.2±2.0Ma(图 6b);(3)第三组有5个谐和数据点,也都位于锆石边部,年龄范围在210±1.2Ma~220.5±1.6Ma,Th/U比值为0.01,加权平均年龄为216.2±6.6Ma(图 6b)。
![]() | 图 5 样品MQ024-1中锆石阴极发光(CL)图、单偏光照片和拉曼光谱图(a-e、g、i、k)锆石阴极发光图;(f、h、j、l)锆石中矿物包裹体包体;(m-p)锆石中金红石和云母包体拉曼光谱图Fig. 5 Cathodoluminescene(CL)images,plane-polarized light photos and plots of Raman spectroscopy for zircons from sample MQ24-1(a-e,g,i,k)CL images for zircons;(f,h,j,l)plane-polarized light photos for inclusions of zircons;(m-p)plots of Raman spectroscopy for inclusions of rutile and mica in zircons |
![]() | 图 6 锆石年龄谐和图(a)及峰期变质和退变质年龄谐和图(b)Fig. 6 Concordia plot for zircons(a) and concordia plot for the peak and retrograde metamorphic age(b) |
对于(2)和(3)两组年龄(图 6b),根据CL图分析和Th/U比值均<0.1的特征,其应当代表的是变质年龄。为确实这两组变质年龄代表的地质事件,本次研究对锆石中的矿物包裹体进行了拉曼光谱分析。因为对锆石含矿物包裹体区域进行年龄的直接测定,并结合岩相学分析,能直接确实地判明该年龄所代表的地质事件(Gebauer et al., 1997; Hermann et al., 2001; 吴元保和郑永飞,2004; Liu et al., 2004,2007; Liu and Liou, 2011; Zheng,2008; Chen et al., 2015)。从图 5e-l和图 5m-p可以看出,本次锆石中的包体主要为金红石和多硅白云母,岩相学分析表明这些矿物属于峰期变质阶段产物(图 2h)。这意味着这些区域的年龄应反映的是峰期变质年龄,并由(2)组年龄所代表(图 6b)。而(3)组年龄则缺乏矿物包裹体,依据Zheng(2008)的论述,该年龄可能反映的是退变质年龄。 5 石榴石-蓝晶石-硬绿泥石片岩构造归属的讨论
宿松变质杂岩最早由安徽省宿松地质队于1958创名,命名地位于宿松县北西约30km的柳坪附近(图 1a)。然而,正如前述,截至目前对其的研究仍缺乏系统性和全面性,存在较多的疑义。从前人的研究区域来看,定量的变质岩石学研究极少,且主要集中于太湖-马庙断裂和柳林-缺月岭-山龙断裂之间(魏春景和单振刚,1997; 陈燕等,2005; 王清晨等,1999; 石永红等, 2007,2010,2012),并据此对宿松变质杂岩形成的变质条件有:(a)绿帘角闪岩相-榴辉岩相过渡和(b)绿帘角闪岩相变质两种不同的认识(图 4)。
基于本次研究结果,可以看出特征性的岩石——石榴石-蓝晶石-硬绿泥石片岩的峰期变质条件为T=551~569℃和P=1.96~2.47GPa,明显经历了高压榴辉岩相变质(表 2、图 4),且与Coggon and Holl and (2002)、Wei and Powell(2003,2006)和Smye et al.(2010)对该类岩石研究的结果是十分吻合的。同时,该P-T条件与南大别变质地块的峰期变质条件也是一致的(Carswell et al., 1997; Castelli et al., 1998; Franz et al., 2001; Shi and Wang, 2006),这暗示了处于太湖-马庙断裂和柳林-缺月岭-山龙断裂之间物质可能普遍经历了高压榴辉岩相变质,应归属于南大别变质块体。矛盾的是野外地质调查和对围岩峰期变质条件的研究,却显示该类岩石以构造透镜体的形式存在,其P-T条件与围差异显著,至少存在约1.0GPa的差异(图 1b、图 4)。这意味着石榴石-蓝晶石-硬绿泥石片岩的P-T条件不具普遍性,可能是由于构造并置作用,使其与相对低压的围岩共存。
尽管如此,本文还是谨慎地倾向于在太湖-马庙断裂和柳林-缺月岭-山龙断裂之间地块属于高压变质块体,主要理由:(1)研究确证了高压榴辉岩相的石榴石-蓝晶石-硬绿泥石片岩的存在,我们初步的野外调查也显示,在缺月龄和山龙西约3km处可能存在类似的岩石,这意味着该类岩石可能普遍发育(图 1a)。此外,该类岩石在世界各地造山带中也广泛出露,如:Eastern Alps(Miller,1977; Miller et al., 1980; Holl and ,1979; Stckhert et al., 1997; Spear and Franz, 1986)、Western Alps(VuichardBallèvre,1988; Tropper et al., 1999)、Ands(Gabriele et al., 2003)、Bohemian Massif(Konopáseksek,2001)、Betics(Smye et al., 2010)、Kokchetav Block(Udovkina et al., 1977; Massonne and Schreyer, 1989)、Norwegain Caledonies(Chauvet et al., 1992; Hacker et al., 2003),因此,从板片俯冲深度变化分析,也应该具有类似的高压块体;(2)构造并置作用仅仅是对先前的高压块体一种破坏,其本身并不能反映各类岩石形成的变质级别。之所以围岩——石榴角闪岩、石榴云母片岩和细粒花岗片麻岩与石榴石-蓝晶石-硬绿泥石片岩存在较大的压力差的原因,推测可能是围岩普遍经历了退变质作用,它们目前的P-T条件也许并不能代表峰期变质条件。事实上,魏春景和单振刚(1997)在对石榴角闪岩和石榴云母片岩研究过程中,业已确证了蓝晶石和硬绿泥石的存在,这意味着这些岩石可能经历了高压榴辉岩相变质,但因工作程度所限,他们并未明确提出这一认识。因此,我们认为石榴石-蓝晶石-硬绿泥石片岩的围岩可能也属于高压变质范畴,只不过由于退变质作用,使峰期变质记录难以得到保存;(3)前人的定量分析或多或少地显示了围岩——石榴角闪岩和石榴云母片岩具有高压变质特征(魏春景和单振刚,1997; 陈燕等,2005; 石永红等,2007; 图 1a、图 4),尽管压力相对较低,但如果考虑到退变质影响,也许这也暗示了它们也经历了高压榴辉岩相变质作用 。
