岩石学报  2015, Vol. 31 Issue (3): 701-708   PDF    
江西彭山锡多金属矿集区尖峰坡锡矿床LA-MC-ICP-MS锡石U-Pb测年及其地质意义
徐斌1, 蒋少涌1,2 , 罗兰1    
1. 南京大学内生金属矿床成矿机制研究国家重点实验室, 地球科学与工程学院, 南京 210093;
2. 中国地质大学地质过程与矿产资源国家重点实验室, 资源学院和紧缺矿产资源勘查协同创新中心, 武汉 430074
摘要:江西彭山锡多金属矿集区位于江西省德安县,处于钦杭成矿带东段靠扬子板块一侧,是扬子板块东南缘地区一个重要的锡多金属矿集区。目前该地区尚缺乏精确可靠的成矿年代学资料。本文应用LA-MC-ICP-MS微区原位U-Pb同位素测年技术,对矿集区内尖峰坡矿床中锡石样品进行了研究,获得尖峰坡锡矿的206Pb/207Pb-238U/207Pb等时线年龄129.7±2.5Ma (N=31,MSWD=5.5),207Pb/206Pb-238U/206Pb谐和年龄为128.3±2.5Ma (N=31, MSWD=7.6),表明尖峰坡矿区锡成矿作用主要发生在早白垩世,与已报道的彭山地区燕山期花岗岩的成岩年龄相一致。紧密的时间以及空间关系显示燕山晚期岩浆-热液活动对形成彭山锡多金属矿集区的大规模成矿作用至关重要。对华南地区锡钨区域成矿年代学对比表明,扬子板块东南缘的锡钨成矿带均形成于早白垩世 (146~124Ma),这与其北侧的长江中下游成矿带九瑞-鄂东南铜多金属矿集区的成岩成矿时代相同,而明显不同于南岭地区晚侏罗世 (160~150Ma) 以及滇东南-桂西北地区晚白垩世 (98~76Ma) 的锡钨成矿作用,说明扬子板块东南缘具有与南岭以及滇东南-桂西北地区不同的锡钨成矿背景,而应与长江中下游地区的构造岩浆作用事件统一来开展深入研究。
关键词锡石     LA-MC-ICP-MS     U-Pb年龄     尖峰坡锡矿床     彭山锡多金属矿集区     江西    
LA-MC-ICP-MS U-Pb dating of cassiterite from the Jianfengpo Sn deposit in the Pengshan Sn-polymetallic ore field, Jiangxi Province and its geological significance
XU Bin1, JIANG ShaoYong1,2 , LUO Lan1    
1. State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China;
2. State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Resources and Collaborative Innovation Center for Exploration of Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, China
Abstract: The Pengshan Sn-polymetallic orefield in De'an County, Jiangxi Province lies in the east part of Qinzhou-Hangzhou metallogenic belt which belongs to Yangtze Block. There have no report on the precise dating for the tin-polymetallic mineralization in this district before. Here we report for the first time in-situ U-Pb data on cassiterite obtained by LA-MC-ICP-MS from the Jiangfengpo tin deposit. In this study, we obtain a 206Pb/207Pb-238U/207Pb isochron age of 129.7±2.5Ma (N=31,MSWD=5.5) and a 207Pb/206Pb-238U/206Pb concordia age of 128.3±2.5Ma (N=31, MSWD=7.6) for the cassiterite samples. These ages indicate that the Sn-mineralization took place during Early Cretaceous, which are corresponding to the Later Yanshanian magmatic event in the Pengshan area. The close temporal and spatial link between the pluton's emplacement and tin mineralization suggest that the Later Yanshanian magmatic hydrothermal events were the key factor for the formation of the Sn polymetallic deposits in the Pengshan area. The regional geochronological data show that Sn-W mineralization took place during Early Cretaceous (146~124Ma) in the southeastern margin of the Yangtze Block (SMYB), which are similar to the Cu-polymetallic mineralization ages of the Jiurui-E'dongnan ore districts on the Middle-Lower Yangtze River Metallogenic Belt (MLYRMB) but different to the Sn-W mineralization ages of the Later Jurassic (160~150Ma) in Nanling area and the Later Cretaceous (98~76Ma) in the southeastern Yuannan and northwestern Guangxi area in South China. The available data suggested that the Sn-W mineralization in the SMYB, which was under different tectonic setting from that in Nanling and southeastern Yuannan and northwestern Guangxi area, may be influenced by the tectono- magmatism of the MLYRMB.
Key words: Cassiterite     LA-MC-ICP-MS     U-Pb age     Jianfengpo tin deposit     Pengshan Sn-polymetallic orefield     Jiangxi Province    

