2. 西北大学大陆动力学国家重点实验室, 西安 710069;
3. 中国科学院广州地球化学研究所矿物与成矿科学院重点实验室, 广州 510640;
4. 合肥工业大学资源与环境工程学院, 合肥 230009
2. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
3. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
4. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
岩浆热液作用相关的铜(金)钼矿床的研究揭示其与氧化状态的钙碱性侵入岩体有一定的空间关系(Blevin and Chappell, 1992; Hedenquist and Lowenstern, 1994; Sun et al., 2013)。这种相关性表明氧化的岩浆与形成铜(金)钼矿化过程有着必然的联系,很有可能包括氧化还原程度控制着岩浆硫化物的形成与溶解,以及它们对亲铜元素分配系数的影响(Ballard et al., 2002; Liang et al., 2006; Sun et al., 2013; Zhang et al., 2013)。地质勘查中,侵入岩体的氧化还原状态可以作为经验方法去鉴别含矿与不含矿岩浆热液系统。因此,确定岩浆氧化还原状态对于斑岩型铜钼矿床有着明显经济价值和科学研究价值。文献中曾报道过许多不同的方法来确定岩浆的氧化还原状态,如通过全岩的Fe(Ⅲ)/Fe(Ⅱ)比值,通过岩体中某些矿物如黑云母的化学组成(Zhao et al., 2005; Zhu et al., 2014; 徐耀明等,2013)、锆石的微量元素组成(Ballard et al., 2002; Liang et al., 2006; Wang et al., 2013,2014),岩体中含的一些特殊矿物如无水石膏及流体包裹体中赤铁矿子矿物等(李光明等, 2006,2007)。然而,通过Fe-Ti氧化物得到的氧化还原状态数据在岩体缓慢降温过程中容易发生变化,某些氧化还原指示指标,如全岩的Fe(Ⅲ)/Fe(Ⅱ)比值,或者岩体中所含的无水石膏等指示岩体氧化性的矿物,在后期水热蚀变和地表风化过程中很难得以保存(Ballard et al., 2002)。锆石是中酸性岩浆岩中常见的副矿物而且在后期热液蚀变以及物理化学过程中不易发生改变。而且,在锆石结晶过程中,Ce(Ⅳ)比Ce(Ⅲ)优先进入,这意味着Ce(Ⅳ)/Ce(Ⅲ)比值是一种敏感参数用以估算岩浆的氧化还原状态(Ballard et al., 2002; Liang et al., 2006)。
Ballard et al.(2002)通过计算锆石中Ce(Ⅳ)/Ce(Ⅲ)和Eu/Eu*比值,来确定不含矿岩体与含矿岩体的氧化还原状态随时间演化的过程。通过计算智利Chuquicamata-E1 Abra成矿带中七个与斑岩铜矿化有关的钙碱性侵入体,其锆石Ce(Ⅳ)/Ce(Ⅲ)(>300)和Eu/Eu*(>0.4)比值明显高于其它14个不含矿岩体。因此,Ballard et al.(2002)认为测量锆石的Ce(Ⅳ)/Ce(Ⅲ)比值是一种勘探斑岩型铜矿的有效方法。Liang et al.(2006)对西藏玉龙斑岩型铜矿的锆石Ce(Ⅳ)/Ce(Ⅲ)计算也进一步表明,含矿岩体中锆石的Ce(Ⅳ)/Ce(Ⅲ)比值明显高于不含矿岩体。对粤北大宝山含矿斑岩和江西德兴含矿斑岩的锆石研究表明(Li et al., 2012b; Zhang et al., 2013),其锆石Ce(Ⅳ)/Ce(Ⅲ)与智利含矿岩体锆石相似,也表明其形成于较为氧化的环境中。近期本课题组对南岭地区晚中生代花岗岩进行锆石年代学与地球化学研究中,发现位于广东省四会市的四会岩体其锆石也存在与粤北大宝山钼金矿床含矿岩体锆石有着相似的地球化学特征,本文拟通过对四会岩体的年代学与地球化学研究来探讨其成矿潜力。 1 地质背景
南岭地处华南腹地,其中生代岩浆活动极为强烈,并伴随着大规模的钨锡多金属成矿作用(华仁民等,2005; 毛景文等,2008)。南岭地区是我国乃至全球最重要的钨锡矿集中分布区。近些年来有许多新的成矿类型相继发现,如粤北地区的大宝山斑岩型钼钨矿床(Li et al., 2012b)和圆珠顶斑岩型钼铜矿床(钟立峰等,2010; 胡升奇等,2013),为南岭地区找矿勘探提供了新的勘探思路。
南岭地区出露地层分为三套,即震旦纪-志留纪的碎屑岩和变碎屑岩,为一套巨厚层、次深海相复理石碎屑岩建造,构成区内基底(李逸群和颜晓钟,1991);盖层为从泥盆纪到三叠纪广泛发育的滨海相、浅海相及海陆交互相沉积,大面积出露碳酸盐岩、泥灰岩夹碎屑岩;侏罗纪-白垩纪以断陷盆地中碎屑岩、火山岩和红层为代表。
南岭地区作为华南地块的一部分,其中生代以来受特提斯和印支造山的影响,断裂和褶皱以东西向为主,早-中侏罗世以来则主要受太平洋板块俯冲及后撤导致的弧后伸展作用的制约,形成了断裂系统及陆相盆地与花岗质火山-侵入岩相间的盆山体系(舒良树等,2008)。近些年来的大量高精度测年数据显示,南岭地区花岗岩基本形成于180~150Ma(Zhou et al., 2006; Li et al., 2007; 朱金初等,2006; Zhu et al., 2006,2009; 孙占亮,2014)。
四会岩体位于广东省四会市地豆镇境内(图 1)。Zhou et al.(2006)、孙涛(2006)将其归为燕山早期强过铝质花岗岩。由于本区风化强烈,植被茂盛,样品采集点位于一负地形采石场中。其岩性复杂,主要出露的岩石有:黑云母花岗岩、白云母花岗岩和钾长花岗岩。本文锆石定年样品选自其中的黑云母花岗岩(SH-1),并在采石场不同部位采集了9块新鲜岩石样品进行地球化学分析。
