2. 云南省地质调查局, 昆明 650051
2. Yunnan Bureau of Geological Survey, Kunming 650051, China
中甸地区位于义敦岛弧的南段,三江特提斯成矿域的中部(图 1; 侯增谦等, 2001,2003)。近年来,大量年代学研究显示中甸地区发育有多个燕山晚期斑岩型-矽卡岩型、岩浆热液型Mo多金属矿床(杨岳清等,2002; 曾普胜等,2004; 徐兴旺等,2006; 李建康等,2007; 尹光候等,2009; 王新松等,2011; 李文昌等,2012; Deng et al., 2014a,b; Yu et al., 2014; Wang et al., 2014a; Deng and Wang, 2015; Zu et al., 2015)。该期Mo-Cu-(W)成矿作用,不同于中甸岛弧印支期的斑岩型Cu矿化,也明显区别于义敦岛弧北部燕山晚期的Sn-Ag-Pb-Zn多金属矿化。目前,中甸岛弧燕山晚期Mo-Cu-(W)矿化的成矿特征及物质来源研究仍相对薄弱,这限制了对义敦岛弧不同期次及地区花岗岩浆作用的成矿元素专属性的理解。休瓦促矿床是中甸地区燕山晚期的一个大型岩浆热液型Mo-W矿床,前人研究主要集中在成岩成矿年代学、成矿岩浆成因及动力学背景方面(侯增谦等,2003; 李建康等,2007; Wang et al., 2014a,b),对该矿床的成矿流体特征及成矿物质来源研究较少,这制约了对休瓦促矿床及中甸地区燕山晚期成矿作用成矿物质来源的探讨。本文以休瓦促Mo-W矿床为例,详细介绍该矿床的矿床地质特征,对早期的萤石-长石似伟晶岩脉中的萤石及矿化石英脉中的石英进行流体包裹体显微测温分析,初步了解成矿流体特征;对休瓦促矿床多种金属硫化物及花岗岩进行S、Pb同位素分析,并通过对比休瓦促Mo-W矿化与义敦岛弧北段同期的Sn-Ag-Pb-Zn多金属矿化及中甸地区印支期斑岩型Cu矿化这三种与岩浆有关的热液矿化的S、Pb及岩石地球化学性质,综合探讨休瓦促矿床的成矿物质来源,进而对义敦岛弧不同期次及不同区域与岩浆有关的成矿作用成矿元素专属性进行初步解释。
![]() | 图 1 义敦岛弧(a)和中甸地区(b)地质矿产简图(据Wang et al., 2014a修改)Fig. 1 Simplified geological maps of the Yidun Arc(a) and the Shangri-La region(b)(modified after Wang et al., 2014a) |
义敦岛弧位于三江特提斯成矿域的北中段,青藏高原的东侧,是由甘孜理塘洋壳在晚三叠纪向西俯冲于中咱微陆块之下而形成的陆缘弧(图 1; 侯增谦等, 2001,2003,2004)。义敦岛弧可划分为两个主要地质构造单元,分别为中咱微陆块和火山弧带(Reid et al., 2005)。中咱微陆块出露有与扬子陆块相似的古元古代地层,通常认为其在二叠纪时期从扬子地块分离出来,两者具有相似的结晶基底(Chang,1997)。义敦岛弧火山弧带内地层主要为中晚三叠系火山岩及火山碎屑沉积岩建造,岩性主要为弧火山岩、砂岩、灰岩及火山碎屑岩(Wang et al., 2013a)。构造主要发育有NW及NNW向高角度断层。义敦岛弧由于南北段印支期构造样式及成岩成矿作用特征迥异,而被划分为昌台弧(北段)和中甸弧(南段)(侯增谦等, 2001,2003,2004)。昌台弧主要发育有印支期弧后盆地、弧间裂谷双峰式火山岩及向伴生的VMS型Cu-Ag-Pb-Zn多金属成矿作用(Wang et al., 2013b),多个矿床达到大型规模,如:呷村、嘎依穷等VMS型矿床(Hou,1993; Hou et al., 2001,2007)。中甸弧主要发育有印支期俯冲作用相关的玄武-安山岩系列、斑岩及相伴生的斑岩型及矽卡岩型Cu多金属矿化作用(Wang et al., 2011; Leng et al., 2014),如普朗、雪鸡坪等斑岩型Cu矿床及浪都矽卡岩型Cu矿床(李文昌等,2011; Leng et al., 2012)。在晚三叠世甘孜-理塘洋闭合后,义敦岛弧和松潘-甘孜地块发生碰撞,在侏罗纪义敦岛弧和松潘-甘孜地块出现的板内岩浆(张能德和张怀举,1993; 曲晓明等,2003; 胡健民等,2005; 赵永久等,2007; 王全伟等,2008; Wu et al., 2014)及W-Sn成矿作用(Liu et al., 2007)指示着义敦岛弧及松潘-甘孜地块在侏罗纪已进入陆内造山阶段并发生了造山后伸展作用(Wang et al., 2014a,b)。
在晚白垩世即燕山晚期,沿义敦岛弧近南北向近500km发育大量花岗岩及相关的多金属成矿作用(图 1、表 1)(侯增谦等,2003)。在义敦岛弧北段主要发育有A-型花岗岩及其相关的矽卡岩型及热液脉型Sn-Ag-Pb-Zn多金属矿化,典型矿床有夏塞热液脉型Sn-Ag-Pb-Zn多金属矿床、连龙Sn多金属矿床等(侯增谦等, 2001,2004; 曲晓明等, 2001,2002; Qu et al., 2002; 刘权,2003; Hou et al., 2007; 邹光富等,2008; 林青,2010);而在义敦岛弧的南段中甸弧主要发育I型花岗岩(Wang et al., 2014b)及斑岩型、矽卡岩型和岩浆热液型Mo-Cu-(W)多金属矿化,典型矿床有休瓦促和热林岩浆热液型Mo-W矿床、红山斑岩型-矽卡岩型Cu-Mo多金属矿床及铜厂沟斑岩型-矽卡岩型Mo-Cu矿床(杨岳清等,2002; 曾普胜等,2004; 徐兴旺等,2006; 李建康等,2007; 尹光候等,2009; 王新松等,2011; 李文昌等,2012; Yu et al., 2014; Wang et al., 2014a; Zu et al., 2015)。Wang et al.(2014b)通过梳理拉萨地块和羌塘地块的碰撞历史及藏东地区磷灰石裂变径迹年龄数据,提出义敦岛弧燕山晚期的这期成岩成矿作用可能形成于拉萨-羌塘地块碰撞相关的碰撞后的伸展环境。
| 表 1 义敦岛弧燕山晚期主要矿床地质特征表 Table 1 Geological features of major Late Yanshanian ore deposits in the Yidun Arc |
前人已对上述义敦岛弧两期重要的与成矿相关的岩浆作用开展了大量的岩石地球化学工作。中甸地区印支期斑岩型Cu矿相关斑岩及玄武-安山岩岩石学研究显示,其主要来自于地幔楔的部分熔融,受到少量下地壳物质的混染(Leng et al., 2012,2014)。休瓦促岩体及中甸地区同期的热林、红山及铜厂沟岩体均呈现出了I型花岗岩的特征,矿物学及多种同位素地球化学均证实其主要来自于加厚的中基性下地壳的部分熔融(Wang et al., 2014a,b)。义敦岛弧北段的Sn-Ag-Pb-Zn矿化相关的A型花岗岩,则主要来自于中酸性变沉积岩地壳物质的部分熔融(Qu et al., 2002; 侯增谦等,2003)。综合前人研究中这三种矿化所用相关岩体的Sr-Nd同位素数据进行投图(图 2),这三种岩浆活动呈现出明显不同的Sr、Nd同位素特征,指示着它们不同的来源。
![]() | 图 2 义敦岛弧主要矿床岩体的εNd(t)-(87Sr/86Sr)i值相关关系图 图中各地质体的Sr、Nd同位素值的应用来源分别为:班公湖-怒江洋MORB引自Wang et al., 2010;地幔、下地壳和上地壳可能分布趋势引自Jahn et al., 1999;空岭角闪岩引自Gao et al., 1999; Ma et al., 2000;中甸地区晚三叠世的弧火成岩引自Wang et al., 2011; Leng et al., 2012,2014;松潘-甘孜地块沉积岩引自Wu et al., 2010Fig. 2 εNd(t)vs.(87Sr/86Sr)i diagram of the intrusions in the Yidun Arc Bangong MORB from Wang et al., 2010; The trends of mantle array,lower continental crust(LCC) and upper continental crust(UCC)are from Jahn et al., 1999; Kongling amphibolite are from Gao et al., 1999; Ma et al., 2000; Late Triassic arc magmas in the southern Yidun Terrane from Wang et al., 2011; Leng et al., 2012,2014; Songpan-Ganzi sedimentary rocks from Wu et al., 2010 |
休瓦促岩浆热液型Mo-W矿床位于香格里拉(中甸)县城北东20°方向约80km处(图 1),矿床储量WO3:8431吨(品位0.28%),Mo:13627吨(品位0.38%)。该矿床于1991年由云南省地矿局第三地质大队完成普查工作,之后于2010年8月由香格里拉雪域开发有限责任公司委托云南黄金股份有限公司完成了矿区的详查工作。矿床分为四个矿区:北矿区、东矿区、西矿区和桑都格勒矿区。目前,北矿区、东矿区和西矿区由雪域公司进行开采,桑都格勒矿区由香格里拉康特钼矿业有限责任公司进行开采。
