2. 中国科学院大学, 北京 100049;
3. 中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广州 510640;
4. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101;
5. 福建省闽西地质大队, 厦门 361004
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
4. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;
5. The Western Geological Party of Fujian, Xiamen 361004, China
拉萨地块一般指位于北部的班公湖-怒江缝合带(BNSZ)和南侧的印度河-雅鲁藏布江缝合带(IYZS)之间的近东西向的狭长地域,长约2500km,南北宽150~300km,面积达4.5×105km2的巨型构造岩浆带。班公湖-怒江缝合带是拉萨地块与羌塘-保山地块的汇聚缝合线,两侧发育了大量的变质岩和岩浆岩(Ding et al., 2003; Kapp et al., 2003; Zhu et al., 2011; Sui et al., 2013; 常青松等,2011; 黄玉等,2012; 吴浩等,2013)。这些岩石记录了这两个板块在青藏高原形成过程中由新特提斯洋俯冲到陆-陆碰撞、拼合的历史。通过这些岩石的成因研究,将有助于更深入了解青藏高原造山机制和深部动力学过程。
白垩世时期,是现今欧亚大陆汇聚拼合的重要时期,也是青藏高原各微陆块汇聚拼合的关键时期(Zhu et al., 2013; Ding et al., 2014)。通过对拉萨地块班公湖-怒江缝合带南部(冈底斯中北部)的早白垩世岩浆岩的研究,前人多认为它们的形成与新特提斯洋壳北向俯冲有关(Xu et al., 1985; Coulon et al., 1986; Pearce and Mei, 1988; Ding et al., 2003);但是近年更深入广泛的研究表明,它们可能与班公湖-怒江特提斯洋壳南向俯冲所引起的板片断离有关(Zhu et al., 2009b,2011,2013; 莫宣学等,2005; 潘桂棠等,2006; 朱弟成等,2008; 陈越等,2010; 张亮亮等, 2010,2011; 张晓倩等,2010; 黄玉等,2012; 吴浩等,2013)。可见,关于这些早白垩世岩浆岩成因的更清晰的动力学过程仍有待更多研究的解析。本文通过研究拉萨地块中北部那曲地区的早白垩世火山岩的锆石U-Pb年龄、Hf同位素和其地球化学特征,来讨论那曲地区火山岩的岩浆源区、岩石成因及构造背景意义,以期为拉萨地块班公湖-怒江缝合带南部岩浆岩的成因模型提供制约,继而为更深入了解青藏高原造山机制和深部动力学过程提供新的资料。
2 区域地质背景与样品描述那曲地区位于青藏高原腹地,西藏自治区北部(图 1),地处两个板片结合地带,南为冈底斯-念青唐古拉板片北缘(桑雄-麦地卡陆缘岩浆弧带,为冈底斯-念青唐古拉板片的一部分),北为班公湖-怒江结合带中段,班-怒结合带明显收敛变窄的部位。测区地层属冈底斯-腾冲地层区班戈-八宿地层分区之桑雄-麦地卡地层小区,出露地层主要为中生代地层,详见表 1。本文采集的中酸性火山岩样品来自于多尼组上段,位于那曲南东方向约95km处,属于哈尔麦火山岩范畴。哈尔麦火山岩发育于哈尔麦乡附近,被认为夹于拉贡塘组砂板岩中,此套火山岩岩石类型以安山岩、安山质火山角砾岩和流纹质火山角砾凝灰岩为主(李奋其等,2010)。从野外观察来看,本次采集火山岩样品风化较严重、露头出露一般,产状不清,与拉贡塘组之间应为不整合接触关系(彭智敏等,2011)。
![]() | 图 1 拉萨地块在青藏高原中的地理位置(a,据Zhu et al., 2011)和那曲地质简图(b、c) Qhal、Qhpl、Qhf、Qpl-全新世沉积物;E2γδ-始新世细粒角闪黑云花岗闪长岩;K1d1、K1d2-多尼组上段、下段;K2ξγab-中粒黑云母花岗岩;K2δο-中粒角闪黑云石英闪长岩;K2ηγ-中细粒黑云二长花岗岩;J2-3l2-拉贡塘组上段; J2-3l1-拉贡塘组下段;J2s-桑卡拉佣组; J2m2-马里组上段; Oph(T)-橄榄岩、辉长岩;JSSZ-金沙江缝合带;BNSZ-班公湖-怒江缝合带;YZSZ-雅鲁藏布缝合带. 黑色圆点标注为采样位置 Fig. 1 Location of Lhasa Terrane and simplified geological map of the studied area(after Zhu et al., 2011) |
| 表 1 那曲研究区岩石地层简表 Table 1 The stratigraphic profile of the Nagqu study area |
安山岩 岩石呈浅灰-浅灰绿色,残余斑状结构,块状构造。斑晶主要为斜长石,更长石占25%,粒径0.5~2.5mm;基质主要为斜长石,其中微粒更长石占50%。也见绢云母呈鳞片状不均匀分布其中,可见少量石英。副矿物为磷灰石、褐铁矿等。
流纹质火山角砾凝灰岩 岩石呈灰绿色,岩屑晶屑火山角砾凝灰结构,块状构造。火山角砾占20%,主要由酸性火山岩,晶屑凝灰岩等组成,粒径0.5~1.5cm,多呈熔蚀状;晶屑成份有钠更长石、石英、正长石及少量金属矿物等,呈次棱角状,熔蚀状;岩屑成分有酸性霏细状长英质,呈棱角状或长椭圆状。岩石中的胶结物多为次生的绿泥石。
3 分析方法挑选较新鲜无污染样品碎至200目,主微量元素分析在福建省地质矿产局三明实验室完成。主量元素采用原子吸收分光光度法在GGX-9仪器上分析,微量元素在热电ICP 6300型电感耦合等离子体发射光谱仪上测定,精度均优于5%。
锆石分选是在河北省区域地质调查研究院完成。锆石制靶在中国科学院广州地球化学研究所完成,首先在双目镜下挑选出晶形完整、无包裹体和裂隙的锆石,和标样TEMORA粘于双面胶上,然后用环氧树脂固化制靶,锆石靶打磨、抛光至将近一半进行锆石阴极发光(CL)显微照相。锆石U-Pb定年在中科院广州地球化学研究所利用LA-ICP-MS测定。仪器采用美国Resonetics公司的RESOlution M-5激光剥蚀系统和Agilent 7500a型的ICP-MS。仪器工作参数:激光剥蚀斑束为33μm,频率为8Hz,剥蚀时间为40s,背景积分时间25s(涂湘林等,2011; Li et al., 2012)。锆石年龄计算采用国际标准锆石TEMORA作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610作为外标,29Si作为内标元素进行校正。样品的同位素比值和元素含量数据处理 采用软件ICPMSDataCal8.3(Liu et al., 2008)。锆石谐和年龄绘图采用软件Isoplot(Ludwig,2003)。
