岩石学报  2015, Vol. 31 Issue (6): 1797-1805   PDF    
攀西地区二叠纪赋存铌钽矿的正长岩脉的成因探讨
王汾连1,2, 赵太平3, 王焰3     
1. 国土资源部海底矿产资源重点实验室, 广州海洋地质调查局, 广州 510075;
2. 中山大学海洋学院, 广州 510006;
3. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州 510640
摘要:攀西地区广泛发育正长岩脉,其中有些岩脉富含铌钽等稀有金属元素。这些岩脉多侵入于二叠纪辉长岩体中,并与该区玄武岩及长英质岩体共生。锆石U-Pb年代学表明这些正长岩脉与长英质岩体及辉长岩体形成时代相一致(258~256Ma),但是否有成因联系并不清楚。本文对攀西地区炉库和白草两个Nb-Ta矿区中的富矿正长岩脉、贫矿正长岩脉及相关正长岩体在进行了详细的岩石学、矿物学及主微量地球化学的基础上,又开展了全岩Sr-Nd同位素研究。研究表明,岩石的εNd(t)非常均一(富矿正长岩脉εNd(t)=-0.2~+0.2,贫矿正长岩脉εNd(t)=-0.3~+0.7,正长岩体εNd(t)=-0.3~+0.4);两矿区岩石初始86Sr/87Sr值同位素则表现出宽泛的范围,正长岩体和贫矿正长岩脉的(86Sr/87Sr)i分别变化于0.7032~0.7090和0.7044~0.7064,富矿正长岩脉的(86Sr/87Sr)i变化于0.7049~0.7091,较大的初始86Sr/87Sr比值可能由于岩石遭受一定程度的蚀变所致。本文两矿区的富矿正长岩脉及贫矿正长岩脉和正长岩体的Sr-Nd同位素特征,与攀西地区红格镁铁质/超镁铁质层状侵入体的一致(εNd(t)=-2.7~+1.0,(86Sr/87Sr)i=0.7058~0.7064),表明其与峨眉山玄武岩及镁铁质侵入体来自于相同的地幔源区。结合作者及其他研究者对本区正长岩脉和相关正长岩体的主微量地球化学研究,我们认为本区炉库和白草矿区的富矿正长岩脉及相关正长岩体可能是峨眉山地幔柱岩浆活动造成的底侵在下地壳底部的辉长质岩石低程度(5%~10%)部分熔融形成的产物,且较少受到地壳物质混染。
关键词Sr-Nd同位素     正长岩脉     攀西地区     峨眉大火成岩省    
Petrogenisis of Permian Nb-Ta mineralized syenitic dikes in the Panxi district, SW China
WANG FenLian1,2, ZHAO TaiPing3, WANG Yan3    
1. MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China;
2. School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China;
3. Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: Syenitic dikes are widespread in the Panxi district and some of them host Nb and Ta deposits. The mineralized dikes intruded into gabbro intrusions and are spatially and temporally associated with basalts and felsic plutons (granite and syenite plutons) in the Panxi district, which are part of the ~260Ma Emeishan large igneous province. These dikes are recently dated to be 258~256Ma by LA-ICP-MS zircon U-Pb dating technique, contemporaneous with the gabbro and felsic plutons. The Sr-Nd isotopes of the mineralized syenitic dikes, barren syenitic dikes and syenitic plutons of Luku and Baicao Nb-Ta deposits in the Panxi district show similar and uniform initial εNd(t) values (-0.2 to +0.2 for mineralized syenitic dikes, -0.3 to +0.7 for barren syenitic dikes and -0.3 to +0.4 for syenitic plutons) but they have highly variable (87Sr/86Sr)i ratios (0.7049 to 0.7091 for the mineralized syenitic dikes and 0.7044~0.7064 for barren syenitic dikes and 0.7032 to 0.7090 for barren syenitic plutons), comparable to the contemporaneous Hongge mafic/ultramafic layered intrusion (εNd(t)=-2.7 to +1.0 and (86Sr/87Sr)i=0.7058 to 0.7064) in the same region, suggesting that these lithologies may have evolved from a common basaltic magmas. According to the whole rock geochemistry and Sr-Nd isotopic characters, We consider that the syenitic plutons and dikes may be the products of low degree (5%~10%) partial remelting of underplated gabbro cumulates.
Key words: Sr-Nd isotope     Syenitic dikes     Panxi district     Emeishan large igneous province    