此外,从年龄角度来看,本次确定的石榴石-蓝晶石-硬绿泥石片岩的242.2±2.0Ma峰期变质年龄,明显不同于南大别变质地块的236.1±4.2Ma峰期变质年龄(Li et al., 2004; 图 1a)。而同前人确定的较为杂乱的宿松变质杂岩的年龄相比(Xie et al., 2001; Chen et al., 2003; 江来利等,2003; Li et al., 2004; Xia et al., 2009; 石永红等,2012; 图 1a),该年龄似乎缺乏规律性的变化特征。但基于石永红等(2012)的研究,目前较为可靠的宿松变质杂岩峰期年龄应为251±4Ma。若如此,可以看出,自北向南,峰期变质年龄呈逐渐增高趋势236.1±4.2Ma→242.2±2.0Ma→251±4Ma(图 1a)。同时,若参照Li et al.(2004)和Zheng(2008)对南大别地块的研究,以及石永红等(2010,2012,2013)对柳林-缺月岭-山龙断裂以南的宿松变质的P-T条件研究,可以看出位于太湖-马庙断裂和柳林-缺月岭-山龙断裂之间的地块的P-T条件明显低于或高于前两者,存在较大的压力差异(图 4)。
因此,综合前述的分析讨论,我们认为位于太湖-马庙断裂和柳林-缺月岭-山龙断裂之间的地块应从宿松变质杂岩中剥离出来,其经历了高压榴辉岩相变质,变质年龄与周边地块有较大的差异。在此,我们暂定命名该地块为大山-麻石沟高压地块。进一步地,可以确定宿松变质杂岩的北界应止于柳林-缺月岭-山龙断裂。 6 结论
(1)变质岩石学研究表明,宿松杂岩中的石榴石-蓝晶石-硬绿泥石片岩经历了高压榴辉岩相变质,其峰期变质P-T条件为:T=551~569℃和P=1.96~2.47GPa;锆石年代学研究显示,该类岩石峰期变质年龄为242.2±2.0Ma,退变质年龄为216.2±6.6Ma。
(2)根据此次研究结果,并结合前人的分析,太湖-马庙断裂和柳林-缺月岭-山龙断裂之间的块体应从宿松变质杂岩中剥离出来,其属于高压块体,本文暂定名为大山-麻石沟地块。自北向南,由南大别地块→大山-麻石沟地块→宿松变质杂岩,其变质级别逐渐降低,峰期变质年龄逐渐升高:236.1±4.2Ma(Li et al., 2004)→242.2±2.0Ma(此次)→251±4Ma(石永红等,2012)。
致谢 本文在成文过程中得到了魏春景教授、李秋立研究员和陈意副研究员的热忱帮助、指导和讨论。同时,特别感谢评审人认真细致的评阅和中肯的指正。| [1] | Bureau of Geology and Mineral Resources of Anhui Province. 1987. Regional Geology of Anhui Province. Beijing:Geological Publishing House(in Chinese) |
| [2] | Carswell DA, O'Brien PJ, Wilson RN and Zhai M. 1997. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of Central China. Journal of Metamorphic Geology, 15(2):239-252 |
| [3] | Castelli D, Rolfo F, Compagnoni R and Xu ST. 1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhujiachong eclogite, Dabie Shan, China. The Island Arc, 7(1-2):159-173 |
| [4] | Chauvet A, Kienast JR, Pinardon JL and Brunel M. 1992. Petrological constraints and PT path of Devonian collapse tectonics within the Scandian mountain belt(Western Gneiss Region, Norway). Journal of the Geological Society, 149(3):383-400 |
| [5] | Chen FK, Siebel W, Guo JH, Cong BL and Satir M. 2003. Late Proterozoic magmatism and metamorphism recorded in gneisses from the Dabie high-pressure metamorphic zone, eastern China:Evidence from zircon U-Pb geochronology. Precambrian Research, 120(1-2):131-148 |
| [6] | Chen Y, Wei CJ, Zhang JS and Chu H. 2005. Phase equilibria of mica-schists and gneisses in the HP-UHP belt of southern Dabie Shan. Acta Petrologica Sinica, 21(6):1657-1668(in Chinese with English abstract) |
| [7] | Chen YP, Wei CJ, Zhang JR and Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19):1698-1707 |
| [8] | Coggon R and Holland TJB. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, 20(7):683-696 |
| [9] | Dale J, Holland T and Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry:A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3):353-362 |