矿区内出露地层主要为上三叠统喇嘛垭组的砂岩及砂质板岩。主要赋矿围岩为休瓦促岩体,矿体呈石英脉或脉状分布在岩体内部(图 3)。休瓦促岩体为一个多期多阶段的复式岩体,岩体总体可分为两期岩体,早期岩体为印支期的角闪黑云钾长花岗岩和黑云母花岗斑岩;晚期岩体则为燕山晚期的花岗岩,可分为三个岩相,分别为岩相1黑云母花岗斑岩(图 4a、图 5a)、岩相2黑云母二长花岗岩(图 4b、图 5b)和岩相3浅色碱长花岗岩(图 4c、图 5c)。空间上印支期岩体分布在周边而燕山晚期岩体侵入在内部。整个休瓦促岩体出露面积达100km2,侵位于上三叠统图姆沟组和喇嘛垭组的地层中。休瓦促燕山晚期三个岩相具有较高的SiO2(70%~76%)及全碱含量(Na2O+K2O:7.5%~10.7%),为准铝质到弱过铝质(A/CNK:0.96~1.07),具有较低的Mg、Ca、P含量,相对富集轻稀土元素、Rb、U、Th和Ta,而相对亏损重稀土元素、Ba、Sr和Eu;总体呈现出高分异I型花岗岩特征(Wang et al., 2014b)。休瓦促岩体具有相对较高的(87Sr/86Sr)i(0.7075~0.7098)和δ18O(5.9‰~8.4‰)值,负的εNd(t)(-8.0~-6.9)和εHf(t)(-7.6~-3.2)值,以及古老的Nd及Hf同位素的模式年龄1.3~1.7Ga,指示着其主要源于加厚的中基性下地壳部分熔融(Wang et al., 2014b)。矿区主要矿化类型有岩浆热液型、近石英脉蚀变花岗岩型及少量斑岩型矿化。斑岩型矿化主要产在北矿区的浅色细粒碱长花岗岩体内部(图 2),而且北矿区深部发育有宽大的石英脉和巨晶(3~20cm)的钾钠长石及萤石,呈现出似伟晶岩特征(图 4d);岩浆热液型及蚀变花岗岩型矿体主要产在东矿区和西矿区的两期岩体内部。蚀变类型有钾长石化、云英岩化、绢云母化和硅化,且往往呈现出多种蚀变叠加的特征(图 2)。
![]() | 图 3 休瓦促Mo-W矿床地质图(a)和地质剖面简图(b)(据Wang et al., 2014b修改)Fig. 3 Simplified geological map(a) and cross-section map(b)of the Xiuwacu Mo-W deposit(modified after Wang et al., 2014b) |
![]() | 图 4 休瓦促Mo-W矿床岩体及矿石野外照片 (a)岩相1黑云母花岗斑岩;(b)岩相2二长花岗岩;(c)岩相3浅色碱性长石花岗岩,其中发育有浸染状辉钼矿矿化;(d)萤石-长石似伟晶岩脉,其中长石为钾钠长石巨晶,萤石为矿物集合体;(e)岩相3中的含辉钼矿、黄铁矿的矿化石英脉;(f)沿岩体中断裂面分布的辉钼矿扇形集合体;(g)石英脉中的白钨矿;(h)白钨矿、辉钼矿、辉铋矿、黄铜矿矿化石英脉;(i)含白云石的黄铁矿、闪锌矿矿化石英脉Fig. 4 Field photographs of the intrusions and ores from the Xiuwacu Mo-W deposit (a)phase 1 biotite granitic porphyry;(b)phase 2 monzogranite;(c)phase 3 alkali-feldspar leucogranite with disseminated molybdenite mineralization;(d)fluorite-feldspar pegmatite vein,with K-Na feldspar, and fluorite megacrysts(3~20cm);(e)alkali-feldspar leucogranite associated with molybdenite-pyrite-quartz veinlets;(f)molybdenite occurs as fan-shaped sheets or stellate aggregates along the fracture surface of the intrusions;(g)scheelite occurs as allotriomorphic grains in quartz vein;(h)scheelite-molybdenite-bismuthinite-chalcopyrite quartz vein;(i)pyrite-sphalerite-dolomite quartz vein |
![]() | 图 5 休瓦促Mo-W矿床岩体、矿石及流体包裹体光学及电子显微镜下照片 (a、b、c)分别为岩相1黑云母花岗斑岩、岩相2二长花岗岩和岩相3浅色碱性长石花岗岩光薄片的正交偏光镜下照片;(d)云英岩化蚀变岩中主要矿物组合的电子探针背散射照片;(e)石英脉中磁铁矿被晚期硫化物交代的电子探针背散射照片,照片反映出磁铁矿先被黄铜矿交代,然后黄铜矿被砷黝铜矿交代,最后砷黝铜矿被辉铜矿交代,反映出成矿流体的氧逸度和温度在不断的降低;(f)黄铜矿中包裹的黄铁矿被晚期的闪锌矿、砷黝铜矿交代充填的反光镜下照片;(g)萤石-长石脉中萤石的流体包裹体偏光镜下照片,萤石中发育大量含CO2包裹体,Ⅱa型常温下CO2呈一相,Ⅱb型常温下CO2呈两相;(h)石英硫化物脉中石英中发育的气液两相流体包裹体,Ⅰa型气液比较小,升温均一至液相,Ⅰb型气液比较大,升温均一至气相;(i)石英硫化物脉中石英中发育的纯液相包裹体Fig. 5 Photomicrographs of intrusions,ores and fluid inclusions from Xiuwacu Mo-W deposit (a,b,c)are photomicrographs of phase 1 biotite granitic porphyry,phase 2 monzogranite,phase 3 alkali-feldspar leucogranite under perpendicular polarized light,respectively;(d)BSE photomicrograph of major minerals in greisenized granite;(e)BSE photomicrograph of magnetite in quartz vein,magnetite was fisrtly metasomatic altered by chalcopyrite,then chalcopyrite was metasomatic altered by tennantite,finally tennantite was metasomatic altered by chalcocite,it reflects that the fO2 and tempature of the ore forming fluids were gradually decreased;(f)both chalcopyrite and included pyrite were metasomatic altered and filled by tennantite and sphalerite;(g)CO2-rich fluid inclusions in the flourite from the fluorite-feldspar pegmatite vein,type Ⅱa two-phase and type Ⅱb three-phase CO2-rich inclusions;(h)fluid inclusions in the quartz from quartz-sulfide vein,type Ⅰa liquid-rich aqueous inclusion and type Ⅰb vapour-rich aqueous inclusion;(i)single-phase aqueous inclusions in the quartz from quartz-sulfide vein |
矿体主要受到近南北向,北西向断裂控制。矿石结构主要有交代结构、包含结构。通过休瓦促矿床矿物组合及矿石结构成矿过程可以划分为三个成矿阶段:(1)硅酸盐-氧化物阶段,以北矿区发育的萤石-长石似伟晶岩脉、钾化、云英岩化及斑岩型矿化为代表。萤石-长石似伟晶岩脉中萤石和钾钠长石均呈巨晶状(图 4d);钾化及云英岩化蚀变岩中普遍发育有钾长石、黑云母、锆石、金红石、钍石、氟碳铈镧矿、磁铁矿、白钨矿等氧化物及硅酸盐矿物(图 4d);斑岩型矿化发育在似伟晶岩脉上部的浅色细粒碱长花岗岩体内部(图 3),辉钼矿及白钨矿呈浸染状分布(图 4c);(2)硫化物阶段,该阶段以石英脉及金属硫化物矿化为代表(图 4e)。生成矿物主要有辉钼矿、辉铋矿、黄铜矿、黄铁矿、毒砂、砷黝铜矿、闪锌矿等(图 4e-i、图 5f)。辉钼矿往往呈自形1~8cm扇形片状集合体或者菊花状集合体沿断裂附着在岩体裂隙表面(图 4f),或者形成于蚀变花岗岩和石英脉之间。晚期的金属硫化物往往交代早期的硅酸盐、磁铁矿及白钨矿,如图 5e反映出首先黄铜矿沿裂隙交代了磁铁矿,紧接着砷黝铜矿交代了黄铜矿,并可见有磁铁矿碎屑被包裹在黄铜矿及黝铜矿中,最后辉铜矿交代了砷黝铜矿;该过程中也反映出在成矿过程中成矿流体的氧逸度和温度在不断地降低;(3)碳酸盐岩阶段,该阶段以少量的白云石和方解石为代表。具体的成矿阶段及矿物生成顺序见图 6。