矿床学的研究,包括成矿物质、成矿流体与成矿时代三个重要方面,其中矿床形成年代的准确测定,对于揭示矿床的形成过程、厘定矿床的成因以及对进一步找矿勘查都具有极其重要的意义。然而由于成矿作用的复杂性,多期性以及在许多矿床中均缺乏合适的可用于同位素定年的矿石矿物,矿床的同位素年代学研究一直进展缓慢,这已经成为矿床学研究的一个制约因素。目前传统的定年方法多为一些间接的方法,如对一些热液蚀变矿物(云母、长石)的同位素定年,这些间接的方法很多情况下并不反映真正的成矿年龄。如热液蚀变矿物的定年测试只能代表热液蚀变事件的年龄,但在很多矿床热液蚀变事件往往是多期的且并不一定与成矿事件同时。相对于这些间接方法,直接对矿石矿物或者成矿流体进行同位素年代的确定,得到的就是直接的成矿年龄。在过去的几十年中,对矿石矿物直接的同位素定年引起了越来越广泛的关注(Gulson and Jones, 1992; Jiang et al., 2000; Koöler et al., 2003;李惠民等,2009; 刘玉平等,2007; Mao et al., 199920032006; Nakai et al., 1990; Peng et al., 20032006; Selby et al., 2002; Stein et al., 2001; Wan et al., 2009; Yuan et al., 2011; 袁顺达等,2010)。近年来,得益于新一代高精度、高灵敏度的同位素测试仪器的开发和利用,对金属矿床进行直接定年的方法得到了长足的进展。如激光烧蚀电感耦合等离子质谱技术(LA-ICP-MS)对于锆石以及其他含U副矿物的原位U-Pb测定。相比于同位素稀释的表面热电离质谱定年技术(ID-TIMS),LA-(MC)-ICP-MS技术在取样的空间分辨率以及制样的方便程度上都具有明显的优势(Willgers et al., 2002)。

在锡多金属矿床中,锡石不仅是普遍出现的含锡矿物,同时也可以作为副矿物广泛出现在岩浆侵入体中。锡石属于金红石族矿物,具有比较稳定化学结构,其晶格内一般可容纳高含量的U并且不易受后期热液作用的影响(Jiang et al. 2004; 刘玉平等,2007)。因此比较适合作为锡多金属矿床的直接定年矿物。目前已经报道有一系列关于锡石U-Pb同位素定年的研究(Gulson and Jones, 1992; 李惠民等,2009; 李开文等,2013; 刘玉平等,2007; 马楠等,2013; Yuan et al., 2011; 袁顺达等,2010; 张东亮等,2011; 王小娟等,2014)。

彭山锡多金属矿集区位于扬子板块东南缘,以锡铅锌矿化为特色,是一个近年来才取得重大找矿突破的新的矿集区,初步预测全区锡金属资源总量可达30万吨,铅锌金属资源远景在150万吨以上(卢树东等,2004a)。区内从北到南分布有黄金洼锡矿、曾家垄锡矿、尖峰坡锡矿以及张十八铅锌矿等矿床。这些矿床共同围绕区内燕山期花岗岩侵入体分布。由于长期以来缺少精确可靠的成矿年代学判据,对彭山矿集区的矿床成因存在不同的认识,如岩浆热液成因(卢树东等, 2004abc2005),同生沉积-热液改造成因(徐克勤等,1984邹文学,1988; 陈骏等,2000)。本文通过以区内最典型的层状矿床-尖峰坡锡矿为例,通过系统的LA-MC-ICP-MS锡石U-Pb定年,从而对彭山矿集区锡矿化作用与燕山期岩浆热液作用的关系进行限定,有助于更好的理解彭山矿集区的锡成矿机理。众所周知,我国的锡钨矿主要位于华夏地块内部的南岭地区,本次工作通过对扬子板块东南缘彭山锡多金属矿集区的测样分析,厘定尖峰坡矿床的成矿时代,研究该区与南岭地区锡钨成矿特征的异同点,为进一步找矿工作提供依据。 1 地质概况

江西彭山锡多金属集矿区位于扬子板块和华夏板块交接地带——钦杭成矿带的东段,偏扬子板块一侧(图 1)。区域构造上,彭山地区呈一个南北向伸展的短轴背斜(又称彭山穹窿),其周围分布有一系列环弧状层间滑动断裂以及放射状断裂(卢树东等,2004a)。其中有一组南北向深断裂纵切整个彭山穹窿构造。区内地层发育较为齐全,晚元古代地层以大洋浊积岩系沉积为主,夹细碧角斑岩及远洋软泥。震旦系至中三叠世以碳酸盐岩沉积为主,常夹碎屑岩及泥岩。晚三叠世及早侏罗世地层缺失。其穹窿褶皱核部主要由震旦系地层组成,翼部主要由寒武系-奥陶系碳酸盐岩层及页岩层组成,最外圈为志留系。穹窿北翼和东翼较开阔,岩层产状相对平缓,南翼和西翼地层倾角较陡,总体呈北缓南陡、内缓外陡、上缓下陡(马长信,1989)。环弧状层间滑动断裂常伴有厚度变化较大的断层角砾岩,是重要的导矿、控矿空间。区内岩浆活动强烈,主体的燕山期隐伏花岗岩位于彭山穹窿构造北部近轴部的转折位置,平面上呈南北向伸展。其主要由中深成相的二云母碱长花岗岩和黑云母二长花岗岩组成。岩体侵入于震旦系至寒武系地层之中。罗兰等(2010)通过SHRIMP和LA-ICP-MS锆石U-Pb定年表明,该岩体年龄为128~129Ma,属于燕山晚期岩浆活动产物。详细的地球化学分析显示彭山隐伏岩体是一个高分异I型花岗岩(罗兰等,2010)。

