岩石学报  2015, Vol. 31 Issue (11): 3217-3233   PDF    
滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义
余海军1,2, 李文昌1,2 , 尹光候2, 王建华2, 姜文涛3, 吴松3, 唐忠2    
1. 中国地质大学资源学院, 武汉 430074;
2. 云南省地质调查局, 昆明 650051;
3. 昆明理工大学, 昆明 650051
摘要: 铜厂沟大型斑岩型Mo-Cu多金属矿床位于扬子西缘义敦岛弧带南端,钼矿化与花岗闪长斑岩紧密相关。花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为84.57±0.29Ma(MSWD=0.73),侵位于晚白垩世。岩石的SiO2为63.03%~69.60%,Na2O+K2O为6.97%~9.11%,具高钾钙碱性和准铝质-弱过铝质(A/CNK=0.88~1.05)特征。岩石富集轻稀土元素和大离子亲石元素(Rb、Ba、Pb等),相对亏损重稀土元素和高场强元素(Ti、Nb、P等),并且具有较高的Sr/Y和La/Yb比值,及较低的Y、Yb及MgO含量。这些地球化学特征表明铜厂沟花岗闪长斑岩具有埃达克质岩石的特征,可能起源于加厚下地壳岩石的部分重熔。地球化学投图显示,铜厂沟岩体呈现出晚碰撞-碰撞后花岗岩特征,指示着岩体可能形成于陆内碰撞造山后由挤压转换为伸展构造环境;岩浆上侵过程中含矿热液沿构造发育部位运移,在酸性岩体内形成细脉浸染状钼(铜钨)矿化,在构造破碎带、层间滑动带和玄武岩与碳酸盐岩接触带交代形成矽卡岩型Cu、Pb、Zn多金属矿体和热液脉型Pb、Zn、Ag多金属矿体,构成钼(铜钨)→铜钼→铁铜金→铅锌的成矿元素分带和斑岩成矿系统。
关键词: 花岗闪长斑岩     锆石U-Pb年龄     燕山期     铜厂沟     滇西北    
Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan.
YU HaiJun1,2, LI WenChang1,2 , YIN GuangHou2, WANG JianHua2, JIANG WenTao3, WU Song3, TANG Zhong2    
1. Faculty of Earth Resource, China University of Geosciences, Wuhan 430074, China;
2. Yunnan Geological Survey, Kunming 650051, China;
3. Kunming University of Science and Technology, Kunming 650000, China
Abstract: The Tongchanggou porphyry molybdenum deposit is located in the middle of the Nujiang-Lancangjiang-Jinshajiang area in the southwestern China. Mo mineralization is closely associated with the Tongchanggou granodiorite-porphyry, which yield LA-(MC)-ICP-MS zircon U-Pb ages 84.57±0.29Ma (MSWD=0.73), respectively. The rocks have SiO2=63.03%~69.60%, (Na2O+K2O)=6.97%~9.11%, and are metaluminous-peraluminous (A/CNK=0.88~1.05) and high-K calc-alkaline. They are enriched in large ion lithosphere elements (Rb, Ba, Pb, etc.) and LREEs, but depleted in high field strength elements (Ti, Nb, P, etc.) and HREEs. In addition, the rocks having high Sr/Y and La/Yb ratios, and low Y, Yb and MgO contents, those geochemical characters indicate that the Tongchanggou granodiorite-porphyry was mainly derived from the partial melting of thickened lower crust. The geochemical diagrams show that the Tongchanggou intrusions are late-to post-collisional granite indicating that they were formed under inter-plate extensional environment transformed from convergent environment. Accompany with the upwelling of the Tongchanggou magmas, the ore-forming fluids migrated into the upper crust through the ore-forming faults and formed the veinlet disseminated mineralization in the porphyry. The ore-forming fluids also developed skarn-type Cu, Pb, Zn and hydrothermal vein type Pb, Zn, Ag polymetallic ore bodies in the structure fractured zone, interlayer sliding belt, and contact zone between the basalts and limestone. Generally, the Tongchanggou Mo-Cu deposit is a porphyry system with Mo-(Cu-W), Cu-Mo, Fe-Cu-Au, and Pb-Zn metallic elements zoning.
Key words: Granodiorite-porphyry     Zircon U-Pb dating     Yanshanian     Tongchanggou     Northwestern Yunnan    
1 引言

弄清西南三江晚中生代的碰撞造山挤压向伸展阶段转换的时间和机理是填补西南三江地质演化和指导找矿的关键。格咱岛弧位于西南三江造山带内东缘,岛弧构造-岩浆-热液活动强烈,成矿作用复杂(Deng et al., 2014ab; Deng and Wang, 2015)。诸多学者对该岛弧的构造演化、岩浆活动、成矿作用等方面做了较为深入的研究(谭雪春等,1985; 吕伯西等,1993; 莫宣学等,1993; 李文昌等, 20102011; 侯增谦等,2003; 杨岳清等,2002; 余海军等,2009; Wang et al., 2014ab),取得了显著成果。

谭雪春,曾群望,苏文宁. 1985. 滇西东部斑岩与斑岩铜矿. 云南省地质科学研究所(科研报告)

近年来,笔者(Yu et al., 2014; Li et al., 2014; 李文昌等, 20122013)研究显示,该岛弧在印支期发育大规模中-酸性岩浆侵入活动的同时,还存在近南北向展布的燕山期酸性岩浆活动的叠加,显示该区构造复杂,成矿类型多样。在这一研究成果的指导下,部署了该区的找矿工作,于2011年至2014年在铜厂沟地区实现了燕山期Mo多金属找矿重大突破,同时揭露到了隐伏的酸性侵入体,岩性主要为花岗闪长斑岩。然而,目前对于该矿床尚缺乏系统的地质研究及报道,该岩体尚缺乏更加系统的岩石地球化学研究,这不利于对该矿成矿物质来源及动力学背景的限定。本文在对该矿床进行系统和基础地质介绍的基础上,对钻孔和平硐揭露到的花岗闪长斑岩进行了系统采样及年代学和地球化学研究,结合地质特征对该矿床及岩体成因机制及该区构造背景等进行了深入探讨,为进一步找矿突破提供技术指导。

2 区域地质背景

铜厂沟岩体(群)位于扬子陆块西缘坳陷带与义敦岛弧、甘孜-理塘结合带的交汇部位(图 1a),纵跨三个构造单元,西侧为楚波-熏洞断裂,东侧为安家村断裂,北部是甘孜-理塘结合带向南急剧收缩部位,南部是扬子陆块西缘盐源-丽江坳陷带(图 1b),喜马拉雅扬子陆块西缘大规模向西推覆,掩盖了义敦岛弧和甘孜-理塘结合带的部分原始地质构造形迹。