| [10] | Franz L, Romer RL, Klemd R, Schmid R, Oberhänsli R, Wagner T and Dong SW. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan(eastern China):Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3):322-346 |
| [11] | Gabriele P, Ballèvre M, Jaillard E and Hernandez J. 2003. Garnet-chloritoid-kyanite metapelites from the Raspas Complex(SW Ecuador):A key eclogite-facies assemblage. European Journal of Mineralogy, 15(6):977-989 |
| [12] | Gebauer D, Schertl HP, Brix M and Schreyer W. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos, 41(1-3):5-24 |
| [13] | Hacker BR, Andersen TB, Root DB, Mehl L, Mattinson JM and Wooden JL. 2003. Exhumation of high-pressure rocks beneath the Solund Basin, Western Gneiss Region of Norway. Journal of Metamorphic Geology, 21(6):613-629 |
| [14] | Hermann J, Rubatto D, Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust(Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1):66-82 |
| [15] | Holdaway MJ. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogists, 85(7-8):881-892 |
| [16] | Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4):433-447 |
| [17] | Holland TJB. 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. The Journal of Geology, 87(1):1-27 |
| [18] | Holland TJB and Powell R, 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3):309-343 |
| [19] | Jiang LL, Wu WP, Liu YC and Li HM. 2003. U-Pb zircon and Ar-Ar hornblende ages of the Susong complex of the southern Dabie orogen and their geological implication. Acta Petrologica Sinica, 19(3):497-505(in Chinese with English abstract) |
| [20] | Jing YR, Zhang LT, Bi ZG, Zhang SY, Qiao LY and Liang WT. 1991. The discovery of whiteschists in Taihu area in Anhui Province and its geological significance. Geological Review, 37(2):131-134(in Chinese with English abstract) |
| [21] | Konopásek J. 2001. Eclogitic micaschists in the central part of the Krušné hory Mountains(Bohemian Massif). European Journal of Mineralogy, 13(1):87-100 |
| [22] | Li XP, Zheng YF, Wu YB, Chen FK, Gong B and Li YL. 2004. Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4):443-470 |
| [23] | Liou JG, Wang Q, Zhang RY, Zhai M and Cong BL. 1995. Ultrahigh-P metamorphic rocks and their associated lithologies from the Dabie Mountains, Central China:A field trip guide to the 3rd International Eclogite Field Symposium. Chinese Science Bulletin, 40(Suppl.):1-40 |
| [24] | Liu FL, Xu ZQ, Liou JG and Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4):315-326 |
| [25] | Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1):1-39 |
| [26] | Liu YC, Li SG and Xu ST. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos, 96(1-2):170-185 |
| [27] | Liu YQ, Zhang SY and Qiao LY. 1991. Petrology and mineralogy of quasi-whiteschists in the high-pressure metamorphic belt of the continental crust in central China. Geological Review, 37(4):348-355(in Chinese with English abstract) |