~260Ma地幔柱活动形成的峨眉山大火成岩省(Chung and Jahn,1995; Xu et al., 2001; Zhou et al., 2002)主要由大陆溢流玄武岩及共生的镁铁-超镁铁质岩体、花岗岩和正长岩组成。此外,该区沿着安宁河断裂带发育大量的正长岩脉,其中一部分岩脉富含铌钽等稀有金属元素。锆石LA-ICP-MS法U-Pb年代学表明这些正长岩脉形成于258~256Ma(王汾连等,2013),与峨眉山大火成岩省活动时间相一致,但是对于其源区性质以及它们与区内大型花岗岩体和正长岩体的成因联系并不清楚。如果正长岩脉的成因与峨眉山岩浆活动有密切关系,那么对该区铌钽矿床勘查具有一定的指导意义。因此我们选取了炉库和白草两个矿区相关的正长岩脉及岩体进行了详细的野外考察和大量的岩石学及同位素地球化学分析。本文在作者及前人对于本区正长岩脉和长英质岩体的岩石学和形成时代的基础上,并结合主微量地球化学特征,主要根据炉库和白草矿区富矿正长岩脉、无矿正长岩脉及相关正长岩体的Sr-Nd同位素特征,探讨本区富含铌钽等稀有金属的正长岩脉的物质来源及其与峨眉山大火成岩省的成因联系。

1 地质背景 攀西地区(攀枝花-西昌地区)位于四川省西南部,自北起四川冕宁,南至德昌、米易和攀枝花,直至云南元谋,南北绵延300多千米。在大地构造上处于扬子板块西缘,峨眉山大火成岩省的内部带(图 1)。峨眉山大火成岩省覆盖面积超过2.5×105km2,所形成的火山岩地层厚度从几百米到5千米不等,主要分布在中国的西南部和越南的北部,包括出露广阔的大陆溢流玄武岩以及在时空上关系密切的镁铁-超镁铁质岩体和少量花岗岩体和正长岩体,被认为与地幔柱活动有关(Chung and John,1995; Shellnutt et al., 2009ab; Xu et al., 2001; Zhou et al., 2002; Zhong et al., 2007)。 在峨眉山大火成岩省其它地区广泛分布的二叠纪玄武岩在攀西地区则出露较少(主要分布在米易龙帚山一带),但该区却发育有众多的中酸性侵入岩体,表现为南北向构造-岩浆活动带(从柏林,1988; 张云湘等,1988; 四川省地质矿产局,1991)。区内断裂以南北向安宁河断裂带为主,沿此断裂带由北至南,断续发育几个大型的层状镁铁-超镁铁质岩体,分别是太和、新街、红格和攀枝花岩体。本区除了广泛发育的镁铁-超镁铁质岩体外,还伴随有大量的花岗岩和少量正长岩。张云湘等(1998)将攀西地区玄武岩、层状侵入岩和长英质岩体在时空上紧密伴生的关系总结为“三位一体”。长英质岩体集中分布在50km宽、200km长的一个狭长带上,从北往南主要的花岗质岩体依次分布有太和花岗岩体、黄草正长岩体、茨达花岗岩体及矮郎河花岗岩体。在这些长英质岩体附近发育有正长岩脉,其中部分正长岩脉富含铌钽等稀有金属元素(贺金良,2004)。
图 1 攀西地区玄武岩、辉长岩及长英质岩体分布图及部分赋存在正长岩脉中的铌钽矿床(据贺金良,2004; Pang et al., 2009)