![]() | 图 6 休瓦促Mo-W矿床的矿物生成顺序图Fig. 6 Paragenetic sequence of minerals from Xiuwacu Mo-W deposit |
用于流体包裹体分析的萤石采于北矿区萤石-长石似伟晶岩脉,萤石为浅绿色巨晶集合体;石英采于东矿区一中段及二中段的石英硫化物脉中。用于硫、铅同位素分析的金属硫化物主要采于东矿区一中段及二中段含辉钼矿的具有不同金属硫化物组合的矿化石英脉中,其中用于硫同位素分析的辉钼矿9件、辉铋矿2件、黄铜矿2件、黄铁矿7件、闪锌矿2件,用于铅同位素分析的辉钼矿2件、辉铋矿1件、磁黄铁矿1件、黄铁矿2件、闪锌矿1件。用于铅同位素分析的花岗岩采于矿区内燕山晚期的三个不同岩相,分别为岩相1黑云母花岗斑岩、岩相2二长花岗岩和岩相3浅色碱性长石花岗岩。
流体包裹体测温工作及金属硫化物的硫、铅同位素分析均在中国科学院地球化学研究所进行。流体包裹体测温工作在矿床地球化学国家重点实验室流体包裹体实验室完成,测试仪器为Linkam THMSG 600型冷热台,测温范围为-196℃到600℃,冷冻数据和加热数据精度分别为±0.1℃和±2℃。金属硫化物硫同位素在环境地球化学国家重点实验室完成的,采用连续流同位素质谱仪CF-IRMS(EA-Iso Prime,型号为Euro 3000,GV instruments)测试,测定数据采用以国际硫同位素CDT标准标定的国家硫同位素标准(硫化银)GBW-4414(δ34S=-0.07‰)和GBW-4414(δ34S=22.15‰)矫正,测试误差小于±0.2‰。花岗岩样品铅同位素在澳室分析测试检测(广州)矿物实验室完成,在称取0.5g样品后,用HNO3、HCl、HF和HClO4溶解,样品分解后蒸干,之后加入盐酸溶解蒸干,然后使用强碱性阴离子交换树脂依次加入纯化的HBr和HCl对Pb进行分离,测试采用高精度扇形磁场电感耦合等离子质谱仪。金属硫化物样品铅同位素在环境地球化学国家重点实验室完成的,在称取适量样品后,用HF和HClO4溶解,然后使用强碱性阴离子交换树脂依次加入纯化的HBr和HCl对Pb进行分离。测试采用Nu Instruments公司的Nu plasma型多接受电感耦合等离子质谱仪,实验采用国际标样NBS 981进行监控,标样(n=10)测试结果平均值为:206Pb/204Pb=16.93671±0.00053,207Pb/204Pb=15.48896±0.00053,208Pb/204Pb=36.6885±0.0014。
5 结果 5.1 流体包裹体岩相学特征及测温结果休瓦促矿床流体包裹体样品主要采自于北矿区似伟晶岩脉中的萤石,以及东矿区的硫化物石英脉中的石英。根据室温(25℃)下流体包裹体的相态特征及冷冻过程中相的变化,可将原生包裹体划分为气液两相水溶液包裹体(L+V)、富CO2包裹体(L+VCO2或L+LCO2+VCO2)以及纯液相包裹体(L)。三类包裹体岩相学特征及测温结果(表 2)如下:
| 表 2 休瓦促Mo-W矿床流体包裹体显微测温数据表 Table 2 Microthermometric data in the Xiuwacu Mo-W deposit |
Ⅰ型 气液两相水溶液包裹体(图 5h),在各中段广泛发育,是最主要的包裹体类型。其中又以富液相包裹体(Ⅰa)为主,少数为富气相包裹体(Ⅰb)。Ⅰ型包裹体个体大小变化较大(5~100μm),主要呈长条状、柱状、椭圆状、负晶形及不规则状,通常呈群状分布,且鲜有与CO2包裹体共生者。其绝大部分包裹体升温之后均一至液相,仅有Ⅰb型的少数包裹体均一到气相。测温结果显示:Ⅰ型包裹体绝大部分均一到液相,其均一温度范围为146.6~409.0℃;冰点变化范围为-15~-2.5℃,对应的盐度范围为4.18%~8.63% NaCleqv。Ⅰb型的少数包裹体均一至气相,其均一温度范围为256.0~550.0℃,冰点变化范围为-8.7~-3.4℃,对应盐度变化范围为5.56%~12.51% NaCleqv。
Ⅱ型 富CO2包裹体(图 5g),该类包裹体主要出现在北矿区似伟晶岩脉的石英及萤石中。室温下可见两相结构(Ⅱa:L+VCO2)和典型的三相结构(Ⅱb:L+LCO2+VCO2),并以后者为主。Ⅱ型包裹体大小一般在10~40μm,部分可达100μm,CO2的体积约占总体积的5%~85%,多呈长柱状、椭圆状、负晶形、三角形或不规则状。主要成群分布,极少数与Ⅲ型包裹体共生。此类包裹体在部分均一化过中,全部均一至气态CO2,整体均一化过程中,绝大部分均一至液相,仅个别均一至气相。富CO2包裹体三相点温度为-58.9~-55.8℃,表明其气相成分主要为CO2,这与拉曼测试结果相符。其Th,CO2为26~32.2℃,全部均一至气相CO2;Tm,cla为5.4~8.4℃,对应的盐度为3.15%~8.35% NaCleqv之间,表明富CO2包裹体的盐度较低。这类包裹体在升温均一化过程中,全部均一至液相,温度为275.7~365.3℃。
Ⅲ型 纯液相水溶液包裹体(图 5i),该类包裹体数量较少,呈长条状及不规则状,可与Ⅰ型或Ⅱ型包裹体共生。
5.2 金属硫化物S、Pb同位素特征金属硫化物的S、Pb同位素及花岗岩的Pb同位素测试结果分别见表 3、表 4。具体各种金属硫化物的δ34SVCDT值及排序如下:黄铁矿(3.76‰~4.33‰,平均4.16‰)>闪锌矿(4.09‰~4.23‰,平均4.16‰)>辉钼矿(2.07‰~3.62‰,平均2.71‰)>辉铋矿(2.22‰~2.98‰,平均2.60‰)>黄铜矿(2.44‰~2.70‰,平均2.57‰);而且对于同一石英硫化物矿石手标本,也呈现出了相似的δ34SVCDT值大小排序,如样品SXWC10-47、XWC11-63、XWC11-82、XWC11-121这些表明成矿热液体系中,硫同位素分馏在各种硫化物及H2S之间并未达到完全平衡。但各种硫化物之间的δ34SVCDT值相差并不大,说明在金属硫化物沉淀的过程中,并不存在较大的动力学分馏。如前所述在金属硫化物的沉淀析出过程中,热液体系的温度和氧逸度在不断降低,这可能是导致这种不完全平衡分馏的原因之一(郑永飞和陈江峰,2000)。总体而言,休瓦促矿区的金属硫化物的δ34SVCDT值较为集中,在2.07‰~4.33‰之间。
| 表 3 义敦岛弧燕山晚期主要矿床金属硫化物硫同位素组成 Table 3 Sulfur isotopic compositions of sulfide from major Late Yanshanian deposits in the Yidun Arc |
| 表 4 义敦岛弧燕山晚期主要矿床金属硫化物及花岗岩铅同位素组成 Table 4 Lead isotopic compositions of sulfide and granites from major Late Yanshanian deposits in the Yidun Arc |
Pb同位素测试结果显示,各种金属硫化物均具有较为相似的Pb同位素组成,206Pb/204Pb=18.646~18.936,208Pb/204Pb=38.857~39.404,207Pb/204Pb=15.650~15.710;通过地球化学软件Geokit(路远发,2004)计算得出Pb同位素组成相关参数μ、Th/U、Δβ及Δγ值见表 4,它们的各自范围分别为:μ=9.54~9.63,Th/U=3.79~3.87、Δβ=20.94~24.87及Δγ=40.67~55.34。花岗岩的铅同位素组成测试结果为206Pb/204Pb=19.080~19.730,208Pb/204Pb=39.370~39.850,207Pb/204Pb=15.680~16.650;通过地球化学软件Geokit(路远发,2004)计算得出初始铅同位素组成(表 5),分别为(206Pb/204Pb)t=18.610~19.460,(208Pb/204Pb)t=38.815~39.410,(207Pb/204Pb)t=15.606~15.747,Pb同位素组成相关参数μ、Th/U、Δβ及Δγ值见表 4,它们的各自范围分别为:μ=9.48~9.72,(Th/U)=3.58~3.88、Δβ=20.96~28.79及Δγ =54.43~67.28。
| 表 5 休瓦促矿床花岗岩铅同位素组成 Table 5 Lead isotopic compositions of granites from the Xiuwacu deposit |
长石-萤石似伟晶岩脉中流体包裹体测温结果(表 2)显示,早阶段硅酸盐-氧化物阶段流体富CO2,均一温度范围主要集中在275.7~365.3℃,盐度范围在3.15%~8.35% NaCleqv之间(图 7),呈现出中高温、中-低盐度的H2O-NaCl-CO2热液特征,均一温度和盐度范围均较小,说明早阶段流体来源较为单一且主要来自于原始岩浆流体。硫化物石英脉中石英的流体包裹体测温结果显示,均一温度范围较宽为146.6~550.0℃,盐度范围在4.18%~12.51% NaCleqv,反映出石英-硫化物阶段流体呈现出中高温、中-低盐度的H2O-NaCl热液特征。但该阶段成矿流体温度范围可分为两个区间,一个区间是250~550℃,另一个区间是146.6~220℃;盐度范围却没有较明显的分区(图 7)。其中高温流体温度范围和早阶段硅酸盐-氧化物阶段流体范围较为一致,说明其主要 来自于原始岩浆流体,同时也继承了中-低盐度的特征,而较低温区间则说明在石英硫化物阶段有低温流体的加入。