![]() | 图 1 南岭地区燕山期花岗岩分布地质简图(据孙涛,2006修改) Fig. 1 Sketch geological map of the Yanshanian granites in the Nanling region(after Sun,2006) |
全岩主、微量元素分析和锆石LA-ICP-MS定年均在中国科学院广州地球化学研究所同位素国家重点实验室完成。主量元素分析采用XRF(RIGAKU RIX 2100型)玻璃熔片法完成。微量元素采用ICP-MS(Perkin Elmer公司具动态反应池的Elan 6100 DRC)完成。粉末样品前处理保正样品间无交叉污染,分析方法与流程详见刘颖等(1996)。
锆石定年样品粉碎后经淘洗、磁选进行富集,最后挑出晶型较好的锆石放置于环氧树脂固定并进行抛光。锆石的阴极发光图像在JEOL JXA-8100型电子探针仪(EPMA)上完成。锆石U-Pb原位定年分析所使用的ICP-MS为Agilent 7500a,激光剥蚀系统为美国Resonetics公司深紫外(DUV)193nm ArF准分子(excimer)激光剥蚀系统,该剥蚀系统相对常规的266nm或213nm Nd: YAG剥蚀系统具有较小的元素分馏效应(Gao et al., 2002);更重要的是该激光剥蚀系统采用了双仓样品室,有效地提高了采样效率、降低交叉污染(涂湘林等,2011)。分析所采用的激光能量为80mJ,束斑直径为31μm,频率为10Hz。载气为He-Ar混合气。所剥蚀样品通过本系统所特有的信号平滑系统后进入ICPMS进行测试(涂湘林等,2011)。每进行5个样品分析就分析两个标准锆石TEMORA和NIST 610。U-Th-Pb含量计算以Si为内标、NIST610(Gao et al., 2003; Pearce et al., 1997)为外标进行。同位素比值、微量数据处理采用ICPMSDataCal 6.1进行(Liu et al., 2008)。年龄计算采用ISOPLOT(3.23版)(Ludwig,2003)进行,普通铅校正用ComPbCorr#3_17软件(Anderson,2002),详细分析方法见Yuan et al.(2003)。锆石Ce(Ⅳ)/Ce(Ⅲ)和EuN/EuN*计算基于Ballard et al.(2002)公式进行计算。 3 地球化学特征
四会岩体全岩主、微量元素分析结果列于表 1。四会岩体SiO2含量变化范围为68.74%~75.39%;全碱较高,Na2O+K2O在6.05%~9.29%,平均7.88%,且K2O>Na2O。在硅碱图解上主要落在花岗岩范围内(图 2a)。Al2O3含量为13.99%~15.81%,TiO2含量为0.04%~0.37%,全铁含量为0.01%~2.19%。铝饱和指数(A/CNK值)除了样品SH-8,主要落在0.99~1.14之间,主体落入弱过铝质花岗岩范围(图 2b)。四会花岗岩整体富硅、富钾,贫铁、钛。
| 表 1 四会岩体全岩主量(wt%)、微量(×10-6)元素含量 Table 1 Major(wt%) and trace(×10-6)element contents of the Sihui pluton |
![]() | 图 2 四会花岗岩SiO2-Na2O+K2O图解(a,底图据Middlemost,1994)和A/NK-A/CNK关系图解(b,底图据Maniar and Piccoli, 1989)
虚线为碱性系列与亚碱性系列划分界限(Irvine and Baragar, 1971) Fig. 2 The SiO2-Na2O+K2O diagram(a,after Middlemost,1994) and A/NK-A/CNK diagram(b,after Maniar and Piccoli, 1989)of the Sihui granites |
微量元素上,四会岩体全岩∑REE含量较高(137×10-6~524×10-6),配分型式具有明显右倾特征(图 3a),重稀土不亏损。Eu负异常中等-不明显(Eu/Eu*=0.57~0.98)。原始地幔标准化微量元素蛛网图整体呈右倾特征(图 3b),明显具有Rb、U、Pb的正异常和Ti、Nb的负异常。埃达克判别图解上(图 4),四会岩体表现为低Y和Yb含量,中等Sr/Y和(La/Yb)N的地球化学特征。在YbN-(La/Yb)N图解上基本落在埃达克岩范围内(图 4b)。在Sr/Y-Y图解上(图 4a),多数样品落在埃达克岩和岛弧岩浆岩之外,其可能由于斜长石等富Sr矿物的结晶分异导致的Sr含量下降引起的。
![]() | 图 3 四会花岗岩球粒陨石标准化稀土元素配分图(a)和元素地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 3 Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spider diagrams(b)of the Sihui granites(normalization values after Sun and McDonough, 1989) |
![]() | 图 4 四会花岗岩Y-Sr/Y(a)和YbN-(La/Yb)N (b)图解(底图据Defant and Drummond, 1990) Fig. 4 The Y-Sr/Y diagram(a) and YbN-(La/Yb)N diagram(b)of the Sihui granites(after Defant and Drummond, 1990) |