锆石Hf同位素分析是基于U-Pb定年同点或同等效位置在中科院广州地球化学研究所同位素地球化学国家重点实验室LA-MC-ICPMS上完成。实验运行条件斑束为45μm,频率8Hz,推荐176Hf/177Hf =0.282906±0.0000010(2σ)的蓬莱锆石作为标样(Li et al., 2010)。具体分析流程见Wu et al.(2006)。
4 分析结果 4.1 锆石U-Pb年龄西藏冈底斯那曲地区火山岩2件样品的锆石分析结果见表 2。
| 表 2 那曲中酸性火山岩的锆石LA-ICP-MS U-Pb定年结果 Table 2 Zircon LA-ICP-MS U-Pb data for Nagqu intermediate-felsic volcanic rocks |
流纹质英安岩PM201-2样品锆石多为长、短柱状,半自形-自形晶形,多数锆石具有明显的岩浆振荡环带,部分锆石显示核边结构(图 2)。锆石Th/U比值为0.38~0.92(>0.1),均值为0.49,显示典型的岩浆锆石特征(Hoskin and Black, 2000)。除去继承核年龄点和由于包体或打穿引起的谐和度不好的数据点外,其余年龄点均落在一致曲线上或附近(图 3),显示较弱的Pb丢失,它们的加权平均年龄为109.2±3.5Ma(MSWD=3.5),代表英安岩浆活动的时代。而位于核部的年龄点PM201-2-16,其Th/U比值与岩浆锆石相似,207Pb/206Pb年龄为1439Ma,该继承年龄的出现说明它有可能来源于源区古老残留物或者是英安岩浆上侵过程中捕获了元古代的物质。
![]() | 图 2 那曲中酸性火山岩的锆石CL图像、U-Pb定年点(红色实线圆圈)与Hf同位素测试点(黑色实线圆圈)
Fig. 2 Cathodoluminescence(CL)images of zircon from Nagqu intermediate-felsic volcanic rocks
Red circles indicate locations of U-Pb dating,while black circles indicate Hf analyses positions |
![]() | 图 3 那曲中酸性火山岩的锆石U-Pb年龄谐和图 Fig. 3 The zircon U-Pb concordia diagrams for Nagqu intermediate-felsic volcanic rocks |
安山岩样品PM205-1中的锆石较之PM201-2普遍较大,短柱状,自形-半自形晶为主,具明显的岩浆振荡环带(图 2)。锆石Th/U比值介于0.56~1.78之间,均值为0.95,属岩浆成因锆石。排除由于包体或铅丢失引起的谐和度不好的数据点外,其206Pb/238U加权平均年龄为111.9±1.2Ma(MSWD=1.4),代表了安山岩的成岩时代。
4.2 全岩地球化学
12件那曲多尼组火山岩样品主微量元素分析结果见表 3,PM201-1~PM201-5及PM205-1样品均发生了不同程度的热液蚀变,烧失量较大(2.60%~8.86%),故如Ba、K、Na、Rb、Sr、U等活动性元素不宜用来进行相关解释和判别。在蚀变过程中,一般认为高场强元素(Nb、Ta、Zr、Hf等)、相容化微量元素蛛网图(图 6b)中,样品相对富集不相容元素Th、Hf、Zr、Rb等元素,而亏损P、Ba、Sr、Nb、Ta、Ti等元素,与上地壳有着相似的变化趋势。P、Nb、Ta、Ti的亏损常认为与俯冲作用有关的火成岩的特征(Condie,2001)。
| 表 3 那曲中酸性火山岩的全岩主量(wt%)与微量元素(×10-6)组成 Table 3 Whole rock major element(wt%) and trace elements(×10-6)data for Nagqu intermediate-felsic volcanic rocks |
![]() | 图 6 那曲中酸性火山岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)
数据来源:灰色阴影(黄玉等,2012);上地壳(Rudnick and Gao, 2003) Fig. 6 Chondrite-normalized REE patterns(a) and primitive-mantle-normalized trace element patterns(b)for Nagqu intermediate-felsic volcanic rocks(normalization values after Sun and McDonough, 1989) Data sources: The shades of gray(after Huang et al., 2012); Upper continental crust(after Rudnick and Gao, 2003) |
岩浆锆石常有Ce的正异常,并且Ce的异常程度取决于岩浆的氧逸度。Ce有+3价和+4价,并且锆石中的Zr4+的半径(离子半径0.97)与Ce4+离的半径(离子半径0.84)较相近,因此可以通过Ce4+/Ce3+比值来反映岩浆氧逸度的变化(Zhang et al., 2013)。本文根据Ballard et al.(2002)提出的Ce氧逸度公式得出那曲火山岩样品PM201-2和PM205-1的Ce(Ⅳ)/Ce(Ⅲ)具有类似的特征,即在相似的年龄范围内Ce比值普遍小于300,并且大多均小于100(表 4),与西藏东缘玉龙非成矿岩体相似(<120),指示岩体具有较低的氧逸度(梁华英等,2006)。我们用锆石Ti温度计计算得出(Watson et al., 2006; Ferry and Watson.,2007)那曲中酸性火山岩样品PM201-2约~720℃,PM205-1约~710℃,其中PM205-1-22由于具有异常高的Ti含量,其对应的温度为1930℃(表 4)。总体上指示那曲地区早白垩世火山岩的岩浆具有低的温度。