| [28] | Liu YQ and Hu K. 1999. Ultra-high-pressure metamorphic rocks of aluminium-rich in central China. Acta Petrologica Sinica, 15(4):548-556(in Chinese with English abstract) |
| [29] | Ludwig KR. 2003. User's MANUAL for Isoplot/Ex, version 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication, 1-70 |
| [30] | Massonne HJ and Schreyer W. 1989. Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. European Journal of Mineralogy, 1(3):391-410 |
| [31] | Miller C. 1977. Mineral parageneses recording the P, T history of the alpine eclogites in the Tauern Window, Austria. Neues Jahrbuch der Minealogie, Abhandlungen, 130:69-77 |
| [32] | Miller C, Satir M and Frank W. 1980. High-pressure metamorphism in the Tauern Window. Mitteilungen der Österreichischen Geologischen Gesellschaft, 71-72:89-97 |
| [33] | Powell R and Holland TJB. 2008. On thermobarometry. Journal of Metamorphic Geology, 26(2):155-179 |
| [34] | Sang BL, Chen YZ and Shao GQ. 1987. The Rb-Sr ages of metamorphic series of the susong group at the southeastern foot of the Dabie Mountains, Anhui Province, and their tectonic significance. Regional Geology of China,(4):364-370(in Chinese with English abstract) |
| [35] | Shi Y and Wang Q. 2006. Variation in peak P-T conditions across the upper contact of the UHP terrane, Dabie Shan, China:Gradational or abrupt? Journal of Metamorphic Geology, 24:803-822 |
| [36] | Shi YH, Lin W and Wang QC. 2007. P-T path of garnet amphibolites from the Susong metamorphic complex across Taihu area in the Dabie Mountains, and its implications for subduction. Chinese Journal of Geology, 42(3):518-531(in Chinese with English abstract) |
| [37] | Shi YH, Lin W and Wang QC. 2010. Petrology and peak P-T conditions of Susong metamorphic complex in the Huangzhen-Liangtinghe area in the Southern Dabie Mountain and comparison with high-pressure eclogites. Acta Geologica Sinica, 84(3):329-342(in Chinese with English abstract) |
| [38] | Shi YH, Wang CS, Kang T, Xu XF and Lin W. 2012. Petrological characteristics and zircon U-Pb age for Susong metamorphic complex rocks in Anhui Province. Acta Petrologica Sinica, 28(10):3389-3402(in Chinese with English abstract) |
| [39] | Shi YH, Kang T and Xu XF. 2013. Analysis of metamorphic P-T conditions and zircon U-Pb age across the southeastern area of Dabie massif. Acta Petrologica Sinica, 29(5):1540-1558(in Chinese with English abstract) |
| [40] | Smye AJ, Greenwood LV and Holland TJB. 2010. Garnet-chloritoid-kyanite assemblages:Eclogite facies indicators of subduction constraints in orogenic belts. Journal of Metamorphic Geology, 28(7):753-768 |