图 1 铜厂沟区域地质矿产简图(据Yu et al., 2014修编)
图a中滇西北大地构造分区:I-扬子陆块:I1-雅江残余盆地;I2-盐源-丽江陆缘坳陷带;I3-楚雄前陆盆地;Ⅱ-三江多岛弧盆系:Ⅱ1-甘孜-理塘结合带;Ⅱ2-德格-乡城岛弧(义敦岛弧);Ⅱ3-中咱-香格里拉地块;Ⅱ4-金沙江-哀牢山结合带;Ⅱ5-昌都-普洱地块:Ⅱ5-1-江达-几家顶-维西陆缘火山弧;Ⅱ5-2-昌都-兰坪弧后盆地;Ⅱ5-3-杂多-东达山陆缘火山弧;Ⅱ6-左贡地块;Ⅱ7-保山地块;Ⅲ-冈底斯-高黎贡山-腾冲弧盆系. 1-第四系;2-图姆沟组板岩;3-松桂组页岩;4-中窝组灰岩;5-泥汝组灰岩;6-北衙组灰岩;7-青天堡组砂岩;8-冈达概组玄武岩;9-峨眉山玄武岩;10-黑泥哨组玄武岩;11-冰峰组碳酸盐岩;12-黑云花岗岩(γβ);13-超基性岩脉;14-辉长辉绿岩脉;15-铜钼矿点;16-金矿点;17-铅锌银矿点;18-地质界线;19-断裂;20-分区断裂;21-研究区
Fig. 1 Simplified geology and mineral resources map of the Tongchanggou area,northwestern Yunnan Province
Tectonic units in the northwestern Yunnan in Fig. 1a: I-Yangtze block: I1-Yajiang remnant basin; I2-Yanyuan-Lijiang epicontinental depression belt; I3-Chuxiong forel and basin. Ⅱ-Archipelagic arc-basin systems along the Nujiang-Lancangjiang-Jinshajiang area in southwestern China: Ⅱ1-Garze-Litang suture; Ⅱ2-Dege-Xiangcheng isl and -arc belt(Yidun isl and -arc belt); Ⅱ3-Zhongza block; Ⅱ4-Jinshajiang-Ailaoshan suture; Ⅱ5-Changdu-Puer block: Ⅱ5-1-Jiangda-Jijiading-Weixi epicontinental volcanic arc; Ⅱ5-2-Changdu-Lanping back-arc basin; Ⅱ5-3-Zaduo-Dongdashan epicontinental volcanic arc; Ⅱ6-Zuogong block; Ⅱ7-Baoshan block. Ⅲ-Gangdise-Gaoligongshan-Tengchong arc-basin systems. 1-Quaternary; 2-Tumugou Fm.; 3-Songgui Fm.; 4-Zhongwo Fm.; 5-Niru Fm.; 6-Beiya Fm.; 7-Qingtianbao Fm.; 8-Gangdagai Fm.; 9-Emeishan basalt; 10-Heinisao Fm.; 11-Bingfeng Fm.; 12-biotite granite(γβ); 13-ultrabasic dike; 14-gabbro diabase dike; 15-Cu-Mo ore occurrences; 16-Au occurrences; 17-Pb-Zn-Ag occurrences; 18-geological boundary; 19-fault; 20-fault zone; 21-study area

义敦岛弧是甘孜-理塘洋向西俯冲的产物,北段为昌台弧,因甘孜-理塘洋壳向西俯冲角度较陡,产生了较强的弧间拉张,从而发育大量双峰式火山岩浆喷发,形成“呷村”式块状硫化物矿床;而南段格咱弧则由于俯冲角度较缓,构造背景转换以压性为主,产出大量钙碱性火山岩和浅成、超浅成侵入岩(侯增谦等,2003),构成了印支期(203~242Ma)格咱岛弧斑(玢)岩及斑岩成矿带,形成众多斑岩-矽卡岩型以铜为主多金属矿床。格咱岛弧,夹持于乡城-格咱断裂和安家村断裂、楚波-熏洞断裂之间,向南至丽江石鼓与金沙江结合带交合。

甘孜-理塘结合带为晚二叠世-晚三叠世早期形成的甘孜-理塘洋盆向西俯冲消减于中咱地块之下的残余部分(潘桂堂等,2003),位于安家村断裂以北,主要出露二叠系、三叠系地层及剪切带构造混杂岩。本区成矿作用以金为主。

扬子陆块西缘盐源-丽江坳陷带位于楚波-熏洞断裂以东,安家村断裂以南。主要出露晚古生界及三叠系地层。断裂多呈北东、北西向展布,旁侧次级节理、裂隙发育,控制了斑岩体及矿产分布。铜厂沟外围东炉房等地区,出露燕山期和喜马拉雅期各类斑岩,不同程度的伴随钼铜铅锌金多金属成矿。主要矿床(点)有铜厂沟钼多金属矿、东炉房铜钼金矿、可麦洛铅锌矿、楚波-安南金铜铅锌矿点。

3 矿床及岩体地质特征

铜厂沟钼多金属矿位于义敦岛弧和扬子陆块西缘盐源-丽江坳陷交汇部(图 1)。矿区主要出露二叠系和三叠系地层,断裂、褶皱发育,组成以北西向为主,北东向次之的短轴褶皱和断裂系统,岩浆活动强烈,广泛发育中基性火山岩和中酸性、碱性侵入岩(图 2)。

图 2 铜厂沟钼铜矿区地质图
1-第四系冰碛砂砾及粘土;2-三叠系北衙组三段:灰色、浅灰色灰岩、结晶灰岩;3-三叠系北衙组二段:浅灰色白云岩、含白云质灰岩夹灰岩、含泥质灰岩;4-三叠系北衙组一段:浅灰色、灰色灰岩夹含铁泥质灰岩及鲕状灰岩,底部为砾质灰岩;5-二叠系黑泥哨组灰绿色、深灰色玄武岩;6-花岗闪长斑岩;7-辉绿玢岩/矽卡岩;8-实测/推测地层界线;9-实测/推测断层及编号;10-实测正/逆断层;11-矿体及编号;12-产状及编号;13-未见矿钻孔及编号;14-见矿钻孔及编号;15-勘探线及编号;16-采样位置
Fig. 2 Geologic map of the Tongchanggou Mo-Cu deposit
1-Quaternary; 2-Member 3 in Beiya Fm.; 3-Member 2 in Beiya Fm.; 4-Member 1 in Beiya Fm.; 5-Heinisao Fm.; 6-granodiorite porphyry; 7-diabase porphyry/skarn; 8-geological boundary; 9-fault and serial number; 10-reverse fault and serial number; 11-orebody and serial number; 12-attitude of stratum; 13-not orebody drilling hole and serial number; 14-orebody drilling hole and serial number; 15-exploratory line; 16-sampling location
3.1 矿区地层及构造

