岩石学报  2015, Vol. 31 Issue (4): 1063-1078   PDF    
阿尔泰塔拉特铅锌矿床的变质叠加改造——地质和流体包裹体证据
张辉1, 徐九华1, 郭旭吉2, 肖星1, 林龙华1, 杨蕊1, 成曦晖1    
1. 北京科技大学资源工程系, 北京 100083;
2. 新疆维吾尔自治区有色地质勘查局七〇六队, 阿勒泰 836500
摘要:塔拉特(阿巴宫)铅锌矿位于阿尔泰克兰火山-沉积盆地南东段,矿床受区域性NW向断裂——克因宫断裂和阿巴宫断裂的控制,Pb-Zn矿体赋存于下泥盆统康布铁堡组下亚组第二岩性段上部(D1k12)的变质岩系中,具明显的层控特征,后期脉状硫化物-石英脉叠加作用明显.根据矿体产出特征可识别出2个明显的成矿期:海相火山沉积喷流成矿期和变质热液叠加成矿期.变质热液期可包括2个阶段,早阶段透镜状石英脉沿含矿层位中绿泥石片岩、浅粒岩等顺层分布,并有浸染状黄铁矿产出;晚阶段含黄铁矿-黄铜矿石英脉穿切绿泥石片岩、浅粒岩或块状铅锌矿石,硫化物稀疏浸染状分布.海相火山沉积喷流成矿期的闪锌矿存在残留的L-V盐水包裹体及后期沿次生裂隙分布的L-V和H2O-CO2包裹体,原生L-V包裹体的均一温度Th,tot=267~334℃,次生H2O-CO2包裹体Tm,CO2=-61.2~-60.2℃,Th,CO2=6.5~11.0℃.变质热液期早阶段石英脉(QI)赋存有大量的H2O-CO2包裹体和较多的碳质流体包裹体(CO2±CH4体系),H2O-CO2包裹体Th,tot=294~368℃,盐度为5.5%~7.4% NaCleqv.碳质流体包裹体的Tm,CO2= -60.1~-58.5 ℃,Th,CO2= -4.2~20.6℃.晚阶段切层含黄铁矿-黄铜矿石英脉中也有大量H2O-CO2包裹体和较多的碳质流体包裹体,H2O-CO2包裹体Th.tot=142~360℃,盐度为2.4%~16.5% NaCleqv.碳质流体包裹体的Tm,CO2=-61.5~-57.3℃,Th,CO2有-27.0~-20.6℃和27.1~28.7℃两组.次生L-V包裹体的Tm,ice=-9.8~-1.3℃,Th,tot=205~412℃.克兰盆地造山运动过程中形成的区域性富CO2流体,其运移对促进岩(矿)石变形变质以及金属富集产生重要影响.塔拉特铅锌矿床的矿石变形、交代结构及石英脉中富CO2流体的大量出现,说明变质流体参与了叠加改造作用,且具有多阶段的特点.富CO2包裹体形成环境与造山带区域变质晚期或峰期后的P-T演化一致.
关键词富CO2流体包裹体;变质热液;叠加改造;塔拉特铅锌矿;克兰盆地;阿尔泰    
Metamorphic overprints on the Talate Pb-Zn deposit in Altay: Evidences from geology and fluid inclusions
ZHANG Hui1, XU JiuHua1, GUO XuJi2, XIAO Xing1, LIN LongHua1, YANG Rui1, CHENG XiHui1    
1. Resource Engineering Department, University of Science and Technology Beijing, Beijing 100083, China;
2. No.706 Geological Team, Xinjiang Geological Exploration Bureau for Nonferrous Metals, Altay 836500, China
Abstract: The Talate Pb-Zn deposit, located on the southeast limb of the Kelan volcanic-sedimentary basin in the Altay, is hosted in the metamorphic rock series of the upper second lithological section of Lower Devonian Lower Kangbutiebao formation (D1k12), and its disposition and occurrence are controlled by the regional NW fault, the Keyingong fault and the Abagong fault. The Pb-Zn ore bodies occur as stratabound deposit, with the overprints of late sulfide-quartz veins. There were two obvious mineralization periods based on ore occurrences that are submarine volcanic sedimentary exhalation and metamorphic hydrothermal superimposition. Considering mineral assemblages and crosscutting relations of veins, metamorphic overprints could be divided into two stages. In the early stage, bedding lentoid quartz veins distributed in the chlorite schist and the leptite of the ore-bearing horizon. The appearance of disseminated pyritization and the phenomenon that layered sphalerite were replaced by pyrite and chalcopyrite is obvious under the microscope. In the late stage, pyrite-chalcopyrite quartz veins cut chlorite schist and leptite or the massive Pb-Zn ores and sulfides are sparse and disseminated. Fluid inclusions in sphalerite of the submarine volcanic sedimentary exhalation contain residual L-V inclusions, secondary L-V inclusions and a spot of H2O-CO2 inclusions trapped in tiny fissures. Primary L-V inclusions have Th,tot=267~334℃, and secondary H2O-CO2 inclusions have Tm,CO2=-61.2~-60.2℃ and Th,CO2=6.5~11.0℃. The fluid inclusions in early vein quartz of metamorphic period consist of a great number of H2O-CO2 inclusions, carbonic (CO2±CH4) inclusions and a few H2O-CO2-NaCl inclusions. H2O-CO2 inclusions are homogenized at the temperature of 294~368℃, with salinities of 5.5%~7.4% NaCleqv. The carbonic inclusions have Tm,CO2 of -60.1~-58.5 ℃, and Th,CO2 of -4.2~20.6 ℃. Fluid inclusions in late pyrite-chalcopyrite quartz veins consist of a great number of H2O-CO2 inclusions, CO2±CH4 inclusions, and secondary L-V inclusions. H2O-CO2 inclusions have 142~360℃ of Th,tot and 2.4%~16.5% NaCleqv of salinities. Carbonic inclusions have -61.5~-57.3℃ of Tm,CO2, -27.0~-20.6℃ and 27.1~28.7℃ of Th,CO2, and secondary L-V inclusions have -9.8~-1.3℃ of Tm,ice and 205~412℃ of Th,tot. Regional CO2-rich fluids came from the orogeny of the Kelan basin, and affected metamorphism of ores and wall rocks, as well as metal enrichment. Deformed and metasomatic textures of ore in the Talate deposit and abundant CO2-rich fluids may explain that metamorphic fluids participate in the superimposed reformation and possess characteristic of multi-stage. The P-T trapping conditions of CO2-rich fluids coincide with those of late or post regional metamorphism.
Key words: CO2-rich fluid inclusions;Metamorphic hydrothermal solution;Overprint;Talate Pb-Zn deposit;Kelan basin;Altay    
1 引言

新疆阿尔泰山南缘在晚古生代处于活动大陆边缘(于学元等,1993; 牛贺才等,1999; 许继峰等,2001; Goldfarb et al., 2003; Xiao et al., 2004; Han et al., 2006; 李锦轶等,2006),其火山活动强烈,长期以来,该地区被认为是一个较为典型的晚古生代的VMS型成矿带(王京彬等,1998),由西向东依次分布有阿舍勒、冲乎尔、克兰和麦兹四大火山-沉积盆地,其代表性矿床有阿舍勒大型铜锌矿床(Wan et al., 2010a)、可可塔勒大型铅锌矿床(Wan et al., 2010b; Zheng et al., 2013)、蒙库大型铁矿床(杨富全等, 20082011; Wan et al., 2012)、萨热阔布中型金矿床(Xu et al., 2008; 秦雅静等,2012)、铁木尔特中型铅锌铜矿床(徐九华等,2008; 耿新霞等,2010a; Xu et al., 2011; Zhang et al., 2012)以及大东沟中型铅锌矿床(刘敏等,2008; 褚海霞等,2010)等。前人对该区VMS型矿床进行了大量研究,但对其成因争议较大,主要存在以下观点:VMS型(王京彬等,1998; 闫新军和陈维民,2001; 尹意求等,2005; 万博和张连昌,2006; Wan et al., 2010ab)、VMS与SEDEX过渡类型(王书来等,2007)、海底火山喷流沉积改造型(姜俊,2003)或喷气沉积改造型(马忠美等,2001)以及造山型(Zhang et al., 2012)等。近年的研究表明,克兰火山-沉积盆地早中泥盆世形成的海相火山沉积矿床大多遭受到晚泥盆世-二叠纪造山-变质作用的改造和叠加,同构造石英脉和穿切层状铅锌矿化的脉状铜矿化很发育。铁木尔特、大东沟等铅锌矿床中碳质流体包裹体(CO2-CH4-N2)与区域变质有关,而与VMS无关(徐九华等,2009; 褚海霞等,2010)。脉状矿床的成矿年龄比早泥盆世赋矿地层要年轻得多,郑义等(2013)获得了与铁木尔特多金属矿床硫化物共生的黑云母40Ar/39Ar坪年龄为235±2Ma和240±2Ma,反映了晚二叠世的成矿作用。

塔拉特铅锌矿位于阿尔泰造山带南缘的克兰盆地中,是一个以铅锌为主、伴生银铁铜的多金属矿床,已探明铅锌资源量达中型规模(袁建江等,2011),勘查工作仍在持续。塔拉特铅锌矿地质研究比较薄弱,成矿受地层和断裂控制,并遭受区域变质作用及热液叠加改造。目前对该矿床的变形变质、变质热液叠加改造作用认识有较大争议,李登峰等(2013)最近提出了矽卡岩型矿床的观点。本文针对塔拉特铅锌矿成因认识的争议,试图通过野外地质证据、构造矿石特点和不同矿化阶段的流体包裹体研究,提出塔拉特铅锌矿成矿作用的新认识。