| 表 4 那曲中酸性火山岩锆石Ti温度和Ce(Ⅳ)/Ce(Ⅲ)比值 Table 4 Ti-in-zircon thermometers and Ce(Ⅳ)/Ce(Ⅲ)rations of Nagqu intermediate-felsic volcanic rocks |
那曲中酸性火山岩样品(PM201-2、PM205-1)锆石Hf同位素分析结果见表 5。样品中锆石的176Yb/177Hf和176Lu/177Hf比值范围分别为:0.026231~0.139581和0.000682~0.003431。176Lu/177Hf比值大多小于0.002,表明这些锆石在形成后基本上没有明显的放射性成因Hf的积累,故所测定的176Hf/177Hf比值可代表其形成时的Hf同位素组成(吴福元等,2007)。样品锆石176Hf/177Hf比值为0.281861~0.282730,εHf(t)值基本为负值(-13.6~0.5),其中PM201-2锆石样品中核部两点(PM201-2-03和PM201-2-09)更为偏负(-30.4和-16.6)(图 7),所对应的Hf同位素模式年龄也较老(2481Ma和1785Ma)。样品Hf模式年龄大多集中于918~1336Ma,平均为1128Ma。与前面所得的锆石继承核年龄1439Ma较为接近,我们推测锆石继承核可能来源于古老源区残留物,而后期经历了~110Ma变质岩浆事件。
| 表 5 那曲中酸性火山岩的锆石Hf同位素组成 Table 5 Zircon Hf isotope data for Nagqu intermediate-felsic volcanic rocks |
![]() | 图 7 那曲中酸性火山岩εHf(t)-Age图解 Fig. 7 εHf(t)-Age diagram of Nagqu intermediate-felsic volcanic rocks |
本次研究区多尼组火山岩主要以中酸性火山岩为主,玄武岩几乎露头不可见。一般认为中酸性火山岩的成因有二种可能:(1)来自于玄武质岩浆中广泛的分离结晶作用及同化混染作用演化而产生,故与玄武岩具有相似的幔源地球化学特征(Bacon and Druitt, 1988; Bonin,2004);(2)与玄武岩不同同位素特征的幔源基性岩浆引起的地壳物质部分熔融形成(Tepper et al., 1993; Guffanti et al., 1996)。因为玄武质岩浆只有经过强烈的结晶分离作用(>90%)才能产生酸性熔体(Wilson,1993),所以一般情况下第一种过程产生的大多是小规模的中酸性熔体(Shinjo and Kato, 2000)。鉴于目前在研究区及附近几乎不可见玄武质火山岩及缺乏相应的研究,作者认为第二种过程更能产生以中酸性火山岩为主的多尼组火山岩系列。康志强等(2009)研究的拉萨北部的白垩纪多尼组火山岩也证明了这一观点。
那曲中酸性火山岩富集Th、Zr、Hf,亏损Nb、Ta、Ti、P等高场强元素,具有类似于岛弧火山岩的特征(图 6b)。样品的La/Nb比值高于陆壳均值(2.5),而Nb/U比值普遍低于陆壳均值(6.2)(Rudnick and Gao, 2003),简单的陆壳混染难以解释。MgO与Nb/La、Hf/Sm之间无相关关系(图 8),说明高场强元素的异常是岩浆的原始特征(李海勇等,2008)。同时样品具有较低的MgO和Mg#<40,也暗示了其形成可能与下地壳镁铁质岩石部分熔融有关(Rapp et al., 1999)。从Yb/Ta-Y/Nb图(图 9)中可以看出安山质火山岩和幔源组分高的流纹质火山岩都在下地壳和亏损地幔混合线上,只是大部分流纹质样品偏离,而偏离的原因是Y/Nb比值降低。由于在中酸性岩浆中Y更易进入角闪石、黑云母、磷灰石、锆石中,而随着这些矿物的分离结晶,残余熔体Y/Nb比值变小。可见,简单的陆壳与亏损地幔混合不能完美解释所有样品,样品的分离结晶作用或许是一种可行的解释,同时我们发现地壳的参与(>80%)在那曲早白垩世火山岩形成过程中起着更重要的作用(图 9)。
![]() | 图 8 那曲中酸性火山岩MgO与Nb/La(a)和Hf/Sm(b)的关系图解 Fig. 8 Nb/La-MgO(a) and Hf/Sm-MgO(b)diagrams of Nagqu intermediate-felsic volcanic rocks |
![]() | 图 9 那曲中酸性火山岩Yb/Ta-Y/Nb图解
数据来源:BCC-平均大陆地壳(Rudnick and Gao, 2003);LCC-大陆下地壳(Rudnick and Gao, 2003);DMM-亏损地幔(Salters and Stracke, 2004) Fig. 9 Yb/Ta-Y/Nb discrimination diagram of Nagqu intermediate-felsic volcanic rocks Data source: BCC-Bulk Continental Crust(Rudnick and Gao, 2003); LCC-Lower Continental Crust(Rudnick and Gao, 2003); DMM-Depleted MORB Mantle(Salters and Stracke, 2004) |
样品SiO2与Al2O3、P2O5、TiO2等呈现负相关关系,暗示了在形成中酸性火山岩过程中经历了结晶分异作用。研究区内流纹英安岩和流纹岩样品具有较高的FeOT/MgO值和分异指数,是明显经历了强结晶分异作用形成。高分异流纹质火山岩微量元素蛛网图曲线与安山岩曲线变化趋势相近,与安山岩相比,高分异流纹质火山岩的Eu、Sr、Ba、P、Ti更加亏损,在酸性岩浆体系中,由于Sr、Eu及Ba在斜长石和钾长石中为强相容元素,那么它们的亏损表明发生了斜长石和钾长石的分离结晶作用。而Ti、P的亏损很可能与含Ti矿物(如钛铁矿和金红石)及磷灰石的分离有关。本文和前人数据(黄玉等,2012)的微量元素及稀土元素配分曲线与上地壳具有近一致的曲线特征,但是区内少有玄武岩出露,难以用基性岩浆的结晶分异作用来解释大面积的中酸性岩浆活动,笔者认为可能与地壳物质部分熔融有关。由于研究区内安山岩和流纹质火山岩在地球化学方面有着高度的相似性,同时在图 10中我们可以看出安山质火山岩和流纹质火山岩经历了角闪石和长石的不同程度的分离结晶作用(Ding et al., 2014)。因此笔者初步认为,二者是同源岩浆受不同程度结晶分异作用的产物。