图 1 彭山锡多金属矿集区地质图(据卢树东等,2006)Fig. 1 Geological map of the Pengshan Sn polymetallic ore deposits(after Lu et al., 2006)

区内黄金洼锡矿、曾家垄锡矿、尖峰坡锡矿以及张十八铅锌矿床分布于彭山穹窿四周(图 2)。彭山矿集区以层状矽卡岩型矿体为主,其次为云英岩型以及规模较小的石英-方解石脉状矿体。这些矽卡岩型的锡(铅锌)矿体主要呈层状、似层状分布于隐伏岩体的内外接触带。矿石中金属矿物主要为锡石、磁黄铁矿、磁铁矿,黄铁矿,毒砂及马来亚石,脉石矿物主要为石榴石、透辉石,符山石、阳起石、石英、方解石、白云石、云母及萤石等。矿石结构主要以半自形-自形粒状结构、包含结构、充填交代结构、交代残余结构及固溶体分离结构等,矿石构造以浸染状、块状、条带状、角砾状多孔状构造等(卢树东等,2005)。

图 2 彭山地区剖面图(据卢树东等,2004b)Fig. 2 The transverse section of the Pengshan district(after Lu et al., 2004b)

本研究以彭山矿集区中尖峰坡锡矿为主要对象,该研究区地处彭山穹窿核部偏东侧,区内出露地层主要有震旦系和寒武系,圈定的锡矿体主要赋存于震旦系灰岩和砂砾岩中。矿体呈层状产出,严格受层位控制。矿石主要金属矿物有锡石、铁闪锌矿、毒砂、黄铁矿、黄铜矿和磁黄铁矿等。脉石矿物主要有石英、透辉石、透闪石、方解石和阳起石等。矿石构造以浸染状、块状、脉状为主,结构有交代结构、包含结构等。围岩蚀变主要有矽卡岩化、绢云母化、硅化、萤石化、云英岩化等。 2 LA-MC-ICP-MS锡石微区原位U-Pb测年分析

本次分析的样品采自尖峰坡矿区(图 2)。光薄片显微镜观察显示,锡石颜色多为黄褐色至深褐色,部分出现裂理(图 3)。进行U-Pb测年的锡石单矿物样品,采用常规重选法粗选,然后在双目镜下挑纯。

图 3 尖峰坡锡矿床锡石反射光(a、b)、透射光(c、d)和电子探针背散射(e、f)图像Fig. 3 Reflected(a,b),transmission(c,d) and electronic microprobe SEM(e,f)images of cassiterite from the Jianfengpo tin deposit

锡石U-Pb同位素定年在天津地质调查中心分析测试完成。所用仪器为Neptune多接收电感耦合等离子体质谱仪,激光剥蚀系统为UP193 ArF准分子激光器,采用的波长为193nm,脉冲宽度为5ns。

实验流程具体如下:在双目镜下将锡石单矿物颗粒用双面胶粘在载玻片上,放上PVC环,将环氧树脂和固化剂进行按一定比例充分混合后注入PVC环中,待树脂充分固化后将样品从载玻片上剥离,并对其进行抛光处理。然后根据锡石靶的反射光和透射光图像,选择锡石中颗粒较大的样品,并尽量避开颗粒中的包裹体和裂纹,从而减少普通铅的影响。利用193nm FX激光器对选择好的锡石区域进行剥蚀,激光束斑一般为50或75μm,频率为20Hz,能量密度为15J/cm2。实验过程中采用He作为剥蚀物质的载气,通过直径3mm的PVC管将剥蚀物质传送到MC-ICP-MS,并在进入MC-ICP-MS之前与Ar气混合,形成混合气。实验中由于204Pb的离子信号较弱且在Ar气中有204Hg会对204Pb产生干扰,其含量难以准确测定,故对U含量不高,积累的放射成因207Pb含量极少的年轻锡石样品(一般小于400Ma),可采用207Pb代替204Pb来作U-Pb等时线,即206Pb/207Pb-238U/207Pb等时线代替传统的238U/204Pb-206Pb/204Pb等时线方法处理数据(李惠民等,2011)。我们同时还对锡石U-Pb数据进行了Tera-Wasserburg 曲线投图,以期与等时线年龄进行对比和映证。为校正分析过程及激光剥蚀过程中的U-Pb分馏,我们采用以准确获得ID-TIMS U-Pb年龄的锡石标样(AY-4,206Pb/238U年龄=158.2±0.4Ma)作为测量外标(Yuan et al., 2011)。锡石206Pb/207Pb-238U/207Pb等时线以及207Pb/206Pb-238U/206Pb Tera-Wasserburg 曲线的数据计算与图形绘制均用Isoplot软件完成(Ludwig,2003)。 3 分析结果

LA-MC-ICP-MS锡石U-Pb测年结果见表 1图 4

表 1 尖峰坡锡矿LA-MC-ICP-MS锡石微区原位U-Pb定年结果Table 1 In-situ LA-MC-ICP-MS U-Pb dating results of cassiterite for the Jianfengpo tin deposit