![]() | 图 7 休瓦促Mo-W矿床流体包裹体的均一温度及盐度直方图Fig. 7 Histograms of homogenization temperatures and salinities of fluid inclusions from Xiuwacu Mo-W deposit |
如前所述,休瓦促矿区的金属硫化物的δ34SVCDT值分布较为集中,在2.07‰~4.33‰之间,说明其S具有较为一致的来源。由于矿物组合中少有见到硫酸盐的存在,表明成矿热液体系中的硫以H2S为主,故而金属硫化物的δ34SVCDT值可近似地反映了成矿流体的δ34SVCDT值范围,进而指示其来源(郑永飞和陈江峰,2000)。由于该值范围分布非常集中,不同于沉积岩通常具有负的或者较宽的δ34SVCDT值域范围(图 8; Seal,2006),而且其略高于地幔硫的范围0±2‰(Thode et al., 1961),说明成矿流体主要来自于岩浆作用。此外,流体包裹体的显微测温结果显示成矿流体为含CO2的中高温、中低盐度的H2O-NaCl热液,也表明成矿流体主要来自原始岩浆。
![]() | 图 8 义敦岛弧主要矿床的金属硫化物的S同位素直方图及分布图 中甸地区燕山晚期的休瓦促Mo-W矿床和红山Cu-Mo矿床(王守旭等,2008; 俎波等,2013)以及义敦岛弧北段的连龙Sn-Ag矿床(曲晓明等,2001)和夏塞Ag-Sn-Pb-Zn矿床(侯增谦等,2003; 应汉龙等,2006)的S同位素数据列于表 3. 中甸地区印支期普朗和雪鸡坪矿床的硫同位素值王守旭等,2007; 冷成彪等,2008. 沉积岩、古海洋蒸发岩、地幔、钛铁矿系列花岗岩及磁铁矿系列花岗岩的硫同位素组成范围引自Thode et al., 1961; Seal,2006Fig. 8 Histogram and range of δ34S values for sulfide minerals from major ore deposits in the Yidun Arc The S isotope data of Late Cretaceous Mo-W,Hongshan Cu-Mo(Wang et al., 2008; Zu et al., 2013),Lianlong Sn-Ag(Qu et al., 2001), and Xiasai Ag-Sn-Pb-Zn deposits(Hou et al., 2003; Ying et al., 2006)are listed in Table 3. The S isotope compositions of Late Triassic Pulang and Xuejiping porphyry Cu deposits are from Wang et al., 2007; Leng et al., 2008. The S isotope compositions of ancient marine evaporites,sedimentary pyrite,ilmenite-series granites,magnetite-series granites, and basalt- and esite and porphyry Cu-Mo-Au deposit are from Thode et al., 1961; Seal,2006 |
金属硫化物铅同位素结果表明,各种金属硫化物也具有较为相似的Pb同位素组成,表明具有相同的来源,其分布范围分布为206Pb/204Pb=18.646~18.936,208Pb/204Pb=38.857~39.404,207Pb/204Pb=15.650~15.710。由于这些金属硫化物基本不含U、Th,在矿物形成后基本没有放射成因的Pb生成,故这些金属硫化物的铅同位素组成可反映成矿热液的初始铅同位素组成,从而对其来源进行示踪。这些金属硫化物的初始铅同位素组成与矿区内与成矿相关的花岗岩的Pb同位素初始值(206Pb/204Pb)t=18.610~19.460,(208Pb/204Pb)t=38.815~39.410,(207Pb/204Pb)t=15.606~15.747,具有一致的分布范围;并且,两者还具有一致的μ值(9.48~9.72)和Th/U比值(3.58~3.88),均说明他们可能有着相同的来源。
在铅同位素体系中,由于U、Th及Pb在上地壳、下地壳及地幔三端元间的分配系数的差异,使得样品的μ值即238U/204Pb比值及Th/U比值对于三个端元具有一定的区分能力。休瓦促金属硫化物及花岗岩的μ值(9.48~9.72)及Th/U比值(3.58~3.88)的分布范围均较小,分别介于上地壳(μ值=~14.98)和地幔(μ值=~8.44)及下地壳(Th/U=5.48)和上地壳(Th/U=3.47)之间的范围(李龙等,2001),Pb的来源呈现出了壳幔混合的来源特征。在207Pb/204Pb和206Pb/204Pb的投图中(图 9),休瓦促的金属硫化物及花岗岩铅同位素值主要落在造山带和上地壳的演化线之间,表明其铅可能主要来自于上地壳。在Δγ和Δβ的投图中(图 9; 朱炳泉,1998),它们主要落在上地壳和岩浆作用区域。从这两个国内学者常用的Pb同位素投图来看,休瓦促的金属硫化物铅可能主要来自于上地壳,但是也如国内很多学者所发现的这两张投图中的造山带、上地壳的演化线及岩浆作用区域具有多解性。在国内大量的Pb同位素研究显示,很少有样品的Pb同位素落入下地壳的范围内,反而很多麻粒岩样品及源于下地壳部分熔融而形成的花岗岩的Pb同位素均落在了造山带和上地壳的范围内(朱炳泉,1998; 李龙等,2001; 吴开兴等,2002)。故而,通过金属硫化物及花岗岩的Pb同位素组成对比,推测休瓦促的成矿物质主要来自于矿区内燕山晚期花岗岩,且可能主要来自于壳源物质的部分熔融。
![]() | 图 9 义敦岛弧主要矿床的金属硫化物的Pb同位素的206Pb/204Pb-207Pb/204Pb(a,据Zartman and Doe, 1981)及Δγ-Δβ值的相关关系图(b,据Zartman and Doe, 1981) 中甸地区燕山晚期的休瓦促Mo-W矿床和红山Cu-Mo矿床(王守旭等,2008)以及义敦岛弧北段的连龙Sn-Ag矿床(曲晓明等,2001)和夏塞Ag-Sn-Pb-Zn矿床(侯增谦等,2003; 应汉龙等,2006)的Pb同位素数据列于表 4. 中甸地区印支期普朗和雪鸡坪矿床的Pb同位素值冷成彪等,2008; 刘学龙等,2012Fig. 9 206Pb/204Pb vs. 207Pb/204Pb diagram(a,after Zartman and Doe, 1981) and Δγ vs. Δβ diagram(b,after Zhu,1998)of Pb isotope compositions of sulfide from major ore deposits in the Yidun Arc The Pb isotope data of Late Cretaceous Mo-W,Hongshan Cu-Mo(Wang et al., 2008),Lianlong Sn-Ag(Qu et al., 2001), and Xiasai Ag-Sn-Pb-Zn deposits(Hou et al., 2003; Ying et al., 2006)are listed in Table 4. The Pb isotope compositions of Late Triassic Pulang and Xuejiping porphyry Cu deposits are from Leng et al., 2008; Liu et al., 2012 |
Wang et al.(2014b)通过对休瓦促岩体的不同岩相开展了详细的矿物化学、岩石地球化学及Sr-Nd-Hf-O同位素分析显示休瓦促岩体为高分异的I型花岗岩,主要来源于加厚的中基性下地壳的部分熔融,且经历了较强的结晶分异作用。萤石-长石似伟晶岩脉即可能是岩浆演化到最晚期的产物,故而其中的萤石含有富CO2的流体包裹体。休瓦促矿床的金属硫化物硫同位素也与磁铁矿系列花岗岩或I型花岗岩具有相似的硫同位素范围(Seal,2006)。故综合休瓦促矿床的地质、成矿流体及金属硫化物的S、Pb同位素特征,表明休瓦促矿床的成矿流体及物质来源主要来自于源于加厚下地壳部分熔融而形成的高分异I型花岗岩浆所分异出的岩浆期后热液。
6.3 对义敦岛弧与岩浆有关的成矿作用成矿元素专属性的初步解释为更好的解释休瓦促矿床的成矿物质来源,本文收集了中甸地区印支期的斑岩型Cu矿化及义敦岛弧北段燕山晚期的Sn-Ag-Pb-Zn多金属矿化作用金属硫化物的S-Pb同位素,通过综合对比来探讨这些成矿作用的成矿物质来源及相关岩浆作用的成矿专属性。
如前所述,休瓦促岩体及中甸地区同期的热林、红山及铜厂沟岩体均呈现出了I型花岗岩的特征,矿物学及多种同位素地球化学均证实其主要来自于加厚的中基性下地壳的部分熔融(Wang et al., 2014a,b)。中甸地区印支期斑岩型Cu矿相关斑岩及玄武-安山岩,主要来自于地幔楔的部分熔融,受到少量下地壳物质的混染(Leng et al., 2012,2014)。义敦岛弧北段的Sn-Ag-Pb-Zn矿化相关的A型花岗岩,则主要来自于中酸性变沉积岩地壳物质的部分熔融(Qu et al., 2002; 侯增谦等,2003)。