![]() | 图 10 那曲中酸性火山岩Rb/Sr-Sr图解(据Ding et al., 2014) Fig. 10 Rb/Sr-Sr diagram of Nagqu intermediate-felsic volcanic rocks(after Ding et al., 2014) |
研究区样品具有与西藏东缘玉龙非成矿岩体相似(<120)的Ce比值,指示岩体具有较低的氧逸度(梁华英等,2006),同时在该区附近也未见矿体出露。安山岩样品锆石εHf(t)值为-5.5~0.5,对应的Hf模式年龄为918~1226Ma。流纹岩锆石εHf(t)大多为为-2.8~-13.6,对应的Hf模式年龄集中在1084~1636Ma之间,其中锆石核部区PM201-2-03(107.6Ma)和PM201-2-09(105.6Ma)显示更负的εHf(t)分别为-30.4和-16.6,相应的Hf模式年龄为2481Ma和1785Ma。样品不均一的Hf同位素成分,需要一个开放体系来引起熔体中176Hf/177Hf比值的变化,不均一的εHf(t)可能来源于亏损地幔与地壳的混合(Kemp et al., 2007)。并且这些火山岩的亏损地幔组分最多不超过20%(图 9),可能是微陆块的古老岩石圈地幔。样品较低的成岩温度(~715℃)与幔源物质贡献量不超过20%相符,不同于藏东缘察隅较高的成岩温度(789~812℃)(Zhu et al., 2009a)。
那么古老岩石圈地幔是中拉萨地块下伏的古老岩石圈地幔还是北边具寒武纪结晶基底的安多微陆块?前人研究表明,110Ma时具寒武纪结晶基底的安多微陆块与北拉萨地块北缘已拼接在一起(Zhu et al., 2011),考虑到晚白垩至古新世期间拉萨地壳的缩短,约110Ma时那曲地区与具有寒武纪结晶基底的中拉萨地块距离应该大于100km,并且在桑巴地区酸性侵入岩锆石εHf(t)=-6.0~5.7,说明了那曲与中拉萨之间的地块至少有新生地壳的生成。因此古老岩石圈可能是具寒武纪结晶基底的安多微陆块(Kapp et al., 2003; Zhu et al., 2011)。
综合以上证据,我们初步认为研究区那曲早白垩世火山岩很可能来源于:(1)班公-怒江洋南向俯冲过程中受流体改造的安多微陆块古老岩石圈地幔(贡献小部分)与(2)羌塘和北拉萨地块陆-陆碰撞地壳加厚过程中下地壳部分熔融(贡献大部分)及后期经历不同程度的分离结晶作用形成的。
5.2 构造环境拉萨地块北部早白垩世火山岩从西到东依次为班-怒带内及南缘断续出露的去申拉组,乌木垄铅波岩组,多尼组及卧荣沟组火山岩。前人在详细的地球化学及年代学基础上,提出拉萨地块中北部在113Ma左右发生的大规模的岩浆活动,可能是班公湖-怒江洋岩石圈南向俯冲过程中板片断离导致的(Zhu et al., 2011; Sui et al., 2013; Chen et al., 2014)。由于Yb为不活泼元素,与不相容元素行为类似,那么在部分熔融和分离结晶过程中,Th/Yb、Nb/Yb比值将保持不变(Pearce,1983; Rollinson,1993),在该图解中(图 11)样品均落在大陆边缘弧火山岩范围内,暗示那曲早白垩世中酸性火山岩成因可能与班公湖-怒江洋的南向俯冲有关。并且样品富集Th、U和轻稀土元素,亏损Nb、Ta、Ti和P等高场强元素,暗示源区曾受到与俯冲相关流体或熔体的改造。中生代拉萨地块处于班公-怒江南向俯冲和雅鲁藏布新特提斯北向双向俯冲下,导致了拉萨地块的缩短、陆壳加厚并产生了大量的弧火山岩、弧盆体系(潘桂棠等,2006)。康志强等(2009)将多尼组中基性火山岩与新西兰Egmont火山岩、阿根廷西北部火山岩及则弄群火山岩进行对比发现(表 6),它们具有相似的微量元素分布特征(Zr、Hf、Y、Yb等),并且本次研究的安山岩样品具有同样相似的特征。由于La/Yb可以指示地壳厚度并反应岩浆来源的深度(Kay et al., 1991),他们发现多尼组火山岩有着与则弄群类似的岩浆形成深度,暗示了当时北拉萨地块已经加厚。班公怒江洋南向俯冲开始于中二叠纪(~263Ma),终止于晚白垩纪(~113Ma),之后转入羌塘地块与拉萨地块陆-陆碰撞环境(Zhu et al., 2011)。而本文早白垩世中酸性火山岩加厚地壳的构造背景很可能是班公湖-怒江洋俯冲结束进入陆-陆碰撞过程中引起的。
![]() | 图 11 那曲中酸性火山岩Th/Yb-Nb/Yb图解 Fig. 11 Th/Yb-Nb/Yb discrimination diagram for Nagqu intermediate-felsic volcanic rocks |
| 表 6 多尼组中基性火山岩与其他地区中基性火山岩在微量元素(×10-6)的对比 Table 6 Comparison between trace elements(×10-6)of basic volcanic rocks from Duoni Formation and from other areas |
北拉萨地块那曲地区哈尔麦乡中酸性火山岩浆活动侵位于110Ma左右,是北部拉萨地块~113Ma岩浆大爆发事件的产物之一;
那曲早白垩世中酸性火山岩富集Th、Zr、Hf,亏损Nb,Ta,Ti,P等高场强元素,显示为负的εHf(t)值,暗示其形成来源于班公-怒江南向俯冲过程中受流体改造的安多微陆块古老岩石圈地幔(贡献小部分)与羌塘和北拉萨地块陆陆碰撞地壳加厚过程中下地壳部分熔融(贡献大部分),并经历了不同程度的分离结晶作用形成的。
致谢 主微量元素测试得到福建省地质矿产局三明实验室工作人员的帮助;LA-ICP-MS锆石U-Pb定年得到广州地化所李聪颖博士的帮助;锆石Hf同位素测试过程中得到过广州地球化学研究所张乐的帮助;另外在本文修改过程中得到胡永斌、张潺蝉、祝红丽、吴凯、刘芳等的帮助;在此表示诚挚的感谢。| [1] | Bacon CR and Druitt TH. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256 |
| [2] | Ballard JR, Palin JM and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364 |