图 4 尖峰坡锡矿床锡石U-Pb年龄谐和图(Tera-Wasserburg)(a)以及U-Pb年龄等时线图(b)Fig. 4 The concordia diagram(Tera-Wasserburg)(a) and U-Pb isochron diagram(b)of cassiterite from the Jianfengpo tin deposit

样品PS-34为矽卡岩型矿石,锡石为黄褐色-深褐色,半自形晶体,共31个测点。其中,238U/206Pb的比值变化范围为0.043~43.63,238U/207Pb的比值变化范围为0.048~239.2,206Pb/207Pb的比值变化范围为1.092~5.84,206Pb/207Pb-238U/207Pb等时线年龄为129.7±2.5Ma(N=31,MSWD=5.5),初始铅206Pb/207Pb比值为1.13±0.01(图 4),207Pb/206Pb-238U/206Pb谐和年龄为128.3±2.5Ma(N=31,MSWD=7.6)。其锡石等时线年龄与谐和年龄在误差范围内一致,表明锡成矿作用主要为早白垩世。 4 讨论

彭山锡多金属矿集区在空间上与彭山高分异I型隐伏花岗岩体密切相关。近年来对矿区地质特征、流体包裹体以及稳定同位素的研究工作(卢树东等, 2004abc2005; 刘南庆等,2011)强化了我们对其矿床成因的认识。然而缺乏精确的锡多金属矿化年龄,始终制约了我们对彭山矿集区矿床成因模式的深入理解。目前尚没有有关彭山矿集区矿床年龄的相关报道。本文运用LA-MC-ICP-MS U-Pb法获得尖峰坡矿区锡石206Pb/207Pb-238U/207Pb等时线年龄为129.7±2.5Ma 以及207Pb/206Pb-238U/206Pb谐和年龄为128.3±2.5Ma,两者在误差范围内保持一致。随着近年来LA-ICP-MS技术的发展,锡石U-Pb定年逐渐成为厘定锡矿床成矿年龄的有效方法而受到越来越广泛的应用(Gulson and Jones, 1992; 李惠民等,2009;李开文等,2013; 刘玉平等,2007; Yuan et al., 2011; 张东亮等,2011; 王小娟等,2014)。在非超高温条件下,锡石(0.1~1mm级别)封闭温度为600~800℃(张东亮等,2011)。而尖峰坡矿区锡石流体包裹体研究显示其均一温度为309~425℃(邹文学,1988),远低于锡石的封闭温度,表明我们所测锡石结晶年龄(128~130Ma),即为尖峰坡矿区锡成矿年龄。这与罗兰等(2010)所报道的彭山花岗岩U-Pb年龄(128~129Ma)一致,表明尖峰坡锡矿床的成矿年龄与花岗岩成岩年龄相吻合,矿床的热液演化活动时间较短。这为彭山锡多金属矿化与花岗岩侵入体之间存在的时间联系提供了有力的支持。空间关系显示(图 2),锡铅锌等矿化较好的矿体均产于隐伏花岗岩附近。从隐伏岩体到外围,成矿具有从锡矿化到铅锌矿化的分带现象,进一步显示其岩浆热液矿床的特征。

