岩石学报  2015, Vol. 31 Issue (1): 47-55   PDF    
华北北部二叠纪陆壳演化
邵济安1, 何国琦1, 唐克东2    
1. 造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京 100871;
2. 沈阳地质矿产研究所, 沈阳 110034
摘要:目前围绕华北北部(包括华北克拉通北缘和北邻的兴蒙造山带)的二叠纪的构造背景存在着不同的认识。其中一种影响较大的观点是古亚洲洋的演化持续到二叠纪末-三叠纪初,由于大洋板块向华北克拉通之下的俯冲,导致克拉通北缘成为"安第斯型"大陆边缘。活动陆缘有从早期(C2)的板块俯冲-汇聚向晚期(P2-T1-2)板块拆离-陆缘伸展演变的趋势,论证多偏于岩浆作用。本文将从沉积建造、变形、变质、岩浆活动以及区域构造背景等角度对此观点进行讨论,本文将研究区晚古生代陆壳演化划分为三个阶段:(1)法门阶之前的中泥盆世是兴蒙造山带的主造山阶段;(2)晚泥盆-早石炭世进入后碰撞阶段;(3)晚石炭世-早二叠世兴蒙造山带的年轻陆壳在伸展背景下,上叠的新生性裂陷槽构造而非大洋板块控制了同期的沉积作用和岩浆活动。这三阶段的地质事件在华北克拉通北缘都有相应的表现。研究区深成岩同位素年龄显示了中-晚泥盆世、早二叠世和晚二叠世三个峰值。为了揭示岩浆的形成机制,本文重点对研究区早二叠世(280Ma)和晚二叠世(260Ma)深成岩的岩石组合和Sr-Nd同位素特征进行对比研究。R1-R2图显示本区二叠纪深成岩组合与以英云闪长岩和花岗闪长岩为主的安第斯型造山带不同。早二叠世深成岩具双峰特征,Sr-Nd同位素显示早二叠世深成岩与EMI地幔源区有更密切联系。受到前人对高寺台原始岩浆研究的启发,进一步认识到华北克拉通北缘在早二叠世时存在板内OIB岩浆沿着岩石圈断裂的上涌的过程。相比之下,晚二叠世深成岩多为正长花岗岩和二长花岗岩,岩石碱性程度提高,中酸性岩石具高碱、高钾的特征。Sr-Nd同位素显示岩浆源区有向EMII演变的趋势,中-上部地壳熔融物质增多,暗示热活动带的上升。总之,从岩浆形成机制、岩浆源区演变的趋势和岩浆时空演化等诸多证据都表明:二叠纪深成岩的形成更多地与板内自身热演化有关,与安第斯型造山带有明显区别。兴蒙造山带属于中亚造山带的一部分,因此可以从更大的构造背景对它加以考察。中亚造山带存在8条晚古生代和中生代的过碱性-碱性长石花岗岩带,它们共同都伴有双峰式火山岩。构造岩浆岩带横贯数千千米,北东走向的构造带显示了新的构造格局,高εNd(t)和低εSr(t)的同位素特征,反映了伸展背景下裂谷带的反复多次活动。总体上,中亚造山带作为增生的年轻陆壳,与华北克拉通及塔里木地块等一起从早二叠世开始,进入了新阶段的演化。从大陆岩石圈形成过程的克拉通化角度看,中亚造山带晚泥盆世-早石炭世是碰撞后的第一阶段的克拉通化,晚石炭-早二叠世进入克拉通化的第二阶段,大规模的新生的带状伸展构造出现,标志着深部作用的重要性越来越明显。
关键词华北克拉通北缘     陆壳演化     安第斯型造山带     二叠纪深成岩     克拉通化    
The evolution of Permian continental crust in northern part of North China
SHAO JiAn1, HE GuoQi1, TANG KeDong2    
1. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education; School of Earth and Space Sciences, Peking University, Beijing 100871, China;
2. Shenyang Institute of Geology and Mineral Resource, Shenyang 110034, China
Abstract: At present there exist different understandings about the structural settings of northern part of North China (including the northern margin of North China Craton and Hinggan-Mongolia Orogenic Belt) in the Permian. According to an influential viewpoint, evolution of the Paleo-Asian Ocean has continued until the end of Permian or the beginning of Triassic, with the northern margin of North China Craton becoming an "Andes-type continental margin" as a result of oceanic plate subducting toward underneath the North China Craton. And the active continental margin has correspondingly changed from an early state of subdaction-convergence (C2) to a late state of detachment of subducting plate and extention of continental margin (P2-T1-2). Such an understanding is largely based on evidences of magmatism. This viewpoint will be discussed in this paper in terms of sedimentary formation, deformation, metamorphism and regional tectonic settings with respect to the continental crust evolution of the concerned area in the Late Paleozoic, and the whole process of evolution will be divided into three stages according to our understanding: (1) the climactic orogeny of Hingga-Mongolia Orogenic Belt in the Middle Devonian before Famennian; (2) the post-collision in the Late Devonian-Early Carboniferous; and (3) the non-orogenic extension in the Late Carboniferous-Early Permian, when the young continental crust of Hingga-Mongolia Orogenic Belt under the extensional settings produces newly-born rifts, which-instead of any oceanic plate-controls the concurrent sedimentation and magmatism. All the geological events of the three stages have their expressions in the northern margin of North China Craton. The isotopic ages of plutonic rocks from the area show three peak values: Middle-Late Devonian, Early Permian, and Late Permian. The rock assemblages and Sr-Nd isotopic characteristics of plutonic rocks of Early Permian(280Ma)and Late Permian (260Ma)are particularly studied to reveal magma generation. It is seen from the R1-R2 diagram that the Permian plutonic rock assemblages in this area are different from the Andes-type orogenic zones which are mainly consisted of tonalite and granodiorite. The Early Permian plutonic rocks have bimodal character and closer relations with EMI-type mantle sources as shown by their Sr-Nd isotopic features. Inspired by a previous study on the primary magma in Gaositai, it is further supposed that there has been an upwelling process of intraplate OIB-type magma along the lithospheric faults in northern margin of North China Craton in the Early Permian. In contrast, the Late Permian plutonic rocks are mainly syenogranite and monzonitic granite with higher alkaline degree, these intermediate-acidic rocks possess the features of high-alkaline or high-potassium, and their Sr-Nd isotopic characteristics show a trend of the magmatic sources evolving toward EMII-type, with the increased melting materials of the middle-upper crust suggesting uprising of the thermal belt. In summary, such evidences as from magma generation, magma-reservoir developmental, and space-time distribution of the magma all prove that formation of the Permian plutonic rocks is related more with the intraplate thermal evolution, different from that of Andes-type orogenic zones. Hinggan-Mongolia Orogenic Belt belongs to Central Asian Orogenic Belt and can be examined within broader tectonic settings. There are 8 belts of Late Paleozoic and Mesozoic peralkaline and alkaline (alkali-feldspar) granitoids and genetically related bimodal volcanics in the Central Asian Orogenic Belt. These tectonomagmatic belts stretch over thousands kilometers, their NE strike represents a new tectonic framework, and their isotopic characteristics of high εNd(t) and low εSr(t) reflect repeated activities of rifts under extensional settings. The Central Asian Orogenic Belt on the whole as a young continental crust, together with North China Craton and Tarim block, has entered a new evolutional stage since the beginning of Early Permian. If cratonization of forming progress of the continental lithosphere is studied, the Late Devonian-Early Carboniferous of Central Asian Orogenic Belt is the first stage of cratonization after collision, and the second stage of cratonization begins in the Late Carboniferous-Early Permian, when new zonal extensional structures emerge extensively, marking the importance of plutonic activities becoming increasingly obvious.
Key words: Northern margin of North China Craton     Evolution of continental crust     Andes-type orogenic zone     Permian plutonic rock     Cratonization    
1 问题的提出

