岩石学报  2016, Vol. 32 Issue (2): 377-389   PDF    
安徽庐枞盆地泥河铁矿床成矿流体性质:来自He-Ar-H-O同位素的证据
张舒1,2, 范裕1, 吴明安2, 王克友2, 赵文广2, 魏国辉2    
1. 合肥工业大学资源与环境工程学院, 合肥 230009;
2. 安徽省地质调查院, 合肥 230001
摘要: 安徽庐江泥河铁矿床位于长江中下游成矿带庐枞中生代火山岩盆地,受控于切穿至Moho面的罗河-缺口断裂,矿床具有典型玢岩型铁矿的特征。泥河铁矿床硬石膏-透辉石-磁铁矿阶段流体3He/4He=0.14~0.76Ra(平均0.3548Ra),40Ar/36Ar=262.2~364.9(平均299.3),δ18OSMOW=-2.16‰~5.04‰,δDSMOW=-40.7‰~-34.8‰;硬石膏-黄铁矿-磁铁矿阶段流体3He/4He=0.0108~0.1301Ra(平均0.0697Ra),40Ar/36Ar=221.4~401.4(平均315.1),δDSMOW=-31.8‰~-15.4‰,δ18OSMOW=-2.72‰~1.88‰;高岭石-硬石膏-石英-黄铁矿阶段流体3He/4He=0.0162~0.0223Ra(平均0.0193Ra),40Ar/36Ar=312.5~367.6(平均340.05),δDSMOW=-25‰~-8‰,δ18OSMOW=-6.59‰~-4.89‰。成矿流体的同位素特征显示,幔源流体可能参与了泥河铁矿床早期的成矿作用,后期改造型饱和大气降水逐步加入并占据成矿作用的主导地位。研究结果表明,长江中下游地区中生代强烈的壳幔相互作用,是形成区域巨量金属矿床的重要机制,区域的深大断裂构成了幔源岩浆、幔源物质参与浅部成矿的通道。
关键词: 泥河铁矿床     He-Ar-H-O同位素     幔源物质     壳幔相互作用     深大断裂    
Characteristics of ore-forming fluids in Nihe iron deposit in Luzong volcanic basin, Anhui Province, China: Evidences from He-Ar-H-O isotopes
ZHANG Shu1,2>, FAN Yu1, WU MingAn2, WANG KeYou2, ZHAO WenGuang2, WEI GuoHui2    
1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
2. Geological Survey of Anhui Province, Hefei 230001, China
Abstract: The Nihe iron deposit is located in the Luzong Mesozoic volcanic basin, which is one of the important ore concentrated areas in Middle-Lower Yangtze metallogenetic belt. Nihe deposit can be classified into subvolcanic porphyry-related iron deposit. The deposit is controlled by the Luohe-Quekou fault which cuts through crust to Moho. The ore-forming fluids of anhydrite-diopside-magnetite stage have a 3He/4He=0.14~0.76Ra(mean 0.3548Ra), 40Ar/36Ar=262.2~364.9(mean 299.3), δ18OSMOW=-2.16‰~5.04‰, δDSMOW=-40.7‰~-34.8‰; fluids of anhydrite-magnetite-pyrite stage have a 3He/4He=0.0108~0.1301Ra(mean 0.0697Ra), 40Ar/36Ar=221.4~401.4(mean 315.1), δDSMOW=-31.8‰~-15.4‰, δ18OSMOW=-2.72‰~1.88‰; fluids of kaolinite-anhydrite-quartze-pyrite stage have a 3He/4He=0.0162~0.0223Ra(mean 0.0193Ra), 40Ar/36Ar=312.5~367.6(mean 340.05), δDSMOW=-25‰~-8‰, δ18OSMOW=-6.59‰~-4.89‰. The isotope characteristics suggest that mantle-derived fluids involved in the anhydrite-diopside-magnetite stage. During the anhydrite-magnetite-pyrite stage and kaolinite-anhydrite-quartze-pyrite stage, meteoric water becomes more and more important in the ore-forming process. The Mesozoic intense mantle-crust interaction is the major mechanism for the formation of huge metallic accumulation. Regional trans-crustal faults construct the channels for the mantle-derived magma and ore-forming material in Middle-Lower Yangtze metallogenetic belt.
Key words: Nihe iron deposit     He-Ar-H-O isotope     Mantle-derived material     Crust-mantle interaction     Deep faults    

长江中下游成矿带是我国重要的铁铜多金属成矿带,区内受特提斯域、古太平洋域和中生代构造体制转换的共同影响,形成了隆凹相间的构造格局,并发育了一系列与中生代岩浆活动有关的铁、铜、铅锌、金多金属矿床(毛建仁等,1990; 常印佛等,1991; 翟裕生等,1992; 唐永成等,1998; Pan and Dong, 1999)。前人的研究工作认为,长江中下游中生代岩浆-成矿作用的爆发与区域构造体制转换及壳幔相互作用存在着成因联系,幔源岩浆活动、深部物质及深大断裂为成矿作用提供了良好的物质条件(王文斌等,1995; 杜杨松等,2007a; 周涛发等,2008a; 毛景文等, 200420092012; 常印佛等,2012; 董树文等,2010; 吕庆田等,2014)。但地幔流体是否直接参与区域成矿作用,参与程度如何,目前很少有该方面的研究工作。

庐枞矿集区是长江中下游重要的断凹成矿区,发育与橄榄安粗质岩浆活动有关的玢岩铁矿(任启江等,1991; 周涛发等,2010)。前人已通过反射地震的研究证明,控制庐枞矿集区玢岩铁矿的断裂(罗河-缺口断裂)深达Moho,可能是幔源岩浆、成矿物质上升的通道(董树文等,2010; Lü et al., 2013)。同位素资料已证实了含矿岩体起源于富集地幔(刘洪等,2002; 周涛发等,2007; 袁峰等,2008; 薛怀民等,2010),但幔源流体是否也参与了庐枞盆地玢岩铁矿的成矿过程,目前还没有直接的地质-地球化学证据。

惰性气体因具有地球化学惰性,使得其在参与各种地质作用过程中保持不变,因此惰性气体可以有效地示踪成矿流体的来源(White,1985; Stuart et al., 1995; Burnard et al., 1999; Hu et al., 2004; 李晓峰等,2003)。惰性气体中的He同位素在地壳和地幔中的分布比值相差1000倍,地壳流体中少量幔源流体的加入也可以识别,因此He-Ar同位素成为研究地幔流体参与成矿作用的重要手段。国内利用He-Ar同位素示踪幔源流体取得了大量成果,华南、胶东、峨眉山、扬子地台西缘、攀西地区的U-Ti-W-Sn-Au-油气矿藏中均识别出了幔源组分的加入(毛景文和李荫清,2001; 周涛发等,2001; 张连昌等,2002; Hu et al., 2004; 王旭东等,2009; Zhai et al., 2012),但长江中下游地区与幔源橄榄安粗质岩浆活动有关的玢岩铁矿床的He-Ar同位素研究还鲜有报道。

本文选择庐枞盆地代表性的玢岩铁矿-泥河铁矿床,对成矿期黄铁矿、磁铁矿开展了包裹体He-Ar同位素的测定,配合脉石矿物包裹体H-O同位素的分析,对成矿流体的来源及演化进行探讨,补充区域玢岩铁矿He-Ar同位素的研究,亦为庐枞盆地乃至长江中下游地区壳幔相互作用与成矿关系的研究提供借鉴。 1 区域地质背景

庐枞盆地位于长江中下游断陷带内,扬子板块北缘,是一个北东向展布的中生代火山岩盆地。盆地呈不对称的“箕状”,四周由倾向盆地的边界断裂围限,深大断裂控制了火山岩盆地的发展与演化(图 1任启江等,1991; 吕庆田等,2014)。盆地内出露的沉积地层主要为中三叠统-中侏罗统陆相碎屑岩,与早白垩统火山岩呈不整合接触。火山岩由老到新分别为龙门院组、砖桥组、双庙组、浮山组,四个火山旋回均以爆发相开始溢流相结束,活动时限约为134~127Ma(周涛发等,2008b)。庐枞盆地中生代岩浆的侵入活动主要集中在早白垩世,活动起止时间约为134~124Ma,主要包括闪长岩、二长岩、(石英)正长岩、花岗岩四个类型(周涛发等,2010; 曾键年等,2010; 范裕等,2008; 薛怀民等,2010)。盆地内成矿作用集中在早白垩世,包括龙门院旋回与火山气热液作用有关的Pb、Zn、Ag矿床;砖桥旋回与火山-次火山岩活动有关的玢岩型铁(硫)矿床;砖桥-双庙旋回与次火山热液活动有关的脉状铜矿床;与正长岩类有关的Fe-Cu-U矿床(徐兆文等,1992; 周涛发等, 20102012; 张舒等, 2014ab)。