采集的XH-1样品的锆石多呈自形,长宽比约21,CL图像显示明显的振荡环带结构,个别锆石有内核或呈不规则状。总体上除个别锆石以外,多为典型的岩浆成因锆石特征(图 5)。20个锆石点分析点的Th含量变化于91×10-6~445×10-6,U变化于201×10-6~1133×10-6,锆石Th/U为0.11~0.70(表 2)。这20个分析点的206Pb/238U表面年龄为161~1069Ma,近半数锆石为捕获或继承锆石,其中10个分析点的年龄主要集中在161~174Ma,其它分析点则变化范围较大,没有成群分布。结合锆石CL图像,可以看出,有内核或者不规则状锆石年龄较老,协和度较差;振荡环带清晰 的锆石年龄数值小,协和度较好,除了点SH-1-13(协和度52%)之外。前者可能为四会岩体侵入过程中的捕获或继承锆石,后者则为岩浆结晶锆石。10颗最年轻锆石的206Pb/238U加权平均年龄为166.6±2.9Ma(MSWD=2.2)(图 6),不一致线下交点年龄为167.4±5.0Ma(MSWD=1.8),为四会岩体结晶年龄。
![]() | 图 5 锆石阴极发光图像及分析点位置和206Pb/238U年龄值 Fig. 5 Cathodoluminescence(CL)image and 206Pb/238U age of representative zircons from the Sihui granites |
![]() | 图 6 四会岩体锆石LA-ICP-MS U-Pb年龄谐和图 Fig. 6 Concordia diagram showing LA-ICP-MS U-Pb data for zircons from the Sihui pluton |
| 表 2 锆石LA-ICP-MS U-Pb定年分析结果 Table 2 LA-ICP-MS U-Pb zircon dating results for the Sihui granites |
四会岩体锆石年龄复杂,本文只计算代表成岩年代的10个有效测点的锆石Ce、Eu异常值。其中Ce(Ⅳ)/Ce(Ⅲ)变化范围为146~681,均值为414;Eu/Eu*范围为0.43~0.60,均值为0.49(表 3)。锆石的Ce(Ⅳ)/Ce(Ⅲ)值指示四会岩体成岩岩浆氧逸度较高,落在智利地区丘基卡马塔含矿岩体锆石范围内。四会岩体锆石Ce、Eu异常明显高于南岭地区同时代不含矿花岗岩和含钨锡矿花岗岩,与大宝山钼钨矿床含矿岩体相近,但低于德兴含矿斑岩(图 7)。
| 表 3 四会岩体锆石微量元素测试结果(×10-6) Table 3 Trace element concentrations of zircons from the Sihui pluton(×10-6) |
![]() | 图 7 四会岩体锆石稀土元素配分模式图 Fig. 7 REE distribution patterns of zircons from the Sihui pluton |
锆石成因是讨论锆石定年的基础。本次研究获得的锆石整体上自形,CL图像显示该批锆石具有明显的岩浆振荡环带,除个别锆石颗粒有小的核。此次研究的锆石明显具REE(尤其是HREE)富集特征,Th、U含量高,Th/U比值普遍比较高(>0.4),除两个小于0.1外,整体上所测试点均具有岩浆锆石特征。
根据对四会岩体锆石CL图像、稀土元素含量,以及Th、U含量和Th/U比值分析,认为本次分析岩石中的锆石,20点有效年龄数据在161~1069Ma之间,其中约10个最小年龄数据比较集中,加权年龄为166.6±2.9Ma;代表四会岩体的成岩时代。其余10个点年龄数据比较分散,变化范围较大,为早期捕获锆石信息。 5.2 岩石成因与构造背景
南岭地区早-中侏罗世以来主要受太平洋板块俯冲及后撤导致的弧后伸展作用的制约(Jiang et al., 2006; Zhou et al., 2006; Li and Li, 2007; Wang et al., 2011; Li et al., 2012a),形成了大面积的花岗岩(孙涛,2006; Zhou et al., 2006)。前人研究认为南岭燕山期花岗岩主要为陆壳重熔型花岗岩(华仁民等,2005)。
四会岩体具有高硅,富铝,落在准铝质范围内,部分还落在过铝质范围内,表明四会岩体源区可能有沉积物的加入。锆石分析结果表明,20个锆石分析点里有一半为继承与捕获锆石。在稀土配分和微量元素蛛网图上,四会岩体表现为轻稀土富集,重稀土亏损,轻重稀土分异明显的特征,同时亏损高场强元素(Nb、Ti)等,表明其源区主要由陆壳物质组成。
在Y-Sr/Y和YbN-(La/Yb)N图解上(图 4),四会岩体表现为低Y、Yb,高(La/Yb)N,而Sr/Y较埃达克岩略低,但大体可以落在埃达克质岩范围内。这与德兴铜矿含矿斑岩地球化学特征相似(Wang et al., 2006)。在Nb-Y构造图解上,四会岩体落在了与俯冲有关的同碰撞花岗岩区;在(Yb+Nb)-Rb图解上,四会岩体落在同碰撞和岛弧花岗岩之间(图 8)。目前对于埃达克岩的研究表明,其成因复杂。对于这些埃达克岩浆岩成因主要有:(1)壳幔物质相互作用的产物(Li et al., 2009);(2)拆沉或加厚下地壳物质部分熔融的产物(Xu et al., 2002; Wang et al., 2004,2006,2007; Xu et al., 2014);(3)俯冲洋壳部分熔融(Ling et al., 2009; Liu et al., 2010; Wang et al., 2013,2014)。四会岩体野外地质调查并未发现基性岩出露,同时四会花岗岩具有高硅的特征可能不支持幔源岩浆与壳源岩浆混合的特征。南岭地区中生代大规模岩浆活动可能指示该地区中生代有大规模的热源扰动,如地幔柱或者拆沉活动;但是从岩石组合特征上看,该地区并未出露与中酸性岩相伴生基性岩浆岩;同时,目前尚未有证据表明该地区存在过加厚的陆壳特征,因此四会埃达克质岩不是拆沉成因。前人研究认为南岭地区岩浆岩形成于古太平洋俯冲背景下(Li and Li, 2007; Zhou et al., 2006; Li et al., 2012c)。从现今地理位置看,南岭地区距俯冲带距离>800km。因此如果南岭地区受到古太平洋俯冲则表现为平板俯冲(Li and Li, 2007)。洋壳平板俯冲能够使俯冲板片受到充分加热而发生熔融,形成的岩浆则具有埃达克质特征。鉴于四会岩体锆石中出现的大量继承和捕获锆石,以及较高的硅含量,我们认为四会埃达克质岩体可能是俯冲板片熔融的熔体与重熔陆壳混合的产物;岩浆结晶锆石的高Ce、Eu异常值进一步说明四会岩体可能形成于俯冲构造背景之下。