华北北部包括华北克拉通北缘和北邻的兴蒙造山带,近年来围绕这一地区二叠纪构造演化特征和属性的争论引起人们极大关注。最初有人通过燕山地区晚古生代花岗岩侵位深度研究提出:晚古生代-早中生代期间,在内蒙古隆起和燕山褶断带之间,存在有强烈的差异性隆升和剥蚀的过程,推断与古亚洲洋板块向华北地块的俯冲、消减、碰撞及华北北缘区域性断裂的活动有关(张拴宏等,2007),由此进一步提出:古亚洲洋的演化一直持续演化至二叠纪末-三叠纪初,由于大洋板块向华北克拉通之下的俯冲,导致了克拉通北缘成为活动大陆边缘,具有“安第斯型造山带”特征(Zhang et al., 20072009a)。活动陆缘早期(晚石炭世)板块俯冲-汇聚,晚期(晚二叠世-中三叠世)由于俯冲板块的拆离(detachment),在华北克拉通下方形成软流圈隆起,致使华北克拉通北缘后碰撞或后造山带(postcollision/postorogenic)的伸展,形成壳幔混溶的岩浆作用(Zhang et al., 2009c)。

目前认为二叠纪存在古亚洲洋俯冲并形成华北活动陆缘的人不少,不过论述大多偏于岩浆活动。上述观点中有两个关键问题:晚古生代在内蒙古境内存在的是持续俯冲的洋壳还是年轻陆壳之上的陆表海?第二个问题是华北克拉通北缘是否存在“安第斯型”的俯冲造山带?本文将从构造演化以及区域构造背景入手,对此观点进行讨论。

本文将从本区晚古生代的演化历史切入。同位素年代学研究-揭示,华北北部晚古生代存在中-晚泥盆世(370~397Ma)、早二叠世(280Ma)和晚二叠世(260Ma)三次重要的岩浆活动(图 1),与这三期岩浆活动对应的地质事件是进一步讨论本区构造演化的重要基础。

图 1 研究区晚古生代深成岩的年龄分布频数图 Fig. 1 The distribution of ages of the Late Paleozoic plutonic rocks in the research area
2 晚古生代早期(D2-3-C1)的造山运动 兴蒙造山带晚泥盆世的造山运动古亚洲洋属于陆间型洋盆(Хайн,1984),板块闭合过程中由于众多古地体伴随剪切作用的逐一敛合,板块碰撞造山的强度相对比较弱(邵济安,1991)。尽管如此,标志着古亚洲洋消亡、板块碰撞造山的不整合面在新疆、北山、蒙古阿勒泰的库尔班赛汉、内蒙古境内的苏尼特左旗、阿巴嘎旗南部的红格尔等多处可见,各地不整合面上、下层位的时代可略有不同。以苏左旗敖木根呼都格上泥盆统色日巴彦敖包组底部的不整合面为例,不整合面产状353°∠46°,下伏变质的绿片岩系产状为25°∠30°,其U-Pb年龄为459Ma(徐备等,2011),反映造山带以中压造山变质作用为主。上覆的上泥盆统地层基本不变质,其底部有大于16m的底砾岩,是这期造山运动的重要证据。底砾岩分选差(直径5~32cm),砾石除了来自下伏的变质岩外,还有大量的长石石英砂岩、花岗岩、闪长玢岩及少量的碳酸盐岩,砾石明显压扁。下部砾岩段标志着该区经历了前期褶皱造山后的剥蚀堆积作用。其中花岗岩和火山岩的砾石大多是该区晚古生代造山过程岩浆作用的产物。与造山作用相关的变形作用除了褶皱变形外,在增生杂岩中还发育大量低角度的叠瓦状推覆断层。中亚造山带分布如此广泛的不整合面,其上下截然不同的变质程度,表明该不整合面是区域性的,它们的的存在标志着板块的碰撞和相关的造山作用已经结束,其上是基本连续的新生陆壳,色日巴彦敖包组具有海相类复理石的沉积特征,其中保存了大量腕足类、四射珊瑚、层孔虫乃至卢木茎等植物残片(邵济安,1991),它们是年轻陆壳稳定化过程的产物,或者可看作后碰撞阶段的产物。四射珊瑚属北方类型,只见于俄国和大兴安岭,表明此时大洋板块已经消亡,大陆板块已经对接(唐克东,1992)。