| [3] | Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1-24 |
| [4] | Bouvier A, Vervoort JD and Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48-57 |
| [5] | Chang QS, Zhu ZD, Zhao ZD, Dong GC, Mo XX, Liu YS and Hu ZC. 2011. Zircon U-Pb geochonology and Hf isotopes of the Early Cretaceous Rena-Co rhyolites from southern margin of Qiangtang, Tibet, and their implications. Acta Petrologica Sinica, 27(7): 2034-2044 (in Chinese with English abstract) |
| [6] | Chen Y, Zhu DC, Zhao ZD, Zhang LL, Liu M, Yu F, Guan Q and Mo XX. 2010. Geochronology, geochemistry and petrogenesis of the Bamco andesites from the northern Gangdese, Tibet. Acta Petrologica Sinica, 26(7): 2193-2206 (in Chinese with English abstract) |
| [7] | Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca.113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463 |
| [8] | Condie KC. 2001. Mantle Plume and Their Record in Earth History. London: Cambridge University Press |
| [9] | Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302 |
| [10] | Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865 |
| [11] | Ding X, Sun WD, Chen WF, Chen PR, Sun T, Sun SJ, Lin CT and Chen FK. 2014. Multiple Mesozoic magma processes formed the 240-185Ma composite Weishan pluton, South China: Evidence from geochronology, geochemistry, and Sr-Nd isotopes. International Geology Review, doi: 10.1080/00206814.2014.905997 |
| [12] | Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437 |
| [13] | Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochim Acta, 64(1): 133-147 |
| [14] | Guffanti M, Clynne MA and Muffler L. 1996. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust. Journal of Geophysical Research: Solid Earth (1978-2012), 101(B2): 3003-3013 |
| [15] | Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357 |
| [16] | Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439 |
| [17] | Huang Y, Zhu DC, Zhao ZD, Zhang LL, DePaolo D, Hu ZC, Yuan HL and Mo XX. 2012. Petrogenesis and implication of the andesites at -113Ma in the Nagqu region in the northern Lhasa subterrane. Acta Petrologica Sinica, 28(5): 1603-1614 (in Chinese with English abstract) |
| [18] | Kang ZQ, Xu JF, Dong YH and Wang BD. 2008. Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa block: Products of southward subduction of the Slainajap ocean? Acta Petrologica Sinica, 24(2): 303-314 (in Chinese with English abstract) |
| [19] | Kang ZQ, Xu JF, Wang BD, Dong YH, Wang SQ and Chen JL. 2009. Geochemistry of Cretaceous volcanic rocks of Duoni Formation in Northern Lhasa block: Discussion of tectonic setting. Earth Science, 34(1): 89-104 (in Chinese with English abstract) |
| [20] | Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JH. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4), doi: 10.1029/2001TC001332 |