侏罗纪以来,华南板块构造格局发生了重大调整,这个时期是中国东部由特提斯构造体制向太平洋构造体制转换的重要时期(Zhou et al., 2006)。而白垩纪则是中国东部太平洋构造体制下由挤压应力向伸展应力转换的重要时期,期间伴随有大规模的火山喷发和岩浆活动(毛景文等,2008)。在总结大量前人资料的基础上,毛景文等(2008)提出将早中白垩世(134~80Ma)归为华南地区中生代第三次大规模成矿作用期,期间大规模的火山岩浆作用,弧后拉张作用、板内岩石圈的进一步伸展以及深断裂的活动,都显示该时期的壳幔相互作用达到了一个前所末有的高潮。据李武显(1999)对中国东南部206个花岗岩、火山岩的定年统计发现白垩纪(139~97Ma)岩体占总数的57.2%。这一时期大规模的岩浆-构造活动同时也造成了华南广泛的锡钨矿化。赣北地区作为我国一个重要的锡钨多金属矿集区,除了本文的研究对象彭山锡多金属矿集区(128~129Ma)外,还有诸如形成于138~144Ma(Re-Os定年)的大湖塘钨矿(丰成友等,2012Mao et al., 2013; Huang and Jiang, 2014),形成于126~128Ma(Rb-Sr等时线定年)的香炉山钨矿(张家菁等,2008),以及形成于140Ma左右(Rb-Sr等时线定年)的阳储岭钨钼矿(满发胜和王小松,1988),这些矿床成因均与同时期的花岗质岩浆作用密切相关。这些与成矿有关的岩体大多为一些多次侵位的复式高分异花岗岩体或“次火山岩相”的花岗岩类,如安徽的百丈岩钨钼矿床的成岩(U-Pb)成矿(Re-Os)年龄为130Ma和134Ma(秦燕等,2010),东源钨钼矿床的成岩(U-Pb)成矿(Re-Os)年龄均为146Ma(周翔等,2011);浙江千亩田钨铍矿床的成岩(U-Pb)年龄为124~126Ma(黄国成等,2012a),浙江临安夏色岭钨矿床的成岩时代为127Ma(黄国成等,2012b);此外还有江西的昆山-大河里钨矿(李旭辉和叶少贞,2006),八字脑锡钨矿(李星强,2007)等,它们的成矿年龄主要为146~124Ma。相比分布于南岭地区晚侏罗世(集中于160~150 Ma)锡钨矿床以及滇东南-桂西北地区晚白垩世(集中于98~76Ma)锡钨矿床,上述位于赣北-皖南-浙西地区的锡钨成矿带具有明显不同的成岩成矿时代(146~124Ma)。此锡钨成矿带位于扬子板块东南缘与华夏板块接合部位,不同于前两者主要位于华夏板块内部。由此显示扬子板块东南缘地区或许具有不同于南岭地区以及滇东南-桂西北地区的成岩成矿背景。丰成友等(2012)指出扬子板块东南缘地区所在的下扬子成矿省主要为早期两大古陆碰撞对接,构造格局开始大转换时期成矿,而南岭地区与滇东南-桂西北地区所在的华南成矿省主要为地壳重熔形成的花岗质岩浆经过多期次和多阶段分异演化在最晚阶段富集成矿。值得注意的是,扬子板块东南缘锡钨成矿带同时临近长江中下游铜金成矿带九瑞-鄂东南矿集区。其与九瑞-鄂东南矿集区的铜多金属矿床具有一致的成岩成矿年龄(Ding et al., 2006; 谢桂青等,2006; Li et al., 2008; 李亮和蒋少涌,2009; 蒋少涌等, 20082010; Yang et al., 2011)。周涛发等(2003)认为这种矿化的差异可能是晚中生代壳幔作用和构造岩浆活动的差异造成的。诚然,扬子板块东南缘锡钨成矿带成矿作用如何受到长江中下游构造域的影响需要我们做更进一步的研究。目前多数国内学者将较大精力投入到了南岭地区钨锡矿床的研究,而对扬子板块东南缘地区锡钨矿床及其与之有关的成矿岩体的研究最近才逐渐被人们重视。相信随着对扬子板块东南缘锡钨成矿带研究的深入,上述科学问题会得以解决,这对于我们更深入的理解华南锡钨成矿作用具有重要意义。 5 结论

(1)彭山锡多金属矿集区尖峰坡锡矿床LA-MC-ICP-MS锡石U-Pb年龄为128~130Ma,表明锡成矿作用主要发生于早白垩世。基于地质事实以及我们之前对彭山花岗岩定年的结果,认为燕山晚期岩浆热液活动是彭山矿集区锡多金属大规模成矿的关键因素。

(2)处于扬子板块东南缘的赣北-皖南-浙西地区存在大规模的锡钨成矿作用,可能构成一个新的成矿带,其成矿时代均为早白垩世(146~124Ma),初步的研究表明其与南岭(160~150Ma)以及滇东南-桂西北(98~76Ma)锡钨成矿带相比具有明显不同的成矿时代,可能具有不同于后两者的成矿背景,值得进一步的深入研究。

致谢 在完成锡石U-Pb年龄测试过程中得到中国地质调查局天津地质矿产所周红英老师、耿建珍老师和崔玉荣老师的无私帮助,李惠民老师对样品测试和数据处理提出了宝贵意见,在此表达最诚挚的谢意。