2 地质背景 2.1 区域地质

塔拉特铅锌矿位于阿尔泰造山带南缘多金属成矿带的克兰火山-沉积盆地南东段,大地构造背景为西伯利亚板块阿尔泰南缘晚古生代活动陆缘弧后拉张盆地(何国琦等,1995; 陈衍景,2000; 王京彬等,1998; 肖文交等,2006; Chen et al., 20012012; Sun et al., 2008; Wan et al., 2010b)。克兰盆地内主要出露地层为中上志留统库鲁姆提组、下泥盆统康布铁堡组、中泥盆统阿勒泰镇组(图 1)。库鲁姆提组分布于盆地北侧与花岗岩接触的部位,为一套混合岩、片麻岩夹变钙质砂岩、片岩组合,与上覆的下泥盆统康布铁堡组呈断层接触。康布铁堡组分布于阿勒泰复式向斜两翼,由一套中等变质海相中酸性火山岩、火山碎屑岩、陆源碎屑沉积岩、碳酸盐岩组成。阿勒泰镇组由一套浅-中等变质的浅海及滨海相碎屑岩、基性火山岩和碳酸盐岩组成,并组成阿勒泰复式向斜核部。上述地层单元之间多为断层接触(图 1),变质作用强烈并有多期次岩浆侵入活动,区域变质程度达到中绿片岩相,特征变质矿物组合为黑云母-绿泥石-绿帘石-阳起石。区内岩浆岩为奥陶纪、二叠纪、三叠纪和少量侏罗纪中酸性侵入岩。

图 1 阿尔泰南缘克兰盆地区域地质及矿产分布图(据耿新霞等,2010b; 尹意求等,2005修改)
矿床名称:1-恰夏铁矿;2-恰夏铅锌矿;3-萨热阔布金矿;4-恰夏铜矿;5-铁木尔特铅锌矿;6-铁木尔特铁矿;7-阿巴宫铅锌矿;8-阿巴宫铁矿;9-塔拉特铅锌矿
Fig. 1 Geological map showing the regional geology and distribution of deposits in the Kelan basin,Altay(modified after Geng et al., 2010b; Yin et al., 2005)
Name of ore deposit: 1-Qiaxia iron deposit; 2-Qiaxia Pb-Zn deposit; 3-Sarekuobu gold deposit; 4-Qiaxia copper deposit; 5-Tiemurte Pb-Zn deposit; 6-Tiemurte iron deposit; 7-Abagong Pb-Zn deposit; 8-Abagong iron deposit; 9-Talate Pb-Zn deposit

下泥盆统康布铁堡组是本区最重要的赋矿层位。柴凤梅等(2009)对康布铁堡组变质流纹岩进行研究,获得锆石SHRIMP U-Pb年龄412.6±3.5Ma、408.7±5.3Ma和406.7±4.3Ma。单强等(2011)获得康布铁堡组钾质流纹岩的锆石SHRIMP U-Pb年龄为400.8±8.4Ma(加权平均年龄为394.8±7.9Ma),钠质流纹岩的年龄为402.2±6Ma(加权平均年龄为396.8±5.1Ma)。耿新霞等(2012)获得康布铁堡组上亚组变质流纹岩LA-ICP-MS锆石U-Pb加权平均年龄分别为388.9±3.2Ma和400.7±1.6Ma。

克兰火山-沉积盆地内褶皱和断裂构造十分发育。克兰盆地及其主构造均呈NW-SE方向,以阿勒泰复式向斜为主体,轴长50km,轴面倾向NE,倾角50°~70°,NE翼发生倒转,SW翼正常,两翼均被次一级小褶皱所复杂化,片理很发育。阿勒泰向斜核部地层为中泥盆统阿勒泰镇组,向两翼依次为下泥盆统康布铁堡组、中上志留统库鲁姆提组。因受断裂破坏,两翼地层均出露不全。次级褶皱轴向大都与复向斜轴向一致,以紧闭的线性褶皱为主,只有南SW翼少数褶皱受断裂和岩浆侵入影响,使其轴向与复向斜轴向相交。盆地内断裂走向主要为NNW向及NWW向,多沿不同地层单元之间的边界发育,这两组走向的大断裂控制了区内的地层、构造、岩浆岩及Cu、Au、Pb、Zn、Fe等金属矿产的分布格局。 2.2 矿床地质

塔拉特铅锌矿位于阿尔泰复式向斜的北东翼,是近几年来克兰晚古生代火山-沉积盆地中找矿取得很大突破的海相火山岩型铅锌矿床之一。矿区出露的地层主要为下泥盆统康布铁堡组,可分为上、下两个亚组。康布铁堡组下亚组第一岩性段(D1k11)为中深变质的酸性火山碎屑沉积建造,主要岩性为黑云母石英片岩、黑云母变粒岩、黑云母斜长片麻岩等。康布铁堡组下亚组第二岩性段(D1k12)为矿区内主要铅锌矿含矿层位(图 2),主要含矿岩性为黑云母变粒岩。该段中下部以中酸性火山碎屑岩及中等变质的变英安质晶屑凝灰岩为主体,局部发育有火山角砾岩;上部为流纹质的火山喷发-沉积岩,主要岩性为沉火山角砾岩、黑云变沉凝灰岩、黑云母变粒岩、大理岩和黑云母片岩等,层内夹硅质岩、层状矽卡岩、铁锰质大理岩等热水沉积层。康布铁堡组上亚组第一岩性段(D1k21)由多个溢流相的酸性熔岩组成。

图 2 塔拉特铅锌矿床地质简图(据袁建江等,2011修改)
Q-第四系;D1k22-下泥盆统康布铁堡上亚组第二岩性段;D1k21-下泥盆统康布铁堡上亚组第一岩性段;D1k12-下泥盆统康布铁堡下亚组第二岩性段;D1k11-下泥盆统康布铁堡下亚组第一岩性段;S2-3kl-中上志留统库鲁姆提组;γ52-燕山期白云母花岗岩;γ42b-华力西晚期黑云斜长花岗岩
Fig. 2 Geological sketch map of Talate Pb-Zn deposit(modified after Yuan et al., 2011)

Q-Quaternary; D1k22-the second lithological section of Lower Devonian Upper Kangbutiebao Formation; D1k21-the first lithological section of Lower Devonian Upper Kangbutiebao Formation; D1k12-the second lithological section of Lower Devonian Lower Kangbutiebao Formation; D1k11-the first lithological section of Lower Devonian Lower Kangbutiebao Formation; S2-3kl-Middle-Upper Silurian Kulumuti Formation; γ52-Yanshanian muscovite granite; γ42b-Late Hercynian yosemitite

区内断裂构造发育,其中区域性NW向断裂——克因宫断裂和阿巴宫断裂控制了塔拉特铅锌矿的空间分布。阿巴宫断裂走向与区域主构造方向一致,断层产状较陡,倾角均大于70°,甚至达90°,具高角度逆断层特征,阿巴宫多金属成矿带就位于该构造破碎带中。

塔拉特铅锌矿邻近区域岩浆活动强烈,主要有两个不同时代的侵入体,分别为276±9Ma的喇嘛昭岩体(王涛等,2005)和462.5~457.8Ma的阿巴宫岩体(刘锋等,2008)。

塔拉特铅锌矿赋存于下泥盆统康布铁堡组下亚组第二岩性段上部的地层中,容矿岩石为中酸性变质火山碎屑岩系,多为一层宽度不大的黑云母变粒岩,局部为绿泥片岩。矿体沿走向、倾向延伸稳定,具有明显的层控性特征,浅部矿体较薄,深部有变富、变厚趋势。

矿体沿北西方向展布,与断层和地层走向基本一致。其中南东段(144线)为铅锌主矿体(图 2)。矿体呈层状、似层状,厚度可达11m,走向沿长约920m。矿体上盘围岩主要为黑云母变粒岩、片理化浅粒岩、变质晶屑凝灰岩和绿泥片岩,下盘围岩主要为凝灰质角砾岩和变质流纹斑岩(图 3)。矿体产状同围岩基本一致,倾向35°,倾角76°,矿体沿走向、倾向有膨大、缩小现象;Zn品位为1.14×10-2~13.47×10-2,平均2.42×10-2;Pb品位为0.51×10-2~24.84×10-2,平均2.03×10-2;具有Zn>Pb的特点。

图 3 塔拉特铅锌矿床野外露头特征
(a)层状含黄铁矿(Py)铅锌矿体(Sp-Gn),1040m中段,128线东30m;(b)条带状层纹状铅锌矿石,990m中段;(c)层状铅锌矿体下盘角砾状铅锌矿石,灰白色为凝灰质火山角砾,1040m中段;(d)条带状铅锌矿石(B-SpGn)和块状铅锌矿石(M-SpGn)间的顺层石英脉(QI),1040m中段;(e)条带状铅锌矿和绿泥片岩(Chl)间的顺层透镜状石英脉(QI),1040m;(f)层状铅锌矿体中切层的含黄铁矿石英脉(QII),1040m,128线东30m
Fig. 3 Field outcrops of the Talate Pb-Zn deposit
(a)pyrite layer(Py)occurring in beded sphalerite-galena(Sp-Gn)ore body,1040mlevel,30m east of the 128 line;(b)stripped sphalerite-galena ore,990m level;(c)brecciated ore occurring at footwall of stripped sphalerite-galena ore,with grey tufaceous volcanic breccia,1040m level;(d)bedding quartz vein(QI)occurring in b and ed sphalerite-galena(B-SpGn) and massive sphalerite-galena(M-SpGn),1040m level;(e)bedding quartz vein(QI)occurring as lenses between b and ed sphalerite-galena and chlorite schist(Chl),1040m level;(f)pyrite-quartz vein(QII)cutting sphalerite-galena layer,1040m level,30m east of the 128 line