![]() | 图 8 四会岩体Y-Nb(a)和(Yb+Nb)-Rb图解(b)(底图据Pearce et al., 1984) Fig. 8 Y-Nb and (Yb+Nb)-Rb diagram of the Sihui pluton(after Pearce et al., 1984) |
综合分析以上结果,我们认为四会岩体,是受太平洋板块俯冲,俯冲带熔体与地壳物质混熔形成的。 5.3 成矿潜力
近些年发现一些新的钼(铜)矿床,如大宝山钨钼铜矿床、园珠顶铜钼矿床等,开启了南岭地区铜钼矿找矿的方向。
四会花岗岩体由于研究工作有限,对于该岩体是否含矿前人还没有报道。越来越多对俯冲有关的浅成岩体的铜钼矿潜力评价研究表明,该类岩体是否成铜钼矿往往与岩浆的氧化程度密切相关(Ballard et al., 2002; Sillitoe,2010; Sun et al., 2004),最近的研究发现Ce(IV)/Ce(III)和Eu/Eu*能有效指示斑岩型矿床的成矿潜力(Ballard et al., 2002; Liang et al., 2006; Li et al., 2012d; Sun et al., 2013)。四会岩体Ce(IV)/Ce(III)变化范围为146~681,Eu/Eu*为0.41~0.6,落在智利地区丘基卡马塔含矿斑岩范围内,表明其成岩过程中有大量氧化岩浆存在。对比南岭地区中生代不含矿或含矿钨锡矿花岗岩(孙占亮,2014),四会花岗岩具有更高的Ce、Eu异常。四会岩体整体Ce、Eu异常明显低于德兴铜矿斑岩体,而与大宝山含钼矿花岗闪长斑岩的Ce(IV)/Ce(III)(大宝山岩体:13.9~414)、Eu/Eu*(大宝山岩体:0.14~0.70)接近(图 9)。研究表明,控制铜金矿床成矿的一个关键因素就是岩体的氧逸度特征,高氧逸度熔体更有成矿的潜力。岩浆的氧逸度控制着熔体中硫的氧化状态:在低氧逸度情况下,岩浆中的硫主要以S2-的形式存在;而在高氧逸度情况下,它主要以SO42-和SO2的形式存在。S2-向SO42-或SO2转换能阻止不混溶的硫化物相的饱和,从而能从正在分馏的熔体中提取Cu(Mo)-Au(Sun et al., 2004)。这时高氧逸度岩浆中铜元素在分异和分馏中富集,进入岩浆-热液流体中,从而成矿。大宝山含矿岩体具有富集铜钼元素的特征也正是由于其较高的氧逸度特征。四会岩体与大宝山岩体氧逸度的相似性以及其表现出的埃达克质特征指示四会岩体周边可能具有发现相关铜钼矿床的潜力。
![]() | 图 9 四会花岗岩锆石Ce4+/Ce3+-Eu/Eu*相关图解
丘基卡马塔数据引自Oyarzun et al., 2001;德兴数据引自Zhang et al., 2013;大宝山数据引自Li et al., 2012b,南岭地区花岗岩数据孙占亮等,2014
Fig. 9 Diagram of Ce4+/Ce3+ vs. Eu/Eu* of zircon from the Sihui granites
|
总之,四会岩体和粤北大宝山含矿斑岩高度的相似性,表明该岩体具有较大的成铜钼矿潜力,可以作为日后找矿工作的重点地区。 6 结论
(1)本次研究LA-ICP-MS锆石U-Pb定年结果,所获得的10个最小定年结果加权平均年龄166.6±2.9Ma,代表四会岩体的成岩时代。其余10个较大的定年结果,均代表早期捕获锆石信息。
(2)地质和地球化学资料表明四会岩体具有高硅、La/Yb、Sr/Y,低Y、Yb等埃达克质岩特征,同时其源区具有较高的氧逸度特征,是俯冲背景下,由俯冲板片熔融的熔体与地壳熔体混合形成。
(3)将四会岩体和与其位置接近的粤北含矿大宝山斑岩进行对比,发现二者在岩石成因、成岩时代和岩石组成上有很多相似之处,尤其是能指示斑岩型矿床含矿潜力标志的Ce(IV)/Ce(III)和Eu/Eu*也很接近,推测四会岩体很可能是潜在的斑岩型铜钼岩体。
致谢 本文得到匿名审稿人细致认真的审阅,他们的宝贵修改意见对提高文章的质量有很大帮助,在此表示衷心感谢。| [1] | Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 |
| [2] | Ballard JR, Palin JM and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364 |
| [3] | Blevin PL and Chappell BW. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 305-316 |
| [4] | Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 |
| [5] | Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter, 26(2): 181-195 |
| [6] | Gao S, Liu XM, Yuan HL, Hattendorf B, Gunther D, Chen L and Hu SH. 2003. Analysis of forty-two major and trace elements in USGS and NIST SRM glasses by LA-ICPMS. Geochimica et Cosmochimica Acta, 67(18) Supplement: 116 |