参考文献
[1] Chen J, Ji JF, Wang RC et al. 2000. Geochemistry of Tin. Nanjing: Nanjing University Press, 1-320 (in Chinese)
[2] Ding X, Jiang SY, Zhao KD et al. 2006. In-situ U-Pb SIMS dating and trace element (EMPA) composition of zircon from a granodiorite porphyry in the Wushan copper deposit, China. Mineralogy and Petrology, 86(1-2): 29-44
[3] Feng CY, Zhang DQ, Xiang XK et al. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858-3968 (in Chinese with English abstract)
[4] Gulson BL and Jones MT. 1992. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld complex granites. Geology, 20(4): 355-358
[5] Huang GC, Wang DH and Wu XY. 2012a. LA-ICP-MS zircon U-Pb dating of the granite from the Qianmutian tungsten-beryllium mine in Lin'an, Zhejiang Province and its significance in regional exploration. Geotectonica et Metallogenia, 36(3): 392-398 (in Chinese with English abstract)
[6] Huang GC, Wang DH and Wu XY. 2012b. Characteristics and LA-ICP-MS zircon U-Pb geochronology study of metallogenic intrusion in the Xiaseling tungsten deposit in Lin'an, Zhejiang Province. Rock and Mineral Analysis, 31(5): 915-921 (in Chinese with English abstract)
[7] Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, southern China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226
[8] Jiang SY, Slack JF and Palmer MR. 2000. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology, 28(8): 751-754
[9] Jiang SY, Yu JM and Lu JJ. 2004. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chemical Geology, 209(3-4): 193-213
[10] Jiang SY, Li L, Zhu B et al. 2008. Geochemical and Sr-Nd-Hf isotopic compositions of granodiorite from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrologica Sinica, 24(8): 1679-1690 (in Chinese with English abstract)
[11] Jiang SY, Sun Y, Sun MZ et al. 2010. Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, Middle and Lower Yangtze River Mineralization Belt, China. Acta Petrologica Sinica, 26(9): 2751-2761 (in Chinese with English abstract)
[12] Koöler J, Simonetti A, Sylevester PJ et al. 2003. Laser-ablation ICP-MS measurements of Re/Os in molybdenite and implications for Re-Os geochronology. The Canadian Mineralogist, 41(2): 307-320
[13] Li HM, Hao S, Geng JZ et al. 2009. Direct dectermination of cassiterite U-Pb isotope age in the tin polymentallic deposit by laser ablation multiple collector plasma mass spectrometry (LA-MC-ICP-MS). Acta Mineralogica Sinica, 29(Suppl.): 313 (in Chinese)
[14] Li HM, Zhou HY, Hao S et al. 2011. Thinking of several key problems about the determination of cassiterite U-Pb isotope age in the tin polymentallic deposit by laser ablation multiple collector plasma mass spectrometry (LA-MC-ICP-MS). Abstract of National Symposium on Petrology and Geodynamics (Second Volume), 178-179 (in Chinese)
[15] Li JW, Zhao XF, Zhou MF et al. 2008. Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, eastern China: Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. Mineralium Deposita, 43(3): 315-336
[16] Li KW, Zhang Q, Wang DP et al. 2013. LA-MC-ICP-MS U-Pb geochronology of cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China. Acta Mineralogica Sinica, 33(2): 523-528 (in Chinese with English abstract)
[17] Li L and Jiang SY. 2009. Petrogenesis and geochemistry of the Dengjiashan porphyritic granodiorite, Jiujiang-Ruiehang metallogenie district of the Middle-Lower Reaches of the Yangtze River. Acta Petrologica Sinica, 25(11): 2877-2888 (in Chinese with English abstract)
[18] Li WX. 1999. Origin and tectonic constraint of Late Mesozoic igneous rocks in the coastal region of Zhejiang and Fujian provinces. Ph. D. Dissertation. Nanjing: Nanjing University, 1-56 (in Chinese)
[19] Li XH and Ye SZ. 2006. The mineral resource potentialities and ore-search direction of W-Mo deposits in Kunshan-Daheli of north Jiangxi. Journal of East China Institute of Technology, (Suppl.): 77-80 (in Chinese with English abstract)
[20] Li XQ. 2007. Bazinao tin (tungsten) deposit in northwest Jingde Town of Jiangxi. Resources Environment and Engineering, 21(3): 245-248 (in Chinese with English abstract)
[21] Liu NQ, Yin Z, Shi Q et al. 2011. Analysis on the mechanism of tectonic movement and its ore-controlling effect in the Pengshan and Jiujiang-Ruichang areas, northern Jiangxi Province. Geology and Exploration, 47(3): 333-343 (in Chinese with English abstract)
[22] Liu YP, Li ZX, Li HM et al. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