| [21] | Kay SM, Mpodozis C, Ramos VA and Munizaga F. 1991. Magma source variations for Mid-Late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33°S). Geological Society of America Special Papers, 265: 113-138 |
| [22] | Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983 |
| [23] | Liang HY, Sun WD, Yu HX, Xie YW, Mo JH and Zhang YQ. 2006. The age of ore-bearing porphyries in the Yulong copper belt and the formation process of porphyry Cu (Au) deposits. Mineral Deposits, 25(Suppl.): 415-418 (in Chinese with English abstract) |
| [24] | Li FQ, Liu W and Geng QR. 2010. Zircon LA-ICP-MS U-Pb ages of the Mesozoic volcanic rocks in Nagqu area of Gangdise in Tibet and their geological significance. Acta Geoscientica Sinica, 31(6): 781-790 (in Chinese with English abstract) |
| [25] | Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012. A-type granite belts of two chemical subgroups in central eastern China: Indication of ridge subduction. Lithos, 150: 26-36 |
| [26] | Li HY, Xu ZW, Lu XC, Chen LH, Liu SM, Yang XN, Zhang J, Li HC and Chen W. 2008. Evolution of Mesozoic volcanic rocks in the Zouping basin, western Shandong Province: Constraints for mantle sources. Acta Petrologica Sinica, 24(11): 2537-2547 (in Chinese with English abstract) |
| [27] | Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134 |
| [28] | Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 |
| [29] | Ludwig KR. 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication, 4: 1-70 |
| [30] | Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Grangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract) |
| [31] | Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract) |
| [32] | Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Morry MJ (eds.). Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 230-249 |
| [33] | Pearce JA and Mei HJ. 1988. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594): 169-201 |
| [34] | Peng ZM, Geng QR, Zhang Z and Cong F. 2011. Zircon LA-ICP-MS U-Pb ages and geochemical characteristics of rhyolite in Nagqu area, Tibet. Geological Bulletin of China, 30(7): 1050-1059 (in Chinese with English abstract) |
| [35] | Price RC, Stewart RB, Woodhead JD and Smith IEM. 1999. Petrogenesis of high-K arc magmas: Evidence from Egmont volcano, North Island, New Zealand. Journal of Petrology, 40(1): 167-197 |
| [36] | Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356 |
| [37] | Richards JP and Villeneuve M. 2002. Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. Journal of Volcanology and Geothermal Research, 116(3-4): 161-200 |
| [38] | Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, interpretation. New York: Longan Scientific and Technical, 1-352 |