| [7] | Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527 |
| [8] | Hu SQ, Zhu Q, Zhang XJ, Yi SH, Peng SB, Zhou GF, Wu LB and Chen HH. 2013. Geochronology, geochemistry and zircon Hf isotope of granite porphyry in Yuanzhuding Cu-Mo deposit, Guangdong Province. Mineral Deposits, 32(6): 1139-1158 (in Chinese with English abstract) |
| [9] | Hua RM. 2005. Differences between rock-forming and related ore-forming times for the Mesozoic granitoids of crust remelting types in the Nanling range, South China, and its geological significance. Geological Review, 51(6): 633-639 (in Chinese with English abstract) |
| [10] | Hua RM, Chen PR, Zhang WL, Yao JM, Lin JF, Zhang ZS and Gu SY. 2005. Metallogeneses and their geodynamic settings related to Mesozoic granitoids in the Nanling Range. Geological Journal of China Universities, 11(3): 291-304 (in Chinese with English abstract) |
| [11] | Ivrine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8(5): 523-548 |
| [12] | Jiang YH, Jiang SY, Zhao KD and Ling HF. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting. Geological Magazine, 143(4): 457-474 |
| [13] | Li CY, Wang FY, Hao XL, Ding X, Zhang H, Ling MX, Zhou JB, Li YL, Fan WM and Sun WD. 2012a. Formation of the world's largest molybdenum metallogenic belt: A plate-tectonic perspective on the Qinling molybdenum deposits. International Geology Review, 54(9): 1093-1112 |
| [14] | Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012b. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 |
| [15] | Li GM, Li JX, Qin KZ, Zhang TP and Xiao B. 2006. Preliminary study on alteration and mineralization features and high-oxidated ore-forming fluids at Duobuza super-large Au-rich porphyry Cu deposit, western Tibet. Mineral Deposits, 25(S): 411-414 (in Chinese with English abstract) |
| [16] | Li GM, Li JX, Qing KZ, Zhang TP and Xiao B. 2007. High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt, Tibet: Evidence from fluid inclusions. Acta Petrologica Sinica, 23(5): 935-952 (in Chinese with English abstract) |
| [17] | Li GM, Li JX, Qin KZ, Dou J, Zhang TP, Xiao B and Zhao JX. 2012d. Geology and hydrothermal alteration of the Duobuza gold-rich porphyry copper district in the Bangongco metallogenetic belt, northwestern Tibet. Resource Geology, 62(1): 99-118 |
| [18] | Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204 |
| [19] | Li XH, Li WX, Wang XC, Li QL, Liu Y and Tang GQ. 2009. Role of mantle-derived magma in genesis of Early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Science in China (Series D), 52(9): 1262-1278 |