[23] Lu SD, Wang SL, Gao WL et al. 2004a. Study on metallogenic characteristics and genesis of Sn, Pb and Sn polymetallic deposits in Pengshan region, Jiangxi Province. Journal of East China Institute of Technology, 27(3): 201-208 (in Chinese with English abstract)
[24] Lu SD, Du YS, Xiao E et al. 2004b. Study on tectonic features and metallogenic mechanism of the Pengshan Sn-Pb-Zn polymetallic orefield, Jiangxi Province. Geotectonica et Metallogenia, 28(3): 297-305 (in Chinese with English abstract)
[25] Lu SD, Du YS, Xiao E et al. 2004c. Geochemical characteristics and related mineralization of Pengshan granitic body in Jiangxi Province. Geology and Mineral Resources, (2): 46-51 (in Chinese with English abstract)
[26] Lu SD, Gao WL, Wang SL et al. 2005. Geology and geochemistry of the Pengshan Sn-polymetallic orefiled, Jiangxi. Geology in China, 32(3): 463-469 (in Chinese)
[27] Ludwig KR. 2003. ISOPLOT 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley: Geochronological Center Special Publication: 1-70
[28] Luo L, Jiang SY, Yang SY et al. 2010. Petrochemistry, zircon U-Pb dating and Hf isotopic composition of the granitic pluton in the Pengshan Sn-polymetallic orefield, Jiangxi Province. Acta Petrologica Sinica, 26(9): 2819-2834 (in Chinese with English Abstract)
[29] Ma CX. 1989. A high-volatile diapiric granite dome in the Pengshan area and its ore-controlling role. Geological Review, 35(2): 127-135 (in Chinese with English abstract)
[30] Ma N, Deng J, Wang QF et al. 2013. Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age. Acta Petrologica Sinica, 29(4): 1223-1235 (in Chinese with English abstract)
[31] Man FS and Wang XS. 1988. Study on the isotopic geochronology of Yangchuling porphyry type of tungsten and molybdenum deposit. Mineral Resources and Geology, 2(4): 61-67 (in Chinese with English abstract)
[32] Mao JW, Zhang ZC, Zhang ZH et al. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818
[33] Mao JW, Du AD, Seltmann R and Yu JJ. 2003. Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia. Mineralium Deposita, 38(2): 251-257
[34] Mao JW, Wang YT, Lehmann B et al. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324
[35] Mao JW, Xie GQ, Guo CL et al. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Journal of Chinese Geological Universities, 14(4): 510-526 (in Chinese with English abstract)
[36] Mao ZH, Cheng YB, Liu JJ et al. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53: 422-433
[37] Nakai S, Halliday AN, Kesler SF et al. 1990. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature, 346(6282): 354-357
[38] Peng JT, Hu RZ, Zhao JH et al. 2003. Scheelite Sm-Nd dating and quartz Ar-Ar dating for Woxi Au-Sb-W deposit, western Hunan. Chinese Science Bulletin, 48(23): 2640-2646
[39] Peng JT, Zhou MF, Hu RZ et al. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41(7): 661-669
[40] Qin Y, Wang DH, Li YH et al. 2010. Rock-forming and ore-forming ages of the Baizhangyan tungsten-molybdenum ore deposit in Qingyang, Anhui Province and their geological significance. Earth Science Frontiers, 17(2): 170-177 (in Chinese with English abstract)
[41] Selby D, Creaser BR, Hart CJR et al. 2002. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology, 30(9): 791-794
[42] Stein HJ, Markey RJ, Morgan JW et al. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13(6): 479-486
[43] Wan B, Hegner E, Zhang LC et al. 2009. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites. Economy Geology, 104(3): 351-363
[44] Wang XJ, Liu YP, Miao YL et al. 2014. In-situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrologica Sinica, 30(3): 867-876 (in Chinese with English abstract)
[45] Willgers BJA, Baker JA, Krogstad EJ et al. 2002. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS. Geochimica et Cosmochimica Acta, 66(6): 1051-1066
[46] Xie GQ, Mao JW, Li RL et al. 2006. Metallogenic epoch and geodynamic framework of Cu-Au-Mo-(W) deposits in southeastern Hubei Province: Constraints from Re-Os molybdenite ages. Mineral Deposits, 25(1): 43-52 (in Chinese with English abstract)
[47] Xu KQ, Sun N, Wang DZ et al. 1984. Petrogenesis of the granitoid and their metallogenetic relations in South China. In: Xu KQ and Tu GC (eds.). Geology of the granites and their metallogenetic relations (Proceedings of International Academic Conference). Nanjing: Jiangsu Sciences Technology Press, 1-20 (in Chinese)