| [41] | Spear FS and Franz G. 1986. P-T evolution of metasediments from the Eclogite Zone, south-central Tauern Window, Austria. Lithos, 19(3-4):219-234 |
| [42] | Stöckhert B, Massonne HJ and Nowlan EU. 1997. Low differential stress during high-pressure metamorphism:The microstructural record of a metapelite from the Eclogite Zone, Tauern Window, Eastern Alps. Lithos, 41(1-3):103-118 |
| [43] | Tropper P, Essene EJ, Sharp ZD and Hunziker JC. 1999. Application of K-feldspar-jadeite-quartz barometry to eclogite facies metagranites and metapelites in the Sesia Lanzo Zone(Western Alps, Italy). Journal of Metamorphic Geology, 17(2):195-209 |
| [44] | Udovkina N, Muravitskaya G and Laputina I. 1977. Talc-garnet-kyanite rocks of the Kokchetav block, northern Kazakhstan. Doklady Akad Nauk SSSR, 237:202-205 |
| [45] | Vuichard JP and Ballèvre M. 1988. Garnet-chloritoid equilibria in eclogitic pelitic rocks from the Sesia zone(Western Alps):Their bearing on phase relations in high pressure metapelites. Journal of Metamorphic Geology, 6(2):135-157 |
| [46] | Wang QC, Cong BL and Massonne HJ. 1999. Temperature-increase metamorphism along the south boundary of the Dabie eclogite terrain, China. Acta Petrologica Sinica, 15(3):339-349(in Chinese with English abstract) |
| [47] | Wei CJ and Shan ZG. 1997. Metamorphism of the Susong complex from the southern Dabie Mountains, Anhui Province. Acta Petrologica Sinica, 13(3):356-368(in Chinese with English abstract) |
| [48] | Wei CJ and Powell R. 2003. Phase relations in high-pressure metapelites in the system KFMASH(K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contributions to Mineralogy and Petrology, 145(3):301-315 |
| [49] | Wei CJ and Powell R. 2006. Calculated phase relations in the system NCKFMASH(Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for high-pressure metapelites. Journal of Petrology, 47(2):385-408 |
| [50] | Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1):185-187 |
| [51] | Worley B and Powell R. 2000. High-precision relative thermobarometry:Theory and a worked example. Journal of Metamorphic Geology, 18(1):91-101 |
| [52] | Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagioclase-quartz(GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology, 45(9):1907-1921 |
| [53] | Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15):1554-1569 |
| [54] | Xia QX, Zheng YF and Zhou LG. 2008. Dehydration and melting during continental collision:Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology, 247(1-2):36-65 |
| [55] | Xia QX, Zheng YF, Yuan HL and Wu FY. 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 112(3-4):477-496 |
| [56] | Xia QX, Zheng YF and Hu ZC. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen:Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos, 114(3-4):385-412 |