| [20] | Li XH, Li ZX, He B, Li WX, Li QL, Gao YY and Wang XC. 2012c. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195-207 |
| [21] | Li YQ and Yan XZ. 1991. Mineralogy of Tungsten Deposits in Nanling and Neighbouring Area, China. Wuhan: China University of Geosciences Press (in Chinese) |
| [22] | Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182 |
| [23] | Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159 |
| [24] | Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, 104(2): 303-321 |
| [25] | Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178 |
| [26] | Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract) |
| [27] | Liu YS, Hu ZK, Gao S, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 |
| [28] | Ludwig KR. 2003. User's Manual for Isoplot/Exersion 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center: Special Publication, 1-70 |
| [29] | Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 101(5): 635-643 |
| [30] | Mao JW, Xie GQ, Guo CL, Yuan SD, Chen YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract) |
| [31] | Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215-224 |
| [32] | Oyarzun R, Marquez A, Lillo J, López I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineral. Deposita, 36(8): 794-798 |
| [33] | Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 |
| [34] | Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR and Chenery SP. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21(1): 115-144 |
| [35] | Shu LS, Yu JH, Jia D, Wang B, Sheng WZ and Zhang YQ. 2008. Early Paleozoic orogenic belt in the eastern segment of South China. Geological Bulletin of China, 27(10): 1581-1593 (in Chinese with English abstract) |
| [36] | Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41 |
| [37] | Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 |
| [38] | Sun T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract) |
| [39] | Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978 |
| [40] | Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275 |
| [41] | Sun ZL. 2014. Geochronology and oxygen fugacity of Mesozoic granites in Nanling area of South China. Journal of Earth Sciences and Environment, 36(1): 141-151 (in Chinese with English abstract) |
| [42] | Tu XL, Zong H, Deng WF, Ling MX, Liang HY, Liu Y and Sun WD. 2011. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica, 40(1): 83-98 (in Chinese with English abstract) |