3 矿化蚀变特征 3.1 矿化期次和阶段

根据塔拉特铅锌矿含矿层位、含矿石英脉体的穿插关系以及围岩的变形变质特点,可以识别出2个明显的成矿期,即海相火山沉积喷流成矿期和变质热液叠加成矿期。

3.1.1 海相火山沉积喷流成矿期

在中酸性变质火山碎屑岩系的容矿岩层中,矿体产在变质流纹岩的上部,产出两种矿石类型。矿体上部主要为层纹状、条带状铅锌矿石,以闪锌矿为主,次为方铅矿,其间有时夹层状、层纹状或胶状黄铁矿(图 3a,b、图 4a),局部为块状铅锌矿石;层状铅锌矿石底部为火山角砾岩型铅锌矿石(图 3c),角砾为变晶屑凝灰岩等变质火山碎屑岩,胶结物主要为块状、稠密浸染状闪锌矿。角砾棱角分明、大小悬殊(小于一厘米至几十厘米),具有可拼性,并且沿一定方向分布。

图 4 塔拉特铅锌矿床矿石结构特征
(a)反映沉积特征的胶状黄铁矿,条纹呈环状分布形似指纹,TL502,反光;(b)碎裂黄铁矿定向排列,TL502,反光;(c)层状铅锌矿中闪锌矿(Sp)-方铅矿(Gn),AB1114,反光;(d)黑云母(Bi,局部绿泥石化)交代闪锌矿,AB1103,单偏光;(e)黑云母石英片岩中沿片理分布的长条状黄铁矿,TP08,反光;(f)透闪石(Tr)边界平直,切割方铅矿-闪锌矿,透闪石内部解理裂隙又被闪锌矿-方铅矿压溶交代,AB1103,反光
Fig. 4 Textural characteristics of ores from the Talate Pb-Zn deposit
(a)colloidal pyrite with circular stripe like fingerprint reflecting the sedimentary characteristic,TL502,reflected light;(b)fractured and directional pyrite,TL502,reflected light;(c)sphalerite(Sp) and galena(Gn)in b and ing Pb-Zn ore,AB1114,reflected light;(d)sphalerite replaced by biotite(Bi,local chloritization),AB1103,plane polarized light;(e)long stripped pyrite distributed along the schistosity in the mica-quartzose schist,TP08,reflected light;(f)tremolite(Tr)(the boundary is straight)cutting galena-sphalerite,the cleavage and fracture replaced by sphalerite-galena by pressure solution,AB1103,reflected light
3.1.2 变质热液叠加成矿期

变质热液叠加成矿期主要形成硫化物石英脉,可包括2个阶段:

(1)早阶段顺层石英脉,相当于变质分异脉,主要表现为透镜状石英脉沿层状铅锌矿分布(图 3d),或沿着含矿层位中的绿泥石片岩、浅粒岩等顺层分布(图 3e),并有浸染状黄铁矿产出。黄铁矿由于其较强的自生能力,常可成为变斑晶产出(顾连兴等,2004a),但又受挤压而产生碎裂且定向分布(图 4b)。方铅矿因其较大的塑性,常填隙于裂隙间(图 4c);该阶段也常见绿泥石、透闪石(阳起石)等交代切割层状矿体中的闪锌矿-方铅矿等(图 4d);黄铁矿变斑晶可因压溶作用呈长条状沿变质片理方向分布(图 4e);变质矿物透闪石等可切割方铅矿-闪锌矿,具平直的接触边界,但其内部解理裂隙又被较塑性的闪锌矿-方铅矿压溶交代(图 4f)。

(2)晚阶段切层石英脉,表现为穿切绿泥石片岩、浅粒岩或层状、块状铅锌矿石的含黄铁矿-黄铜矿石英脉(图 3f),硫化物稀疏浸染状分布于石英脉中。

3.2 典型矿化剖面特征

塔拉特铅锌矿144线实测地质剖面(图 5)自下而上(由SW至NE)的岩(矿)石类型及其变形变质特点如下:

图 5 塔拉特铅锌矿144线地质剖面图Fig. 5 Geological profile of the Talate Pb-Zn deposit(144 line)

变质流纹斑岩(D326、D327点)主要矿物为钠更长石、钾长石和石英,次要矿物有黑云母、绿泥石以及少量的磁铁矿。其中钠更长石呈板片状、长条状,半自形-他形晶,聚片双晶(钠长石双晶)发育,An=9%~10%,含量约40%。钾长石呈斑晶,见卡氏双晶,含量约10%。斜长石呈板片状、长条状,形状多不规则,聚片双晶发育,含量约10%。石英呈半自形-他形粒状,多呈团块状分布,部分以斑晶形式存在,边部有一定熔蚀,含量约20%。变余斑状结构或粒状变晶结构,变余流纹构造。

矿化凝灰角砾岩(D328点)角砾状结构,块状构造。主要矿物有钠更长石和石英,次要矿物有绢云母、黑云母等。其中钠更长石为无色,表面有少量的绢云母化,聚片双晶发育,An=9%~12%,含量约20%。石英及少量斜长石呈他形粒状,含量约20%。火山岩碎屑主要为石英,少量自形粒状斜长石,含量约5%。基质主要为重结晶的长英质矿物,发生绿泥石化、绢云母化,含量约55%。

层纹状闪锌矿矿石(D329-1点)条带状构造,主要矿物有闪锌矿、褐铁矿及石英。闪锌矿透光下深红,少部分鲜黄色,反光下灰白,部分呈胶状产出,反映热水沉积成因,含量约40%。褐铁矿呈褐红色,呈角砾状分布在闪锌矿中(可能为黄铁矿氧化而成),含量约30%。石英为他形粒状,主要呈团块状、条带状分布,局部受应力作用波状消光,含量约10%。

条带状闪锌矿矿石(D329-2点)条带状构造,碎裂结构,主要矿物有石英、闪锌矿、褐铁矿和白云母,次要矿物有黑云母、石榴子石等。石英挤压碎裂明显,形状不规则,主要呈长圆状、透镜状分布,定向分布,长轴方向与裂隙方向一致,含量约40%。闪锌矿为棕褐色,呈定向网脉状沿石英微裂隙分布,含量约20%。褐铁矿呈浸染状、条带状分布,含量约10%。白云母为浅黄绿色,呈鳞片状集合体与闪锌矿伴生,沿石英微裂隙分布,为蚀变成因,含量约10%。

片理化角闪黑云变粒岩(D330点)片状构造,细粒变晶结构,主要矿物有石英、黑云母及角闪石,次要矿物有绿泥石、褐铁矿等。石英呈他形粒状,拉长定向分布,含量约40%。黑云母含量约10%,部分蚀变成为绿泥石。斜长石呈他形粒状,含量约30%。角闪石呈柱状,筛状结构清晰(石英穿孔),边部及中心多发生蚀变,含量约10%。

糜棱岩(D331点)眼球状构造,糜棱结构,主要矿物有石英、斜长石、绿泥石和黑云母,次要矿物有绢云母、褐铁矿等。岩石中碎斑主要为石英和斜长石,石英为半自形-他形粒状,多呈长条状沿糜棱片理分布,含量约20%。斜长石呈粒状、长条状,聚片双晶发育,碎斑旋转现象常见,含量约20%。碎基主要为重结晶的细粒石英、黑云母、绿泥石等矿物。绿泥石为叶绿泥石(+),多呈片状沿糜棱片理方向环绕斜长石、石英碎斑展布,可能为黑云母蚀变的产物,含量约15%。

弱片理化变质晶屑凝灰岩(D332点)片理化构造,凝灰结构,主要矿物有石英、斜长石以及白云母,次要矿物有绢云母、绿泥石和少量黑云母。晶屑主要为石英和斜长石,石英为半自形-他形粒状,呈碎裂棱角状,部分边部有一定熔蚀,含量约20%。斜长石为他形粒状,形状不规则,含量约10%。基质基本已重结晶,其中细粒石英(0.02~0.5mm)占30%,细粒斜长石占20%,受应力作用,矿物沿一定方向定向分布,弱片理化发育,绢云母、绿泥石蚀变发育,沿片理化方向裂隙分布,含量约50%。

绿泥片岩(D336点)片状构造,粒状鳞片变晶结构,主要矿物有绿泥石、角闪石、石英和黑云母,次要矿物有少量的磁铁矿。绿泥石主要为叶绿泥石(+),呈片状、纤维状分布,沿片理方向环绕石英碎斑展布,可能为角闪石蚀变的产物,定向排列形成片理,含量约50%。角闪石为长柱状,呈一定方向排列,含量约20%。石英为他形粒状,形状不规则,边部多发生一定熔蚀,部分呈团块状分布,含量约20%。黑云母含量约10%。

4 流体包裹体研究 4.1 样品特征与研究方法

研究样品采自塔拉特铅锌矿南东段矿体地表和地下坑道,挑选具有代表性且涵盖不同成矿阶段的样品磨制成双面抛光,厚度约为0.2mm的薄片,通过包裹体岩相学观察,选取具有代表性的16个包裹体薄片进行显微测温研究。

流体包裹体冷热台分析在北京科技大学流体包裹体实验室完成,使用Linkam公司THMS600冷热台,测温范围为-196~+600℃。接近相变点时,包裹体的均一温度升温速率控制在0.5~1℃,其它(CO2三相点、CO2部分均一温度、冰点等)升温速率控制在0.1~0.5℃,L-V型包裹体盐度采用Bodnar(1993)流体包裹体冷冻法冰点与盐度关系表求出,H2O-CO2型包裹体盐度采用Collins(1979)CO2笼合物熔化温度和盐度关系表求得。单个包裹体成分激光拉曼显微探针测试在中国科学院地质与地球物理研究所流体包裹体实验室完成。采用法国Jobin Yevon公司生产的LabRAM-HR可见显微共焦拉曼光谱仪,用Ar+离子激光器,波长532nm,输出功率为44mV,所测光谱的计数时间为3s,每1cm-1(波数)计数一次,100~4000cm-1全波段一次取峰,激光束斑大小约为1μm,光谱分辨率0.65cm-1,标准样品使用的是法国生产纯硅片,对峰值进行校正,硅片的标准位移是520.7cm-1,特征峰值参照Frezzotti et al.(2012)