| [39] | Rudnick R and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64 |
| [40] | Salters V and Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5), doi: 10.1029/2003GC000597 |
| [41] | Shinjo R and Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3-4): 117-137 |
| [42] | Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planet Science Letters, 219(3-4): 311-324 |
| [43] | Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL and Mo XX. 2013. Compositional diversity of ca.110Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168-169: 144-159 |
| [44] | Sun SS and McDonough W. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 |
| [45] | Tepper JH, Nelson BK, Bergantz GW and Irving AJ. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, 113(3): 333-351 |
| [46] | Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y and Sun WD. 2011. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica, 40(1): 83-98 (in Chinese with English abstract) |
| [47] | Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433 |
| [48] | Wilson M. 1993. Magmatism and the geodynamics of basin formation. Sediment Geology, 86(1-2): 5-29 |
| [49] | Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343 |
| [50] | Wu H, Li C, Hu PY, Fan JJ, Zhang HY and Li J. 2013. The discovery of Qushenla volcanic rocks in Tasepule area of Nyima County, Tibet, and its geological significance. Geological Bulletin of China, 32(7): 1014-1026 (in Chinese with English abstract) |
| [51] | Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 |
| [52] | Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract) |
| [53] | Xu RH, Schärer U and Allègre CJ. 1985. Magmatism and metamorphism in the Lhasa Block (Tibet): A geochronological study. Journal of Petrology, 93(1): 41-57 |
| [54] | Zhang H, Ling MX, Liu YL, Tu XL, Wang FY, Li CY, Liang HY, Yang XY, Arndt NT and Sun WD. 2013. High oxygen fugacity and slab melting linked to Cu mineralization: Evidence from Dexing porphyry copper deposits, southeastern China. Journal of Geology, 121(3): 289-305 |
| [55] | Zhang LL, Zhu DC, Zhao ZD, Dong GC, Mo XX, Guan Q, Liu M and Liu MH. 2010. Petrogenesis of magmatism in the Baerda region of northern Gangdese, Tibet: Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 26(6): 1871-1888 (in Chinese with English abstract) |
| [56] | Zhang LL, Zhu DC, Zhao ZD, Liao ZL, Wang LQ and Mo XX. 2011. Early Cretaceous granitoids in Xainza, Tibet: Evidence of slab break-off. Acta Petrologica Sinica, 27(7): 1938-1948 (in Chinese with English abstract) |
| [57] | Zhang XQ, Zhu DC, Zhao ZD, Wang LQ, Huang JC and Mo XX. 2010. Petrogenesis of the Nixiong pluton in Coqen, Tibet and its potential significance for the Nixiong Fe-rich mineralization. Acta Petrologica Sinica, 26(6): 1793-1804 (in Chinese with English abstract) |