| [57] | Xie Z, Chen JF, Zheng YF, Zhang X, Li HM and Zhou TX. 2001. Zircon U-Pb dating of the metamorphic rocks of different grades from the southern part of the Dabie terrain in China. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):685-693 |
| [58] | Xu ST, Liu YC, Jiang LL, Wu WP and Chen GB. 2002. Architecture and Kinematics of the Dabie Mountains Orogen. Heifei:University of Science and Technology of China Press, 48-53(in Chinese) |
| [59] | Zhai MG and Cong BL. 1995. Susong metamorphic Complex in Dabieshan, Central China:A mobilized sedimentary cover of the Yangtze southern continental margin. Chinese Science Bulletin, 40(Suppl.):163-164 |
| [60] | Zhai MG, Cong BL, Chen J and Wang QC. 1995. Some retrograde metamorphic reactions in metamorphic rocks in Dabie Mountains, central China and their implication for metamorphic kinetics. Acta Petrologica Sinica, 11(3):257-272(in Chinese with English abstract) |
| [61] | Zhang SY, Hu K, Liu XC and Qiao LY. 1989. The characteristics of Proterozoic blueschist-whiteschist-eclogite in central China:A trinity of ancient intercontinental collapsion-collision zone. Bulletin of Mineralogy, Petrology and Geochemistry,(2):101-104(in Chinese with English abstract) |
| [62] | Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(20):3081-3104 |
| [63] | Zheng YF. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328:5-48 |
| [64] | 安徽省地质矿产局. 1987. 安徽省区域地质志. 北京:地质出版社 |
| [65] | 陈燕, 魏春景, 张景森, 初航. 2005. 大别山南部高压-超高压变质地体中云母片岩和片麻岩的相平衡研究. 岩石学报, 21(6):1657-1668 |
| [66] | 江来利, 吴维平, 刘贻灿, 李惠民. 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3):497-505 |
| [67] | 荆延仁, 张良田, 毕治国, 张树业, 乔兰勇, 梁万通. 1991. 安徽太湖一带白片岩的发现及其地质意义. 地质论评, 37(2):131-134 |
| [68] | 刘雅琴, 张树业, 乔兰勇. 1991. 华中陆壳高压变质带类白片岩的岩石矿物特征. 地质论评, 37(4):348-355 |
| [69] | 刘雅琴, 胡克. 1999. 中国中部高铝质超高压变质岩. 岩石学报, 15(4):548-556 |
| [70] | 桑宝良, 陈跃志, 邵桂清. 1987. 大别山东南麓宿松群铷-锶年龄及其构造意义的探讨. 中国区域地质,(4):364-370 |
| [71] | 石永红, 林伟, 王清晨. 2007. 大别山太湖地区宿松变质杂岩中石榴斜长角闪岩的P-T轨迹及反映的俯冲过程. 地质科学, 42(3):518-531 |
| [72] | 石永红, 林伟, 王清晨. 2010. 大别山南部黄镇-凉亭河一线宿松变质杂岩岩石学和峰期变质温压条件及与高压榴辉岩对比研究. 地质学报, 84(3):329-342 |
| [73] | 石永红, 王次松, 康涛, 徐旭峰, 林伟. 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10):3389-3402 |
| [74] | 石永红, 王娟, 康涛, 徐旭峰. 2013. 大别地块东南缘变质P-T条件及锆石U-Pb年代学研究. 岩石学报, 29(5):1540-1558 |
| [75] | 王清晨, 从柏林, Massonne HJ. 1999. 大别山太湖-马庙断裂带两侧变质地体的增温变质作用. 岩石学报, 15(3):339-349 |
| [76] | 魏春景, 单振刚. 1997. 安徽省大别山南部宿松杂岩变质作用研究. 岩石学报, 13(3):356-368 |
| [77] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16):1589-1604 |
| [78] | 徐树桐, 刘贻灿, 江来利, 吴维平, 陈冠宝. 2002. 大别山造山带的构造几何学和运动学.合肥:中国科学技术大学出版社, 48-53 |
| [79] | 翟明国, 从柏林, 陈晶, 王清晨. 1995. 大别山区变质岩中蓝晶石的几种退变质反应及其所指示的动力学过程. 岩石学报, 11(3):257-272 |
| [80] | 张树业, 胡克, 刘晓春, 乔兰勇. 1989. 中国中部元古代蓝片岩-白片岩-榴辉岩带——古陆内板块裂撞带的三位一体特征. 矿物岩石地球化学通报,(2):101-104 |
2016, Vol. 32