图 1 庐枞盆地地质矿产略图(据任启江等,1991; Lü et al., 2013修改)1-早白垩世浮山旋回;2-早白垩世双庙旋回;3-早白垩世砖桥旋回;4-早白垩世龙门院旋回;5-中侏罗世罗岭组;6-闪长岩类;7-二长岩类;8-碱性正长岩类;9-具A型花岗岩特征的正长岩类;10-钾长花岗岩类(具有A型花岗岩特征);11-推测的基底断裂及编号;12-铁矿床;13-铜矿床;14-铅锌矿床;15-铀矿床.①滁河断裂;②庐江-皇姑闸-铜陵拆离断层;③沿江断裂带;④陶家湾-施家湾断裂;⑤罗河-缺口断裂;⑥义津-陶家巷断裂;⑦塘家园-砖桥断裂;⑧枞阳-黄屯断裂Fig. 1 Geological sketch map of Luzong basin(after Ren et al., 1991; Lü et al., 2013)1-Early Cretaceous Fushan Fm.; 2-Early Cretaceous Shuangmiao Fm.; 3-Early Cretaceous Zhuanqiao Fm.; 4-Early Cretaceous Longmenyuan Fm.; 5-Middle Jurassic Luoling Fm.; 6-diorite; 7-syenite; 8-alkaline syenite; 9-syenite of characteristics of A-type granites; 10-moyite; 11-basement fault; 12-iron deposit; 13-copper deposit; 14-lead and zinc deposit; 15-urianiun deposit. ①Chuhe fault; ②Lujiang-Huangguzha-Tongling detach fault; ③Changiang fault zone; ④Tanjiawan-Shijiawan fault; ⑤Luohe-Quekou fault; ⑥Yijin-Taojiaxiang fault; ⑦Tangjiayuan-Zhuanqiao fault; ⑧Zongyang-Huangtun fault
2 矿床地质特征

泥河铁矿床是由安徽省地质调查院于2007年发现的一大型铁硫矿床,伴生中型硬石膏矿床(吴明安等,2011)。矿床位于庐枞盆地西北缘,北东向的基底隆起带与罗河-缺口断裂共同控制了矿床的定位。罗河-缺口断裂还控制了罗河铁矿、杨山铁矿的分布。

矿区地层主要包括:早白垩世砖桥组(K1z)和双庙组(K1s)火山岩,杨湾组(K1y)砂岩及第四系(Q)。砖桥组地层为泥河铁矿床中黄铁矿矿体与硬石膏矿体主要的赋矿围岩,岩性以粗安质熔岩及火山碎屑岩为主,地球化学特征上为一套橄榄安粗质岩石组合(任启江等,1991; 袁峰等,2008)。矿区侵入岩主要包括辉石闪长玢岩、脉岩及深部正长岩。辉石闪长玢岩为矿床主要的成矿母岩及赋矿围岩,成岩时代为132.4±1.5Ma(范裕等,2014; 张舒等,2014b)。

矿床的近矿围岩蚀变强烈,自下而上可以划分为深色蚀变带、叠加蚀变带及浅色蚀变带。深色蚀变带主要发育在闪长玢岩内部,蚀变类型以透辉石化、硬石膏化、磁铁矿化、黄铁矿化为主,磁铁矿与黄铁矿富集的地段即形成工业矿体;浅色蚀变带发育在砖桥组地层内,以高岭石化、硬石膏化、黄铁矿化和硅化为主;叠加蚀变带分布在深色蚀变带的顶部,是深色蚀变退变质作用的产物,主要发育赤铁矿化、菱铁矿化、绿泥石化、高岭石化等(赵文广等,2011; 范裕等,2012; 张舒等,2014b)。

泥河铁矿床是由磁铁矿体、硫铁矿体、硬石膏矿体组成的多矿种共生隐伏矿床,矿体总体呈北东-南西走向,受到辉石闪长玢岩穹窿构造的控制。磁铁矿体呈厚大的透镜状、似层状产出于闪长玢岩穹窿顶部;黄铁矿矿体分布在矿床的北东部,呈似层状分布在闪长玢岩穹窿顶部与砖桥组下段地层中,矿体中夹有少量的磁铁矿透镜体;硬石膏矿体分布在矿区的中部,呈透镜状赋存于砖桥组下段的地层中(图 2)。矿床成矿时代约为130.9±2.6Ma(范裕等,2014)

图 2 泥河铁矿床Ⅰ纵地质剖面图(据赵文广等,2011修改)1-早白垩世双庙组;2-早白垩世砖桥组;3-正长(斑)岩;4-辉石闪长玢岩;5-粗安斑岩;6-断裂;7-铁矿体;8-硫铁矿体;9-硬石膏矿体Fig. 2 The geological section map of Nihe iron deposit(after Zhao et al., 2011)1-Early Cretaceous Shuangmiao Fm.; 2-Early Cretaceous Zhuanqiao Fm.; 3-syenite; 4-pyroxene diorite porphyrite; 5- and esite poryphyrite; 6-fault; 7-iron orebody; 8-pyrite orebody; 9-gypsum orebody

根据矿床地质特征,穿插关系及矿化蚀变规律,泥河铁矿床的成矿作用可划分为两个成矿期,分别为热液期和表生期。热液期可进一步划分为四个成矿阶段,分别为硬石膏-透辉石-磁铁矿阶段、硬石膏-黄铁矿-磁铁矿阶段、高岭石-硬石膏-石英-黄铁矿阶段、重晶石-方解石-硬石膏阶段。硬石膏-透辉石-磁铁矿阶段是磁铁矿主要的形成时期,矿化发育在闪长玢岩体与砖桥组地层接触带内侧,成矿作用以热液交代闪长玢岩体为主,形成浸染状磁铁矿矿石,构成了泥河铁矿床的主矿体,矿石矿物组合为磁铁矿-硬石膏-透辉石(石榴子石)-黄铁矿,该阶段矿石中磁铁矿多呈细粒半自形至自形晶,粒度一般为0.01~0.50mm;硬石膏-黄铁矿-磁铁矿阶段矿化主要发育在早期浸染状矿化体的顶底部,成矿作用以热液充填作用为主,形成了泥河铁矿床中高品位的网脉状矿石,矿脉中矿物组合为磁铁矿-黄铁矿-硬石膏,矿脉主要充填在先形成的浸染状磁铁矿矿石角砾间隙,晚期网脉状矿化中的磁铁矿常呈粗晶粒状,有时亦可呈梳状沿脉壁生成,矿物粒度一般为0.1~2mm,局部可达10~30mm以上。高岭石-硬石膏-石英-黄铁矿阶段矿化主要发育在矿床的东北部及铁矿体的顶部,是泥河铁矿床硫铁矿矿体与硬石膏矿体主要的形成时期,形成硬石膏-黄铁矿和黄铁矿-石英等矿物组合。重晶石-方解石-硬石膏阶段是整个矿化的末期,表现为重晶石-方解石-硬石膏等矿物构成网脉穿插于早先形成的矿体及围岩中。 3 分析方法及结果 3.1 样品采集说明

本次工作采集了泥河铁矿床钻孔深部的矿石样品,分别挑选了硬石膏-透辉石-磁铁矿阶段浸染状的磁铁矿、黄铁矿和硬石膏;硬石膏-黄铁矿-磁铁矿阶段呈网脉状产出的黄铁矿和硬石膏;高岭石-硬石膏-石英-黄铁矿阶段的黄铁矿和硬石膏,进行He-Ar、H-O同位素的分析工作。采样位置详见表 1表 2,样品特征详见图 3

表 1 泥河铁矿床黄铁矿和磁铁矿包裹题He-Ar同位素组成Table 1 Helium and argon isotopes in fluid inclusions of magnetite and pyrite of Nihe iron deposit