矿点7和8分别为白草和炉库矿区

Fig. 1 Distribution of balast,gabbro and felsic intrusions and some Nb-Ta ore deposits hosted in syenitic dikes in Panxi area(after He,2004; Pang et al., 2009)

The number 7 and 8 representative Baicao and Luku Nb-Ta deposit respectively


炉库和白草地区出露的正长岩脉中富含铌钽等稀有金属元素,有些达到工业开采标准。这两个地区的矿床均位于盐边县境内,安宁河断裂带西侧(图 1)。白草矿区位于炉库矿区北东方向5km左右,其西侧为碱性正长岩体,东侧为矮郎河花岗岩体。矿区内正长岩脉侵入于二叠纪镁铁-超镁铁质岩体中(图 2图 3),距离正长岩体0.5~1km,大体上分为贫矿正长岩脉和富矿正长岩脉两类。各类正长岩脉在垂直方向上则呈平行或窄束的放射状排列,产出严格受断裂控制。

图 2 攀西地区炉库和白草铌钽矿区图(据四川省地质局403地质队,1965;四川省地质局西昌地质队,1962改编)

Fig. 2 Geolgoical maps of the Luku and Baicao Nb-Ta ore deposits in the Panxi district

①四川省地质局403地质队. 1965. 会理路枯烧绿石伟晶岩矿区详细普查报告.内部资料. 注: 原地名为路枯,归属四川省会理县,现改名为炉库,归属四川省盐边县 ②四川省地质局西昌地质队. 1962. 会理白草铌钽矿区详细普查报告. 内部资料. 白草现归属四川省盐边县
图 3 攀西地区正长岩脉野外照片图
(a)富矿正长岩脉侵入至辉长岩体中;(b)贫矿正长岩脉呈平行状侵入辉长岩体中

Fig. 3 Outcrop pictures showing the syenitic dikes(mineralized and barren syenitic dikes)intruding the gabbroic intrusion in sharp contact

2 岩相学特征

两个矿区富矿正长岩脉主体呈灰色至灰白色,多为粗粒-伟晶不等粒结构(图 4a)。主要组成矿物为钾长石(30%~50%,主要是条纹长石和微斜长石,部分正长石),钠长石(10%~30%)和霓石(5%~15%)、钠铁闪石(5%~10%)及黑云母(1%~2%)。烧绿石(主要赋存Nb2O5,少量Ta2O5)是主要赋矿矿物(图 4b),其次为褐钇铌矿。副矿物包括锆石、榍石和少量钛铁矿、磁铁矿、萤石等。正长岩体和无矿正长岩脉多为细粒-中粒结构(图 4c,d),矿物组成与含矿岩脉相似,但在含量上有差异。相比富矿正长岩脉,无矿正长岩脉含有更多的钾长石(60%~80%)、斜长石(5%~10%)、黑云母(2%)和及较少的钠长石(5%)和霓石(5%),而副矿物含量如榍石、钛铁矿等明显高于富矿正长岩脉,烧绿石等矿石矿物极少。

图 4 攀西地区炉库和白草矿区富矿正长岩脉和贫矿正长岩脉矿物显微照片
(a、b)富矿正长岩脉,伟晶-粗粒结构,主要矿物为钾长石、霓石、钠闪石及矿石矿物烧绿石;(c、d)贫矿正长岩脉

Fig. 4 Photomicrographs of minerals from the mineralized(a,b) and barren syenitic dikes(c,d)in the Panxi district
The mineralized syenitic dikes have pegmatic-coarse grains. Major minerals include K-feldspar,albite,aegirine and pyrochlore