徐备等. 2011. 内蒙古西部温都尔庙群与古亚洲东段的构造演化. 全国岩石学与地球动力学研讨会摘要集(下册). 28-29

表 1展示研究区中-晚泥盆世-早石炭世的岩浆作用,研究区以克拉通北缘花岗岩为主的25个花岗岩的R1-R2图(图 2)显示,晚泥盆-早石炭世花岗岩以正长岩、石英二长岩、正长或二长花岗岩为主,属地壳熔融花岗岩,还有少量的碱性花岗岩。从岩石平均组分看,SiO2=68%,K2O=4.6%,K2O+Na2O=9.2%,属于高钾二长岩系列。从构造演化角度看,泥盆纪的壳熔花岗岩多数为同造山的花岗岩,部分为造山期后伸展背景下的非造山花岗岩。

图 2 研究区晚泥盆-早石炭世花岗岩类的R1-R2图(据De la Roche et al., 1980)
R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+Al
Fig. 2 R1-R2 diagram of Late Devonian-Early Carbonniferous granitic rocks in research area(after De la Roche et al., 1980)

表 1 华北北部中-晚泥盆世-早石炭世深成岩的产地及年龄 Table 1 The distribution of Middle-Late Devonian plutonic rocks in northern of North China

从中泥盆世-早石炭世的火山-沉积作用显示造山过程大约延续了50~60Myr,包括了中泥盆世主造山和晚泥盆-早石炭世的后碰撞阶段。在晚古生代对接带附近始终未发现早石炭世晚期韦宪期的沉积,早石炭世的岩浆活动也比较弱,暗示此时已经进入隆起剥蚀的后造山阶段。

3 晚古生代后期(C2-P1)陆壳演化的新阶段 上述事实表明,晚泥盆世法门阶之前兴蒙造山带经历了一次造山运动。之后年轻陆壳在构造体制调整之后,进入了一个新的阶段。从晚石炭世开始,在兴蒙造山带基础上形成大面积的陆表海,早二叠世大石寨组火山-沉积岩的分布明显受到三条NE向同沉积裂陷槽的控制,由北向南,其滨-浅海相海相沉积及双峰式火山岩厚度分别>8000m;>5000m和2900m。沉积岩以粗碎屑岩为主,其中成熟度低的硬砂岩、长石砂岩分布广泛。晚古生代以腕足类、珊瑚、蜓、苔藓类为主的化石反映滨-浅海环境,植物化石及其碎片的存在反映海陆交互相的环境。早二叠世晚期本区生物已经混生。由于海相暗色泥岩有机质丰度的提高,形成分布于前三角洲,浅海,半深海的烃源岩。构造古地理研究表明,晚古生代的兴蒙造山带不存在大洋板块(邵济安等,2014)。

从晚石炭起,该区出现了伸展环境下的岩浆活动,例如达青牧场315~318Ma的高镁、低钾拉斑质玄武岩(作者,待发表)和二连以北的阿仁绍布301~317Ma的文象花岗岩、黑云母二长花岗岩等(白立兵,2013)。早二叠世该区出现了受断裂带控制的双峰式火山岩(Zhang et al., 2008);不排除局部地区由于拉张程度较大,沿着一些深切断裂出现镁铁质或超镁铁质岩浆活动,但没有足够证据说明此时大洋板块的再次扩张和俯冲。

兴蒙造山带石炭-二叠纪地层基本未变质或轻微的浅变质,变形程度弱,以宽缓的直立水平褶皱为主,应变的缩短量约30%(邵济安,1991)。该区晚二叠世-早三叠世地表隆起,局部残留一套含植物和淡水双壳类化石的湖相沉积,不存在磨拉石建造。总之,从变形、变质及建造特征看,该区不存在晚二叠世-早三叠世的造山作用。

值得关注的是,作为晚古生代陆壳演化新阶段的重要标志——NE向裂陷槽叠加在之前EW走向的加里东期-早海西期构造之上(唐克东,1992)。下文将从整个研究区二叠纪深成岩特征及其演化趋势,进一步讨论这一时期的构造属性。 4 二叠纪的岩浆活动

近年来众多学者对研究区二叠纪深成岩的年代学和岩石-地球化学作了大量研究,本文在此基础上收集了华北克拉通北缘和兴蒙造山带不同地段有代表性的年代学和全岩化学分析数据,结合作者已有的研究,力图对二叠纪的构造演化属性和背景进行讨论。 4.1 早二叠世深成岩