表 2 泥河铁矿床流体包裹体H-O同位素分析结果 Table 2 Hydrogen and oxygen isotopes in the fluid inclusions of Nihe iron deposit

图 3 泥河铁矿床分析测试样品特征照片(a、b)硬石膏-透辉石-磁铁矿阶段矿石样品,浸染状构造,矿石矿物主要为磁铁矿、黄铁矿,脉石矿物主要为透辉石、硬石膏;(c、d)硬石膏-黄铁矿-磁铁矿阶段矿石样品,网脉状构造,矿脉矿物具有磁铁矿-黄铁矿-硬石膏的组合,早期形成的浸染状磁铁矿化膏辉岩破碎,矿脉充填在角砾间隙,可见到脉状矿化阶段矿物结晶程度及粒度均大于早期浸染状矿化阶段;(e)高岭石-硬石膏-石英-黄铁矿阶段矿石样品,黄铁矿-硬石膏脉切穿早先形成的稠密浸染状磁铁矿矿石;(f)高岭石-硬石膏-石英-黄铁矿阶段矿石样品,团块状、细晶硬石膏与黄铁矿呈浸染状分布. Mgt-磁铁矿;Py-黄铁矿;Anh-硬石膏;Di-透辉石Fig. 3 The photographs of the iron ores of Nihe deposit(a,b)anhydrite-diopside-magnetite stage disseminated ore;(c,d)anhydrite-pyrite-magnetite stage vein ore;(e,f)kaolinite-anhydrite-quartze-pyrite stage ore. Mgt-magnetite; Py-pyrite; Anh-anhydrite; Di-diopside
3.2 分析方法

黄铁矿、磁铁矿单矿物挑选由河北省廊坊诚信地质服务有限公司完成。黄铁矿、磁铁矿包裹体中He-Ar惰性气体同位素分析在中国科学院兰州油气资源研究重点实验室完成,测试仪器为英国Micromass公司生产的MM5400型稀有气体同位素质谱仪,检测依据LDB03-01-94稀有气体同位素质谱峰高比检测方法,实验条件:发射电流It4=800μA,It40=200μA,高压为9.000kV。实验仪器的热本底(1600℃)为(cm3STP):4He=2.46×10-1040Ar=1.39×10-8。试验流程:将洗净并烘干的样品称重后用铝箔包好,置于样品台中,随后密封抽真空,当压力达到1×10-5Pa时,加热样品到130℃并烘烤10h以上,以除去样品表面吸附和次生包裹体中的气体,后用电阻炉加热坩埚中的样品至1600℃,释放出的气体被吸入超真空气体净化系统,在液氮温度下将惰性气体分离为He+Ne和Ar+Kr+Xe两部分,分别送至气体质谱仪测定其同位素比值。使用的标准样是兰州市皋兰山顶的空气(AIRLZ2007)。分析详细过程参见叶先仁等(2001)

硬石膏包裹体H-O同位素分析在核工业北京地质研究所测试中心完成。O同位素分析流程:将样品放于制样装置,在压力达到1×10-3Pa真空条件下,与纯净的五氟化溴在500~680℃恒温条件下反应14h,释放出O2和杂质组份,将SiF4、BrF3等杂质组份用冷冻法分离除去后,纯净O2在700℃条件且有铂催化剂的条件下,与石墨恒温反应生成CO2,用冷冻法收集CO2,在MAT253气体同位素质谱仪上分析样品的O同位素组成;测量结果以SMOW为标准,记为δ18OSMOW;分析精度优于±0.2‰。H同位素分析流程:选取40~60目包裹体样品5~10mg,在105℃恒温烘箱中烘烤4h以上,用洁净干燥的锡杯包好备用;先用高纯氦气冲洗元素分析仪Flash EA里面的空气,以降低H2本底;当温度升高到1400℃,本底降到50mv以下时,可进行样品测试;包裹体样品在装有玻璃碳的陶瓷管里爆裂,释放出H2O,H2O在高温下与碳发生还原反应生成H2,H2在高纯氦气流的带动下进入质谱仪MAT253,按连续流方式进行分析;测量结果以SMOW为标准,记为δDSMOW,分析精度优于1‰;氢同位素参考标准为北大标准水(δDSMOW=-64.8‰)及兰州标准水(δDSMOW=-84.55‰)。 3.3 He-Ar同位素分析结果

在野外详细观察的基础上,结合矿石镜下特征,本次工作分别挑选了硬石膏-透辉石-磁铁矿阶段、硬石膏-黄铁矿-磁铁矿阶段、高岭石-硬石膏-石英-黄铁矿阶段矿石中的黄铁矿、磁铁矿,进行了He-Ar同位素的测定工作,结果见表 1

He和Ar在矿物中主要有三种存在形式:一是赋存于矿物包裹体捕获的成矿流体中;二是矿物晶格或流体包裹体中的放射性元素(Th、U、K、Li等)衰变产生;三是矿物表面吸附的来自大气的惰性气体(Turner and Stuart, 1992; Stuart et al., 1995; Burnard et al., 1999; Zhai et al., 2012)。成矿期次金属硫化物等矿物所捕获的包裹体,可以很好的反映成矿流体的惰性气体特征,但扩散丢失、放射性成因的累加、宇宙射线成因的3He加入,均会改变成矿古流体中惰性气体的丰度。

前人对泥河铁矿床成矿流体特征进行了详细的研究,发现主成矿期存在多相包裹体共生的现象,说明可能存在流体的沸腾作用(张乐骏,2011; 范裕等,2012),流体的沸腾导致的分馏效应对惰性气体的影响可以忽略(Burnard et al., 1999; 李晓峰等,2003)。宇宙射线所产生的3He只对近地表的样品产生影响(胡瑞忠等,1998; Zhai et al., 2012),本次工作所采集的样品均来自钻孔深部-600m之下(表 1表 2),排除了宇宙射线对惰性气体组成的影响。矿物中Li元素衰变产生3He、Th和U衰变产生3He、K衰变产生40Ar,上述元素的存在,均会改变惰性气体同位素比值。黄铁矿和磁铁矿晶格中、流体包裹体中Li、K、Th、U含量极低,且泥河铁矿床形成年龄较新(范裕等,2014),因此放射性衰变成因的惰性气体可忽略。黄铁矿等硫化物具有较低的He扩散系数,同时大多数矿物包裹体对Ar具有较好的保存能力(Ballentine and Burnard, 2002; Ballentine et al., 2002)。研究结果表明,真空压碎法提取包裹体中的惰性气体,不会产生明显的同位素分馏,亦基本不会使得寄主矿物中的He释放。综上,黄铁矿及磁铁矿中流体包裹体的He-Ar同位素组成,基本可以代表泥河铁矿床成矿流体的He-Ar同位素特征。

泥河铁矿床硬石膏-透辉石-磁铁矿阶段流体中4He=7.64×10-7~963.58×10-7cm3STP/g,40Ar=0.87×10-7~53.02×10-7cm3STP/g,3He/4He=0.14~0.76Ra(平均0.3548Ra), 40Ar/36Ar=262.2~364.9(平均299.3);硬石膏-黄铁矿-磁铁矿阶段流体中4He=182.81×10-7~690.1×10-7cm3STP/g,40Ar=4.566×10-7~30.838×10-7cm3STP/g,3He/4He=0.0108~0.1301Ra(平均0.0697Ra),40Ar/36Ar=221.4~401.4(平均315.1);高岭石-硬石膏-石英-黄铁矿阶段流体中4He=19.12×10-7~164.93×10-7cm3STP/g,40Ar=6.175×10-7~9.814×10-7cm3STP/g,3He/4He=0.0162~0.0223Ra(0.0193Ra), 40Ar/36Ar=312.5~367.6(平均340.1)。同位素的组成特征显示,随着成矿作用的进行,流体中4He的浓度没有较为明显的变化规律,40Ar的浓度集中在50×10-7cm3STP/g之内,40Ar/36Ar比值集中在200~400之间,但3He/4He的比值出现逐渐减小的趋势。 3.4 H-O同位素分析结果