通过收集整理三种成矿作用的金属硫化物及相关岩体的Pb同位素,发现中甸地区印支期岩体及金属硫化物的Pb同位素主要呈现出幔源物质与地壳混染的特征(图 9),而燕山晚期的Mo多金属矿化及Sn-Ag多金属矿化则主要呈现出了壳源特征(图 9)。同时,三种成矿作用的金属硫化物的S同位素则呈现出了更加明显的区别,中甸地区印支期斑岩型Cu矿化的S同位素在-3.1‰~3.8‰之间,与岛弧玄武-安山岩及地幔S同位素范围较为一致,具有较为明显的幔源硫特征(图 7);中甸地区休瓦促矿床金属硫化物的δ34SVCDT值范围在2.07‰~4.33‰之间,与磁铁矿系列花岗岩范围一致,指示可能来至于火成岩原岩重熔而形成的岩浆;义敦岛弧北段的Sn-Ag-Pb-Zn矿化则为负值,在-10.5‰~-4.9‰之间,略低于幔源硫的范围,与钛铁矿系列花岗岩范围一致,指示可能来自于沉积岩原岩重熔而形成的岩浆(Seal,2006)。这三种矿化作用的金属硫化物的S、Pb同位素特征所指示的成矿物质源区,分别与成矿相关岩体的岩石地球化学性质所指示的来源具有很好的对应关系,不仅指示着这些成矿物质主要来源于相关岩浆作用,而且说明这些岩浆作用与相关成矿元素的矿化之间具有很好的成矿专属性。
换言之,通过义敦岛弧这三种与岩浆有关的热液矿化的S、Pb及岩石地球化学性质对比,指示着印支期斑岩型的Cu矿化与幔源岩浆作用有着密切的关系;燕山晚期陆内环境下,中甸地区与花岗岩有关的Mo-Cu-(W)矿化成矿物质来源于加厚的中基性下地壳部分熔融而形成的I型花岗岩,而义敦岛弧北段Sn-Ag-Pb-Sn矿化成矿物质则主要来源于中酸性变沉积岩地壳的部分熔融而形成的A型花岗岩。
7 结论(1)流体包裹体测温显示休瓦促Mo-W矿床成矿流体为含CO2的中高温、中低盐度的H2O-NaCl热液,可能主要来自于岩浆期后热液。
(2)多种金属硫化物的S和Pb同位素及成矿相关花岗岩的Pb同位素显示休瓦促Mo-W矿床的成矿物质主要源于壳源物质部分熔融的花岗岩浆作用。
(3)通过岩石地球化学性质及与岩浆有关的热液矿化的S和Pb同位素对比,发现燕山晚期中甸地区的Mo-Cu-(W)矿化成矿物质来源于加厚的中基性下地壳部分熔融而形成的I型花岗岩,义敦岛弧北段Sn-Ag-Pb-Sn矿化则主要来源于中酸性变沉积岩地壳的部分熔融而形成的A型花岗岩;而中甸印支期斑岩型的Cu矿化则与幔源岩浆作用有着密切的关系。
致谢 野外工作得到了中国科学院地球化学研究所陈佑纬副研究员、唐永永博士及许岳博士的大力帮助;S、Pb同位素的测试过程中得到了中国科学院地球化学研究所安宁副研究员、刘河清博士的帮助;流体包裹体测试过程中得到了蔡佳丽工程师的帮助;两位匿名审稿专家对本文提出了很多的宝贵意见;在此一并表示衷心的感谢!| [1] | Chang CF. 1997. Geology and Tectonics of Qinghai-Xizang Plateau. Beijing:Science Press, 1-153 |
| [2] | Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138:268-299 |
| [3] | Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2):419-437 |
| [4] | Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, doi:10.1016/j.gr.2015.10.003 |
| [5] | Fan X. 2009. Geological features, ore-formation and mineralization zonation of the Hailong-Cuomolong skarn type Sn-polymetallic deposit in Batang, Sichuan. Acta Geologica Sichuan, 29(S2):112-123(in Chinese with English abstract) |
| [6] | Gao S, Ling WL, Qiu YM, Lian Z, Hartmann G and Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088 |
| [7] | Hou ZQ. 1993. Tectono-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfid deposits in Sanjiang region, SW China. Resource Geology, 17:336-350 |
| [8] | Hou ZQ, Zaw K, Qu XM, Ye QT, Yu JJ, Xu MJ, Fu DM and Yin XK. 2001. Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China:Fluid inclusion and oxygen isotope evidence. Economic Geology, 96(7):1491-1512 |
| [9] | Hou ZQ, Qu XM, Zhou JR, Yang YQ, Huang DH, Lü QT, Tang SH, Yu JJ, Wang HP and Zhao JH. 2001. Collision-Orogenic processes of the Yidun arc in the Sanjiang region:Record of granites. Acta Geologica Sinica, 75(4):484-497(in Chinese with English abstract) |
| [10] | Hou ZQ, Yang YQ, Wang HP et al. 2003. Collision-Orogenic Progress and Mineralization System of Yidun Arc. Beijing:Geological Publishing House, 1-345(in Chinese) |
| [11] | Hou ZQ, Yang YQ, Qu XM, Huang DH, Lu QT, Wang HP, Yu JJ and Tang SH. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1):109-120(in Chinese with English abstract) |
| [12] | Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang tethyan metallogenesis in S.W. China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4):48-87 |
| [13] | Hu JM, Meng QR, Shi YR and Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica, 21(3):867-880(in Chinese with English abstract) |
| [14] | Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2):119-146 |
| [15] | Leng CB, Zhang XC, Wang SX, Wang WQ, Qin CJ, Wu KW and Ren T. 2008. Sulfur and lead isotope compositions of the Xuejiping porphyry copper deposit in Northwest Yunnan, China:Tracing for the source of metals. Journal of Mineralogy and Petrology, 28(4):80-88(in Chinese with English abstract) |
| [16] | Leng CB, Zhang XC, Hu RZ, Wang SX, Zhong H, Wang WQ and Bi XW. 2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences, 60:31-48 |
| [17] | Leng CB, Huang QY, Zhang XC, Wang SX, Zhong H, Hu RZ, Bi XW, Zhu JJ and Wang XS. 2014. Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc, SW China:Constraints from the geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191:363-382 |
| [18] | Li JK, Li WC, Wang DH, Lu YX, Yin GH and Xue SR. 2007. Re-Os dating for ore-forming event in the late of Yanshan epoch and research of ore-forming regularity in Zhongdian arc. Acta Petrologica Sinica, 23(10):2415-2422(in Chinese with English abstract) |