4.2 包裹体岩相学 4.2.1 闪锌矿中的包裹体

海相火山沉积喷流成矿期层状铅锌矿石的闪锌矿在显微镜下透明度差别较大,在局部较浅颜色的闪锌矿中找到残留的L-V盐水包裹体,一般2.0~10μm,椭圆状孤立分布,局限于单个颗粒内,应该为原生的包裹体(图 6a)。一些闪锌矿颗粒中可见微裂隙,其附近的包裹体发生变形和破坏,仅见泄露后留下的包裹体轮廓(图 6b),在次生裂隙还可见富CO2的H2O-CO2包裹体(图 6c)。

图 6 塔拉特铅锌矿床流体包裹体特征
(a)层状铅锌矿石中闪锌矿内的原生L-V包裹体,TL1102;(b)稠密浸染状铅锌矿石中浅色闪锌矿内的原生L-V包裹体,部分已变形破坏,TP05;(c)层状闪锌矿裂隙中可见次生CO2-H2O包裹体,TL1102;(d)角砾状铅锌矿层中切层石英脉内原生富CO2包裹体,部分破坏,TL331;(e)顺层石英脉石英颗粒中原生富CO2包裹体,TL339;(f)顺层石英脉,石英颗粒中原生富CO2包裹体与碳质包裹体共存,TL339;(g)角砾状铅锌矿中切层石英脉(Q)中碳质包裹体群,TL331
Fig. 6 The characteristics of fluid inclusions from the Talate Pb-Zn deposit

(a)primary L-V inclusions in sphalerite from b and ing Pb-Zn ore,TL1102;(b)primary L-V inclusions(partially destroyed)in a light color sphalerite from dense disseminated Pb-Zn ore,TP05;(c)secondary CO2-H2O inclusions in a fracture of b and ing sphalerite,TL1102;(d)primary CO2-rich inclusions(partially destroyed)in quartz vein cutting brecciated Pb-Zn ore,TL331;(e)primary CO2-rich inclusions within quartz grains of the bedding quartz vein,TL339;(f)primary CO2-rich inclusions and associated carbonic inclusions within quartz grains of the bedding quartz vein,TL339;(g)carbonic inclusions in the quartz vein(Q)cutting the brecciated Pb-Zn ore,TL331

4.2.2 脉石英中的包裹体

塔拉特铅锌矿各阶段脉石英流体包裹体发育,大小从几微米至几十微米不等。根据包裹体的显微镜下特征和冷热台下的相变行为,可将包裹体分为富CO2包裹体、碳质流体包裹体、水溶液包裹体和少量含子矿物的多相流体包裹体四类。

(1)富CO2包裹体(LH2O-LCO2):这是塔拉特铅锌矿石英脉中最主要的包裹体类型(图 6d,e),占所观察包裹体总数目的80%左右,进一步分为两相富CO2包裹体(LH2O-LCO2)、三相富CO2包裹体(LH2O-LCO2-VCO2),大小4~46μm。CO2/H2O体积比值约30%~90%,少数可达95%。由于构造变形和后期抬升等地质作用,常见包裹体在自然条件下破裂后留下的空腔。此类包裹体呈椭圆形、长条状或不规则状孤立或带状分布于石英脉的各个阶段中,但是此类包裹体很多在测温过程中因内压太大而发生爆裂,仅得到少量的均一温度。

(2)碳质流体包裹体(无水的CO2±CH4±N2体系包裹体; Van den Kerkhof and Thiéry,2001; Bodnar,2003; 池国祥和卢焕章,2008):室温下呈单一相态,颜色较暗,早阶段顺层石英脉和晚阶段切层石英脉中都有产出,常孤立分布或成群分布(图 6f,g),为原生成因。但有时局限在切层石英脉的单个石英颗粒内,应属假次生包裹体,也为原生成因;有时也与两相富CO2型包裹体(LH2O-LCO2)共生(图 6f),无序分布,也为原生成因;有些定向排列贯穿多个石英颗粒的碳质流体包裹体,可能为次生成因。

(3)水溶液包裹体(LH2O-VH2O),室温下以气液两相形式存在,在数量上远远少于富CO2包裹体,包裹体气相充填度5%~30%,多呈椭圆形、不规则状定向排列成群分布,属于次生包裹体。

(4)含子矿物的多相流体包裹体(L-V-S):偶见于早阶段石英中。

塔拉特铅锌矿不同阶段脉石英中的包裹体特征如下:

变质热液期早阶段透镜状石英脉(QI)赋存有较少的H2O-CO2-NaCl包裹体,大量的H2O-CO2包裹体,及CO2±CH4包裹体和最晚的L-V包裹体。包裹体大小5~25μm,多为沿裂隙呈带状、面状分布的次生包裹体,不同期次的包裹体交织呈树枝状。

变质热液期晚阶段切层含黄铁矿-黄铜矿石英脉(Q)中也有大量H2O-CO2包裹体,及CO2±CH4包裹体、次生的L-V包裹体。部分碳质包裹体呈孤立无序分布,为变质热液石英脉形成时捕获的原生包裹体,包裹体大小5.4~14.3μm;多数碳质包裹体呈带状、群体状、面状分布,为次生包裹体,大小4~37μm,反映了更晚的区域动力热流变质作用。

4.3 显微测温 4.3.1 早阶段顺层石英脉(QI)

原生H2O-CO2包裹体的Tm,CO2=-62.6~-60.5℃(图 7表 1),均低于纯CO2三相点的温度(-56.6℃),暗示包裹体中可能含有N2或CH4等其他气体组分,与激光拉曼光谱测试结果相吻合;Th,CO2=7.7~29.6℃,集中变化于8.1~23.8℃,根据含CO2包裹体均一温度和CO2相密度关系图解(Shepherd et al., 1985)可得CO2相密度为0.60~0.89g/cm3,集中分布于0.76~0.88g/cm3;CO2笼合物熔化温度为6.0~7.1℃,根据CO2笼合物熔化温度和盐度关系表(Collins,1979)可计算得到盐度为5.5%~7.4% NaCleqv;根据CO2-CH4体系的V-X相图(Thiéry et al., 1994)和低温下CO2-CH4体系的ρ-XCH4-Th关系图(Swanenberg,1979)可得包裹体中XCH4为0.17~0.20,包裹体密度为0.60~0.62g/cm3Th,tot=294~368℃(图 7表 1),集中变化于294~308℃,多数H2O-CO2包裹体未均一发生爆裂。

图 7 塔拉特铅锌矿床富CO2流体包裹体显微测温结果Fig. 7 Microthermometry of CO2-rich fluid inclusions from the Talate Pb-Zn deposit

表 1 塔拉特铅锌矿床流体包裹体显微测温综合分析表 Table 1 Comprehensive study of fluid inclusion thermometry at the Talate Pb-Zn deposit

次生L-V型水溶液包裹体Th,tot=346~386℃,Tm,ice=-5.1~-1.3℃,根据流体包裹体冷冻法冰点与盐度关系表(Bodnar,1993)可得盐度为2.2%~8.0% NaCleqv,另据NaCl-H2O体系的T-W-ρ相图(Bodnar,1993)可得流体密度为0.58~0.68g/cm3

本阶段碳质流体包裹体(CO2±CH4±N2体系)的Tm,CO2= -60.1~-58.5 ℃,Th,CO2= -4.2 ~20.6℃,根据CO2-CH4体系的V-X相图(Thiéry et al., 1994)和低温下CO2-CH4体系的ρ-XCH4-Th关系图(Swanenberg,1979)可得包裹体中XCH4为0.07~0.13,包裹体密度为0.52~0.90g/cm3

4.3.2 晚阶段切层含黄铁矿-黄铜矿石英脉(Q)

原生H2O-CO2包裹体的Tm,CO2=-66.0~-56.6℃(图 7表 1),集中变化于-63.0~-59.6℃,也低于纯CO2三相点的温度;Th,CO2=-6.0~29.4℃,集中变化于4.4~27.9℃,据Shepherd et al.(1985)的CO2包裹体均一温度和CO2相密度关系图解可得CO2相密度为0.60~0.93g/cm3;CO2笼合物融化温度变化于-1.0~8.8℃,据Collins(1979)得到盐度变化于2.4%~16.5% NaCleqv;根据CO2-CH4体系的V-X相图(Thiéry et al., 1994)和低温下CO2-CH4体系的ρ-XCH4-Th关系图(Swanenberg,1979)可得包裹体中XCH4为0.02~0.26,包裹体密度为0.60~0.92g/cm3;H2O-CO2包裹体的Th,tot=142~360℃(图 7表 1),集中变化于192~266℃,大部分H2O-CO2包裹体也未均一发生爆裂。

本阶段碳质流体包裹体(CO2±CH4±N2体系)的Tm,CO2=-61.5~-57.3℃,Th,CO2=-27.0~28.7℃,主要集中在-27.0~-20.6℃和27.1~28.7℃两组,根据CO2-CH4体系的V-X相图(Thiéry et al., 1994)和低温下CO2-CH4体系的ρ-XCH4-Th关系图(Swanenberg,1979)可得包裹体中XCH4为0.03~0.18,包裹体密度为0.75~1.00g/cm3