本次工作分别测定了各个成矿阶段硬石膏的氧同位素和包裹体中氢同位素比值。硬石膏-透辉石-磁铁矿阶段硬石膏δ18OSMOW=-0.2‰~7‰,流体中δDSMOW=-40.7‰~-34.8‰;硬石膏-黄铁矿-磁铁矿阶段硬石膏δ18OSMOW=2‰~6.6‰,流体中δDSMOW=-31.8‰~-15.4‰;高岭石-硬石膏-石英-黄铁矿阶段硬石膏δ18OSMOW=1.9‰~3.6‰,流体中δDSMOW=-25‰~-8‰。

前人针对泥河铁矿床流体包裹体开展了系统的测温工作(张乐骏,2011; 范裕等,2012),硬石膏-透辉石-磁铁矿阶段成矿温度集中在380~460℃之间;硬石膏-黄铁矿-磁铁矿阶段成矿温度集中在350~270℃之间;高岭石-硬石膏-石英-黄铁矿阶段成矿温度集中在250~190℃之间。在计算与硬石膏平衡的成矿流体氧同位素时,采用公式1000lnα硬石膏-水=3.21×106/T2-4.72(Chiba et al., 1981),公式适用温度区间100~550℃,硬石膏-透辉石-磁铁矿阶段采用T=420℃,硬石膏-黄铁矿-磁铁矿阶段采用T=310℃,高岭石-硬石膏-石英-黄铁矿阶段采用T=220℃。计算后得出硬石膏-透辉石-磁铁矿阶段成矿流体δ18OSMOW=-2.16‰~5.04‰,硬石膏-黄铁矿-磁铁矿阶段流体δ18OSMOW=-2.72‰~1.88‰,高岭石-硬石膏-石英-黄铁矿阶段流体δ18OSMOW=-6.59‰~-2.89‰。 4 讨论 4.1 成矿流体来源示踪

热液流体中He-Ar同位素有4种来源:1)大气中He和Ar,由于大气中He的含量很低,一般认为大气中的He不会对成矿流体中He同位素组成产生明显的影响(Marty et al., 1989; Stuart et al., 1994),但大气中Ar对成矿流体的影响还不确定;2)饱和大气水,包括天水、海水及沉积建造水,在合适的温压条件下,饱和大气水与大气处于平衡状态,因此其具有与大气一致的He-Ar同位素组成:3He/4He=1Ra=1.4×10-640Ar/36Ar=295.5。但多数情况下,由于地壳中富含U、Th元素,其衰变产生的4He会扩散到浅层地下水及近地表流体中,进而造成流体中3He/4He比值的下降,表现出改造型饱和大气水的特征(Elliot et al., 1993; Stuart et al., 1994; Burnard et al., 1999; Ballentine and Burnard, 2002);3)地壳中的He-Ar同位素体系以放射性成因为主,3He/4He≤0.1Ra,40Ar/36Ar≥45000,因此壳源成因的岩浆流体及变质流体多具有上述的同位素组成(Andrews,1985; 李晓峰等,2003);4)幔源流体,大洋岩石圈地幔中3He/4He=7~9Ra,大陆岩石圈地幔中3He/4He=6~8Ra,幔源成因的40Ar以放射性成因为主,40Ar/36Ar≥40000(Reid and Graham, 1996; Burnard et al., 1999)。但研究表明,全球地幔He-Ar同位素特征具有不均一性(Anderson,1993Dunai and Baur, 1995Matsumoto et al., 1998Rison and Craig, 1983),中国东部大陆岩石圈地幔的He-Ar体系亦存在一定的差异(徐胜和刘丛强,1997; 汤华云等,2007),特别是长江中下游地区中生代壳幔相互作用强烈,岩石圈地幔多受到壳源物质的改造而表现出富集地幔的特征(毛建仁等,1990; 常印佛等,1991; 王文斌等,1995; 邢凤鸣和徐祥,1996; 唐永成等,1998; 刘洪等,2002; 闫峻等,2005; 袁峰等,2008; 薛怀民等,2010),因此区域地幔端元3He/4He的比值可能低于6~8Ra(徐胜和刘丛强,1997; 陶士振等,2001; 李延河等,2001)。

泥河铁矿床硬石膏-透辉石-磁铁矿阶段3He/4He=0.14~0.76Ra(平均0.35Ra),处于幔源成因与壳源成因的区域之间,反映成矿流体有幔源He的加入,幔源流体参与了泥河铁矿床早期的成矿作用。泥河铁矿床硬石膏-黄铁矿-磁铁矿阶段3He/4He=0.0108~0.1301Ra(平均0.0697Ra),高岭石-硬石膏-石英-黄铁矿阶段3He/4He=0.0162~0.0223Ra(平均0.0193Ra),成矿流体中3He/4He比值逐步降低,流体中He同位素组成表现出壳源成因的特征(图 4)。

图 4 泥河铁矿床流体40Ar/36Ar-R/Ra图解(底图据Burnard et al., 1999修改)Fig. 4 40Ar/36Ar vs. R/Ra plot of inclusion fluids of Nihe deposit(modified after Burnard et al., 1999)

本次工作测定了硬石膏-透辉石-磁铁矿阶段成矿流体氢氧同位素的组成,δ18OSMOW=-2.16‰~5.04‰,δDSMOW=-40.7‰~-34.8‰,较为接近原生岩浆水的区域。硬石膏是含氢氧元素的矿物,易与其流体包裹体中的水发生同位素平衡交换反应,进而造成包裹体中氢氧同位素的漂移(丁悌平,1980)。范裕等(2012)对泥河铁矿床包裹体开展了显微测温和拉曼光谱研究,明确硬石膏-透辉石-磁铁矿阶段流体成分为盐水溶液,含有微量的CO2、N2和CH4,流体均一温度约为380~460℃,具有典型的岩浆流体特征。张舒等(2014b)通过硫、铅同位素的研究,亦认为成矿作用早期流体的主要成分可能来自于赋矿闪长玢岩。因此推测,成矿早期的岩浆流体被硬石膏捕获后,可能与寄主矿物发生了同位素交换,使得其氢氧同位素发生一定的变化。上述研究表明,闪长玢岩出溶形成的流体,可能是硬石膏-透辉石-磁铁矿阶段混合流体的重要组成部分。

一般认为,岩浆流体中3He/4He≤0.1Ra(Andrews,1985; 李晓峰等,2003),泥河铁矿床硬石膏-透辉石-磁铁矿阶段3He/4He=0.14~0.76Ra(平均0.3548Ra),高于岩浆流体可能提供的氦同位素组成,因此,成矿作用早期的流体中应存在其它来源性质的流体。氢氧同位素及包裹体成分分析说明硬石膏-透辉石-磁铁矿阶段流体中基本不含有大气降水的组分(范裕等,2012),同时该阶段流体温度较高,即使存在少量大气降水的加入,较高的温度、循环作用及地层中放射性4He的扩散也会使得大气降水具有改造型饱和大气水的氦同位素组成(Elliot et al., 1993; Stuart et al., 1994; Burnard et al., 1999; Ballentine et al., 2002),不能显著提升成矿流体中3He/4He比值。因此,造成硬石膏-透辉石-磁铁矿阶段流体中3He/4He比值较高的原因,极有可能是地幔流体参与到泥河铁矿床的成矿作用中(图 4)。

假设硬石膏-透辉石-磁铁矿阶段成矿流体是由岩浆流体与幔源流体构成的二元体系,根据公式:幔源He比例=[(3He/4He)样品-(3He/4He)地壳]/[(3He/4He)地幔-(3He/4He)地壳]。取壳源岩浆流体3He/4He=0.1Ra,大陆岩石圈地幔3He/4He=6Ra,计算得到硬石膏-透辉石-磁铁矿阶段成矿流体中,地幔流体所占比例约为2.24%~12.45%,平均为5.76%,说明早期成矿流体中幔源物质的存在。但上述计算所采用的大陆岩石圈地幔He同位素组成是国外学者提出的标准,并不能完全代表中国大陆岩石圈地幔,尤其是中生代长江中下游地区富集型岩石圈地幔He同位素的端元值。