20世纪90年代内蒙中部发现的早二叠世(276~286Ma)碱性花岗岩,被认定为造山后张性环境的A型花岗岩(洪大卫等,1994)。本文在兴蒙造山带和华北克拉通北缘分别选择了7个和18个近年发表的有可靠年代学依据的早二叠世各类深成岩(Zhang et al., 2009a; Chen et al., 2009; Zhang,2011; 王芳等,2009; 马旭等,2012; 路彦明等,2012; 袁桂邦和王慧初,2006; 许立权,2005)。根据25个深成岩数据编制的R1-R2图(图 3中红点)来看:1)它们具有双峰特点,即同时出现的以酸性和基性端元为主的深成岩;2)花岗岩以二长花岗岩和正长花岗岩为主,基性岩以辉长岩为主,显然与以英云闪长岩和花岗闪长岩为主的安第斯型造山带深成岩不同。

图 3 研究区早二叠世和晚二叠世深成岩的R1-R2图(据De la Roche et al., 1980)
图中红点代表早二叠世深成岩;蓝点代表晚二叠世深成岩
Fig. 3 R1-R2 diagram of Early Perming and Late Permian plutonic rocks in research area(after De la Roche et al., 1980)

双峰特征的深成岩在俯冲背景下的活动陆缘也可以出现,例如Chen et al.(2009)指出承德地区高寺台基性-超基性环状杂岩具有堆晶岩特征,将其作为俯冲作用导致壳幔过渡带发生的底侵作用产物看待。因此俯冲陆缘弧出现具双峰特征的深成岩不足为奇,但是,当仔细观察这套深成岩不同岩性的La/Nb比时,可以发现:环状杂岩核部纯橄岩的La/Nb>1或接近1,而外环的辉石岩和角闪岩则La/Nb<1(图 4a)。分异作用形成的不同岩石的La/Nb比应该一致,对于上述不一致现象的一种解释是外环岩石在侵位中受到地壳混染,而核部纯橄岩还保留了原始岩浆的特征。这种推想从Tian et al.(2011)的研究结果中得到了证实。Tian et al.(2011)对同一矿区的铬铁矿熔融包裹体中的单斜辉石进行了研究,利用单斜辉石与熔体平衡系数,恢复了原始熔体的微量元素特征,微量元素La/Nb>1(图 4b),显示了OIB特征(图 4b图中黄色平直右倾的曲线为OIB型玄武岩的La/Nb比),说明岩浆来源大洋或大陆板内,而不具有弧岩浆特征。铬铁矿包体中保留了原始岩浆来源信息,其重要性不可低估,至少不能简单地将一些幔源岩石归属为安第斯型造山作用分异的产物。有学者对固阳282~278Ma的高钾钙碱性杂岩:辉长-闪长岩(堆晶)、黑云母二长花岗岩(分异)、花岗闪长岩(混合)、暗色基性包体(混染)、基性岩墙(晚期富水亏损地幔)进行了综合研究,认为它们是不同阶段连续性壳幔相互作用的产物,岩浆源区是古老富集型岩石圈地幔和下地壳,体现了克拉通大陆再造的活化特点(Zhang et al., 2011),这与明显反映大陆地壳生长的安第斯弧岩浆岩迥然不同。

图 4 高寺台深成岩微量元素原始地幔标准化图
(a)取自不同岩石微量元素蛛网图(据Chen et al., 2009);(b)根据熔体/单斜辉石分配系数计算(据Hauri et al., 1994)的原始熔体微量元素蛛网图(据Tian et al., 2011).(a)图中红线为纯橄岩,黑色为辉石岩和辉橄岩,蓝色为角闪岩;(b)图中黄色曲线为OIB型玄武岩的微量元素蛛网图
Fig. 4 Primitive mantle-normalized trace element diagram from different rocks(a,after Chen et al., 2009) and diagram of the calculated parent magma based on the melt/cpx partition of Hauri et al.(1994)(b,after Tian et al., 2011)
4.2 晚二叠世深成岩

本文在研究区选择了36个晚二叠世以花岗岩为主的深成岩(Zhang et al., 2012; 孟树等,2013; 郝百武,2009; 柳长峰等,2011; 路彦明等,2012; 章永梅等,2009; 邵济安等,2012),年龄分布在271~252Ma,峰值为260Ma。与早二叠世深成岩相同的是:英云闪长岩和花岗闪长岩为数不多(图 3)以及中酸性岩石具有高碱(K2O+Na2O=7.7%)、特别是高钾(K2O=3.7%)的特征,根据Wright(1969)提出的碱度率AR与SiO2结合划分火成岩碱度的概念,本区晚二叠世大部分为偏碱性岩石,部分为钙碱性岩(图 5b中蓝点)。与早二叠世深成岩不同之处是:晚二叠世岩性更多为正长花岗岩和二长花岗岩,少量闪长质岩石,个别辉长岩,未发现超基性岩,同时晚二叠世深成岩的酸性程度(图 5a)和碱度明显提高(图 5b),表明与中上部地壳的部分熔融有关,暗示晚二叠世热活动带或热异常(thermal belt)的抬升。这与Sr-Nd同位素研究结果也是一致的,早二叠世的(87Sr/86Sr)i集中在0.705~0.706之间,晚二叠世则分散在0.707~0.712之间(图 6),反映早二叠世EMI型富集幔源岩浆对年轻地壳的贡献要大于晚二叠世,晚二叠世具有EMII的趋势,表明上部陆壳物质混入较多。