次生L-V包裹体的Tm,ice=-9.8~-1.3℃,根据流体包裹体冷冻法冰点与盐度关系表(Bodnar,1993)可得盐度为2.2%~13.7% NaCleqv,Th,tot=205~412℃,又据NaCl-H2O体系的T-W-ρ相图计算可得包裹体密度为0.70~0.95g/cm3

4.3.3 海相火山沉积喷流成矿期的闪锌矿

海相火山沉积喷流成矿期的闪锌矿中偶见残留的原生L-V盐水包裹体,但未能测得数据;对找到的晚期次生H2O-CO2包裹体也进行了显微测温,图 6c中的次生H2O-CO2包裹体,其Tm,CO2=-61.2~-60.2℃(3),Th,CO2=6.5~11.0℃(3);另一视域中次生L-V包裹体,测得均一温度Th,tot=267~334℃(6),与变质热液期石英中的富CO2包裹体数据相当。

4.4 激光拉曼探针分析

激光拉曼光谱测试结果如图 8所示。变质热液脉石英中富CO2包裹体(H2O-CO2包裹体)的CO2相成分主要为CO2(特征拉曼谱峰为1280cm-1和1385cm-1),部分包裹体有明显的N2峰(特征拉曼谱峰2328cm-1),但未检出CH4,可能含量较少。闪锌矿中与变形变质有关的次生H2O-CO2包裹体的CO2相成分也主要为CO2,且检出CH4(特征拉曼谱峰2914cm-1左右)。脉石英中碳质流体包裹体主要成分为CO2,部分包裹体也含有N2峰。水溶液包裹体中主要成分为H2O,部分含有其他气体。塔拉特铅锌矿床CO2-N2包裹体较多,对于仅检出CO2拉曼谱峰的包裹体,结合包裹体显微测温结果,认为包裹体内可能存在少量N2或CH4,只是由于量少和仪器精度所限未检测到。总体上激光拉曼测试结果与岩相学观察的相态特征及显微测温数据基本相符。

图 8 塔拉特铅锌矿床流体包裹体激光拉曼谱图
(a)早阶段石英Q中富CO2包裹体;(b)晚阶段石英Q中碳质包裹体,CO2为主,并含有N2;(c)晚阶段石英Q中富CO2包裹体的CO2相,主要为CO2;(d)闪锌矿中次生富CO2包裹体,主要成分为CO2,含CH4
Fig. 8 Representative Raman spectra of fluid inclusions for the Talate Pb-Zn deposit
(a)the CO2-rich inclusion in the quartz(Q);(b)the carbonic fluid inclusion in the quartz(Q)mainly containing CO2 as well as a spot of N2;(c)the phase of CO2 in the CO2-rich inclusion mainly containing CO2 in the quartz(Q);(d)the secondary CO2-rich inclusion mainly containing CO2 as well as a spot of CH4 in the sphalerite
5 讨论 5.1 矿石的变形变质

VMS矿床主要形成于洋中脊和弧后、弧间裂谷环境,在其后的成岩过程中,尤其是俯冲造山和碰撞造山过程中经历了强烈的变形变质改造,甚至因强烈的构造变形形成矿石糜棱岩,在国内外常有报道,如瑞典Renstrom VMS矿床(Duckworth and Rickard, 1993)、辽宁红透山铜矿(顾连兴等,2004b)等。对块状硫化物矿床的矿石结构构造研究是探讨其变质过程的最佳窗口,一直以来倍受矿床学家重视(Stanton,1972; Vokes,1976; Craig and Vokes, 1993; Gu and McClay, 1992; Cook et al., 1994; Tiwary et al., 1998)。

研究表明,构造变形和动力变质作用所形成的矿石和矿化岩石,变形变质作用可以导致成矿物质的再活化(Remobilization)和富集(Marshall and Gilligan, 1987)。脉石矿物的压溶可使原矿石变富,硫化物的增生不仅可使原有矿层叠加变富,而且可将矿胚层改造成为工业矿体。VMS矿床在变形变质过程中部分矿石还遭受了韧性剪切作用(McClay,1983),形成了硫化物糜棱岩(Duckworth and Rickard, 1993)或矿石糜棱岩(Gu et al., 2007; 顾连兴等,2004b)。矿石糜棱岩的存在是在块状硫化物矿床内寻找富矿体的标志。阿尔泰铁木尔特、大东沟铅锌矿床矿石中反映压力-重结晶作用的各种结构构造发育,包括碎斑结构、交代结构、斑状变晶结构和碎裂结构以及塑性流动构造或皱纹构造、压力影等(Xu et al., 2011)。

塔拉特铅锌矿在晚石炭世以来的阿尔泰造山活动中也遭受了强烈的变形变质作用,受构造挤压,含矿层多处发生扭曲变形,条带状、层纹状硫化物矿石与围岩一起在不同程度上被改造。目前所保留下来的矿物变形结构主要是变质峰期和退变质过程的产物,反映压力-重结晶作用的各种矿石结构构造(邱柱国,1982)在显微镜下非常清楚,其特征具体表现为:碎斑结构和交代结构(图 4d,f)、塑性流动构造或皱纹状构造、斑状变晶结构、压力影和碎裂结构(图 4b)等,显示出区域构造应力对围岩、矿石形态的改造特征。前人研究已经发现,矿体中铜、铅和锌等硫化物的变形变质、压溶可使成矿组分发生再活化、富集。由于金属矿物在定向压力作用下抗压特征表现不同,再活化时产生了差异迁移,其结果是脆性矿物黄铁矿被压碎形成碎斑结构,而塑性矿物黄铜矿、方铅矿和闪锌矿却产生了的明显迁移(顾连兴等,2004b; Marshall and Gilligan, 1987)。塔拉特铅锌矿镜下见到较塑性的闪锌矿、方铅矿等被揉皱、拉长,并被黑云母、绿泥石和透闪石(阳起石)等切割交代(图 4d)。

与闪锌矿和方铅矿不同,黄铁矿未被半定向黑云母和白云母等脉石矿物所切割交代,常常以脆性变形为主,主要表现为适度的碎裂变形形成碎斑,其裂缝中常充填再活化的闪锌矿。有些黄铁矿的碎块可很好地拼合,并且裂隙中的闪锌矿与碎斑外侧的闪锌矿相连,这种填隙闪锌矿可以是固态再活化或塑性流动的产物,而裂隙的张开可能在一定程度上是由于闪锌矿的机械压入(顾连兴等,2004a);黄铁矿颗粒还可见剪切、压溶等现象,沿围岩片理方向呈长条状定向分布(图 4e)。塔拉特铅锌矿床的这些矿石结构构造反映了与动力变质有关的压力-重结晶作用特点,不是VMS的特征。因此塔拉特铅锌矿成矿作用不仅经过了VMS过程,其后期的变形变质过程也可能对成矿起了一定改造和叠加作用。

5.2 富CO2流体与变质作用P-T条件

变质流体是变质过程的主要动力学因素之一,与变质温度、压力具有同等重要的意义。变质流体包裹体是变质流体的样本,客观记录了变质过程的物理化学环境和地质信息,对于了解和阐明变质过程的物理化学条件、成岩成矿机制和变质动力学过程具有重要的意义。Phillips and Powell(1993)认为低盐度、较高温度和还原条件的CO2-H2O流体是变质成矿流体的共同特征。一些学者认为富CO2包裹体在高P-T条件下比含水包裹体更有利于保存原始流体性质和物理化学条件的信息(徐学纯,1996)。

塔拉特铅锌矿早期变质石英脉QI中原生H2O-CO2包裹体中CO2相密度集中分布于0.76~0.88g/cm3,均一温度为294~368℃,盐度为5.5%~7.4% NaCleqv;晚期含黄铁矿-黄铜矿石英脉Q原生H2O-CO2包裹体中CO2相密度集中变化于0.66~0.91g/cm3,均一温度为142~360℃,盐度为2.4%~16.5% NaCleqv。可以利用这些数据来限定塔拉特铅锌矿变质流体叠加改造过程的温压条件,选择单个LCO2-LH2O包裹体的由Th,CO2获得的密度及完全均一温度Th,total,并取盐度为6% NaCleqv,在Brown and Lamb(1989)的H2O-CO2-NaCl体系P-T相图上获得最小捕获压力300~330MPa。我们也可由碳质流体包裹体的Th,CO2范围-27.0~+28.7℃(表 1)限定Van den Kerkhof and Thiéry(2001)的CO2流体高温高压P-T相图中CO2等容线的上下限,用同一样品中共存的H2O-CO2包裹体的均一温度范围限定温度的范围(图 9),由此得出的富CO2变质流体的最小捕获压力范围为100~370MPa。由于估算采用的均一温度为捕获温度的下限,富CO2流体的实际捕获温度和压力应该高于368℃和370MPa,可能与臧文栓等(2007)利用石英变形研究获得的阿尔泰造山带韧脆性构造变形P-T条件300~450℃、250~400MPa相当。

图 9 阿尔泰南缘区域变质带、变形石英、塔拉特铅锌矿变质石英脉富CO2流体包裹体的P-T演化轨迹(底图据Van den Kerkhof and Thiéry,2001)Fig. 9 The pressure-temperature evolution path of the regional metamorphic belt on the southern margin of Altay,deformation quartz and CO2-rich fluid inclusions in the metamorphic quartz veins from Talate Pb-Zn deposit(The base plot after Van den Kerkhof and Thiéry,2001)

阿勒泰及克兰盆地周边地区位于红柱石-矽线石型递增变质带,而塔拉特铅锌矿位于变质带中变质程度相对较低的绿泥石-黑云母带和黑云母-石榴子石带(徐学纯等, 2005ab; 郑常青等,2005),其变质作用P-T范围分别为445~550℃、0.2~0.6GPa和480~566℃、0.54±0.22GPa(张翠光等,2007)(图 9)。塔拉特铅锌矿床的变质流体是变质峰期后的产物,富CO2包裹体的形成环境与造山带区域变质晚期或峰期后的P-T演化较为一致。