前人对庐枞地区早白垩世火山-次火山岩开展了大量的岩石地球化学研究工作,微量元素及Sr-Nd-Pb同位素特征显示岩浆源区应为受俯冲板片析出流体交代作用所形成的富集地幔(EMⅠ),岩浆起源于富集地幔的部分熔融(刘洪等,2002; 袁峰等,2008; 薛怀民等,2010; 熊欣等,2013)。富集型地幔(EMⅠ)通常不同程度的富集U、Th和Pb等大离子亲石元素,其衰变产生4He随着时间累积,使得地幔流体逐步富集放射性成因的4He,造成幔源流体中3He/4He比值明显下降,俯冲板片析出的流体同样溶解了大气中的Ar,导致富集地幔中40Ar/36Ar的比值接近或略高于大气40Ar/36Ar的比值(White,1985; Hofmann,1988; 陶士振等,2001)。庐枞地区早白垩世的富集型岩石圈地幔可能就具有较低的3He/4He比值和接近大气的40Ar/36Ar比值,那么泥河铁矿床硬石膏-透辉石-磁铁矿阶段成矿流体中幔源流体所占的比例,可能远远大于利用平均大陆岩石圈地幔3He/4He比值所计算出的比例。

随着成矿作用的进行,硬石膏-黄铁矿-磁铁矿阶段流体中3He/4He=0.0108~0.1301Ra(平均0.0697Ra),3He/4He比值发生了明显的降低,说明存在着其它性质流体的加入。泥河铁矿床存在大量的网脉状矿石,可见早先形成的浸染状磁铁矿矿石破碎为角砾,角砾间隙中充填有粗晶矿脉,说明硬石膏-透辉石-磁铁矿阶段后期可能存在流体的隐爆作用(赵文广等,2011; 张舒等,2014b)。隐爆作用使得岩体顶部形成大量的裂隙,为浅层地下水及大气降水的下渗循环并参与成矿提供了良好的通道。这种参与了地壳浅层循环的改造型饱和大气水,因萃取了地壳放射性成因的4He,而表现出较低的3He/4He比值(Stuart et al., 1995),其加入到泥河铁矿床的成矿过程中,会使得流体中3He/4He比值显著降低。流体包裹体中的H-O同位素组成也表明,硬石膏-黄铁矿-磁铁矿阶段成矿流体的δDSMOW=-31.8‰~-15.4‰,δ18OSMOW=-2.72‰~1.88‰,相较早期流体H-O组成,向雨水的组成区域偏移(图 5),指示硬石膏-黄铁矿-磁铁矿阶段成矿流体中可能存在有改造型饱和大气降水的加入。高岭石-硬石膏-石英-黄铁矿阶段成矿流体中3He/4He=0.0162~0.0223Ra,δDSMOW=-25‰~-8‰,δ18OSMOW=-6.59‰~-4.89‰,显示此时成矿流体可能主要为改造型饱和大气水。

图 5 泥河铁矿床成矿流体δ18O-δD图解(底图据Hedenquist and Lowenstern, 1994修改)Fig. 5 δ18O vs. δD plot of inclusion fluids of Nihe deposit(modified after Hedenquist and Lowenstern, 1994)
4.2 燕山期长江中下游壳幔相互作用与成矿

长江中下游成矿带是我国重要的铁铜多金属成矿带之一,成矿作用集中爆发于燕山期,主要的成矿类型包括:(1)与高钾钙碱性岩浆活动有关的斑岩-矽卡岩型Cu-Mo-Au矿床,以铜陵矿集区为代表,成岩成矿时代集中在145~135Ma(吴淦国等,2008; 毛景文等, 20042009);(2)与橄榄安粗质岩浆活动有关的玢岩型Fe-S-P矿床,以宁芜、庐枞盆地为代表,成岩成矿时代集中在135~127Ma(任启江等,1991; 周涛发等,2010);(3)与碱性岩有关的铁氧化物-铜-铀矿床,成岩成矿时代集中在130~110Ma(陈一峰,1994; 郑永飞等, 19951997; 周涛发等, 2008a2012; 范裕等,2008; 熊欣等,2013; 张舒等,2014a)。大量的岩石学及地球化学工作证实,区域燕山期与成矿作用有关岩体的形成是壳幔相互作用的产物,伸展背景下区域富集型岩石圈地幔的部分熔融是成岩的重要机制(常印佛等,1991; 唐永成等,1998; 邢凤鸣和徐祥,1999; 袁峰等,2008; 周涛发等,2008b; 薛怀民等,2010; 贾丽琼等,2014),燕山期强烈的壳幔相互作用,为区域成岩成矿提供了重要的物质基础。秦新龙等(2003)杜杨松等(20042007b)对铜陵地区成矿闪长岩中硫化物包体的研究,揭示了上地幔硫化物随玄武质岩浆底侵至下地壳并进一步上升运移参与成矿的过程;本文对庐枞地区玢岩铁矿He-Ar同位素的研究,亦明确了地幔流体在成矿作用中不可忽视的地位。上述工作均是区域复杂壳幔相互作用导致成矿的有力证据。

长江中下游地区是多构造域交汇作用的区域,华北板块、扬子板块与华夏板块的多期次演化造就了区域复杂的构造格局(常印佛等, 19912012; 董树文等,2010; 吕庆田等,2014)。自早元古代以来,区域经历了三次重大板块汇聚事件:晋宁期华夏地块与扬子地块的拼接、印支期扬子板块向华北板块的拼贴、晚中生代古太平洋板块向欧亚板块的拼接,板块的汇聚伴随着洋陆俯冲作用,下插至地幔楔之下的洋壳板片脱水,产生富含大离子亲石元素及成矿物质的流体,交代上覆岩石圈地幔,使其形成富集大离子亲石元素的富集型地幔。富集地幔中U、Th等放射性元素含量相对较高,其衰变产生4He随着时间累积,使得地幔流体逐步富集放射性成因的4He,造成幔源流体中3He/4He比值明显下降。同时,古板块的俯冲,还将大气及溶解了大气Ar的水带入上地幔,造成富集地幔中40Ar/36Ar的比值接近或略高于大气40Ar/36Ar的比值。总之,洋壳的俯冲及大洋板片的脱水可能造成了长江中下游地区岩石圈地幔的He-Ar同位素组成受到混染。

地幔中的惰性气体多存在于固相矿物中,一般通过地幔物质部分熔融及幔源岩浆的上升作用进入地壳,参与成矿作用(Ballentine and Burnard, 2002; Ballentine et al., 2002; 翟伟等,2012)。晚中生代,古太平洋板块的斜向俯冲造成了长江中下游地区经历了由挤压向拉张过渡的构造背景转换(Pan and Dong, 1999; Li,2000; Sun et al., 2007; 朱光等,2003; Zhang and Zhang, 2010; 薛怀民等,2010)。区域的伸展作用,引发了富集型岩石圈地幔的部分熔融和软流圈物质上涌底侵,地幔岩浆与下地壳物质的强烈作用形成了富含幔源成矿物质的岩浆,岩浆沿深大断裂上涌至浅表,这种幔源岩浆结晶冷凝析出的岩浆热液、沿深大断裂上升的幔源流体与地壳岩石中循环的改造型饱和大气水共同作用,形成了区域巨量的多金属矿床。通过高精度反射地震识别出的庐枞地区深达岩石圈地幔的罗河-缺口断裂(董树文等,2010; 吕庆田等,2014),为形成区域玢岩铁矿的幔源岩浆及幔源成矿流体提供了上升运移通道。 5 结论

(1)泥河铁矿床硬石膏-透辉石-磁铁矿阶段成矿流体3He/4He=0.14~0.76Ra,硬石膏-黄铁矿-磁铁矿阶段3He/4He=0.0108~0.1301Ra,高岭石-硬石膏-石英-黄铁矿阶段3He/4He=0.0162~0.0223Ra。成矿流体He、Ar同位素特征显示,成矿流体中有幔源He的加入。

(2)结合流体包裹体H-O同位素的研究,认为地幔流体参与了泥河铁矿床硬石膏-透辉石-磁铁矿阶段的成矿作用,硬石膏-黄铁矿-磁铁矿阶段至高岭石-硬石膏-石英-黄铁矿阶段,改造型饱和大气降水逐步加入并占据成矿作用的主导地位。

(3)幔源流体参与泥河铁矿床成矿作用,印证了长江中下游燕山期壳幔相互作用与大规模成矿之间的成因联系。早白垩世区域岩石圈的伸展作用,引发富集型岩石圈地幔的部分熔融,形成了大规模的岩浆活动,幔源流体随岩浆上升至浅部地壳,参与了长江中下游燕山期多金属成矿作用。