3 分析方法和结果 3.1 分析方法

Sr-Nd同位素分析测试在中国科学院广州地球化学研究所同位素年代学与地球化学国家重点实验室的Micromass ISOPROBE型多接收电感耦合等离子体质谱仪上进行。详细的实验流程和分析方法见梁细荣等(2003)韦刚健等(2002)。实验所用的Nd标样为国际标样Shin-Etsu JNdi-1(Tanaka et al., 2000)。标样溶液均用体积比约为2%的HNO3溶液稀释,浓度为100~200ng/mL。样品化学处理所用的HNO3试剂均经二次蒸馏,水溶剂为电阻>18MΩ的高纯水。Nd-Ce混合试样由Nd-GIG溶液与高纯Ce标样溶液混合而成,其Ce/Nd质量比分别为0.05、0.10、0.50、1.00和1.50,溶液浓度为100~200ng/mL。Nd-Sm混合试样由Nd-GIG溶液与高纯Sm溶液混合而成的,其Sm/Nd质量比分别为0.05、0.10、0.20、0.30、0.50及0.70,溶液浓度为200ng/mL。关于同质异位素干扰的校正,142Ce对142Nd的同质异位素干扰是通过测量无干扰的140Ce强度并使用142Ce/140Ce=0.125424进行校正。校正之前,142Ce/140Ce比值的质量分馏

通过145Nd/146Nd=0.482639进行校正,146Nd/144Nd比值以及其它非放射成因的Nd同位素比值采用O’Nions et al.(1977)的推荐值,其中,146Nd/144Nd=0.72190。144Sm对144Nd的同质异位素干扰通过测量无干扰的144Sm强度,并使用144Sm/147Sm=0.20504进行校正,144Sm/147Sm比值的质量分馏通过149Sm/147Sm=0.92160进行校正。144Sm/147Sm及149Sm/147Sm比值采用Walder et al.(1993)和Wasserburg et al.(1981)的测量值。 3.2 分析结果

本文测得的炉库和白草矿区富矿正长岩脉和贫矿正长岩脉及相关正长岩体的Sr和Nd同位素分析结果见表 1。可以看出,总体上,两矿区岩石的εNd(t)非常均一,正长岩体εNd(t)=-0.3~+0.4,贫矿正长岩脉的εNd(t)=-0.3~+0.7,富矿正长岩脉的εNd(t)=-0.2~+0.2。富矿正长岩脉和贫矿正 长岩脉比正长岩体具有更高的143Nd/144Nd初始比值(岩脉的143Nd/144Nd初始比值0.512263~0.512316,多数大于0.512300,正长岩体的143Nd/144Nd初始比值为0.512290~0.512326,多数小于0.512300)。fSm/Nd值均为较大的负值,变化于-0.52~-0.18之间。两矿区岩石初始86Sr/87Sr值同位素表现出宽泛的范围。正长岩体和贫矿正长岩脉的(86Sr/87Sr)i分别变化于0.7032~0.7090和0.7044~0.7064,富矿岩脉的(86Sr/87Sr)i变化于0.7049~0.7091。在εNd(t)vs.(86Sr/87Sr)i图解上(图 5),两矿区岩石同位素数据几乎水平分布,且初始86Sr/87Sr比值偏离地幔演化线。

表 1 攀西地区炉库和白草铌钽矿区含矿岩脉、无矿岩脉及正长岩体Sr-Nd同位素组成(LK-炉库矿区;BC-白草矿区) Table 1 Whole-rock Sr-Nd isotopes of the mineralized syenitic dikes,barren senitic dikes and syenitic plutons from Luku and Baicao deposits in the Panxi district
图 5 攀西地区炉库和白草铌钽矿区富矿正长岩脉、贫矿正长岩脉及正长岩体Sr-Nd同位素组成

地幔演化线来自于Zindler and Hart(1986);OIB 数据来自Sun and McDonough(1989);扬子中/上地壳和下地壳数据来自Chen and Jahn(1998).峨眉山玄武岩和镁铁质侵入体来自于Xu et al.(2001),Zhong et al.(2003,2004),Xiao et al.(2004)(t=260Ma). 数字表示地壳和地幔物质混染百分比. Northern Vietnam苦橄岩(母岩浆)的计算参数Nd(×10-6),εNd(t),Sr(×10-6)和分别为4.4,+7,102和0.704;扬子中/上地壳两端元组分分别为20,-22,220,0.715和20,-10,220,0.715