同属阿巴宫成矿带的铁木尔特铅锌矿床的形成也经历了喷流沉积期和叠加改造期,其中喷流沉积期是铅锌矿主要成矿期,叠加改造期是铜成矿的主要时期。耿新霞等(2010a)测得铁木尔特铅锌矿叠加改造期均一温度范围为150~480℃,盐度(NaCleqv)为2.2%~17.1%,流体密度变化于0.61~1.03g/cm3之间,叠加改造期流体为中高温度、中低盐度、中低密度的H2O-NaCl-CO2-CH4-N2体系。大东沟铅锌矿床也是克兰火山-沉积盆地的块状硫化物矿床之一,在石炭-二叠纪同造山的区域变质过程中受到热液叠加改造作用,层状铅锌矿体发育脉状石英和矿化。石英脉中碳质流体包裹体最低捕获温度在209~459℃之间,密度为0.75~1.15g/cm3,最低捕获压力在110~340MPa之间,碳质流体的来源与同造山的变质作用有关,而与海底喷流沉积无关(褚海霞等,2010)。徐九华等(20082009)重点研究了区域变质作用形成的含铜石英脉中的碳质流体,铁木尔特、大东沟铅锌(铜)矿床的矿化构造岩和晚期硫化物石英脉中发育极丰富的碳质(CO2-CH4-N2)流体,与碳质流体共生的LCO2-LH2O型包裹体均一温度为243~412℃(铁木尔特)和209~430℃(大东沟),碳质流体的捕获压力估计为180~300MPa,这些特征与区域变质的温压条件相当,与VMS无关。这种区域变质作用形成的碳质流体在克兰盆地具有普遍性,如在铁木尔特、大东沟铅锌矿区形成含铜石英脉、黄铁矿石英脉等,在萨热阔布则形成了金矿床。

克兰盆地造山运动过程中形成的区域性的流体为富CO2流体,它的运移对促进岩石变形、矿物变质以及重结晶作用产生重要影响。塔拉特铅锌矿床的矿石结构研究表明,早期闪锌矿-方铅矿被交代现象普遍,结合石英脉中富CO2流体的大量出现,说明变质流体参与了叠加改造作用,且具有多阶段的特点。流体和岩石相互作用致使矿体形态、矿石组构、矿石矿物成分等发生变化,早期形成的金属矿床更趋富集。

6 结论

(1)塔拉特铅锌矿可识别出2个明显的成矿期,即海相火山沉积喷流成矿期和变质热液叠加成矿期。海相火山沉积喷流成矿期矿体上部主要为层纹状、条带状铅锌矿石,底部为火山角砾岩型铅锌矿石,角砾为变晶屑凝灰岩等变质火山碎屑岩,胶结物中含浸染状闪锌矿、黄铁矿。变质热液叠加成矿期主要形成硫化物石英脉,可包括2个阶段:早阶段顺层的透镜状石英脉和晚阶段切层的含黄铁矿-黄铜矿石英脉。矿石中反映压力-重结晶作用的各种矿石结构构造清楚。

(2)塔拉特铅锌矿各阶段流体包裹体发育,主要类型为富CO2包裹体、碳质流体包裹体,其次有水溶液包裹体及少量含子矿物的多相流体包裹体。不同期次的包裹体特征:1)海相火山沉积喷流成矿期闪锌矿中存在残留的L-V盐水包裹体,后期次生的L-V及少量H2O-CO2包裹体;2)变质热液期早阶段透镜状石英脉(QI)赋存大量的H2O-CO2,及CO2±CH4包裹体;3)晚阶段切层含黄铁矿-黄铜矿石英脉(Q)中也有大量H2O-CO2、及CO2±CH4包裹体。

(3)早期变质石英脉QI中原生H2O-CO2包裹体均一温度为294~368℃,盐度为5.5%~7.4% NaCleqv;晚期含黄铁矿-黄铜矿石英脉Q原生H2O-CO2包裹体均一温度为142~360℃,盐度为2.4%~16.5% NaCleqv。在Brown and Lamb(1989)的H2O-CO2-NaCl体系P-T相图上获得最小捕获压力300~330MPa。利用碳质流体包裹体的Th,CO2范围和共存的H2O-CO2包裹体的均一温度范围得出的富CO2变质流体的最小捕获压力为100~370MPa。富CO2包裹体形成环境与造山带区域变质晚期或峰期后的P-T演化一致。

致谢 野外工作得到新疆有色地质勘查局706队及塔拉特铅锌矿许松利工程师等的大力支持;激光拉曼探针分析工作得到中国科学院地质与地球物理研究所范宏瑞研究员和文博杰博士的支持;审稿专家对论文初稿提出了宝贵的修改意见;在此一并表示衷心感谢!