参考文献
[1] Anderson DL. 1993. Helium-3 from the mantle:Primordial signal or cosmic dust? Science, 261(5118):170-176
[2] Andrews JN. 1985. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chemical Geology, 49(1-3):339-351
[3] Ballentine CJ and Burnard PG. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47(1):481-538
[4] Ballentine CJ, Burgess R and Marty B. 2002. Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry, 47(1):539-614
[5] Burnard PG, Hu R, Turner G and Bi XW. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10):1595-1604
[6] Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reachers of the Changjiang River. Beijing:Geological Publishing House, 1-359(in Chinese)
[7] Chang YF, Zhou TF and Fan Y. 2012. Polygenetic compound mineralization and tectonic evolution:Study in the Middle-Lower Yangtze River valley metallogenic belt. Acta Petrologica Sinica, 28(10):3067-3075(in Chinese with English abstract)
[8] Chen YF. 1994. Discussion on uranium metallogenetic regularities in Lu-Zong region. Uranium Geology, 10(4):193-202, 206(in Chinese with English abstract)
[9] Chiba H, Kusakabe M, Hirano SI, Matsuo S and Somiya S. 1981. Oxygen isotope fractionation factors between anhydrite and water from 100 to 550℃. Earth and Planetary Science Letters, 53(1):55-62
[10] Ding TP. 1980. Geochemistry of Hydrogen and Oxygen Isotope. Beijing:Geological Publishing House, 1-184(in Chinese)
[11] Dong SW, Xiang HS, Gao R, Lü QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9):2529-2542(in Chinese with English abstract)
[12] Du YS, Qin XL and Tian SH. 2004. Mesozoic magmatic to hydrothermal process in the Tongguanshan ore field, Tongling, Anhui Province, China:Evidence from xenoliths and their hosts. Acta Petrologica Sinica, 20(2):339-350(in Chinese with English abstract)
[13] Du YS, Cao Y, Yuan WM, Lou YE, Li ST and Lu X. 2007a. Mesozoic post-collisional to postorogenic magmatic activities and crustal interaction with mantle along the Yangtze River, Anhui Province:Evidence from volcanic-intrusive complexes and xenoliths. Acta Petrologica Sinica, 23(6):1294-1302(in Chinese with English abstract)
[14] Du YS, Li ST, Cao Y, Qin XL and Lou YE. 2007b. UAFC-Related origin of the Late Jurassic to Early Cretaceous intrusions in the Tongguanshan ore field, Tongling, Anhui Province, East China. Geoscience, 21(1):71-77(in Chinese with English abstract)
[15] Dunai TJ and Baur H. 1995. Helium, neon, and argon systematics of the European subcontinental mantle:Implications for its geochemical evolution. Geochimica et Cosmochimica Acta, 59(13):2767-2783
[16] Elliot T, Ballentine CJ, O'nions RK and Ricchiuto T. 1993. Carbon, helium, neon and argon isotopes in a Po basin(northern Italy) natural gas field. Chemical Geology, 106(3-4):429-440
[17] Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and Cooke D. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8):1715-1724(in Chinese with English abstract)
[18] Fan Y, Zhou TF, Hao L, Yuan F, Zhang LJ and Wang WC. 2012. Ore-forming fluid characteristic of Nihe iron deposit in Lu-Zong Basin, Anhui Province and its significance to ore genesis. Acta Petrologica Sinica, 28(10):3113-3124(in Chinese with English abstract)
[19] Fan Y, Liu YN, Zhou TF, Zhang LJ, Yuan F and Wang WC. 2014. Geochronology of the Nihe deposit and in the Lu-Zong basin and its metallogenic significances. Acta Petrologica Sinica, 30(5):1369-1381(in Chinese with English abstract)
[20] Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490):519-527
[21] Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3):297-314
[22] Hu RZ, Zhong H, Ye ZJ, Bi XW, Turner G and Burnard PG. 1998. Helium and argon isotopic geochemistry of Jinding superlarge Pb-Zn deposit. Science in China(Series D), 41(4):442-448
[23] Hu RZ, Burnard PG, Bi XW, Zhou MF, Pen JT, Su WC and Wu KX. 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chemical Geology, 203(3-4):305-317
[24] Jia LQ, Xu WY, Lü QT, Mo XX, Xiong X, Li J and Wang L. 2014. LA-MC-ICP MS zircon U-Pb geochronology and petrological geochemistry of scientific deep drilling in Zhuanqiao, Lujiang-Zongyang volcanic basin. Acta Petrologica Sinica, 30(4):995-1016(in Chinese with English abstract)
[25] Li XF, Mao JW, Wang YT and Wang DH. 2003. Evidence of noble gas isotopes and halogen for the origin of ore-forming fluids. Geological Review, 49(5):513-521(in Chinese with English abstract)
[26] Li XH. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3):293-305
[27] Li YH, Li JC, Song HB and Guo LH. 2002. Helium isotope studies of the mantle xenoliths and megacrysts from the Cenozoic basalts in the eastern China. Science in China(Series D), 45(2):174-183
[28] Liu H, Qiu JS, Luo QH, Xu XS, Ling WL and Wang DZ. 2002. Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province:Geochemical constraints. Geochimica, 31(2):129-140(in Chinese with English abstract)
[29] Lü QT, Yan JY, Shi DN, Dong SW, Tang JT, Wu MA and Chang YF. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze metallogenic belt:An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606:60-77
[30] Lü QT, Dong SW, Shi DN, Tang JT, Jiang GM, Zhang YQ, Xu T and SinoProbe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from SinoProbe. Acta Petrologica Sinica, 30(4):889-906(in Chinese with English abstract)
[31] Mao JR, Su YX, Chen SY et al. 1990. The Intermediate-acid Intrusive Rocks in Middle and Lower Yangtze River and the Relationship with Mineralization. Beijing:Geological Publishing House, 1-191(in Chinese)
[32] Mao JW and Li YQ. 2001. Fluid inclusions of the Dongping gold telluride deposit in Hebei Province, China:Involvement of mantle fluid in metallogenesis. Mineral Deposits, 20(1):23-36(in Chinese with English abstract)
[33] Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1):121-131(in Chinese with English abstract)
[34] Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2):109-119(in Chinese with English abstract)
[35] Mao JW, Duan C, Liu JL and Zhang C. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River valley. Acta Petrologica Sinica, 28(1):1-14(in Chinese with English abstract)
[36] Marty B, Jambon A and Sano Y. 1989. Helium isotopes and CO2 in volcanic gases of Japan. Chemical Geology, 76(1-2):25-40
[37] Matsumoto T, Honda M, Mcdougall I and O'Reilly SY. 1998. Noble gases in anhydrous lherzolites from the newer volcanics, southeastern Australia:A MORB-like reservoir in the subcontinental mantle. Geochimica et Cosmochimica Acta, 62(14):2521-2533
[38] Pan YM and Dong P. 1999. The Lower Changjiang(Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4):177-242
[39] Qin XL, Du YS, Lee HK, Yin JW and Guo XF. 2003. Fe-Ti oxide and Fe-Cu sulfide exsolution in amphibole cumulate xenoliths from granodiorite in Tongling, Anhui Province. Chinese Science Bulletin, 48(23):2626-2634