图 5 二叠纪深成岩TAS图(a,据Le Bas MJ et al., 1986)和二叠纪中酸性深成岩AR-SiO2图(b,据Wright,1969)
红星为早二叠世,蓝点为晚二叠世,AR=(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(K2O+Na2O))
Fig. 5 TAS diagram of Permian plutonic rocks(a,after Le Bas MJ et al., 1986) and AR-SiO2 diagram of Permian medium-silicic rocks(b,after Wright,1969)
图 6 二叠纪深成岩的Sr-Nd同位素特征
红星为早二叠世数据,马旭等,2012;蓝点为晚二叠世数据,引自Zhang et al., 2012; 王芳等,2009; Wan et al., 2009; 邵济安等,2012
Fig. 6 Sr-Nd isotopic character of Permian plutonic rocks
5 对岩浆成因模式的讨论

大陆弧岩浆成因模式(Hildreth and Moorbath, 1988)解释了一连串事件的因果关系:俯冲板片脱水→不均匀地幔楔水化→熔融幔源岩浆上升导致地壳底垫作用→底垫作用导致地壳熔融岩浆的分异和同化作用,地壳深熔作用致使了英云闪长岩的形成和前缘带的安山质的火山活动。有人在讨论古亚洲洋向古老的华北克拉通之下俯冲引起的岩浆作用时,就强调了壳幔混合的地幔源区,即受到俯冲流体交代的华北克拉通古老富集型岩石圈地幔与古老下地壳起源的花岗质岩浆的混合(马旭等,2012)。下文将前文陈述的二叠纪岩浆活动与大陆弧岩浆模型的形成机制和演化趋势做一比较。 5.1 岩浆的形成机制

大陆弧岩浆作用是在板块汇聚背景下的产物,以英云闪长岩和安山质火山岩带的形成为标志。本区二叠纪以接近标准双峰式分布的深成岩为主,它们均以高钾的碱性-钙碱性岩浆为主。这一系列特征显示的伸展构造背景是陆缘弧汇聚模式所不容。前文提到的关于原始的OIB岩浆更是俯冲流体交代或分异作用所难以解释的。华北克拉通北缘晚古生代岩浆岩无论在体量、类型还是其所记录的大陆再造特征等方面均迥异于安第斯活动大陆边缘岩浆建造。 5.2 岩浆演化趋势

从前文讨论的早、晚二叠世岩浆演化趋势来看,早二叠世由超基性-基性与高硅的酸性岩组成双峰深成岩,晚二叠世显示了以酸性端元的二长花岗岩及正长花岗岩为主;Sr-Nd同位素也显示早二叠世深成岩与EMI地幔源区有更密切联系,晚二叠世的岩浆源区显示了向EMII演化的趋势。因此,这一趋势不支持文章开头提到的华北克拉通北缘从早期(晚石炭世)挤压和晚期(晚二叠世-中三叠世)伸展的观点,事实上晚二叠世-中三叠世华北克拉通北缘都处于隆升-剥蚀阶段,直到晚三叠世才出现与伸展体制相关的地质作用(邵济安和张吉衡,2014)。 5.3 岩浆展布的时空趋势

从华北克拉通北缘早-晚二叠世深成岩的展布趋势来看,可以发现早二叠世深成岩,特别是基性-超基性岩分布明显受到集宁-承德及丰宁-隆化-建平断裂带的控制(图 7),这是华北克拉通内部两条长期活动的岩石圈断裂带。而晚二叠世深成岩分布较为广泛,相比早二叠世分布更偏北,在传统的槽台分界的白云鄂博-赤峰-阜新断裂带两侧。如此分布格局表明:早期(280Ma)有来自深部地幔的能量和物质向地壳表层迁移,携带壳幔混溶的岩浆沿着岩石圈断裂上升;后期伴随构造-岩浆活动的热界面抬升,花岗岩以壳熔的高钾岩石为主,南老北新格局的岩浆岩带也与俯冲形成的弧岩浆带时空迁移规律不匹配。

图 7 研究区晚古生代深成岩的时空分布
左上角为中亚造山带(据Jahn et al., 2009).1-晚古生代-中生代过碱性-碱性长石花岗岩及伴生的双峰式火山岩;2-前寒武纪地块;3-克拉通;4-华北克拉通与兴蒙造山带界线;5-研究区二叠纪深成岩;6-石炭纪深成岩;7-泥盆纪花岗岩;8-年龄采样点及年龄
Fig. 7 The space-time distribution of Late Paleozoic plutonic rocks in research area

从板块构造演化的角度看,古亚洲洋在加里东阶段经历了弧陆碰撞造山之后,残余的洋盆持续到晚古生代早期,法门阶的不整合面标志着这次褶皱造山作用的结束,与碰撞造山有关的岩浆活动持续到早石炭末。受其影响,华北克拉通北缘也留下了这期岩浆活动的记录。有人认为古亚洲洋持续至二叠纪末-三叠纪初,也有人提出古亚洲洋在晚古生代早期闭合后,于早二叠世再度打开。按这两种观点,势必在早中生代之前还将有一次大陆板块的闭合造山。从前述二叠纪的变形、变质、建造以及岩浆活动特征来看,均不具有造山作用特征,况且一个不大的地区在晚古生代大约在100Myr期间,经历两次相隔如此短暂的威尔逊旋回,着实令人难以理解 。