[48] Yuan SD, Li HM, Hao S et al. 2010. Situ LA-MC-ICP-MS U-Pb dating of cassiterite and its significance in giant Furong tin deposit, Hunan Province, South China. Mineral Deposit, 29(Suppl.): 543-544 (in Chinese)
[49] Yuan SD, Peng JT, Hao S et al. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
[50] Yang SY, Jiang SY, Li L et al. 2011. Late Msozoic magmatism of the Jiurui mineralization district in the Middle-Lower Yangtze River Metallogenic Belt, eastern China: Precise U-Pb ages and geodynamic implications. Gondwana Research, 20(4): 831-843
[51] Zhang DL, Peng JT, Hu RZ et al. 2011. The closure of U-Pb isotope system in cassiterite and its reliability for dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract)
[52] Zhang JJ, Mei YP, Wang DH et al. 2008. Isochronology study on the Xianglushan scheelite deposit in North Jiangxi Province and its geological significance. Acta Geolocica Sinica, 82(7): 927-931 (in Chinese with English abstract)
[53] Zhou TF, Yuan F, Hou MJ et al. 2003. Contrast between mineralization conditions and resource potentials on the eastern Jiangnan uplift belt of Wangan neighborhood. Progress in Nature Science, 13(10): 1036-1041 (in Chinese)
[54] Zhou X, Yu XQ, Wang DE et al. 2011. Characteristics and geochronology of the W, Mo-bearing granodiorite porphyry in Dongyuan, southern Anhui. Geoscience, 25(2): 201-210 (in Chinese with English abstract)
[55] Zhou XM, Sun T, Shen WZ et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33
[56] Zou WX. 1988. Geological characters and ore-finding indicators of concealed tin deposits of Pengshan, Jiangxi. Mineral Resources and Geology, 2(2): 59-69 (in Chinese with English abstract)
[57] 陈骏, 季峻峰, 王汝成等. 2000. 锡的地球化学. 南京: 南京大学出版社, 1-320
[58] 丰成友, 张德全, 项新葵等. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858-3868
[59] 黄国成, 王登红, 吴小勇. 2012a. 浙江临安千亩田钨铍矿区花岗岩锆石LA-ICP-MS U-Pb年龄及对区域找矿的意义. 大地构造与成矿学, 36(3): 392-398
[60] 黄国成, 王登红, 吴小勇. 2012b. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS 锆石铀-铅年代学研究. 岩矿测试, 31(5): 915-921
[61] 蒋少涌, 李亮, 朱碧等. 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24(8): 1679-1690
[62] 蒋少涌, 孙岩, 孙明志等. 2010. 长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用. 岩石学报, 26(9): 2751-2767
[63] 李惠民, 郝爽, 耿建珍等. 2009. 用激光烧蚀多接收器等离子体质谱 (LA-MC-ICPMS) 直接原位测定锡多金属矿床中的锡石U-Pb同位素年龄. 矿物学报, 29(增刊): 313
[64] 李惠民, 周红英, 郝爽等. 2011. 激光烧蚀等离子体质谱 (LA-ICPMS) 法测定锡多金属矿床中锡石U-Pb同位素年龄几个关键问题的思考. 岩石学与地球动力学研讨会论文摘要 (下册), 178-179
[65] 李开文, 张乾, 王大鹏等. 2013. 云南蒙自白牛厂多金属矿床锡石原位LA-MC-ICP-MS U-Pb 年代学. 矿物学报, 33(2): 523-528
[66] 李亮, 蒋少涌. 2009. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究. 岩石学报, 25(11): 2877-2888
[67] 李武显. 1999. 浙闽沿海地区晚中生代火成岩成因及构造制约. 博士学位论文. 南京: 南京大学, 1-56
[68] 李旭辉, 叶少贞. 2006. 赣北昆山-大河里地区钨钼矿资源潜力及找矿方向. 东华理工学院学报, (增刊): 77-80
[69] 李星强. 2007. 景德镇西北部八字脑锡(钨)矿地质特征及成因初探. 资源环境与工程, 21(3): 245-248
[70] 刘南庆, 尹祝, 施权等. 2011. 赣北九瑞-彭山地区构造运动机制及其控矿作用分析. 地质与勘探, 47(3): 333-343
[71] 刘玉平, 李正祥, 李惠民等. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976
[72] 卢树东, 汪石林, 高文亮等. 2004a. 江西彭山锡铅锌多金属矿床成矿特征与成因浅析. 东华理工学院学报, 27(3): 201-208
[73] 卢树东, 杜杨松, 肖锷等. 2004b. 江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理探讨. 大地构造与成矿学, 28(3): 297-305
[74] 卢树东, 杜杨松, 肖锷等. 2004c. 江西彭山岩体的地球化学特征及成矿关系探讨. 华南地质与矿产, (2): 46-51
[75] 卢树东, 高文亮, 汪石林等. 2005. 江西彭山锡多金属矿田地质地球化学特征研究. 中国地质, 32(3): 463-469
[76] 罗兰, 蒋少涌, 杨水源等. 2010. 江西彭山锡多金属矿集区隐伏花岗岩体的岩石地球化学、锆石U-Pb年代学和Hf同位素组成. 岩石学报, 26(9): 2819-2834
[77] 马长信. 1989. 关于彭山高挥发份花岗岩底辟穹窿构造及其控矿作用. 地质评论, 35(2): 127-135
[78] 马楠, 邓军, 王庆飞等. 2013. 云南腾冲大松坡锡矿成矿年代学研究: 锆石LA-ICP-MS U-Pb 年龄和锡石LA-MC-ICP-MS U-Pb年龄证据. 岩石学报, 29(4): 1223-1235
[79] 满发胜, 王小松. 1988. 阳储岭斑岩型钨钼矿床同位素地质年代学研究. 矿产与地质, 2(4): 61-67
[80] 毛景文, 谢桂清, 郭春丽等. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526
[81] 秦燕, 王登红, 李延河等. 2010. 安徽青阳百丈岩钨钼矿床成岩成矿年龄测定及地质意义. 地学前缘, 17(2): 170-177
[82] 王小娟, 刘玉平, 缪应理等. 2014. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义. 岩石学报, 30(3): 867-876
[83] 谢桂青, 毛景文, 李瑞玲等. 2006. 鄂东南地区Cu-Au-Mo-W矿床的成矿时代及其成矿地球动力学背景探讨: 辉钼矿Re-Os同位素年龄. 矿床地质, 25(1): 43-52
[84] 徐克勤, 孙鼐, 王德滋等. 1984. 华南花岗岩成因与成矿. 见: 徐克勤, 涂光炽编. 花岗岩地质和成矿关系(国际学术会议论文集). 南京: 江苏科学技术出版社, 1-20
[85] 袁顺达, 李惠民, 郝爽等. 2010. 湘南芙蓉超大型锡矿锡石原位LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 29(增刊): 543-544
[86] 张东亮, 彭建堂, 胡瑞忠等. 2011. 锡石U-Pb 同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554
[87] 张家菁, 梅玉萍, 王登红等. 2008. 赣北香炉山白钨矿床的同位素年代学研究及其地质意义. 地质学报, 82(7): 927-931
[88] 周涛发, 袁锋, 侯明金等. 2003. 江南隆起带东段皖赣相邻区的成矿条件与资源潜力对比研究. 自然科学进展, 13(10): 1036-1041
[89] 周翔, 余心起, 王德恩等. 2011. 皖南东源含W、Mo花岗闪长斑岩及成矿年代学研究. 现代地质, 25(20): 201-210
[90] 邹文学. 1988. 江西彭山隐伏锡矿床地质特征及找矿标志. 矿产与地质, 2(2): 59-69