[40] Reid MR and Graham DW. 1996. Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth and Planetary Science Letters, 144(1-2):213-222
[41] Ren QJ, Liu XS and Xu ZW. 1991. Mesozoic Volcano-Tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Beijing:Geological Publishing House, 1-145(in Chinese)
[42] Rison W and Craig H. 1983. Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth and Planetary Science Letters, 66:407-426
[43] Stuart FM, Turner G, Duckworth RC and Fallick AE. 1994. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology, 22:823-826
[44] Stuart FM, Burnard PG, Taylor RP and Turner G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochimica et Cosmochimica Acta, 59(22):4663-4673
[45] Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4):533-542
[46] Tang HY, Zheng JP and Yu CM. 2007. Mantle fluids and noble gas isotopic compositions of peridotitic olivines in Cenozoic basalts from eastern North China. Acta Petrologica Sinica, 23(6):1531-1542(in Chinese with English abstract)
[47] Tang YC, Wu YC and Chu GZ. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing:Geological Publishing House, 1-359(in Chinese with English abstract)
[48] Tao SZ, Liu DL, Zhu WJ and Yang XY. 2001. Isotope geochemistry of mantle-derived gas in eastern China. Geotectonica et Metallogenia, 25(4):412-419(in Chinese with English abstract)
[49] Turner G and Stuart F. 1992. Helium/heat ratios and deposition temperatures of sulphides from the ocean floor. Nature, 357(6379):581-583
[50] Wang WB, Li WD, Xie HG and Zhou HP. 1995. The Pb-isotopic characteristics in Cu-Fe-multimetal deposits in Middle-Lower Yangtze area. Volcanology & Mineral Resources, 16(2):67-77(in Chinese with English abstract)
[51] Wang XD, Ni P, Jiang SY, Zhao KD and Wang TG. 2010. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province:Evidence from helium and argon isotopes. Chinese Science Bulletin, 55(7):628-634
[52] White WM. 1985. Sources of oceanic basalts:Radiogenic isotopic evidence. Geology, 13(2):115-118
[53] Wu GG, Zhang D, Di YJ, Zang WS, Zhang XX, Song B and Zhang ZY. 2008. SHRIMP zircon U-Pb dating of the intrusives in the Tongling metallogenic cluster and its dynamic setting. Science in China(Series D), 51(7):911-928
[54] Wu MA, Wang QS, Zheng GW, Cai XB, Yang SX and Di QS. 2011. Discovery of the Nihe iron deposit in Lujiang, Anhui, and its exploration significance. Acta Geologica Sinica, 85(5):802-809(in Chinese with English abstract)
[55] Xing FM and Xu X. 1996. High-potassium calc-alkaline intrusive rocks in Tongling area, Anhui Province. Geochimica, 25(1):29-38(in Chinese with English abstract)
[56] Xing FM and Xu X. 1999. Magmatic Belt and Mineralization in Yangtze River Reaches of Anhui Province. Hefei:Anhui People Publication House, 1-170(in Chinese)
[57] Xiong X, Xu WY, Jia LQ, Lü QT and Li J. 2013. Modes of occurrence and composition of uranium and thorium minerals in deep drilling program in Zhuanqiao of Lujiang, Anhui Province. Mineral Deposits, 32(6):1211-1220(in Chinese with English abstract)
[58] Xu S and Liu CQ. 1997. Helium isotopic compositions of mantle-derived xenoliths in the eastern China and its implication to the geochemical evolution of mantle. Chinese Science Bulletin, 42(11):1190-1193(in Chinese)
[59] Xu ZW, Ren QJ, Yang RY and Wang S. 1992. Distribution regularities and metallogenic patterns of veinlike Cu(Au)-deposits in the Lujiang-Zhongyang area. Geology and Prospecting, 28(1):8-15(in Chinese with English abstract)
[60] Xue HM, Dong SW and Ma F. 2010. Geochemistry of shoshonitic volcanic rocks in the Luzong Basin, Anhui Province(eastern China):Constraints on Cretaceous lithospheric thinning of the Lower Yangtze region. Acta Geologica Sinica, 84(5):664-681(in Chinese with English abstract)
[61] Yan J, Chen HF, Xie Z, Yang G, Yu G and Qian H. 2005. Geochemistry of late Mesozoic basalts from Kedoushan in the Middle and Lower Yangtze regions:Constraints on characteristics and evolution of the lithospheric mantle. Geochimica, 34(5):455-469(in Chinese with English abstract)
[62] Ye XR, Wu MB and Sun ML. 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3):174-178(in Chinese with English abstract)
[63] Yuan F, Zhou TF, Fan Y, Lu SM, Qian CC, Zhang LJ, Duan C and Tang MH. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8):1691-1702(in Chinese with English abstract)
[64] Zeng JN, Qin YJ, Guo KY, Chen GG and Zeng Y. 2010. Zircon U-Pb dating of ore-bearing magmatic rocks and its constraint on the formation time of the ore deposits in Luzong basin, Anhui Province. Acta Geologica Sinica, 84(4):466-478(in Chinese with English abstract)
[65] Zhai W, Sun XM, Wu YS, Sun YY, Hua RM and Ye XR. 2012. He-Ar isotope geochemistry of the Yaoling-Meiziwo tungsten deposit, North Guangdong Province:Constraints on Yanshanian crust-mantle interaction and metallogenesis in SE China. Chinese Science Bulletin, 57(10):1150-1159
[66] Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region. Beijing:Geological Publishing House, 12-35(in Chinese)
[67] Zhang LC, Shen YC, Li HM, Zeng QD, Li GM and Liu TB. 2002. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrologica Sinica, 18(4):559-565(in Chinese with English abstract)
[68] Zhang LJ. 2011. Polymetallic mineralization and associated magmatic and volcanic activity in the Luzong basin, Anhui Province, eastern China. Ph. D. Dissertation. Hefei:Hefei University of Technology, 1-239(in Chinese with English summary)
[69] Zhang S and Zhang ZC. 2010. Petrology and geochemistry of the Huangshan granitic intrusion in Anhui Province, Southeast China:Implications for petrogenesis and geodynamics. Acta Geologica Sinica, 84(3):581-596
[70] Zhang S, Wu MA, Wang J, Li XD, Zhao WG and Wei GH. 2014a. The mineralization related with the syenite in Luzong basin, Anhui Province. Acta Geologica Sinica, 88(4):519-531(in Chinese with English abstract)
[71] Zhang S, Wu MA, Zhao WG, Zhang YY, Li XD and Wang J. 2014b. Geochemistry characteristics of Nihe iron deposit in Lujiang, Anhui Province and their constrains to ore genesis. Acta Petrologica Sinica, 30(5):1382-1396(in Chinese with English abstract)
[72] Zhao WG, Wu MA, Zhang YY, Wang KY, Fan Y, Wang LY, Wei GH and Che YD. 2011. Geological characteristics and genesis of the Nihe Fe-S deposit, Lujiang County, Anhui Province. Acta Geologica Sinica, 85(5):789-801(in Chinese with English abstract)
[73] Zhen YF, Fu B and Gong B. 1995. The thermal history of the Huangmeijian intrusion in Anhui and its relation to mineralization:Isotopic evidence. Acta Geologica Sinica, 69(4):337-348(in Chinese with English abstract)