从本文重点讨论的内容来看,二叠纪早、晚两阶段的岩浆活动无论从深成岩性质和岩浆演化规律来看,它们与安第斯型造山带的岩浆活动均有明显差异。使用深成岩的岩石化学组分判断其形成的构造环境往往有其多解性,例如二长岩系列主要是中上部地壳熔融的花岗岩,但壳熔的因素既可以是以水平挤压为主的造山作用,也可以是在伸展背景下源自深部不断上升的热作用结果。因此简单应用某个化学判别式或者图解都会带来人为的困惑。同样,简单应用微量元素或同位素说明存在岩石圈地幔物质的影响,也无法辨认原始地幔物质的源区特征。因此本文在采用常量元素分析基础上,重点对比了二叠纪早、晚两阶段深成岩的变化,包括Sr-Nd同位素的变化,从岩浆演化的角度讨论它们与安第斯型造山带岩浆活动的差异,它们更多地反映了板内自身热演化有关,同时利用了前人对高寺台原始OIB岩浆的研究,认为华北克拉通北缘在早二叠世时存在板内OIB岩浆沿着岩石圈断裂的上涌,晚二叠世随着热演化界面的抬升,地壳物质的熔融程度不断提高,而且280Ma和260Ma两期岩浆活动都有着更大的区域构造演化的背景。 6 区域背景及其研究意义

兴蒙造山带是中亚造山带的一部分。因此讨论兴蒙造山带的构造演化以及对华北克拉通北缘的影响都不能脱离对中亚造山带的认识。中亚造山带增生了显生宙以来不同世代的新生地壳,为研究其构造演化历史提供了重要依据,也因此吸引了地质界的关注。俄蒙境内由4条双峰式火山岩中和碱性花岗岩带组成的晚石炭、早二叠世裂谷带最为醒目(Ярмолюк et al., 1981)。Jahn et al.(2009)将中亚造山带划分了8条晚古生代-中生代过碱性-碱性长石花岗岩及伴生的双峰式火山岩带,其年龄包括早二叠世(295~270Ma),早中生代(230~190Ma)和晚中生代(150~120Ma)。其中蒙古-外贝加尔带规模最大,长2500km(图 7左上角),由350多个花岗岩-正长岩及火山岩组成。三阶段的火成岩都具有高εNd(t)和低εSr(t)的同位素地球化学特征,εNd(t)分别为-5~-1、0~4、-3.5~-2。这些叠加在不同构造单元上的深成岩-火山岩带在伸展背景下曾发生了多阶段的裂谷活动。从这一角度看,中亚造山带范围的老陆壳块体和基本连续的新增生陆壳一起,完成了与华北、西伯利亚、哈萨克斯坦和塔里木等古陆的拼合,从早二叠世开始,中、东亚古陆进入了新阶段的演化。横贯数千千米的晚古生代-中生代过碱性-碱性长石花岗岩携双峰式火山岩带以其醒目的北东向构造显示了新生的构造格局(图 7)。联系到华北燕山地区的印支运动和燕山运动,中亚造山带这三次伸展构造在华北克拉通北缘同样有着明显的表现(邵济安和张履桥,2004邵济安和张吉衡,2014),只是由于基底性质的差别,伸展构造的形式有所不同而已 。

何国琦等(2002)提出了大陆岩石圈形成过程的克拉通化阶段划分的观点,对深入认识本区构造演化有十分重要的意义。前文提到中亚造山带是显生宙以来新生地壳形成的重要地带,新增生地壳形成后,进入逐渐稳定的克拉通化阶段,晚泥盆世-早石炭世就是碰撞后的第一阶段的克拉通化,处于构造调整阶段,华北北缘整体隆起,接受了这一时期的深成岩侵位。而晚古生代-中生代大规模的平行带状伸展构造的出现,则标志着中亚造山带年轻陆壳从晚石炭开始进入克拉通化的第二阶段,此时深部作用的重要性越来越明显,华北北缘晚二叠世下地壳麻粒岩的形成和晚三叠世幔源岩浆的上涌及华北上千千米碱性岩带的出现,就是这一阶段的重要证据(阎国翰等,2000邵济安和杨进辉,2011邵济安等,2012邵济安和张吉衡,2014)。