矿区出露有中三叠统北衙组(T2b)、上二叠统黑泥哨组(P2h),二者为断层接触(图 2)。

上二叠统黑泥哨组(P2h):岩性主要为灰绿色、深灰色、灰黑色玄武岩、杏仁状玄武岩,与北衙组为断层接触。厚大于88.60m。

中三叠统北衙组(T2b):该组地层自下而上可分为三段:北衙组一段(T2b1):上部浅灰-灰色粉晶灰岩;中部灰白色细晶大理岩;下部灰色粉晶灰岩、细晶大理岩及结晶灰岩。未见底,厚大于698.04m;北衙组二段(T2b2):上部浅灰色含白云质粉晶灰岩、粉晶白云岩;中部灰-深灰色粉晶灰岩、大理岩化粉晶灰岩;下部灰色含白云质粉晶灰岩、细晶大理岩,厚400.56m;北衙组三段(T2b3):上部浅灰色泥晶灰岩夹细晶大理岩;中部浅灰色泥晶灰岩夹层纹状含铁泥质灰岩、条纹状粉晶灰岩;下部灰色粉晶灰岩。未见底,厚大于188.17m。

南北向的背斜纵贯矿区中部,拉巴河断裂沿背斜轴部发育,控制了矿区岩浆岩、斑岩-矽卡岩型钼多金属矿体的分布。两侧有10余条次级断裂,构成近东西向、北东向、北西向三组,北东向断裂中赋存多个矿体。

3.2 矿体特征

矿区产出三类矿体:产于岩体边部围岩中沿层间、不同岩性及断裂带中的脉状矿体;产于岩体中的斑岩型矿体;和产于矽卡岩中的矿体。矿体表现为钼铜铅锌银共生,成矿分带性明显,矿体地表以铜铅锌为主,部分岩体顶部产出矽卡岩型多金属矿体,浅部产出铜钼共生矿,深部以钼为主,伴生铜(图 3)。

图 3 铜厂沟辉钼矿石照片
(a)石英细脉型辉钼矿;(b)矽卡岩型辉钼矿;(c)蚀变花岗闪长斑岩型辉钼矿
Fig. 3 The ore photos of Tongchanggou
(a)quartz vein type molybdenum;(b)skarn type molybdenite;(c)altered granodiorite porphyry molybdenite

矽卡岩型和脉状矿体赋存于黑泥哨组(P2h)玄武岩与北衙组一段(T2b1)灰岩断层带及其附近北衙组一段内的矽卡岩中,少量赋存于断层西侧玄武岩中的次级构造中(图 2)。主矿体出露标高2663~2850m,工程控制矿体长680m,控制斜深640m。呈似层状,总体向北西陡倾,局部倒转而倾向南东,倾角50°~84°,走向35°。矿体表现为铜钼共生矿,矿体厚0.91~33.83m,平均4.69m。铜品位0.11%~7.32%,平均1.45%,钼品位0.03%~1.29%,平均0.17%。

斑岩型矿体,赋存于花岗闪长斑岩枝内(图 4),矿体露头为圆形,通过钻孔控制,向深部北西陡倾(约70°),ZK0451控制岩枝厚620m,全岩矿化,斑岩全岩平均含钼0.04%。其中含钼大于0.08%主要分为上下两段,上段厚166m,下段厚90m。辉钼矿主要以细脉侵染状分布,少量星点侵染状分布,见弱黄铜矿化。

图 4 铜厂沟钼铜矿区12号勘探线剖面图
1-第四系;2-灰岩;3-(γδπ)花岗闪长斑岩体;4-矿体厚度及品位(左Cu右Mo);5-矿体;6-地质界线;7-钻孔;8-采样位置
Fig. 4 Prospecting line profile map of Tongchanggou Mo-Cu deposit
1-Quaternary; 2-limestone; 3-(γδπ)granodiorite porphyry; 4-orebody thickness and grade(left-Cu,right-Mo); 5-orebody; 6-geological boundary; 7-drilling hole; 8-sampling location
3.3 斑岩体特征

矿区植被覆盖较厚,含矿花岗闪长斑岩体地表露头较少,仅在公路边有一处出露,风化蚀变较强,基本变为高岭土。根据野外地质填图和综合研究,有针对性通过地表槽探等工作手段揭露到两处含矿花岗闪长斑岩。2011年开始进入普查-勘探阶段,大量钻孔均揭露到了含钼花岗闪长斑岩,岩体规模较大,部分钻孔在含钼岩体中终孔,岩性主要为花岗闪长斑岩,强蚀变,普遍具辉钼矿化,总体沿铜厂断裂附近分布,呈南北向展布。

Ⅰ号岩体:分布在联办村北,侵位于北衙组二段(T2b2)和北衙组三段(T2b3)的灰岩中,呈岩株状产出,出露面积约0.1km2

Ⅳ号岩体侵位于矿区中部花椒坪,呈岩株状、脉状产出,出露面积0.04km2,使其西侧北衙组一段(T2b1)的灰岩发生较弱的大理岩化、矽卡岩化。

Ⅴ号岩体侵位于矿区东部花椒坪东,呈岩株状、脉状产出,出露面积0.015km2,使其两侧北衙组一段(T2b1)的灰岩发生大理岩化。

Ⅱ号岩体和Ⅲ号岩体为辉绿玢岩脉,分布于铁厂山,均侵位于北衙组二段(T2b2)的灰岩中,呈岩株状产出,出露面积0.05~0.06km2

花岗闪长斑岩:灰白色,斑状结构,块状构造。斑晶粒径0.1~3mm,成分为斜长石(25%~40%)、黑云母(5%~10%)、角闪石(1%~15%)、石英(3%~5%)。基质微晶-隐晶质结构,由隐晶状长英质或微粒状斜长石(主)、黑云母、石英及暗色矿物组成。斜长石普遍具绢云母化,角闪石具绿泥石化、方解石化,副矿物为磷灰石、榍石、锆石、褐铁矿。岩石多具碎裂化。

3.4 围岩蚀变

北衙组(T2b)灰岩主要具矽卡岩化、硅化、黄铁矿化、黄铜矿化、辉钼矿化等;黑泥哨组(P2h)玄武岩主要具绿泥石化、绿帘石化、碳酸岩化,断裂附近玄武岩具硅化、黄铁矿化、黄铜矿化。