| [43] | Wang FY, Ling MX, Ding X, Hu YH, Zhou JB, Yang XY, Liang HY, Fan WM and Sun WD. 2011. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704-726 |
| [44] | Wang FY, Liu SA, Li SG and He YS. 2013. Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu-Au mineralization. Lithos, 156-159: 97-111 |
| [45] | Wang FY, Liu SA, Li SG, Akhtar S and He YS. 2014. Zircon U-Pb ages, Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen, eastern China: Constraints on their petrogenesis, tectonic implications and Cu mineralization. Lithos, 200-201: 299-316 |
| [46] | Wang Q, Zhao ZH, Bao ZW, Xu JF, Liu W, Li CF, Bai ZH and Xiong XL. 2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in Southeast Hubei, East China. Resource Geology, 54(2): 137-152 |
| [47] | Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144 |
| [48] | Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P and Zi F. 2007. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. The Journal of Geology, 115(2): 149-161 |
| [49] | Xu JF, Shinjo R, Defant MJ, Wang QA and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: Partial melting of delaminated lower continental crust. Geology, 30(12): 1111-1114 |
| [50] | Xu YM, Jiang SY, Zhu ZY, Zhou W, Kong FB, Sun MZ and Xiong YG. 2013. Geochronology, geochemistry and mineralogy of ore-bearing and ore-barren intermediate-acid intrusive rocks from the Jiurui ore district, Jiangxi Province and their geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310 (in Chinese with English abstract) |
| [51] | Xu YM, Jiang SY, Zhu ZY, Yang SY and Zhou W. 2014. Petrogenesis of late Mesozoic granitoids and coeval mafic rocks from the Jiurui district in the Middle-Lower Yangtze metallogenic belt of eastern China: Geochemical and Sr-Nd-Pb-Hf isotopic evidence. Lithos, 190-191: 467-484 |
| [52] | Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. Determination of U-Pb age and rare earth Element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 1151-1520 |
| [53] | Zhang H, Ling MX, Liu YL, Tu XL, Wang FY, Li CY, Liang HY, Yang XY, Arndt NT and Sun WD. 2013. High oxygen fugacity and slab melting linked to Cu mineralization: Evidence from Dexing porphyry copper deposits, southeastern China. Journal of Geology, 121: 289-305 |
| [54] | Zhao KD, Jiang SY, Jiang YH and Wang RC. 2005. Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province, South China: Implication for the genesis of granite and related tin mineralization. European Journal of Mineralogy, 17(4): 635-648 |