| [19] | Li L, Zheng YF and Zhou JB. 2001. Dynamic model for Pb isotope evolution in the continental crust of China. Acta Petrologica Sinica, 17(1):61-68(in Chinese with English abstract) |
| [20] | Li WC, Liu XL, Zeng PS and Yin GH. 2011. The characteristics of metallogenic rocks in the Pulang porphyry copper deposit of Yunnan Province. Geology in China, 38(2):403-414(in Chinese with English abstract) |
| [21] | Li WC, Yu HJ, Yin GH, Cao XM, Huang DZ and Dong T. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in Northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2):282-292(in Chinese with English abstract) |
| [22] | Lin FC, Yang JR, Chen CD, He XG, Lin Q, Lu YX, Liu YC and Xie ES. 2003. Potentiality and assessment of Cu-Ag-Pb-Zn-Sn mineral resources in the Yidun metallogenic belt. Acta Geologica Sichuan, 23(3):141-145(in Chinese with English abstract) |
| [23] | Lin Q. 2010. Geological features and prospecting potential for the Xialong Ag-Pb-Zn deposit in Batang, Sichuan. Acta Geologica Sichuan, 30(4):447-449, 461(in Chinese with English abstract) |
| [24] | Liu Q. 2003. Geological characteristics and genesis of Xiasai silver-polymetallic deposit in western Sichuan Province. Mineral Deposits, 22(2):121-128(in Chinese with English abstract) |
| [25] | Liu XL, Li WC and Yin GH. 2012. Lead isotope characteristics and tracing significance of ore metallogenic material in Geza arc metallogenic belt, Yunnan. Geoscience, 26(3):445-452(in Chinese with English abstract) |
| [26] | Liu Y, Deng J, Li CF, Shi GH and Zheng AL. 2007. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan. Chinese Science Bulletin, 52(18):2543-2550 |
| [27] | Lu YF. 2004. GeoKit-A geochemical toolkit for Microsoft excel. Geochimica, 33(5):459-464(in Chinese with English abstract) |
| [28] | Ma CQ, Ehlers C, Xu CH, Li ZC and Yang KG. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:Constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research, 102(3-4):279-301 |
| [29] | Qu XM, Hou ZQ and Zhou SG. 2001. Metallogenic geological characteristics of the Lianlong skarn type Sn-Ag polymetallic deposit in western Sichuan. Acta Geosicientia Sinica, 22(1):29-34(in Chinese with English abstract) |
| [30] | Qu XM, Hou ZQ and Zhou SG. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China. Resource Geology, 52(2):163-172 |
| [31] | Qu XM, Hou ZQ, Zhou SG and Tang SH. 2002. The age and tectonic setting of Lianlong Sn-bearing granite in western Sichuan Province. Acta Geosicientia Sinica, 23(3):223-228(in Chinese with English abstract) |
| [32] | Qu XM, Hou ZQ and Tang SH. 2003. Age of intraplate volcanism in the back-arc area of Yidun island arc and its significance. Acta Petrologica et Mineralogica, 22(2):131-137(in Chinese with English abstract) |
| [33] | Reid AJ, Wilson CJL and Liu S. 2005. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun arc, eastern Tibetan Plateau. Journal of Structural Geology, 27(1):119-137 |
| [34] | Seal Ⅱ RR. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1):633-677 |
| [35] | Thode HG, Monster J and Dunford HB. 1961. Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta, 25(3):159-174 |
| [36] | Wang BD, Chen JL, Xu JF, Wang LQ, Zeng QG and Dong YH. 2010. Chronology and geochemistry of the Nadingcuo volcanic rocks in the southern Qiangtang region of the Tibetan Plateau:Partial melting of remnant ocean crust along the Bangong-Nujiang suture. Acta Geologica Sinica, 84(6):1461-1473 |
| [37] | Wang BQ, Zhou MF, Li JW and Yan DP. 2011. Late triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau:Adakitic magmatism and porphyry copper mineralization. Lithos, 127(1-2):24-38 |
| [38] | Wang BQ, Wang W, Chen WT, Gao JF, Zhao XF, Yan DP and Zhou MF. 2013a. Constraints of detrital zircon U-Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet. Sedimentary Geology, 289:74-98 |