斑岩型矿体具有黑云母钾长石化、绢云母石英化、绿泥石化等。

矽卡岩主要产于北衙组中的泥灰岩夹层中,呈透镜状、层状和脉状。露头长50~500m,厚0.5~7m,岩性有(绿帘石)石榴石矽卡岩、(绿帘石)透辉石矽卡岩。

4 样品采集及分析方法 4.1 样品采集

为了对铜厂沟含钼斑岩体进行岩石学和年代学系统研究,笔者在矿区挑选了11件花岗闪长斑岩样品进行化学分析。样品ZK0451-2、ZK0451-5、ZK0451-8分别采自钻孔(ZK0451)418.9m、585.37m和697m处,其他8件采自铜厂沟露头、平硐及矿石堆。用于LA-ICP-MS锆石定年的样品采自钻孔TZK1204深部含钼花岗闪长斑岩(图 4),样品具有较好的代表性。通过野外观察,含矿花岗闪长斑岩斑晶主要为斜长石、石英、少量钾长石和暗色矿物,暗色矿物主要为黑云母、角闪石和绿泥石,细-微粒或隐晶质结构,具星点状黄铁、辉钼矿化,沿裂隙面浸染状辉钼矿化。

4.2 分析方法

LA-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所LA-ICP-MS实验室完成,采用Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb,206Pb,204Pb(+204Hg),202Hg用离子计数器(multi-ion-counters)接收,208Pb,232Th,238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据。均匀锆石颗粒207Pb/206Pb,206Pb/238U,207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U: 923×10-6; Th: 439×10-6; Th/U: 0.475,Nasdala et al., 2008)为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal 4.3程序(Liu et al., 2008),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得。详细实验测试过程可参见侯可军等(2009)。样品分析过程中,Plesovice标样作为未知样品的分析结果为337.8±2.8Ma(n=2,2σ),对应的年龄推荐值为337.13±0.37(2σ)(Sláma et al., 2008),两者在误差范围内完全一致。

ZK0451-2、ZK0451-5、ZK0451-8样品的主量元素和微量元素分析在核工业北京地质研究院分析中心完成,另外8件样品在国土资源部昆明矿产资源监督检测中心完成。送样前首先经过薄片显微镜下鉴定,然后选取新鲜至弱蚀变的样品,去除风化面,手工碎至1mm,依次用3%的HCl和去离子水超声浸泡和清洗,烘干后用不锈钢钵粉碎至200目用于化学分析。主量元素采用硅酸盐岩石化学分析方法X射线荧光光谱(飞利浦PW2404X射线荧光光谱仪)法测定。微量元素采用高温高压消解,利用ELEMENT 等离子体质谱分析仪分析。主量元素的分析精度好于5%,微量元素的分析精度优于10%。

5 分析结果 5.1 锆石U-Pb年龄

显微镜下花岗闪长斑岩的锆石多为柱状、板状,大小约50μm×150μm,晶形较好,无裂缝,晶体透明干净。阴极发光影像显示样品大部分锆石具明显的岩浆成因韵律环带结构(图 5),继承锆石较少,少量锆石中见包裹体。该样品共测试了20颗锆石的20个测点,其中有效点9个,分析数据详见表 1。从表 1中可以看出锆石样品的Pb含量为2.50×10-6~26.27×10-6,Th含量为40.40×10-6~128.3×10-6,U含量为224.6×10-6~527.2×10-6。Th/U值为0.16~0.24。样品的锆石Th、U含量及Th/U值均显示为典型的岩浆锆石特征(吴元保和郑永飞,2004; Hoskin and Black, 2000),Th/U值变化幅度较小。测年结果显示,样品9个测试点的206Pb/238U表面年龄介于84.13~85.03Ma,基本一致,表面年龄可以代表锆石的结晶年龄,再将207Pb/235U和206Pb/238U数据投到谐和图中,所有锆石样品的同位素数据显示出较好的线性关系,测点均沿或靠近谐和曲线分布(图 6),利用ISOPLOT程序(Ludwig,2003)计算,获得206Pb/238U加权平均年龄为84.57±0.29Ma,MSWD=0.73(图 6),可以代表铜厂沟花岗闪长斑岩体的结晶年龄。这与铜厂沟辉钼矿Re-Os成矿年龄85±2Ma(李文昌等,2012)在测试误差范围内一致,说明成岩与成矿应属同一构造期次,可能具有成因联系。

图 5 花岗闪长斑岩(样品TZK1204-1)锆石阴极发光图像和年龄值Fig. 5 CL images of zircons with analyzed spots from granodiorite porphyry(Sample TZK1204-1)

表 1 铜厂沟花岗闪长斑岩LA-ICP-MS锆石测试结果 Table 1 LA-ICP-MS dating results of zircons from Tongchanggou

图 6 铜厂沟花岗闪长斑岩锆石U-Pb年龄谐和图Fig. 6 Concordia diagram of LA-ICP-MS zircon U-Pb data for the Tongchanggou granodiorite-porphyry
5.2 主量元素

铜厂沟地区花岗闪长斑岩的主量元素分析结果见表 2,其地球化学特征变化归纳如下:(1)SiO2为63.03%~69.60%,平均67.07%,属于中-酸性岩类范畴;(2)Na2O介于3.02%~4.17%,平均3.55%,K2O总体含量较高,为2.94%~5.91%,平均3.89%,其全碱Na2O+K2O变化范围为6.97%~9.11%,平均7.44%,在TAS图解上(图 7a)主要投在花岗闪长岩区,Na2O/K2O在0.54%~1.42%之间,平均0.95%,属高钾系列,在SiO2-K2O图解上显示为高钾钙碱性系列(图 7b);(3)Al2O3含量14.05%~15.90%,平均14.95%,铝饱和指数(A/CNK)0.88~1.05,平均0.98,显示准铝质-弱过铝质花岗岩特征(图 7c);(4)MgO为1.19%~1.58%,平均1.33%,具有较高的Mg#(30.21~55.38);(5)P2O5含量较低(0.19%~0.32%)。

表 2 铜厂沟含矿岩体主量(wt%)和微量元素(×10-6)分析结果 Table 2 The components(wt%),REE and trace elements(×10-6)of Tongchanggou ore-bearing rocks

图 7 铜厂沟岩体TAS图解(a,据Middlemost,1994)、SiO2-K2O图解(b,据Peccerillo and Taylor, 1976; Middlemost,1985)和A/NK-A/CNK图解(c,据Maniar and Piccoli, 1989)Fig. 7 TAS diagram(a,after Middlemost,1994),SiO2-K2O diagram(b,after Peccerillo and Taylor, 1976; Middlemost,1985) and A/NK vs. A/CNK molar plot(c,after Maniar and Piccoli, 1989)of Tongchanggou rocks
5.3 微量元素