Fig. 5 The(87Sr/86Sr)i vs. εNd(t)of the mineralized,barren syenitic dikes and syenitic plutons in the Panxi district

Mantle array are after Zindler and Hart(1986). Date sources: OIB from Sun and McDonough(1989),the Yangtze middle/upper and lower crust from Chen and Jahn(1998). Emeishan basalts and mafic intrusions from Xu et al.(2001),Zhong et al.(2003,2004),Xiao et al.(2004). The numbers indicate the percentages of participation of the crustal materials. The calculated parameters of Nd(×10-6),εNd(t),Sr(×10-6) and are 4.4,+7,102 and 0.704 from picrites in Northern Vietnam as parental magmas; 20,-22,220,0.715 and 20,-10,220,0.715 as two components of the Yangtze middle/upper crust


4 讨论与结论 4.1 物质来源

由于地壳岩石比较富集轻稀土,Sm/Nd值低于球粒陨石均一储库值,其εNd(t)<0,亏损地幔富集重稀土,Sm/Nd值高于球粒陨石均一储库值,其εNd(t)>0。因此,如果某一火成岩体的εNd(t)<0,表明他们来源于地壳物质,或至少在他们形成的过程中与地壳物质发生过相当明显的混染。混染程度越明显,岩石的εNd(t)值越为负值。相反,如果火成岩的εNd(t)>0,表明他们来源于幔源物质。所以岩石的钕同位素组成可以用来推断其物质来源。炉库和白草矿区富矿正长岩脉和贫矿正长岩脉及相关正长岩体具有相似的且均一的钕同位素组成,其中两矿区富矿正长岩脉εNd(t)值为-0.2~+0.2,贫矿正长岩脉εNd(t)值为-0.3~+0.7,正长岩体εNd(t)值为-0.3~+0.4,各类岩石的Sr同位素则表现出较大的变化范围,富矿正长岩脉的(86Sr/87Sr)i变化于0.7049~0.7091,贫矿正长岩脉和正长岩体的(86Sr/87Sr)i分别变化于0.7044~0.7064和0.7032~0.7090,但是绝大多数岩石样品的(86Sr/87Sr)i<0.706,表明样品即含有地幔来源组分,也含有地壳岩石组分,其物质来源可能具有壳-幔混源的特点。一些样品具有较高的(86Sr/87Sr)i值,也显示出其可能遭受到地壳混染。如果岩石样品遭受地壳混染,那么岩石样品不仅区域上Sr同位素组成(86Sr/87Sr)i会升高,Nd同位素组成也会发生相应的变化。事实上,在研究区无论是富矿正长岩脉还是贫矿正长岩脉及正长岩体的εNd(t)基本一致,表明其来自于Sm/Nd值比较均一的源区。因此本区富矿正长岩脉较高的(86Sr/87Sr)i值可能是由于岩石遭受风化所致。

区域上,本文两矿区的富矿正长岩脉、贫矿正长岩脉及相关正长岩体与攀西地区红格镁铁质/超镁铁质层状侵入体一致(εNd(t)=-2.7~+1.0,(86Sr/87Sr)i=0.7058~0.7064,Zhong et al., 2003),且在(86Sr/87Sr)i-εNd(t)图上(图 5),样品数据点多数落于峨眉山玄武岩和镁铁质侵入体Sr-Nd同位素组成范围内。王汾连等(2013)认为本区正长岩脉和岩体中锆石εHf值多为0.1~9.5,仅在炉库正长岩体中测得一粒锆石的εHf(t)(t=255.6Ma)为-6和白草矿区富矿正长岩脉中一粒锆石的εHf(t)最低值为-0.2,说明该区正长岩脉和岩体的源区以幔源为主,且与峨眉山玄武岩及镁铁质侵入体来自于相同的地幔源区。两矿区正长岩脉和正长岩体的La/Nb值多数小于1亦说明受壳源混染的程度较低,所以该区正长岩脉为幔源岩石,可能有极少量地壳物质加入。 4.2 岩石成因机制