| [58] | Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdese belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9):1535-1550 (in Chinese with English abstract) |
| [59] | Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009a. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239 |
| [60] | Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009b. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences, 34(3): 298-309 |
| [61] | Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Science Letters, 301(1-2): 241-255 |
| [62] | Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 |
| [63] | Zorpi MJ, Coulon C and Orsini JB. 1991. Hybridization between felsic and mafic magmas in calc-alkaline granitoids: A case study in northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86 |
| [64] | 常青松, 朱弟成, 赵志丹, 董国臣, 莫宣学, 刘勇胜, 胡兆初. 2011. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义. 岩石学报, 7(7): 2034-2044 |
| [65] | 陈越, 朱弟成, 赵志丹, 张亮亮, 刘敏, 于枫, 管琪, 莫宣学. 2010. 西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因. 岩石学报, 26(7): 2193-2206 |
| [66] | 黄玉, 朱弟成, 赵志丹, 张亮亮, DePaolo D, 胡兆初, 袁洪林, 莫宣学. 2012. 西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义. 岩石学报, 28(5): 1603-1614 |
| [67] | 康志强, 许继峰, 董彦辉, 王保弟. 2008. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap 洋南向俯冲的产物? 岩石学报, 24(2): 303-314 |
| [68] | 康志强, 许继峰, 王保弟, 董彦辉, 王树庆, 陈建林. 2009. 拉萨地块北部白垩纪多尼组火山岩的地球化学: 形成的构造环境. 地球科学, 34(1): 89-104 |
| [69] | 梁华英, 孙卫东, 喻亨祥, 谢应雯, 莫济海, 张玉泉. 2006. 西藏东缘玉龙斑岩铜矿带含矿岩体时代及斑岩铜金矿床形成研究. 矿床地质, 25(增刊): 415-418 |
| [70] | 李奋其, 刘伟, 耿全如. 2010. 西藏冈底斯带那曲地区中生代火山岩的LA-ICP-MS锆石U-Pb年龄和地质意义. 地球学报, 31(6): 781-790 |
| [71] | 李海勇, 徐兆文, 陆现彩, 陈立辉, 刘苏明, 杨小男, 张军, 李红超, 陈伟. 2008. 鲁西邹平盆地中生代火山岩的演化: 对地幔源区的约束. 岩石学报, 24(11): 2537-2547 |
| [72] | 莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290 |
| [73] | 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533 |
| [74] | 彭智敏, 耿全如, 张璋, 丛峰. 2011. 西藏那曲地区流纹岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 30(7): 1050-1059 |
| [75] | 涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83-98 |
| [76] | 吴浩, 李才, 胡培远, 范建军, 张红雨, 李娇. 2013. 西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义. 地质通报, 32(7): 1014-1026 |
| [77] | 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238 |
| [78] | 张亮亮, 朱弟成, 赵志丹, 董国臣, 莫宣学, 管琪, 刘敏, 刘美华. 2010. 西藏北冈底斯巴尔达地区岩浆作用的成因: 地球化学、年代学及Sr-Nd-Hf同位素约束. 岩石学报, 26(6): 1871-1888 |
| [79] | 张亮亮, 朱弟成, 赵志丹, 廖忠礼, 王立全, 莫宣学. 2011. 西藏申扎早白垩世花岗岩类:板片断离的证据. 岩石学报, 27(7): 1938-1948 |
| [80] | 张晓倩, 朱弟成, 赵志丹, 王立全, 黄建村, 莫宣学. 2010. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义. 岩石学报, 26(6): 1793-1804 |
| [81] | 朱弟成, 潘桂棠, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550 |
2015, Vol. 31