铜厂沟地区花岗闪长斑岩的微量元素分析结果见表 2

样品稀土元素的含量较高,ΣREE=168.4×10-6~271.8×10-6,平均235.8×10-6;LREE为156.9×10-6~260.1×10-6,HREE为11.05×10-6~14.64×10-6,LREE/HREE为13.56~22.25,平均17.36; 有较高的(La/Yb)N=25.97~49.69,平均35.86。轻、重稀土元素发生了明显分异,在球粒陨石标准化稀土元素分配模式图(图 8a)中,各样品配分曲线基本一致,均向右倾斜,表现为轻稀土元素(LREE)强富集型,重稀土相对亏损。所有样品基本不存在δCe异常(平均0.90),δEu表现微弱负异常(介于0.87~1.27,平均1.02)。

图 8 稀土元素球粒陨石标准化(a)和微量元素原始地幔标准化图(b)(标准化值据McDonough and Sun, 1995)Fig. 8 Chondrite-normalized rare earth element distribution patterns(a) and primitive mantle-normalized trace element concentrations(b)of Tongchanggou granodiorite-porphyry(normalization values after McDonough and Sun, 1995)

原始地幔标准化微量元素蛛网图(图 8b)可以看出岩石具有相似的微量元素地球化学特征,蛛网图解曲线表现出向右陡倾的特征,表明随着元素不相容性的增加,岩石的富集度呈几何级增加。Rb、Ba、K、U、La和Pb等大离子亲石元素(LILE)的富集程度较强,在蛛网图上为明显的峰,Ti、Nb、P、Ta、Zr、Hf、Y等较不活泼的高场强元素(HFSE)相对亏损,表现为谷。

6 讨论 6.1 含矿岩浆活动时代、性质及来源

与成矿相关岩体年龄的确定不仅有利于厘定成岩成矿作用之间的成因关系,而且有利于探讨成岩成矿作用的构造背景。由于锆石结晶温度及对Pb、U和Th等元素的封闭温度高,其通常不会受到后期热液活动及风化作用的影响,故花岗岩的单颗粒锆石原位LA-(MC)-ICP-MS U-Pb定年,则可以精确的确定其成岩年龄。本次测试的锆石U-Pb年龄,其加权平均年龄为84.57±0.29Ma(MSWD=0.73),各测点的年龄接近一致(表 1),均在彼此误差范围内,置信度较高,这与铜厂沟辉钼矿Re-Os同位素年龄85±2Ma(李文昌等,2012)吻合,代表了铜厂沟花岗闪长斑岩的结晶年龄和辉钼矿的成矿时代,说明该区岩浆活动在晚白垩世,同时伴随有钼多金属成矿作用的发生。铜厂沟岩体与义敦岛弧带内的红山、热林、休瓦促、四川竹鸡顶、伊公若等岩体成岩年龄一致(表 3),岩体呈近南北向展布,尽管穿越不同的构造单元,但其成岩成矿具有高度的一致性,显示在义敦岛弧南段存在着一期重要的燕山晚期Mo-Cu-W成矿事件。

表 3 义敦岛弧带燕山期成岩成矿同位素年龄 Table 3 Yanshanian diagenetic and metallogenic isotopic dates from the Yidun arc belt

如前所述,铜厂沟岩体具有较高的SiO2和全碱含量,及相对较低的Fe、Mg和P含量,为准铝质、高钾钙碱性I型花岗岩(Chappell and White, 2001),其可能主要来自于地壳物质的部分熔融,因为实验岩石学研究表明地幔物质部分熔融只能形成不高于安山岩SiO2含量的中基性岩浆(Baker et al., 1995; Green,1973)。并且,铜厂沟岩体具有较高的Sr(627×10-6~1060×10-6)及较低的Y(12.1×10-6~15.5×10-6)和Yb(1.10×10-6~1.48×10-6)含量,以及较高的Sr/Y(43~70)及La/Yb(36~69)比值(图 9),呈现出了埃达克质岩石的特征(Castillo,2012; Defant and Drummond, 1990; Richards and Kerrich, 2007)。通常壳源埃达克质岩石有两种可能的成岩模式,分别为加厚的下地壳部分熔融(Hou et al., 2004; Wang et al., 2007; Yuan et al., 2010),以及拆沉下地壳的部分熔融(Gao et al., 2004; Hou et al., 2012; Huang et al., 2008; Kay and Kay, 1993)。本研究中,铜厂沟岩体具有较低的MgO(1.19%~1.58%)含量及Mg#值(30~55,除1件样品其他均小于47),显示其可能来自加厚下地壳的部分熔融,因为拆沉下地壳的部分熔融而形成的岩浆由于会受到地幔混染而通常具有较高的MgO(Mg#>50)含量(Gao et al., 2004; Hou et al., 2012; Huang et al., 2008; Kay and Kay, 1993)。因此,总体而言,铜厂沟岩体呈现出加厚下地壳部分熔融来源岩浆的特征。

图 9 铜厂沟岩体地球化学判别图解
(a)Sr/Y比值和Y含量散点图;(b)La/Yb比值和Yb含量散点图(据Richards and Kerrich, 2007);(c)Mg#值和SiO2含量散点图;(d)MgO值和SiO2含量散点图(据Wang et al., 2006)
Fig. 9 Geochemistry illustrations for Tongchanggou porphyry
(a)Sr/Y vs. Y;(b)La/Yb vs. Yb(after Richards and Kerrich, 2007);(c)Mg# vs. SiO2;(d)MgO vs. SiO2(after Wang et al., 2006)
6.2 构造环境和成因机制

铜厂沟花岗闪长斑岩样品在R1-R2图解中落在了陆内碰撞造山花岗岩区(图 10a),在Yb-Ta和Rb/30-Hf-3Ta图解中落在了晚碰撞-碰撞后花岗岩范围内(图 10b),显示铜厂沟岩体可能形成于晚碰撞-碰撞后环境。如前所述,义敦岛弧是三叠纪甘孜-理塘洋向西俯冲于中咱微陆块而形成的陆缘弧(侯增谦等,2003)。晚三叠世甘孜-理塘洋闭合,随后义敦岛弧和松潘-甘孜地块发生碰撞,在侏罗纪义敦岛弧和松潘-甘孜地块出现的板内岩浆(张能德和张怀举,1993; 曲晓明等,2003; 胡健民等,2005; 赵永久等,2007; 王全伟等,2008; Wu et al., 2014)及W-Sn成矿作用(Liu et al., 2007)指示着义敦岛弧及松潘-甘孜地块在侏罗纪已进入陆内造山阶段并发生了造山后伸展作用(Wang et al., 2014ab)。