[74] Zhen YF, Wei CS, Wang ZR, Huang YS and Zhang H. 1997. An isotope study on the cooling history of the Dalongshan granitic massif and its bearing on mineralizing process. Scientia Geologica Sinica, 32(4):645-657(in Chinese with English abstract)
[75] Zhou TF, Yuan F, Yue SC and Liu XD. 2001. Silicon, helium and neon isotope geochemistry of Cu, Au ore deposits in the Yueshan orefield, Anhui Province. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4):385-387(in Chinese with English abstract)
[76] Zhou TF, Song MY, Fan Y, Yuan F, Liu J, Wu MA, Qian CC and Lu SM. 2007. Chronology of the Bajiatan intrusion in the Luzong basin, Anhui, and its significance. Acta Petrologica Sinica, 23(10):2379-2386(in Chinese with English abstract)
[77] Zhou TF, Fan Y and Yuan F. 2008a. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8):1665-1678(in Chinese with English abstract)
[78] Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008b. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance. Science in China(Series D), 51(10):1470-1482
[79] Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and David RC. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in east China and their constrain to mineralizations. Acta Petrologica Sinica, 26(9):2694-2714(in Chinese with English abstract)
[80] Zhou TF, Wang B, Fan Y, Yuan F, Zhang LJ and Zhong GX. 2012. Apatite-actinolite-magnetite deposit related to A-tpye granite in Luzong basin:Evidence from Makou iron deposit. Acta Petrologica Sinica, 28(10):3087-3098(in Chinese with English abstract)
[81] Zhu G, Liu GS, Niu ML, Song CZ and Wang DX. 2003. Transcurrent movement and genesis of the Tan-Lu fault zone. Geological Bulletin of China, 22(3):200-207(in Chinese with English abstract)
[82] 常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社, 1-359
[83] 常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换——以长江中下游成矿带为例. 岩石学报, 28(10):3067-3075
[84] 陈一峰. 1994. 庐枞地区铀成矿规律探讨. 铀矿地质, 10(4):193-202, 206
[85] 丁悌平. 1980. 氢氧同位素地球化学. 北京:地质出版社, 1-184
[86] 董树文, 项怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9):2529-2542
[87] 杜杨松, 秦新龙, 田世洪. 2004. 安徽铜陵铜官山矿区中生代岩浆-热液过程:来自岩石包体及其寄主岩的证据. 岩石学报, 20(2):339-350
[88] 杜杨松, 曹毅, 袁万明, 楼亚儿, 李顺庭, 鲁鑫. 2007a. 安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用——来自火山-侵入杂岩和岩石包体的证据. 岩石学报, 23(6):1294-1302
[89] 杜杨松, 李顺庭, 曹毅, 秦新龙, 楼亚儿. 2007b. 安徽铜陵铜官山矿区中生代侵入岩的形成过程——岩浆底侵、同化混染和分离结晶. 现代地质, 21(1):71-77
[90] 范裕, 周涛发, 袁峰, 钱存超, 陆三明, Cooke D. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8):1715-1724
[91] 范裕, 周涛发, 郝麟, 袁峰, 张乐骏, 王文财. 2012. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示. 岩石学报, 28(10):3113-3124
[92] 范裕, 刘一男, 周涛发, 张乐骏, 袁峰, 王文财. 2014. 安徽庐枞盆地泥河铁矿床年代学研究及其意义. 岩石学报, 30(5):1369-1381
[93] 胡瑞忠, 钟宏, 叶造军, 毕献武, Turner G, Burnard PG. 1998. 金顶超大型铅锌矿床氦、氩同位素地球化学. 中国科学(D辑), 28(3):208-213
[94] 贾丽琼, 徐文艺, 吕庆田, 莫宣学, 熊欣, 李骏, 王梁. 2014. 庐枞盆地砖桥地区科学深钻岩浆岩LA-MC-ICP MS锆石U-Pb年代学和岩石地球化学特征. 岩石学报, 30(4):995-1016
[95] 李晓峰, 毛景文, 王义天, 王登红. 2003. 惰性气体同位素和卤素示踪成矿流体来源. 地质论评, 49(5):513-521
[96] 李延河, 李金城, 宋鹤彬, 郭立鹤. 2001. 中国东部新生代玄武岩中幔源包体和高压巨晶的氦同位素研究. 中国科学(D辑), 31(8):641-647
[97] 刘洪, 邱检生, 罗清华, 徐夕生, 凌文黎, 王德滋. 2002. 安徽庐枞中生代富钾火山岩成因的地球化学制约. 地球化学, 31(2):129-140
[98] 吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛, SinoProbe-03-CJ项目组. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述. 岩石学报, 30(4):889-906
[99] 毛建仁, 苏郁香, 陈三元等. 1990. 长江中下游中酸性侵入岩与成矿. 北京:地质出版社, 1-191
[100] 毛景文, 李荫清. 2001. 河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系. 矿床地质, 20(1):23-36
[101] 毛景文, Stein H, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1):121-131
[102] 毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2):109-119
[103] 毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1):1-14
[104] 秦新龙, 杜杨松, 李铉具, 尹京武, 郭熙凤. 2003. 安徽铜陵角闪石堆晶体中的出溶金属氧化物和硫化物. 科学通报, 48(18):1982-1989
[105] 任启江, 刘孝善, 徐兆文. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京:地质出版社, 1-145
[106] 汤华云, 郑建平, 余淳梅. 2007. 华北东部新生代玄武岩中橄榄岩捕虏体的流体及稀有气体组成研究. 岩石学报, 23(6):1531-1542
[107] 唐永成, 吴言昌, 储国正. 1998. 安徽沿江地区铜金多金属矿床地质. 北京:地质出版社, 1-359
[108] 陶士振, 刘德良, 朱文锦, 杨晓勇. 2001. 中国东部幔源气体同位素地球化学. 大地构造与成矿学, 25(4):412-419
[109] 王文斌, 李文达, 谢华光, 周华平. 1995. 长江中下游铜铁多金属矿床铅同位素特征. 火山地质与矿产, 16(2):67-77
[110] 王旭东, 倪培, 蒋少涌, 赵葵东, 王天刚. 2009. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据. 科学通报, 54(21):3338-3344
[111] 吴淦国, 张达, 狄永军, 臧文拴, 张祥信, 宋彪, 张忠义. 2008. 铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景. 中国科学(D辑), 38(5):630-645
[112] 吴明安, 汪青松, 郑光文, 蔡晓兵, 杨世学, 狄勤松. 2011. 安徽庐江泥河铁矿的发现及意义. 地质学报, 85(5):802-809
[113] 邢凤鸣, 徐祥. 1996. 铜陵地区高钾钙碱系列侵入岩. 地球化学, 25(1):29-38
[114] 邢凤鸣, 徐祥. 1999. 安徽扬子岩浆岩带与成矿. 合肥:安徽人民出版社, 1-170
[115] 熊欣, 徐文艺, 贾丽琼, 吕庆田, 李骏. 2013. 安徽庐江砖桥科学深钻内的铀钍赋存状态研究. 矿床地质, 32(6):1211-1220
[116] 徐胜, 刘丛强. 1997. 中国东部地幔包体的氦同位素组成及其地幔地球化学演化意义. 科学通报, 42(11):1190-1193
[117] 徐兆文, 任启江, 杨荣勇, 王实. 1992. 安徽庐枞地区脉状铜矿、铜金矿化分布规律和矿床模式. 地质与勘探, 28(1):8-15
[118] 薛怀民, 董树文, 马芳. 2010. 安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束. 地质学报, 84(5):664-681
[119] 闫峻, 陈江峰, 谢智, 杨刚, 喻钢, 钱卉. 2005. 长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约. 地球化学, 34(5):455-469
[120] 叶先仁, 吴茂炳, 孙明良. 2001. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 20(3):174-178
[121] 袁峰, 周涛发, 范裕, 陆三明, 钱存超, 张乐骏, 段超, 唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8):1691-1702
[122] 曾键年, 覃永军, 郭坤一, 陈国光, 曾勇. 2010. 安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束. 地质学报, 84(4):466-478
[123] 翟裕生, 姚书振, 林新多, 周询若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京:地质出版社, 12-35
[124] 张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪. 岩石学报, 18(4):559-565
[125] 张乐骏. 2011. 安徽庐枞盆地成岩成矿作用研究. 博士学位论文. 合肥:合肥工业大学, 1-239
[126] 张舒, 吴明安, 汪晶, 李小东, 赵文广, 魏国辉. 2014a. 安徽庐枞盆地与正长岩有关的成矿作用. 地质学报, 88(4):519-531
[127] 张舒, 吴明安, 赵文广, 张宜勇, 李小东, 汪晶. 2014b. 安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约. 岩石学报, 30(5):1382-1396
[128] 赵文广, 吴明安, 张宜勇, 王克友, 范裕, 汪龙云, 魏国辉, 车英丹. 2011. 安徽省庐江县泥河铁硫矿床地质特征及成因初步分析. 地质学报, 85(5):789-801
[129] 郑永飞, 傅斌, 龚冰. 1995. 安徽黄梅尖岩体热历史及其与成矿关系:同位素证据. 地质学报, 69(4):337-348
[130] 郑永飞, 魏春生, 王峥嵘, 黄耀生, 张宏. 1997. 大龙山岩体冷却史及其成矿关系的同位素研究. 地质科学, 32(4):645-657
[131] 周涛发, 袁锋, 岳书仓, 刘晓东. 2001. 安徽月山矿田硅、氦、氖同位素地球化学研究. 矿物岩石地球化学通报, 20(4):385-387
[132] 周涛发, 宋明义, 范裕, 袁峰, 刘珺, 吴明安, 钱存超, 陆三明. 2007. 安徽庐枞盆地中巴家滩岩体的年代学研究及其意义. 岩石学报, 23(10):2379-2386
[133] 周涛发, 范裕, 袁峰. 2008a. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8):1665-1678
[134] 周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke D, Meffre S, 赵国春. 2008b. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11):1342-1353
[135] 周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明, David RC. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9):2694-2714
[136] 周涛发, 王彪, 范裕, 袁峰, 张乐骏, 钟国雄. 2012. 庐枞盆地与A型花岗岩有关的磁铁矿-阳起石-磷灰石矿床——以马口铁矿床为例. 岩石学报, 28(10):3087-3098
[137] 朱光, 刘国生, 牛漫兰, 宋传中, 王道轩. 2003. 郯庐断裂带的平移运动与成因. 地质通报, 22(3):200-207