炉库和白草矿区富矿正长岩脉和正长岩体为过碱性的正长岩,贫矿正长岩脉为准铝质正长岩(Wang et al., 2014)。前人对攀西地区广泛发育的长英质岩体(正长岩和花岗岩)做了大量详细的研究工作。Shellnutt and Zhou(2007)、Shellnutt et al.(2008,2009b)认为攀西地区过碱性花岗岩是峨眉山玄武质岩浆结晶分异的产物,而准铝质花岗岩为底侵的辉长质岩体再次熔融的 产物。炉库和白草矿区的富矿 正

表 2 辉长岩体稀土元素部分熔融模拟计算结果 Table 2 Partition coefficients and presumed source for rare earth element modeling

长岩脉及相关正长岩体为准铝-过碱性的岩石,其形成是否源自幔源的结晶分异,亦或是底侵的辉长质岩体再次熔融的产物?或是还有其他的机制导致正长岩脉的形成?

本区两个矿床的贫矿正长岩脉具有明显的Sr正异常(Wang et al., 2014),这表明它不可能是峨眉山玄武岩结晶分异的产物。因为峨眉山玄武岩一般具有明显的Sr负异常(Xu et al., 2001; Xiao et al., 20032004),如果峨眉山玄武岩再经过大量斜长石的结晶分异其所形成的长英质岩体就会更缺失Sr元素。前已叙述,富矿正长岩脉、贫矿正长岩脉和相关正长岩体在时空上紧密联系,且岩石学、元素地球化学和Sr-Nd同位素特征的相似性都表明他们来自于相同的源区,所以炉库和白草两矿区富矿正长岩脉同样不可能是由峨眉山玄武质岩浆结晶分异形成的。贫矿正长岩脉正的Sr异常暗示其源区应该是富斜长石的,地震成像研究揭示在峨眉山大火成岩省内带的下地壳有一个P波高速带(7.1~7.8km/s,刘建华等,2000),前人解释为可能是随峨眉山地幔柱上升的地幔岩石在柱头处部分熔融,熔融产物玄武质岩浆再底侵于下地壳而形成(Xu et al., 2004; Xu and He, 2007),对地震波速的岩石学限定,也说明底侵层由辉长岩和辉石岩组成(Zhu et al., 2003)。该底侵层的存在为本区正长岩体及岩脉的形成提供了前提条件。那么本区富矿正长岩脉及相关正长岩体是否为地幔柱岩浆活动造成的底侵在下地壳底部的辉长质岩石再次部分熔融形成的产物?

攀西地区猫猫沟正长岩体与两矿区贫矿正长岩脉形成时代相一致,且地球化学特征及岩相学特征相似。罗震宇等(2006)设定该区具有堆晶特征的辉长岩(LJ-12,矿物组成为斜长石65%,辉石18%,磁铁矿12%,角闪石5%)为源岩,利用主量元素的最小方差质量平衡计算结果认为该辉长质堆晶岩低程度部分熔融(~5%)可形成猫猫沟霞石正长岩体。那么,本区与铌钽有关的正长岩脉是否也是由该辉长质堆晶熔融形成的呢?我们选择了同样的源岩利用稀土元素进行部分熔融模拟计算发现其不能形成具有本区正长岩脉稀土元素特征的岩石。但是攀西地区同样具有较高含量斜长石(40%)的辉长岩(LJ-7,其矿物组成为辉石25%,角闪石17%,磁铁矿17%和副矿物;Zhou et al., 2005)经过低程度部分熔融则可以形成本区贫矿正长岩脉(图 6)。该模拟计算所用的分配系数及熔融组分见表 2。由于该区贫矿正长岩脉明显富Sr和Eu异常,表明源区岩石斜长石残留相较少,我们认为辉长岩部分熔融后残留相为50%角闪石,30%辉石和20%斜长石。因此本区贫矿正长岩脉可以由攀西地区底侵的辉长质岩石经过低程度部分熔融(5%~10%)而形成。前已叙述,本区富矿正长岩脉和贫矿正长岩脉具有相同的物质来源,其不同于贫矿正长岩脉的负Eu异常是由于岩浆高度分异演化的结果(Wang et al., 2014),但其原始的物质来源仍旧是底侵的辉长质岩体低程度部分熔融形成的岩浆。