图 10 R1-R2图解(a,据Batchelor and Bowden et al., 1985)和Rb/30-Hf-3Ta图解(b,据Harris and Pearce et al., 1986)
①地幔斜长花岗岩;②破坏性活动板块边缘(板块碰撞前)花岗岩;③板块碰撞后隆起期花岗岩;④晚造期花岗岩;⑤非造山区A型花岗岩;⑥同碰撞(S型)花岗岩;⑦造山期后A型花岗岩
Fig. 10 R1-R2 diagram(a,after Batchelor and Bowden et al., 1985) and Rb/30-Hf-3Ta diagram(b,after Harris and Pearce et al., 1986)

在燕山晚期,沿义敦岛弧近南北向发育大量花岗岩及相关的成矿作用(侯增谦等,2003)。在义敦岛弧北段主要发育有A-型花岗岩及夏塞、连龙等矽卡岩型及热液脉型Sn-Ag-Pb-Zn多金属矿床等(侯增谦等, 20012004; 曲晓明等, 20012002; Qu et al., 2002;刘权,2003; Hou et al., 2007; 邹光富等,2008; 林青,2010);而在义敦岛弧的南段格咱弧主要发育I型花岗岩(Wang et al., 2014b)及红山、铜厂沟、休瓦促和热林等斑岩型、矽卡岩型和岩浆热液型Mo-Cu-(W)多金属矿化(杨岳清等,2002; 曾普胜等,2004; 徐兴旺等,2006; 李建康等,2007; 尹光候等,2009; 王新松等,2011; 李文昌等,2012; Yu et al., 2014; Wang et al., 2014a; Zu et al., 2015)。通过梳理拉萨地块和羌塘地块的碰撞历史及藏东地区构造热演化历史,Wang et al.(2014ab)提出义敦岛弧燕山晚期的成岩成矿作用可能形成于拉萨-羌塘地块碰撞相关的碰撞后的伸展环境。本研究中铜厂沟岩体来自于加厚下地壳部分熔融而形成的埃达克质岩浆,显示义敦岛弧南段在晚白垩世前发生了地壳的加厚作用,这也可能指示着该区域可能受到了拉萨-羌塘地块碰撞作用的影响。

综上所述,燕山晚期义敦岛弧进入陆内碰撞造山阶段,地壳先发生加厚作用,而后可能受到雅鲁藏布江洋壳向北俯冲作用的影响,发生了晚碰撞-碰撞后伸展作用,这一阶段逐渐由压性转变为张性环境,沿构造薄弱地带形成大量花岗岩带及相关的Mo-Cu-W及Sn-Ag多金属成矿作用。

在义敦岛弧南端铜厂沟地区,岩浆上侵过程中含矿热液沿构造发育部位运移,在酸性岩体内形成细脉浸染状钼(铜钨)矿化,在构造破碎带、层间滑动带和玄武岩与碳酸盐岩接触带交代形成矽卡岩型Cu、Pb、Zn多金属矿体和热液脉型Pb、Zn、Ag多金属矿体,构成钼(铜钨)→铜钼→铁铜金→铅锌的成矿元素分带和斑岩成矿系统(图 11)。铜厂沟地区普遍矿化的岩体和已发现高品位规模大的矿体展示出该区强烈的成矿作用。此外,格咱弧内同期也形成了一系列大中型以Mo-Cu为主的斑岩-矽卡岩型矿床,如北段的竹鸡顶、休瓦促、热林、红山,南段的铜厂沟、东炉房等。同时也出现了较典型的叠加复合成矿的现象,如红山Mo-Cu-Pb-Zn多金属矿床,浅部为印支期矽卡岩型Cu-Pb-Zn-Ag多金属矿床,深部燕山期斑岩型Mo-Cu矿床。因此,铜厂沟地区斑岩型以Mo为主的成矿作用不是一个独立和个别的成矿事件,是晚白垩世整个燕山运动的岩浆-流体-成矿体系的一部分,是典型的陆内构造转换成矿。

图 11 铜厂沟花岗闪长斑岩成岩成矿模式图Fig. 11 Metallogenic model of Yanshanian porphyry deposit
7 结论

(1)应用LA-MC-ICP-MS锆石U-Pb同位素定年获得铜厂沟花岗闪长斑岩的结晶年龄为84.57±0.29Ma(MSWD=0.73),成岩时代为燕山晚期。与辉钼矿Re-Os同位素定年结果相近,说明成岩成矿作用之间具有密切的成因联系。

(2)铜厂沟含矿花岗闪长斑岩高钾富碱,富集轻稀土和大离子亲石元素,亏损重稀土和高场强元素,并具有较高的Sr/Y和La/Y比值,及较低的Y、Yb和MgO含量,显示其具有埃达克质岩石亲和性,可能是加厚下地壳部分重熔的产物。

(3)义敦岛弧燕山晚期的含矿岩浆形成于陆内碰撞造山后伸展环境下,软流圈物质上涌促使陆壳物质部分熔融形成了含矿岩浆,沿构造交汇薄弱地带侵入就位。伴随的斑岩-矽卡岩型钼多金属成矿作用是典型的碰撞造山后由挤压转为伸展过程的陆内构造转换成矿。