参考文献
[1] Bodnar RJ. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684
[2] Bodnar RJ. 2003. Introduction to fluid inclusions. In: Samson I, Anderson A and Marshall D (eds.). Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course, 32: 1-8
[3] Brown PE and Lamb WM. 1989. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6): 1209-1221
[4] Chai FM, Mao JW, Dong LH, Yang FQ, Liu F, Geng XX, Zhang ZX and Huang CK. 2009. Geochronology and genesis of the meta-rhyolites in the Kangbutiebao Formation from the Kelang basin at the southern margin of the Altay, Xinjiang. Acta Petrologica Sinica, 25(6): 1403-1415 (in Chinese with English abstract)
[5] Chen HY, Chen YJ and Liu YL. 2001. Metallogenesis of the Ertix gold belt, Xinjiang and its relationship to Central Asia-type orogenesis. Science in China (Series D), 44(3): 245-255
[6] Chen YJ. 2000. Progress in the study of Central Asia-type orogenesis-metallogenesis in Northwest China. Geological Journal of China Universities, 6(1): 17-22 (in Chinese with English abstract)
[7] Chen YJ, Pirajno F, Wu G, Qi JP and Xiong XL. 2012. Epithermal deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917
[8] Chi GX and Lu HZ. 2008. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrologica Sinica, 24(9): 1945-1953 (in Chinese with English abstract)
[9] Chu HX, Xu JH, Lin LH, Wei XF, Wang LL and Chen DL. 2010. Carbonic fluid of the Dadonggou lead-zinc ore deposit in Altay and its genesis. Acta Petrologica et Mineralogica, 29(2): 175-188 (in Chinese with English abstract)
[10] Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435-1444
[11] Cook NJ, Klemd R and Okrusch M. 1994. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia. Mineralium Deposita, 29(1): 1-15
[12] Craig JR and Vokes FM. 1993. The metamorphism of pyrite and pyritic ores: An overview. Mineralogical Magazine, 57(1): 3-18
[13] Duckworth RC and Rickard D. 1993. Sulphide mylonites from the Renström VMS deposit, northern Sweden. Mineralogical Magazine, 57: 83-92
[14] Frezzotti ML, Tecce F and Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112: 1-20
[15] Geng XX, Yang FQ, Yang JM, Huang CK, Liu F, Chai FM and Zhang ZX. 2010a. Characteristics of fluid inclusions in the Tiemurte Pb-Zn deposit, Altay, Xinjiang and its geological significance. Acta Petrologica Sinica, 26(3): 695-706 (in Chinese with English abstract)
[16] Geng XX, Yang JM, Yao FJ, Yang FQ, Liu F and Chai FM. 2010b. Ore-search information extraction from remote sensing data and integrated analysis of multiple geochemical information for the Abagong lead-zinc deposit in the Altay region, Xinjiang, China. Geology and Exploration, 46(5): 942-952 (in Chinese with English abstract)
[17] Geng XX, Yang FQ, Chai FM, Liu M, Guo XJ, Guo ZL, Liu F and Zhang ZX. 2012. LA-ICP-MS U-Pb dating of volcanic rocks from Dadonggou ore district on southern margin of Altay in Xinjiang and its geological implications. Mineral Deposits, 31(5): 1119-1131 (in Chinese with English abstract)
[18] Goldfarb R, Mao JW, Hart C, Wang DH, Anderson E and Wang ZL. 2003. Tectonic and metallogenic evolution of the Altay Shan, northern Xinjiang Uygur Autonomous Region, Northwestern China. In: Mao JW, Goldforb RJ, Seltmann R, Wang D, Xiao W and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: Proceedings Volume of the International Symposium of the IGCP-473, IAGOD Guidebook Series 10: CERCAMS/NHM, 17-30
[19] Gu LX and McClay KR. 1992. Pyrite deformation in stratiform lead-zinc deposits of the Canadian Cordillera. Mineralium Deposita, 27(3): 169-181
[20] Gu LX, Tang XQ, Zheng YC, Wu CZ, Tian ZM, Lu JJ, Xiao XJ and Ni P. 2004a. Deformation, metamorphism and ore-component remobilization of the Archean massive sulphide deposit at Hongtoushan, Liaoning Province. Acta Petrologica Sinica, 20(4): 923-934 (in Chinese with English abstract)
[21] Gu LX, Tang XQ, Wu CZ, Lu JJ, Xiao XJ, Zheng YC, Ni P and Tian ZM. 2004b. Mechanisms of Cu-Au enrichment in ore mylonites of the Hongtoushan massive sulphide deposit, Liaoning, NE China. Earth Science Frontiers, 11(2): 339-351 (in Chinese with English abstract)
[22] Gu LX, Zheng YC, Tang XQ et al. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N. E. China. Ore Geology Reviews, 30(1): 1-29
[23] Han CM, Xiao WJ, Zhao GC, Mao JW, Yang JM, Wang ZL, Yan Z and Mao QG. 2006. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia. Ore Geology Reviews, 29(1): 77-94
[24] He GQ, Liu DQ, Li MS, Tang YL and Zhou RH. 1995. The five-stage model of crust evolution and metallogenic series of chief orogenic belts in Xinjiang. Xinjiang Geology, 13(2): 99-194 (in Chinese with English abstract)
[25] Jiang J. 2003. Geological characteristics and genesis of Tiemuerte polymetallic deposit. Xinjiang Nonferrous Metal, 26(2): 2-5 (in Chinese)
[26] Li DF, Zhang L and Chen YJ. 2013. Fluid inclusion study and ore genesis of the Talate Fe-Pb-Zn deposit in Altay, Xinjiang. Acta Petrologica Sinica, 29(1): 178-190 (in Chinese with English abstract)
[27] Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
[28] Liu F, Li YH, Mao JW, Yang FQ, Chai FM, Geng XX and Yang ZX. 2008. SHRIJMP U-Pb ages of the Abagong granites in the Altay Orogen and their geological implications. Acta Geoscientia Sinica, 29(6): 795-804 (in Chinese with English abstract)
[29] Liu M, Zhang ZH, Wang YQ and Guo XJ. 2008. Geology and stable isotope geochemistry of the Dadonggou Pb-Zn ore deposit, Altay, Xinjiang, NW China. Acta Geologica Sinica, 82(11): 1504-1513 (in Chinese with English abstract)
[30] Ma ZM, Qiu YJ and Guo XJ. 2001. Sarekuobu-Tiemierte gold polymetallic metallogenetic series in Xinjiang. Geology and Prospecting, 37(4): 23-26 (in Chinese with English abstract)
[31] Marshall B and Gilligan LB. 1987. An introduction to remobilization: Information from ore-body geometry and experimental considerations. Ore Geology Review, 2(1-3): 87-131
[32] McClay KR. 1983. Structural evolution of the Sullivan Fe-Pb-Zn-Ag orebody, Kimberley, British Columbia, Canada. Economic Geology, 78(7): 1398-1424
[33] Niu HC, Xu JF, Yu XY, Chen FR and Zheng ZP. 1999. Discovery of rich-Mg volcanic rock series and its geological implication. Chinese Science Bulletin, 44(9): 1002-1004 (in Chinese)
[34] Philips G and Powell R. 1993. Link between gold provinces. Economic Geology, 88(5): 1084-1098
[35] Qin YJ, Zhang L, Zheng Y, Liu CF and Chi HG. 2012. Fluid inclusion studies and the genesis of the Sarekuobu gold deposit, Xinjiang. Geotectonica et Metallogenia, 36(5): 227-239 (in Chinese with English abstract)
[36] Qiu ZG. 1982. Ore Petrography. Beijing: Geological Publishing House, 161-185 (in Chinese)
[37] Shan Q, Zeng QS, Luo Y, Yang WB, Zhang H, Qiu YZ and Yu XY. 2011. SHRIMP U-Pb ages and petrology studies on the potassic and podic rhyolites in Altai, North Xinjiang. Acta Petrologica Sinica, 27(12): 3653-3665 (in Chinese with English abstract)
[38] Shepherd TJ, Rankin AH and Alderton DHM. 1985. A Practical Guide to Fluid Inclusion Studies. Blackie: Chapman & Hall, 1-239
[39] Stanton RL. 1972. Ore Petrology. New York: McGraw-Hill Book Company, 1-713
[40] Sun M, Yuan C, Xiao WJ, Long XP, Zhao GC, Lin SF, Wu FY and Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the Early to Middle Palaeozoic. Chemical Geology, 247(3-4): 352-283
[41] Swanenberg HEC. 1979. Phase equilibria in carbonic systems, and their application to freezing studies of fluid inclusions. Contributions to Mineralogy and Petrology, 68(3): 303-306
[42] Thiéry R, Vidal J and Dubessy J. 1994. Phase equilibria modelling applied to fluid inclusions: Liquid-vapour equilibria and calculation of the molar volume in the CO2-CH4-N2 system. Geochimica et Cosmochimica Acta, 58(3): 1073-1082
[43] Tiwary A, Deb M and Cook NJ. 1998. Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulphide deposits: An example from Deri, southern Rajasthan, India. Mineralogical Magazine, 62(2): 197-212
[44] Van den Kerkhof A and Thiéry R. 2001. Carbonic inclusions. Lithos, 55(1-4): 49-68
[45] Vokes FM. 1976. Caledonian massive sulphide deposits in Scandinavia: A comparative review. In: Wolf KH (ed.). Handbook of Strata-bound and Stratiform Ore Deposits, Vol. 6. Amsterdam: Elsevier, 79-127
[46] Wan B and Zhang LC. 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallic metallogenic belt on the southern margin of Altaid, Xinjiang. Acta Petrologica Sinica, 22(1): 145-152 (in Chinese with English abstract)
[47] Wan B, Zhang LC and Xiang P. 2010a. The Ashele VMS-type Cu-Zn deposit in Xinjiang, NW China formed in a rifted arc setting. Resource Geology, 60(2): 150-164
[48] Wan B, Zhang LC and Xiao WJ. 2010b. Geological and Geochemical characteristics and ore genesis of the Keketale VMS Pb-Zn deposit, Southern Altai Metallogenic Belt, NW China. Ore Geology Reviews, 37(2): 114-126
[49] Wan B, Xiao WJ, Zhang LC and Han CM. 2012. Iron mineralization associated with a major strike-slip shear zone: Radiometric and oxygen isotope evidence from the Mengku deposit, NW China. Ore Geology Reviews, 44: 136-147