| [39] | Wang BQ, Zhou MF, Chen WT, Gao JF and Yan DP. 2013b. Petrogenesis and tectonic implications of the Triassic volcanic rocks in the northern Yidun Terrane, Eastern Tibet. Lithos, 175-176:285-301 |
| [40] | Wang QW, Wang KM, Han ZZ et al. 2008. The Granite in West Sichuan and Its Metallogenic Series. Beijing:Geological Publishing House, 1-305(in Chinese) |
| [41] | Wang SX, Zhang XC, Leng CB and Qin CJ. 2007. A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian, northwestern Yunnan. Mineral Deposits, 26(3):277-288(in Chinese with English abstract) |
| [42] | Wang SX, Zhang XC, Leng CB, Qin CJ, Wang WQ and Zhao MC. 2008. Stable isotopic compositions of the Hongshan skarn copper deposit in the Zhongdian area and its implication for the copper mineralization process. Acta Petrologica Sinica, 24(3):480-488(in Chinese with English abstract) |
| [43] | Wang XS, Bi XW, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS zircon U-Pb dating of granite porphyry in the Hongshan Cu-polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 31(3):315-321(in Chinese with English abstract) |
| [44] | Wang XS, Bi XW, Leng CB, Zhong H, Tang HF, Chen YW, Yin GH, Huang DZ and Zhou MF. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun arc, SW China:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 61:73-95 |
| [45] | Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ and Chen YW. 2014b. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209:202-219 |
| [46] | Wu KX, Hu RZ, Bi XW, Peng JT and Tang QL. 2002. Ore lead isotopes as a tracer for ore-forming material sources:A review. Geology-Geochemistry, 30(3):73-81(in Chinese with English abstract) |
| [47] | Wu T, Xiao L, Ma CQ, Pirajno F, Sun Y and Zhan QY. 2014. A mafic intrusion of 'arc affinity' in a post-orogenic extensional setting:A case study from Ganluogou gabbro in the northern Yidun Arc Belt, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 94:139-156 |
| [48] | Wu WH, Xu SJ, Yang JD, Yin HW, Lu HY and Zhang KJ. 2010. Isotopic characteristics of river sediments on the Tibetan Plateau. Chemical Geology, 269(3-4):406-413 |
| [49] | Xu XW, Cai XP, Qu WJ, Song BC, Qin KZ and Zhang BL. 2006. Later cretaceous granitic porphyritic Cu-Mo mineralization system in the Hongshan area, northwestern Yunnan and its significances for tectonics. Acta Geologica Sinica, 80(9):1422-1433(in Chinese with English abstract) |
| [50] | Yang YQ, Hou ZQ, Huang DH and Qu XM. 2002. Collision orogenic process and magmatic metallogenic system in Zhongdian Arc. Acta Geosicientia Sinica, 23(1):17-24(in Chinese with English abstract) |
| [51] | Yin GH, Li WC, Jiang CX, Xu D, Li JK and Yang SR. 2009. The evolution of relin uplex rock masses in Yanshan phase and Ar-Ar dating age and copper-molybdenum mineralization characteristics of Zhongdian volcanic-magma arc. Geology and Exploration, 45(4):385-394(in Chinese with English abstract) |
| [52] | Ying HL, Wang DH and Fu XF. 2006. Timing and lead and sulfur isotope composition of Xiasai granite and silver polymetallic deposit in Batang, Sichuan Province. Mineral Deposits, 25(2):136-146(in Chinese with English abstract) |
| [53] | Yu HJ, Li WC, Yin GH, Lu YX, Cao XM, Huang DZ, Dong T and Zhang YM. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication. Acta Geologica Sinica, 88(4):1183-1194 |
| [54] | Zartman RE and Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2):135-162 |
| [55] | Zeng PS, Wang HP, Mo XX, Yu XH, Li WC, Li TG, Li H and Yang CZ. 2004. Tectonic setting and prospects of porphyry copper deposits in Zhongdian island arc belt. Acta Geosicientia Sinica, 25(5):535-540(in Chinese with English abstract) |
| [56] | Zhang ND and Zhang HJ. 1993. Ages of several granite plutons in northwestern Sichuan. Geochimica, (3):303-312(in Chinese with English abstract) |
| [57] | Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP and Cai KD. 2007. Post-orogenic extension of Songpan-Garzê orogen in Early Jurassic:Constraints from Niuxingou monzodiorite and Siguniangshan A-type granite of western Sichuan, China. Geochimica, 36(2):139-152(in Chinese with English abstract) |