致谢 野外工作得到了云南省地质调查院矿产所中甸项目组的大力支持与帮助;成文过程中得到了中国科学院地球化学研究所王新松博士的热情帮助和指导;两位审稿专家进行了细致的评阅和提出了中肯的建议;在此一并表示衷心感谢!
参考文献
[1] Baker MB, Hirschmann MM, Ghiorso MS and Stolper EM. 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375(6529):308-311
[2] Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using mutiecationic parameters. Chemical Geology, 48(1-4):43-55
[3] Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135:304-316
[4] Chappell BW and White AJR. 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Sciences, 48(4):489-499
[5] Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294):662-665
[6] Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138:268-299
[7] Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2):419-437
[8] Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, doi:10.1016/j.gr.2015.10.003
[9] Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019):892-897
[10] Green DH. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19(1):37-53
[11] Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision zone magmatism. In:Coward MP and Reis AC (eds.). Collision Tectonics. London:Spec. Publ. Sci, 19:67-81
[12] Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4):423-439
[13] Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4):481-492(in Chinese with English abstract)
[14] Hou ZQ, Qu XM, Zhou JR, Yang YQ, Huang DH, Lü QT, Tang SH, Yu JJ, Wang HP and Zhao JH. 2001. Collision-orogeny processes of the Yidun arc in the Sanjiang Region:Record of granites. Acta Geologica Sinica, 75(4):484-497(in Chinese with English abstract)
[15] Hou ZQ, Yang YQ, Wang HP, Qu XM, Lü QT, Huang DH, Wu XZ, Yu JJ, Tang SH and Zhao JH. 2003. Collision-orogenic Processes and Mineralization Systems of the Yidun Arc. Beijing:Geological Publishing House, 1-345(in Chinese)
[16] Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2):139-155
[17] Hou ZQ, Yang YQ, Qu XM, Huang DH, Lu QT, Wang HP, Yu JJ and Tang SH. 2004. Tectonic evolution and mineralization systems of the Yidun Arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1):109-120(in Chinese with English abstract)
[18] Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang Tethyan metallogenesis in S.W. China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4):48-87
[19] Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W and Sun QZ. 2012. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350:38-52
[20] Hu JM, Meng QR, Shi YR and Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica, 21(3):867-880(in Chinese with English abstract)
[21] Huang F, Li SG, Dong F, He YS and Chen FK. 2008. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust. Chemical Geology, 255(1-2):1-13
[22] Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3):177-189
[23] Li JK, Li WC, Wang DH, Lu YX, Yin GH and Xue SR. 2007. Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian Arc. Acta Petrologica Sinica, 23(10):2415-2422(in Chinese with English abstract)
[24] Li WC, Pan GT, Hou ZQ, Mo XX, Wang LQ, Ding J and Xu Q. 2010. Archipelagic-basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing:Geological Publishing House (in Chinese)
[25] Li WC, Yin GH, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9):2541-2552(in Chinese with English abstract)
[26] Li WC, Yu HJ, Yin GH, Cao XM, Huang DZ and Dong T. 2012. Re-Os dating of the molybdenite from the Tongchanggou Mo-polymetallic deposit in the northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2):282-292(in Chinese with English abstract)
[27] Li WC, Yu HJ and Yin GH. 2013. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China. Acta Petrologica Sinica, 29(4):1129-1144(in Chinese with English abstract)
[28] Li WC, Yin GH, Yu HJ and Liu XL. 2014. The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China. Acta Geologica Sinica, 88(6):1742-1756
[29] Lin Q. 2010. Geological features and prospecting potential for the Xialong Ag-Pb-Zn deposit in Batang, Sichuan. Acta Geologica Sichuan, 30(4):447-449, 461(in Chinese with English abstract)
[30] Liu Q. 2003. Geological characteristics and genesis of Xiasai silver-polymetallic deposit in western Sichuan Province. Mineral Deposits, 22(2):121-128(in Chinese with English abstract)
[31] Liu Y, Deng J, Li CF, Shi GH and Zheng AL. 2007. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan. Chinese Science Bulletin, 52(18):2543-2550
[32] Liu YS, Hu ZC and Gao S. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2):34-43
[33] Ludwig KR. 2003. User's manual for isoplot 3.00:A geochronological toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication, 4:70
[34] Lü BX, Wang Z, Zhang ND, Duan JZ, Gao ZY, Shen GF, Pan CY and Yao P. 1993. Granitoids in the Sanjiang Region and Their Metallogenic Specialization. Beijing:Geological Publishing House (in Chinese)
[35] Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5):635-643
[36] McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4):223-253
[37] Middlemost EAK. 1985. Magmas and Magmatic Rocks:An Introduction to Igneous Petrology. London:Longman Group United Kingdom, 1-266
[38] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4):215-224
[39] Mo XX, Lu FX and Shen SY. 1993. Volcanic Rocks and Metallogeny of the Sanjiang Region, Southwestern China. Beijing:Geological Publishing House (in Chinese)
[40] Nasdala L, Hofmeister W, Norberg N et al. 2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3):247-265
[41] Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS and Hu YZ. 2003. Archipelagic Orogenesis, Metallogenic Systems and Assessment of the Mineral Resources along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing:Geological Publishing House, 11-30(in Chinese)
[42] Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58(1):63-81
[43] Qu XM, Hou ZQ and Zhou SG. 2001. Metallogenic geological characteristics of the lianlong skarn type Sn-Ag polymetallic deposit in Western Sichuan. Acta Geoscientia Sinica, 22(1):29-34(in Chinese with English abstract)
[44] Qu XM, Hou ZQ and Zhou SG. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China. Resource Geology, 52(2):163-172
[45] Qu XM, Hou ZQ, Zhou SG and Tang SH. 2002. The age and tectonic setting of Lianlong Sn-bearing granite in western Sichuan Province. Acta Geoscientia Sinica, 23(3):223-228(in Chinese with English abstract)