华北北部二叠纪陆壳的研究涉及到对中亚造山带和华北克拉通演化的认识,希望引起国内外同行的关注与讨论。

参考文献
[1] Bai LB. 2013. The granitoids, geochronoligy, rock assemblages, tectonic and evolution of the Ernhot City-Abag Banner, Inner Mongolia. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
[2] Chen B, Suzuki K, Tian W et al. 2009. Geochemistry and Os-Nd-Sr isotopes of the Gaositai Alaskan-type ultramafic complex from northern North China Craton: Implications for mantle-crust interaction. Contributions to Mineralogy and Petrology, 158(5): 683-702
[3] De La Roche H, Leterrier J, Grandclaude P et al. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analysis: Its relationships with current nomenclature. Chemical Geology, 29(1-4): 183-210
[4] Hao BW. 2009. Discovery, genesis and tectonic significance of the Late-Paleozoic miarolitic K-feldspar granite in Southern Xianghuangqi, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 42(2): 269-284 (in Chinese with English abstract)
[5] Hauri EH, Wagner TP and Grove TL. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1-4): 149-166
[6] He GQ, Li MS and Zhou H. 2002. The stage of cratonization in the formation of continental lithosphere. Earth Science Frontiers, 9(4): 217-224 (in Chinese with English abstract)
[7] Hildreth W and Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489
[8] Hong DW, Huang HZ, Xiao JY et al. 1994. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica, 68(3): 219-230 (in Chinese with English abstract)
[9] Jahn BM, Litvinovsky BA, Zanvilevich AN et al. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos, 113(3-4): 521-539
[10] Le Bas MJ, Le Maitre RW, Streckeisen A et al. 1986. A chemical classification of volcanic rocks based on the total alkali-sillica diagram. Journal of Petrology, 27(P3): 745-750
[11] Liu CF, Zhou ZG, Zhang HF et al. 2011. Petrochemical characteristics and timing of Wuertagaolemiao granitoids, Siziwangqi, Inner Mongolia. Journal of Mineralogy and Petrology, 31(4): 34-43 (in Chinese with English abstract)
[12] Liu JM, Zhao Y, Sun YL et al. 2010. Recognition of the Latest Permian to Early Triassic Cu-Mo mineralization on the northern margin of the North China block and its geological significance. Gondwana Research, 17(1): 125-134
[13] Lu YM, Pan M, Qing M et al. 2012. Zircon U-Pb age of gold-bearing granitic intrusive rocks in Bilihe gold deposit of Inner Mongolia and its geological significance. Acta Petrologica Sinica, 28(3): 993-1004 (in Chinese with English abstract)
[14] Luo ZK, Miao LC, Guan K et al. 2001. SHRIMP chronological study of Shuiquangou intrusive body in Zhangjiakou area, Hebei Province and its geochemical significance. Geochimica, 30(2): 116-122 (in Chinese with English abstract)
[15] Ma X, Chen B, Chen JF et al. 2012. Zircon SHRIMP U-Pb age, geochemical, Sr-Nd isotopic, and in-situ Hf isotopic data of the Late Carboniferous-Early Permian plutons in the northern margin of the North China Craton. Scientia Sinica (Terrae), 42(12): 1830-1850 (in Chinese)
[16] Meng S, Yan C, Lai Y et al. 2013. Study on the mineralization chronology and characteristics of mineralization fluid from the Chehugou porphyry Mo-Cu deposit, Inner Mongolia. Acta Petrologica Sinica, 29(1): 255-269 (in Chinese with English abstract)
[17] Miao LC, Qiu YM, McNaughton N et al. 2002. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: Constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews, 19(3-4): 187-204
[18] Ni ZY. 2002. Retrograded eclogites, redingotes and metamorphic periodtites and their geotectonic significance in the northern margin of the North China craton, Hebei Province, Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-83 (in Chinese with English summary)
[19] Shao JA. 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Peking Univ. Publ. House, 77-79 (in Chinese with English abstract)
[20] Shao JA and Zhang LQ. 2004. Discussion on Yanshanian Movement in Datai area, West Beijing. Acta Petrologica Sinica, 20(3): 647-654 (in Chinese with English abstract)
[21] Shao JA, Zhang LQ, Mu BL et al. 2007. Upwelling of Da Hinggan Mountains and Its Geodynamic Background. Beijing: Geological Publishing House, 24-29 (in Chinese)
[22] Shao JA and Yang JH. 2011. The geological corridor recording the Early Mesozoic crust-mantle evolution from Chifeng to Lingyuan. Acta Petrologica Sinica, 27(12): 3525-3534 (in Chinese with English abstract)
[23] Shao JA, Zhang Z, She HQ et al. 2012. The discovery of pganerozoic granulite in Chifeng area of North craton and its implication. Earth Science Frontiers, 19(3): 188-198 (in Chinese with English abstract)
[24] Shao JA and Zhang JH. 2014. The Early Mesozoic continental crust reformation in Yanshan area-giving discussion to Indosinian Movement. Earth Science Frontiers, 21(6): 302-309 (in Chinese with English abstract)
[25] Shao JA, Tang KD and He GQ. 2014. Early Permian tectono-palaeogeographic reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866 (in Chinese with English abstract)
[26] Shi YR, Liu DY, Miao LC et al. 2010. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632-641
[27] Tang KD. 1992. Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate. Beijing: Peking Univ. Publ. House, 236-243 (in Chinese)