[50] Wang JB, Qin KZ, Wu ZL, Hu JH and Deng JN. 1998. Volcanic Exhalative-Sedimentary Lead Zinc Deposits in the Southern Margin of the Altay, Xinjiang. Beijing: Geological Publishing House, 1-210 (in Chinese)
[51] Wang SL, Chen KQ, Kang JC and Guo Q. 2007. Stable isotope of Pb-Zn deposits occurred in the Maizi Devonian volcanic-sedimentary basin in the south margin of Altay Mountain, Xinjiang. Geology and Prospecting, 43(6): 25-31 (in Chinese with English abstract)
[52] Wang T, Hong DW, Tong Y, Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640-650 (in Chinese with English abstract)
[53] Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin K and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161: 339-342
[54] Xiao WJ, Han CM, Yuan C, Chen HL, Sun M, Lin SF, Li ZL, Mao QG, Zhang JE, Sun S and Li JL. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062-1076 (in Chinese with English abstract)
[55] Xu JF, Chen FR, Yu XY, Niu HC and Zheng ZP. 2001. Kuerti ophiolite in Altay area of North Xinjiang: Magmatism of an ancient back-arc basin. Acta Petrologica et Mineralogica, 20(3): 344-352 (in Chinese with English abstract)
[56] Xu JH, Ding RF, Wei XF, Zhong CH and Shan LH. 2008. The source of hydrothermal fluids for the Sarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidence from fluid inclusions and geochemistry. Journal of Asian Earth Sciences, 32(2-4): 247-258
[57] Xu JH, Shan LH, Ding RF, Craig JH, Wang LL and Wei XF. 2008. Carbonic fluid inclusion assemblages and their geological significance at the Tiemurte lead-zinc deposit, Altay. Acta Petrologica Sinica, 24(9): 2094-2104 (in Chinese with English abstract)
[58] Xu JH, Lin LH, Wang LL, Chu HX, Wei XF and Chen DL. 2009. Deformation, metamorphism and carbonic fluids in VMS deposits of Kelan Basin, Altay. Mineral Deposits, 28(5): 585-598 (in Chinese with English abstract)
[59] Xu JH, Craig JH, Wang LL, Chu HX, Ding RF, Lin LH and Wei XF. 2011. Carbonic fluid overprints in volcanogenic massive sulfide deposits: Examples from the Kelan volcanosedimentary basin, Altaides, China. Economic Geology, 106(1): 145-158
[60] Xu XC. 1996. Advances in the study of metamorphic fluids. Earth Science Frontiers, 3(3-4): 200-208 (in Chinese with English abstract)
[61] Xu XC, Zheng CQ and Zhao QY. 2005a. Characteristics and evolution of progressive metamorphic belt in Chonghuer of the Altai area, Xinjiang. Geoscience, 19(3): 334-340 (in Chinese with English abstract)
[62] Xu XC, Zheng CQ and Zhao QY. 2005b. Metamorphic types and crustal evolution of Hercynian orogenic belt in Altai region, Xinjiang. Journal of Jilin University (Earth Science Edition), 35(1): 7-11 (in Chinese with English abstract)
[63] Yan XJ and Chen WM. 2001. Geological and geochemical study on Tiemierte-Qiaxia-Sarekuobu polymetallic gold deposit series. Mineral Resources and Geology, 85(15): 366-370 (in Chinese with English abstract)
[64] Yang FQ, Mao JW, Chai FM, Liu F, Zhou G, Geng XX, Liu GR and Xu LG. 2008. Ore-forming fluids and metallogenesis of Mengku iron deposit in Altay, Xinjiang. Mineral Deposits, 27(6): 659-680 (in Chinese with English abstract)
[65] Yang FQ, Zhang ZX, Qu WJ, Geng XX, Lü SJ, Chai FM, Jiang LP and Liu F. 2011. Re-Os age of molybdenite from the Mengku iron deposit in Altay, Xinjiang and its implication for metallogeny. Acta Geologica Sinica, 85(3): 396-404 (in Chinese with English abstract)
[66] Yin YQ, Yang YM, Li JX, Guo ZL and Guo XJ. 2005. Sedment-structural evolution and lead-zinc mineralization in the Devonian volcano-sedimentary Kelan basin in southern Altay, Xinjiang. Geotectonica et Metallogenia, 29(4): 475-481 (in Chinese with English abstract)
[67] Yu XY, Mei HJ, Yang XC et al. 1993. Ertix volcanic rocks and tectonic evolution. In: Tu GC (ed.). Progress of Solid-earth Science in Northern Xinjiang. Beijing: Science Press, 1-198 (in Chinese)
[68] Yuan JJ, Wang HN, Zhang HJ, Yang XF and Kang JC. 2011. Geological characteristics and prospecting range of Talate Fe-Pb-Zn deposit in Altay, Xinjiang. Science & Technology Information, (23): 61-64 (in Chinese)
[69] Zang WS, Chen BL, Wu GG, Zhang ZC and Yan SH. 2007. X-ray fabric analysis of deformed rocks in the eastern part of the Fuyun-Qinghe area, Altay, Xinjiang, China. Geological Bulletin of China, 26(9): 1189-1197 (in Chinese with English abstract)
[70] Zhang CG, Wei CJ, Hou RS, Hou LS and Pu XP. 2007. Phase equilibrium of low-pressure metamorphism in the Altaides, Xinjiang. Geology in China, 34(1): 34-41 (in Chinese with English abstract)
[71] Zhang L, Zheng Y and Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems. Journal of Asian Earth Sciences, 49: 69-79
[72] Zheng CQ, Xu XC, Enami M and Kato T. 2005. Features and PT condition study of the adnalusite-sillimanite type progressive metamorphic belt in Aletai, Xinjiang. Journal of Mineralogy and Petrology, 25(40): 45-51 (in Chinese with English abstract)
[73] Zheng Y, Zhang L, Chen YJ, Hollings P and Chen HY. 2013. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geology Reviews, 54: 167-180
[74] Zheng Y, Zhang L and Guo ZL. 2013. Zircon LA-ICP-MS U-Pb and biotite 40Ar/39Ar geochronology of the Tiemuert Pb-Zn-Cu deposit, Xinjiang: Implications for ore genesis. Acta Petrologica Sinica, 29(1): 191-204 (in Chinese with English abstract)
[75] 柴凤梅, 毛景文, 董连慧, 杨富全, 刘锋, 耿新霞, 张志欣, 黄承科. 2009. 阿尔泰南缘克朗盆地康布铁堡组变质火山岩年龄及岩石成因. 岩石学报, 25(6): 1403-1415
[76] 陈衍景. 2000. 中国西北地区中亚型造山-成矿作用的研究意义和进展. 高校地质学报, 6(1): 17-22
[77] 池国祥, 卢焕章. 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953
[78] 褚海霞, 徐九华, 林龙华, 卫晓峰, 王琳琳, 陈栋梁. 2010. 阿尔泰大东沟铅锌矿的碳质流体及其成因. 岩石矿物学杂志, 29(2): 175-188
[79] 耿新霞, 杨富全, 杨建民, 黄承科, 刘锋, 柴凤梅, 张志欣. 2010a. 新疆阿尔泰铁木尔特铅锌矿床流体包裹体研究及地质意义. 岩石学报, 26(3): 695-706
[80] 耿新霞, 杨建民, 姚佛军, 杨富全, 刘锋, 柴凤梅. 2010b. 新疆阿巴宫铅锌矿遥感找矿信息提取及地化多元信息综合分析. 地质与勘探, 46(5): 942-952
[81] 耿新霞, 杨富全, 柴凤梅, 刘敏, 郭旭吉, 郭正林, 刘锋, 张志欣. 2012. 新疆阿尔泰南缘大东沟铅锌矿区火山岩LA-ICP-MS锆石U-Pb定年及地质意义. 矿床地质, 31(5): 1119-1131
[82] 顾连兴, 汤晓茜, 郑远川, 吴昌志, 田泽满, 陆建军, 肖新建, 倪培. 2004a. 辽宁红透山铜锌块状硫化物矿床的变质变形和成矿组分再活化. 岩石学报, 20(4): 923-934
[83] 顾连兴, 汤晓茜, 吴昌志, 陆建军, 肖新建, 郑远川, 倪培, 田泽满. 2004b. 辽宁红透山块状硫化物矿床矿石糜棱岩铜金富集机制. 地学前缘, 11(2): 339-351
[84] 何国琦, 刘德权, 李茂松, 唐延龄, 周汝红. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, 13(2): 99-194
[85] 姜俊. 2003. 铁米尔特多金属矿床地质特征及成因探讨. 新疆有色金属, 26(2): 2-5
[86] 李登峰, 张莉, 陈衍景. 2013. 新疆阿尔泰塔拉特铁铅锌矿床流体包裹体研究及矿床成因. 岩石学报, 29(1): 178-190
[87] 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168
[88] 刘锋, 李延河, 毛景文, 杨富全, 柴凤梅, 耿新霞, 杨宗喜. 2008. 阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义. 地球学报, 29(6): 795-804
[89] 刘敏, 张作衡, 王永强, 郭旭吉. 2008. 新疆阿尔泰大东沟铅锌矿床地质特征及稳定同位素地球化学研究. 地质学报, 82(11): 1504-1513
[90] 马忠美, 仇银江, 郭旭吉. 2001. 萨热阔布-铁米尔特矿区金铅锌成矿系列. 地质与勘探, 37(4): 23-26
[91] 牛贺才, 许继锋, 于学元, 陈繁荣, 郑作平. 1999. 新疆阿尔泰富镁火山岩系的发现及其地质意义. 科学通报, 44(9): 1002-1004
[92] 秦雅静, 张莉, 郑义, 刘春发, 迟好刚. 2012. 新疆萨热阔布金矿床流体包裹体研究及矿床成因. 大地构造与成矿学, 36(5): 227-239
[93] 邱柱国. 1982. 矿相学. 北京: 地质出版社, 161-185
[94] 单强, 曾乔松, 罗勇, 杨武斌, 张红, 裘瑜卓, 于学元. 2011. 新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究. 岩石学报, 27(12): 3653-3665
[95] 万博, 张连昌. 2006. 新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨. 岩石学报, 22(1): 145-152
[96] 王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社, 1-210
[97] 王书来, 陈克强, 康吉昌, 郭全. 2007. 新疆阿尔泰山南缘产于麦兹泥盆纪火山-沉积盆地铅锌矿床稳定同位素特征. 地质与勘探, 43(6): 25-31
[98] 王涛, 洪大卫, 童英, 韩宝福, 石玉若. 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640-650
[99] 肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062-1076
[100] 许继峰, 陈繁荣, 于学元, 牛贺才, 郑作平. 2001. 新疆北部阿尔泰地区库尔提蛇绿岩: 古弧后盆地系统的产物. 岩石矿物学杂志, 20(3): 344-352
[101] 徐九华, 单立华, 丁汝福, Craig JH, 王琳琳, 卫晓锋. 2008. 阿尔泰铁木尔特铅锌矿床的碳质流体组合及其地质意义. 岩石学报, 24(9): 2094-2104
[102] 徐九华, 林龙华, 王琳琳, 褚海霞, 卫晓峰, 陈栋梁. 2009. 阿尔泰克兰盆地VMS矿床的变形变质与碳质流体特征. 矿床地质, 28(5): 585-598
[103] 徐学纯. 1996. 变质流体研究新进展. 地学前缘, 3(3-4): 200-208
[104] 徐学纯, 郑常青, 赵庆英. 2005a. 新疆阿尔泰地区冲乎尔递增变质带特征及其演化. 现代地质, 19(3): 334-340
[105] 徐学纯, 郑常青, 赵庆英. 2005b. 阿尔泰海西造山带区域变质作用类型与地壳演化. 吉林大学学报(地球科学版), 35(1): 7-11
[106] 闫新军, 陈维民. 2001. 铁米尔特-恰夏-萨热阔布多金属金矿床系列矿床地质地球化学研究. 矿产与地质, 85(5): 366-370
[107] 杨富全, 毛景文, 柴凤梅, 刘锋, 周刚, 耿新霞, 刘国仁, 徐林刚. 2008. 新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用. 矿床地质, 27(6): 659-680
[108] 杨富全, 张志欣, 屈文俊, 耿新霞, 吕书君, 柴凤梅, 姜丽萍, 刘锋. 2011. 新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义. 地质学报, 85(3): 396-404
[109] 尹意求, 杨有明, 李嘉兴, 郭正林, 郭旭吉. 2005. 新疆阿尔泰山南缘克兰盆地沉积构造演化与铅锌成矿. 大地构造与成矿学, 29(4): 475-481
[110] 于学元,梅厚均,杨学昌等. 1993. 额尔齐斯火山岩及构造演化. 见:涂光炽主编. 新疆北部固体地球科学新进展. 北京: 科学出版社, 1-198
[111] 袁建江, 王海宁, 张红军, 杨晓峰, 康吉昌. 2011. 新疆阿勒泰市塔拉特铁铅锌矿床地质特征及找矿方向. 科技信息, (23): 61-64
[112] 臧文栓, 陈柏林, 吴淦国, 张招崇, 闫升好. 2007. 阿尔泰富蕴-青河一带东段变形岩石X光组构分析. 地质通报, 26(9): 1189-1197
[113] 张翠光, 魏春景, 侯荣玖, 后立胜, 卜小平. 2007. 新疆阿尔泰造山带低压变质作用相平衡研究. 中国地质, 34(1): 34-41
[114] 郑常青, 徐学纯, Enami M, Kato T. 2005. 新疆阿勒泰红柱石-矽线石型递增变质带特征及其PT条件研究. 矿物岩石, 25(4): 45-51
[115] 郑义, 张莉, 郭正林. 2013. 新疆铁木尔特铅锌铜矿床锆石U-Pb和黑云母40Ar/39Ar年代学及其矿床成因意义. 岩石学报, 29(1): 191-204