[46] Qu XM, Hou ZQ and Tang SH. 2003. Age of intraplate volcanism in the back-arc area of Yidun island arc and its significance. Acta Petrologica et Mineralogica, 22(2):131-137(in Chinese with English abstract)
[47] Richards JP and Kerrich R. 2007. Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4):537-576
[48] Sláma J, Košler J, Condon DJ et al. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2):1-35
[49] Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1):119-144
[50] Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10):2609-2636
[51] Wang QW, Wang KM, Kan ZZ et al. 2008. The Granite in West Sichuan and Its Metallogenic Series. Beijing:Geological Publishing House, 1-305(in Chinese)
[52] Wang XS, Bi XW, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS Zircon U-Pb dating of granite porphyry in the Hongshan Cu-polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 31(3):315-321(in Chinese with English abstract)
[53] Wang XS, Bi XW, Leng CB, Zhong H, Tang HF, Chen YW, Yin GH, Huang DZ and Zhou MF. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 61:73-95
[54] Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ and Chen YW. 2014b. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209:202-219
[55] Wu T, Xiao L, Ma CQ, Pirajno F, Sun Y and Zhan QY. 2014. A mafic intrusion of "arc affinity" in a post-orogenic extensional setting:A case study from Ganluogou gabbro in the northern Yidun Arc Belt, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 94:139-156
[56] Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16):1589-1604(in Chinese)
[57] Xu XW, Cai XP, Qu WJ, Song BC, Qiu KZ and Zhang BL. 2006. Later Cretaceous granitic porphyritic Cu-Mo mineralization system in the Hongshan area, northwestern Yunnan and its significances for tectonics. Acta Geologica Sinica, 80(9):1422-1433(in Chinese with English abstract)
[58] Yang YQ, Hou ZQ, Huang DH and Qu XM. 2002. Collision orogenic process and magmatic metallogenic system in Zhongdian Arc. Acta Geoscientia Sinica, 23(1):17-24(in Chinese with English abstract)
[59] Yin GH, Li WC, Jiang CX, Xu D, Li JK and Yang SR. 2009. The evolution of relin uplex rock masses in Yanshan phase and Ar-Ar dating age and copper-molybdenum mineralization characteristics of Zhongdian volcanic-magma arc. Geology and Exploration, 45(4):385-394(in Chinese with English abstract)
[60] Yu HJ, Li WC, Yin GH, Zeng PS, Fan YH and Cao XM. 2009. Copper grade geostatistical study of Pulang copper deposit. Geology and Exploration, 45(4):437-443(in Chinese with English abstract)
[61] Yu HJ, Li WC, Yin GH, Lu YX, Cao XM, Huang DZ, Dong T and Zhang YM. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication. Acta Geologica Sinica, 88(4):1183-1194
[62] Yuan C, Zhou MF, Sun M, Zhao YJ, Wilde S, Long XP and Yan DP. 2010. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China:Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4):481-492
[63] Zeng PS, Wang HP, Mo XX, Yu XH, Li WC, Li TG, Li H and Yang CZ. 2004. Tectonic setting and prospects of porphyry copper deposits in Zhongdian Island Arc belt. Acta Geoscientia Sinica, 25(5):535-540(in Chinese with English abstract)
[64] Zhang ND and Zhang HJ. 1993. Ages of several granite plutons in northwestern Sichuan. Geochimica, (3):303-312(in Chinese with English abstract)
[65] Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP and Cai KD. 2007. Post-orogenic extension of Songpan-Garzê orogen in Early Jurassic:Constraints from Niuxingou monzodiorite and Siguniangshan A-type granite of western Sichuan, China. Geochimica, 36(2):139-152(in Chinese with English abstract)
[66] Zou GF, Zheng RC, Hu SH, Chen CJ, Jiang HC and Wu HB. 2008. Geological features of the Xiasai silver-polymetallic deposit in West Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(1):93-102(in Chinese with English abstract)
[67] Zu B, Xue CJ, Zhao Y, Qu WJ, Li C, Symons DTA and Du AD. 2015. Late Cretaceous metallogeny in the Zhongdian area:Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China. Ore Geology Reviews, 64:1-12
[68] 侯可军,李延河,田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492
[69] 侯增谦,曲晓明,周继荣,杨岳清,黄典豪,吕庆田,唐绍华,余今杰,王海平,赵金花. 2001.三江地区义敦岛弧碰撞造山过程:花岗岩记录.地质学报, 75(4):484-497
[70] 侯增谦,杨岳清,王海平,曲晓明,吕庆田,黄典豪,吴宣志,余金杰,唐绍华,赵金花. 2003.三江义敦岛弧碰撞造山过程与成矿系统.北京:地质出版社, 1-345
[71] 侯增谦,杨岳清,曲晓明,黄典豪,吕庆田,王海平,余金杰,唐绍华. 2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报, 78(1):109-120
[72] 胡健民,孟庆任,石玉若,渠洪杰. 2005.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报, 21(3):867-880
[73] 李建康,李文昌,王登红,卢映祥,尹光侯,薛顺荣. 2007.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究.岩石学报, 23(10):2415-2422
[74] 李文昌,潘桂棠,侯增谦,莫宣学,王立全,丁俊,徐强. 2010.西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术.北京:地质出版社
[75] 李文昌,尹光侯,余海军,卢映祥,刘学龙. 2011.滇西北格咱火山-岩浆弧斑岩成矿作用.岩石学报, 27(9):2541-2552
[76] 李文昌,余海军,尹光候,曹晓民,黄定柱,董涛. 2012.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境.矿床地质, 31(2):282-292
[77] 李文昌,余海军,尹光候. 2013.西南"三江"格咱岛弧斑岩成矿系统.岩石学报, 29(4):1129-1144
[78] 林青. 2010.四川巴塘县夏隆银铅锌矿床特征与找矿前景.四川地质学报, 30(4):447-449, 461
[79] 刘权. 2003.四川夏塞银多金属矿床地质特征及成因.矿床地质, 22(2):121-128
[80] 吕伯西,王增,张能德,段建中,高子英,沈敢富,潘长云,姚鹏. 1993.三江地区花岗岩类及其成矿专属性.北京:地质出版社
[81] 莫宣学,路凤香,沈上越. 1993. "三江"特提斯火山作用与成矿.北京:地质出版社
[82] 潘桂堂,徐强,侯增谦,王立全,杜德勋,莫宣学,李定谋,汪名杰,李兴振,江新胜,胡云中. 2003.西南"三江"多岛弧造山过程成矿系统与资源评价.北京:地质出版社, 11-30
[83] 曲晓明,侯增谦,周书贵. 2001.川西连龙夕卡岩型锡、银多金属矿床成矿地质特征.地球学报, 22(1):29-34
[84] 曲晓明,侯增谦,周书贵,唐绍华. 2002.川西连龙含锡花岗岩的时代与形成构造环境.地球学报, 23(3):223-228
[85] 曲晓明,侯增谦,唐绍华. 2003.义敦岛弧带弧后区板内岩浆作用的时代及意义.岩石矿物学杂志, 22(2):131-137
[86] 王全伟,王康明,阚泽忠等. 2008.川西地区花岗岩及其成矿系列.北京:地质出版社, 1-305
[87] 王新松,毕献武,冷成彪,唐永永,兰江波,齐有强,沈能平. 2011.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义.矿物学报, 31(3):315-321
[88] 吴元保,郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):l589-1604
[89] 徐兴旺,蔡新平,屈文俊,宋保昌,秦克章,张宝林. 2006.滇西北红山晚白垩世花岗斑岩Cu-Mo成矿系统及其大地构造学意义.地质学报, 80(9):1422-1433
[90] 杨岳清,侯增谦,黄典豪,曲晓明. 2002.中甸弧碰撞造山作用与岩浆成矿系统.地球学报, 23(1):17-24
[91] 尹光候,李文昌,蒋成兴,许东,李建康,杨舒然. 2009.中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化.地质与勘探, 45(4):385-394
[92] 余海军,李文昌,尹光候,曾普胜,范玉华,曹晓民. 2009.普朗铜矿床铜品位分布地质统计学研究.地质与勘探, 45(4):437-443
[93] 曾普胜,王海平,莫宣学,喻学惠,李文昌,李体刚,李红,杨朝志. 2004.中甸岛弧带构造格架及斑岩铜矿前景.地球学报, 25(5):535-540
[94] 张能德,张怀举. 1993.四川西北部几个花岗岩体的时代.地球化学, (3):303-312
[95] 赵永久,袁超,周美夫,颜丹平,龙晓平,蔡克大. 2007.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约.地球化学, (2):139-152
[96] 邹光富,郑荣才,胡世华,陈才金,蒋洪昌,伍洪邦. 2008.四川巴塘县夏塞银多金属矿床特征.成都理工大学学报(自然科学版), 35(1):93-102