[28] Tian W, Chen B, Ireland TR et al. 2011. Petrology and geochemistry of dunites, chromitites and mineral inclusions from the Gaositai Alaskan-type complex, North China Craton: Implications for mantle source characteristics. Lithos, 127(1-2): 165-175
[29] Wan B, Ernst H, Zhang LC et al. 2009. Ru-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites. Economic Geology, 104(3): 351-363
[30] Wang F, Chen FK, Hou ZH et al. 2009. Zircon ages and Sr-Nd-Hf isotopic composition of Late Paleozoic granitoids in Chongli-Chifeng area, northern margin of the North China block. Acta Petrologica Sinica, 25(11): 3057-3074 (in Chinese with English abstract)
[31] Wang HC, Xiang ZQ, Zhao FQ et al. 2012. The alkaline plutons in eastern part of Guyang County, Inner Mongolia: Geochronology, petrogenesis and tectonic implications. Acta Petrologica Sinica, 28(9): 2843-2854 (in Chinese with English abstract)
[32] Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384
[33] Xu LQ. 2005. The characteristics of magmatic rocks and discusion of geotectonics evolution from Calidonian through Hercynian to Indosinian stage in the Baiyun'ebo-Mandula region, Inner Mongolia. Ph. D. Dissertation. China University of Geosciences (in Chinese with English abstract)
[34] Yan GH, Mu BL, Xu BL et al. 1999. Triassic alkaline intrusives in the Yanliao-Yinshan area: Their chronology, Sr, Nd and Pb isotopic characteristic and the implication. Science in China (Series D), 42(6): 582-587
[35] Yuan GB and Wang HC. 2006. Magmatic activity and its tectonic implications during the Early Permian in the Northwestward of Wuchuan, Inner Mongolia. Geological Survey and Research, 29(4): 303-308 (in Chinese with English abstract)
[36] Zhang SH, Zhao Y, Song B et al. 2007. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164(2): 451-463
[37] Zhang SH, Zhao Y, Liu J et al. 2007. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China block and its tectonic implications. Acta Petrologica Sinica, 23(3): 625-638 (in Chinese with English abstract)
[38] Zhang SH, Zhao Y, Krner A et al. 2009a. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int. J. Earth Sci., 98(6): 1441-1467
[39] Zhang SH, Zhao Y, Liu XC et al. 2009b. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110(1-4): 229-246
[40] Zhang SH, Zhao Y, Song B et al. 2009c. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin, 121(1-2): 182-200
[41] Zhang XH, Zhang HF, Tang YJ et al. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262-281
[42] Zhang XH, Mao Q, Zhang HF et al. 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: The Early Permian Guyang batholith from the northern North China Craton. Lithos, 125(1-2): 569-591
[43] Zhang XH, Xue FH, Yuan LL et al. 2012. Late Permian appinite-granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications. Lithos, 155: 201-217
[44] Zhang YM, Zhang HF, Liu WC et al. 2009. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia. Acta Petrologica Sinica, 25(12): 3165-3181 (in Chinese with English abstract)
[45] Ярмолюк BB, Дураите МВ and Коваленко ВИ. 1981. Возраст комендим-щелочно-оранитных ассоциации Южной Монголии, Изв. АН СССР, Сер. Теол., 9: 40-48
[46] Хайн ВЕ. 1984. Окраино-континентальные и межконтинентальные геосинк-лин альные пояса: Cопоставление особенностей развития 27-й МГК, Том з, С. 07
[47] 白立兵. 2013. 内蒙古二连-阿巴嘎地区晚古生代岩浆岩年代学、岩石组合与构造演化. 博士学位论文. 北京: 中国地质大学
[48] 郝百武. 2009. 内蒙古镶黄旗南晚古生代晶洞钾长花岗岩杂岩的发现、岩石成因及其构造意义. 吉林大学学报(地球科学版), 42(2): 269-284
[49] 何国琦, 李茂松, 周辉. 2002. 论大陆岩石圈形成过程中的克拉通化阶段. 地学前缘, 9(4): 217-224
[50] 洪大卫, 黄怀曾, 肖宜君等. 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义. 地质学报, 68(3): 219-230
[51] 柳长峰, 周志广, 张华峰等. 2011. 内蒙古四子王旗乌尔塔高勒庙岩体的侵位时代及岩石地球化学特征. 矿物岩石, 31(4): 34-43
[52] 路彦明, 潘懋, 卿敏等. 2012. 内蒙古毕力赫含金花岗岩类侵入岩锆石U-Pb年龄及其地质意义. 岩石学报, 28(3): 993-1004
[53] 罗镇宽, 苗来成, 关康等. 2001. 河北张家口水泉沟岩体SHRIMP年代学研究及其意义. 地球化学, 30(2): 116-122
[54] 马旭, 陈斌, 陈家富等. 2012. 华北克拉通北缘晚古生代岩体的成因和意义: 岩石学、锆石U-Pb年龄、Nd-Sr同位素及锆石原位Hf同位素证据. 中国科学(地球科学), 42(12): 1830-1850
[55] 孟树, 闫聪, 赖勇等. 2013. 内蒙古车户沟钼铜矿成矿年代学及成矿流体特征研究. 岩石学报, 29(1): 255-269
[56] 倪志耀. 2002. 冀北退变榴辉岩、异剥钙榴岩和变质橄榄岩及其地质意义. 博士科研报告. 北京: 中国科学院地质与地球物理研究所, 1-83
[57] 邵济安. 1991. 中朝板块北缘中段地壳演化. 北京: 北京大学出版社, 77-79
[58] 邵济安, 张履桥. 2004. 议京西大台地区的燕山运动. 岩石学报, 20(3): 647-654
[59] 邵济安, 张履桥, 牟保磊等. 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社, 24-29
[60] 邵济安, 杨进辉. 2011. 记载了早中生代壳幔演化的赤峰-凌源地质走廊. 岩石学报, 27(12): 3525-3534
[61] 邵济安, 张舟, 佘宏全等. 2012. 华北克拉通北缘赤峰地区显生宙麻粒岩的发现及其意义. 地学前缘, 19(3): 188-198
[62] 邵济安, 张吉衡. 2014. 燕山地区早中生代陆壳的改造——兼论印支运动. 地学前缘, 21(6): 302-309
[63] 邵济安, 唐克东, 何国琦. 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866
[64] 唐克东. 1992. 中朝板块北侧褶皱带构造演化及成矿规律. 北京: 北京大学出版, 236-243
[65] 王芳, 陈福坤, 侯振辉等. 2009. 华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Rr-Nd-Hf同位素组成. 岩石学报, 25(11): 3057-3074
[66] 王慧初, 相振群, 赵凤清等. 2012. 内蒙古固阳东部碱性侵入岩: 年代学、成因与地质意义. 岩石学报, 28(9): 2843-2854
[67] 许立权. 2005. 内蒙古白云鄂博-满都拉地区加里东期-华力西期-印支期岩浆岩特征与大地构造演化探讨. 博士学位论文. 北京:中国地质大学
[68] 阎国翰, 牟保垒, 徐保良等. 2000. 燕山-阴山三叠纪碱性侵入岩年代学和Sr、Nd、Pb同位素特征及意义. 中国科学(D辑), 30(4): 383-387
[69] 袁桂邦, 王慧初. 2006. 内蒙古武川西北部早二叠世岩浆活动及其构造意义. 地质调查与研究, 29(4): 303-308
[70] 张拴宏, 赵越, 刘健等. 2007. 华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义. 岩石学报, 23(3): 625-638
[71] 章永梅, 张华峰, 刘文灿等. 2009. 内蒙古中部四子王旗大庙岩体时代及成因. 岩石学报, 25(12): 3165-3181