| [55] | Zhong LF, Xia B, Liu LW, Li J, Lin XG, Xu LF and Lin ZL. 2010. Metallogenic geochronology of Yuanzhuding Cu-Mo deposit in western Guangdong-eastern Guangxi metallogenic belt and its geological significance. Mineral Deposits, 29(3): 395-404 (in Chinese with English abstract) |
| [56] | Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33 |
| [57] | Zhu JC, Zhang PH, Xie CF, Zhang H and Yang C. 2006. Zircon U-Pb age framework of Huashan-Guposhan intrusive belt, western part of Nanling Range, and its geological significance. Acta Petrologica Sinica, 22(9): 2270-2278 (in Chinese with English abstract) |
| [58] | Zhu JC, Wang RC, Zhang PH, Xie CF, Zhang WL, Zhao KD, Xie L, Yang C, Che XD, Yu AP and Wang LB. 2009. Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Science in China (Series D), 52(9): 1279-1294 |
| [59] | Zhu ZY, Jiang SY, Hu J, Gu LX and Li JW. 2014. Geochronology, geochemistry, and mineralization of the granodiorite porphyry hosting the Matou Cu-Mo (±W) deposit, Lower Yangtze River metallogenic belt, eastern China. Journal of Asian Earth Sciences, 79(Part B): 623-640 |
| [60] | 胡升奇, 朱强, 张先进, 易顺华, 彭松柏, 周国发, 吴林波, 陈海红. 2013. 广东园珠顶铜钼矿床花岗斑岩年代学、地球化学特征及锆石Hf同位素. 矿床地质, 32(6): 1139-1158 |
| [61] | 华仁民. 2005. 南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义. 地质论评, 51(6): 633-639 |
| [62] | 华仁民, 陈培荣, 张文兰, 姚军明, 林锦富, 张展适, 顾晟彦. 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304 |
| [63] | 李光明, 李金祥, 秦克章, 张天平, 肖波. 2006. 西藏多不杂超大型富金斑岩铜矿的蚀变-矿化特征及高氧化成矿流体初步研究. 矿床地质, 25(增刊): 411-414 |
| [64] | 李光明, 李金祥, 秦克章, 张天平, 肖波. 2007. 西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体: 流体包裹体证据. 岩石学报, 23(5): 935-952 |
| [65] | 李逸群, 颜晓钟. 1991. 中国南岭及邻区钨矿床矿物学. 武汉: 中国地质大学出版社, 1-455 |
| [66] | 刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558 |
| [67] | 毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526 |
| [68] | 舒良树, 于津海, 贾东, 王博, 沈渭洲, 张岳桥. 2008. 华南东段早古生代造山带研究. 地质通报, 27(10): 1581-1593 |
| [69] | 孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335 |
| [70] | 孙占亮. 2014. 华南南岭地区中生代花岗岩体年代学及氧逸度特征. 地球科学与环境学报, 36(1): 141-151 |
| [71] | 涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83-98 |
| [72] | 徐耀明, 蒋少涌, 朱志勇, 周巍, 孔凡斌, 孙明志, 熊永根. 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291-4310 |
| [73] | 钟立峰, 夏斌, 刘立文, 李杰, 林秀广, 徐力峰, 林良庄. 2010. 粤西-桂东成矿带园珠顶铜钼矿床成矿年代学及其地质意义. 矿床地质, 29(3): 395-404 |
| [74] | 朱金初, 张佩华, 谢才富, 张辉, 杨策. 2006. 南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义. 岩石学报, 22(9): 2270-2278 |
2015, Vol. 31