图 6 辉长岩体部分熔融结果
无矿正长岩脉稀土数据来自Wang et al.(2014)

Fig. 6 REE modeling of partial melting of gabbros Parameters are from Table 2
The REE data of barren syenitic dikes are from Wang et al.(2014)

综上所述,攀西地区赋存铌钽等稀有元素的正长岩脉与峨眉山大火成岩省具有成因联系,~260Ma大火成岩省岩浆活动造成本区铌钽矿脉的发育,这为该地区铌钽矿床的勘查起到一定的指导意义。

参考文献
[1] Barth MG, Foley SF and Horn I. 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefcients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambr. Res,113(3-4): 323-340
[2] Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House, 31-35 and 396-403 (in Chinese)
[3] Chen JF and Jahn BM. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2): 101-133
[4] Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan ood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892
[5] Cong BL. 1988. The Forming and Evolution of Panxi Rift. Beijing: Science Press, 1-424 (in Chinese)
[6] He JL. 2004. Ore-forming geological conditions and prospecting potential for Nb-Ta mineral deposits in Panzhihua-Xichang region, Sichuan. Acta Geologica Sichuan, 24(4): 206-211 (in Chinese with English abstract)
[7] Klein M, Stosch HG and Seck HA. 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study. Chem. Geol,138(3-4): 257-271
[8] Klein M, Stosch HG, Seck HA and Shimizu N. 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochim. Cosmochim. Acta, 64(1): 99-115
[9] Liang XR, Wei GJ, Li XH and Liu Y. 2002. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract)
[10] Liu JH, Liu FT, He JK et al. 2001. Study of seismic tomography in Panxi paleo rift area of southwestern China. Science in China (Series D), 44(3): 277-287
[11] Luo ZY, Xu YG, He B, Shi YR and Huang XL. 2007. Geochronologic and petrochemical evidence for the genetic link between the Maomaogou nepheline syenites and the Emeishan large igneous province. Chinese Science Bulletin, 52(7): 949-958
[12] O'Nions, RK, Hamiltoln PJ and Evensen NM. 1977. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters, 34(1): 13-22
[13] Pang KN, Li CS, Zhou MF and Ripley EM. 2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the Late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos, 110(1-4): 199-214
[14] Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical Essex, 108-111
[15] Shellnutt JG and Zhou MF. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243(3-4): 286-316
[16] Shellnutt JG, Zhou MF, Yan DP and Wang Y. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1Ma, 8Ma or 18Ma? Geological Magazine, 145: 373-388
[17] Shellnutt JG, Wang CY, Zhou MF and Yang YH. 2009a. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. Journal of Asian Earth Sciences, 35(1): 45-55
[18] Shellnutt JG, Zhou MF and Zellmer GF. 2009b. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima complex, SW China. Chems. Geol,259(3-4): 204-217
[19] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders SD and Norry MJ (eds.). Magatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
[20] Tanaka T, Togashi S, Kamioka H et al. 2000. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168(3-4): 279-281
[21] Walder AJ, Platzner I and Freedman PA. 1993. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, Hafnium and Hafnium-Lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer. Journal of Analytical Atomic Spectrometry, 8(1): 19-23