| [58] | Zheng YF and Chen JF. 2000. Stable Isotope Geochemistry. Beijing:Science Press, 1-336(in Chinese) |
| [59] | Zhu BQ. 1998. The Theory and Practice of Isotope System in Geoscience:Concurrent Discussion of the Continental Crust and Mantle Evolvements in China. Beijing:Science press, 1-333(in Chinese) |
| [60] | Zou GF, Zheng RC, Hu SH, Chen CJ, Jiang HC and Wu HB. 2008. Geological features of the Xiasai silver-polymetallic deposit in West Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(1):93-102(in Chinese with English abstract) |
| [61] | Zu B, Xue CJ, Ya XE, Wang QF, Liang HY, Zhao Y and Liu MT. 2013. Sulfide zonal texture and its geological significance of ores from the Hongshan copper deposit in Shangri-la, Yunnan Province, China. Acta Petrologica Sinica, 29(4):1203-1213(in Chinese with English abstract) |
| [62] | Zu B, Xue CJ, Zhao Y, Qu WJ, Li C, Symons DTA and Du AD. 2015. Late cretaceous metallogeny in the Zhongdian area:Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China. Ore Geology Reviews, 64:1-12 |
| [63] | 范晓. 2009.四川巴塘县亥隆-措莫隆矽卡岩型锡多金属矿的矿床特征、成矿作用与矿化分带.四川地质学报, 29(S2):112-123 |
| [64] | 侯增谦,曲晓明,周继荣,杨岳清,黄典豪,吕庆田,唐绍华,余今杰,王海平,赵金花. 2001.三江地区义敦岛弧碰撞造山过程:花岗岩记录.地质学报, 75(4):484-497 |
| [65] | 侯增谦,杨岳清,王海平等. 2003.三江义敦岛弧碰撞造山过程与成矿系统.北京:地质出版社, 1-345 |
| [66] | 侯增谦,杨岳清,曲晓明,黄典豪,吕庆田,王海平,余金杰,唐绍华. 2004.三江地区义敦岛弧造山带演化和成矿系统.地质学报, 78(1):109-120 |
| [67] | 胡健民,孟庆任,石玉若,渠洪杰. 2005.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报, 21(3):867-880 |
| [68] | 冷成彪,张兴春,王守旭,王外全,秦朝建,吴孔文,任涛. 2008.滇西北雪鸡坪斑岩铜矿S, Pb同位素组成及对成矿物质来源的示踪.矿物岩石, 28(4):80-88 |
| [69] | 李建康,李文昌,王登红,卢映祥,尹光侯,薛顺荣. 2007.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究.岩石学报, 23(10):2415-2422 |
| [70] | 李龙,郑永飞,周建波. 2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报, 17(1):61-68 |
| [71] | 李文昌,刘学龙,曾普胜,尹光侯. 2011.云南普朗斑岩型铜矿成矿岩体的基本特征.中国地质, 38(2):403-414 |
| [72] | 李文昌,余海军,尹光侯,曹晓民,黄定柱,董涛. 2012.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境.矿床地质, 31(2):282-292 |
| [73] | 林方成,杨家瑞,陈慈德,何显刚,林青,卢映祥,刘宇淳,谢恩顺. 2003.义敦成矿带铜银铅锌锡矿产资源调查评价进展与潜力.四川地质学报, 23(3):141-145 |
| [74] | 林青. 2010.四川巴塘县夏隆银铅锌矿床特征与找矿前景.四川地质学报, 30(4):447-449, 461 |
| [75] | 刘权. 2003.四川夏塞银多金属矿床地质特征及成因.矿床地质, 22(2):121-128 |
| [76] | 刘学龙,李文昌,尹光侯. 2012.云南格咱岛弧岩浆成矿带铅同位素特征及成矿物质来源示踪.现代地质, 26(3):445-452 |
| [77] | 路远发. 2004. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464 |
| [78] | 曲晓明,侯增谦,周书贵. 2001.川西连龙夕卡岩型锡、银多金属矿床成矿地质特征.地球学报, 22(1):29-34 |
| [79] | 曲晓明,侯增谦,周书贵,唐绍华. 2002.川西连龙含锡花岗岩的时代与形成构造环境.地球学报, 23(3):223-228 |
| [80] | 曲晓明,侯增谦,唐绍华. 2003.义敦岛弧带弧后区板内岩浆作用的时代及意义.岩石矿物学杂志, 22(2):131-137 |
| [81] | 王全伟,王康明,阚泽忠等. 2008.川西地区花岗岩及其成矿系列.北京:地质出版社, 1-305 |
| [82] | 王守旭,张兴春,冷成彪,秦朝建. 2007.滇西北中甸普朗斑岩铜矿床地球化学与成矿机理初探.矿床地质, 26(3):277-288 |
| [83] | 王守旭,张兴春,冷成彪,秦朝建,王外全,赵茂春. 2008.中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示.岩石学报, 24(3):480-488 |
| [84] | 王新松,毕献武,冷成彪,唐永永,兰江波,齐有强,沈能平. 2011.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义.矿物学报, 31(3):315-321 |
| [85] | 吴开兴,胡瑞忠,毕献武,彭建堂,唐群力. 2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学, 30(3):73-81 |
| [86] | 徐兴旺,蔡新平,屈文俊,宋保昌,秦克章,张宝林. 2006.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义.地质学报, 80(9):1422-1433 |
| [87] | 杨岳清,侯增谦,黄典豪,曲晓明. 2002.中甸弧碰撞造山作用和岩浆成矿系统.地球学报, 23(1):17-24 |
| [88] | 尹光候,李文昌,蒋成兴,许东,李建康,杨舒然. 2009.中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化.地质与勘探, 45(4):385-394 |
| [89] | 应汉龙,王登红,付小方. 2006.四川巴塘夏塞花岗岩和银多金属矿床年龄及硫、铅同位素组成.矿床地质, 25(2):135-146 |
| [90] | 曾普胜,王海平,莫宣学,喻学惠,李文昌,李体刚,李红,杨朝志. 2004.中甸岛弧带构造格架及斑岩铜矿前景.地球学报, 25(5):535-540 |
| [91] | 张能德,张怀举. 1993.四川西北部几个花岗岩体的时代.地球化学, (3):303-312 |
| [92] | 赵永久,袁超,周美夫,颜丹平,龙晓平,蔡克大. 2007.松潘甘孜造山带早侏罗世的后造山伸展:来自川西牛心沟和四姑娘山岩体的地球化学制约.地球化学, 36(2):139-152 |
| [93] | 郑永飞,陈江峰. 2000.稳定同位素地球化学.北京:科学出版社, 1-336 |
| [94] | 朱炳泉. 1998.地球科学中同位素体系理论与应用.北京:科学出版社, 1-333 |
| [95] | 邹光富,郑荣才,胡世华,陈才金,蒋洪昌,伍洪邦. 2008.四川巴塘县夏塞银多金属矿床特征.成都理工大学学报(自然科学版), 35(1):93-102 |
| [96] | 俎波,薛春纪,亚夏尔,王庆飞,梁华英,赵毅,刘铭涛. 2013.云南香格里拉红山铜矿石硫化物环带及地质意义.岩石学报, 29(4):1203-1213 |
2015, Vol. 31




