[22] Wang FL, Zhao TP, Chen W and Wang Y. 2013. Zircon U-Pb ages and Lu-Hf isotopic compositions of the Nb-Ta-Zr-bearing syenitic dikes in the Emeishan large igneous province. Acta Petrologica Sinica, 29(10): 3519-3532 (in Chinese with English abstract)
[23] Wang FL, Wang CY and Zhao TP. 2014. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the -260Ma Emeishan large igneous province (SW China). Ore Geology Reviews, 65: 1110-1126
[24] Wasserburg GJ, Jacousen SB, DePaolo DJ, McCulloch MT and Wen T. 1981. Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45(12): 2311-2323
[25] Wei GJ, Liang XR, Li XH and Liu Y. 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS. Geochimica, 31(3): 295-299 (in Chinese with English abstract)
[26] Xiao L, Xu YG, Chung SL et al. 2003. Chemostratigraphic correlation of Upper Permian lavas from Yunnan province, China: Extent of the Emeishan large igneous province. Int. Geol. Rev,45(8): 753-766
[27] Xiao L, Xu YG, Mei HJ, Zheng YF, He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525-546
[28] Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945-948
[29] Xu YG, Chung SL, Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168
[30] Xu YG, He B, Chung SL et al. 2004. Geologic, geochemical, and geo-physical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917-920
[31] Xu YG and He B. 2007. Thick and high velocity crust in Emeishan large igneous province, SW China: Evidence for crustal growth by magmatic underplating/intraplating. In: Foulger G and Jurdy D (eds.). The Origins of Melting Anomalies: Plates, Plumes, and Planetary Processes. Geological Society of America Special Publication, 430: 841-858
[32] Zhang YX, Luo YN and Yang CX. 1988. The Panxi Rift. Beijing: Geological Publishing House, 1-325 (in Chinese)
[33] Zhong H, Yao Y, Hu SF, Zhou XH, Liu BG, Sun M, Zhou MF and Viljoen MJ. 2003. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Hongge layered intrusion, southwestern China. Int. Geol. Rev,45(4): 371-382
[34] Zhong H, Yao Y, Prevec SA, Wilson AH, Viljoen MJ, Viljoen RP, Liu BG and Luo YN. 2004. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China. Chem. Geol,203(3-4): 237-252
[35] Zhong H, Zhu WG, Chu ZY, He DF and Song XY. 2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2): 112-133
[36] Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67
[37] Zhou MF, Robinson PT, Lesher CM et al. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. J. Petrol,46(11): 2253-2280
[38] Zhu D, Luo TY, Gao ZM et al. 2003. Differentiation of the Emeishan flood basalts at the base and throughout the crust of southwest China. Int. Geol. Rev,45(5): 471-477
[39] Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571
[40] 从柏林. 1988. 攀西古裂谷的形成与演化. 北京: 科学出版社, 1-424
[41] 贺金良. 2004. 四川攀西地区铌钽矿床成矿地质条件及找矿前景. 四川地质学报, 24(4): 206-211
[42] 梁细荣, 韦刚健, 李献华, 刘颖. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91-96
[43] 刘建华, 刘福田, 何建坤等. 2000. 攀西古裂谷的地震成像研究-壳幔构造特征及其演化推断. 中国科学(D辑), 30(1): 9-15
[44] 罗震宇, 徐义刚, 何斌, 石玉若, 黄小龙. 2006. 论攀西猫猫沟霞石正长岩与峨眉山大火成岩省的成因联系: 年代学和岩石地球化学证据. 科学通报, 51(15): 1802-1810
[45] 四川省地质矿产局. 1991.四川省区域地质志. 北京: 地质出版社, 1-730
[46] 王汾连, 赵太平, 陈伟, 王焰. 2013. 峨眉山大火成岩省赋Nb-Ta-Zr矿化正长岩脉的形成时代和锆石Hf同位素组成. 岩石学报, 29(10): 3519-3532
[47] 韦刚健, 梁细荣, 李献华, 刘颖. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295-299
[48] 张云湘, 骆耀南, 杨崇喜. 1988. 攀西裂谷. 北京: 地质出版社, 1-325