岩石学报  2014, Vol. 30 Issue (12): 3681-3692   PDF    
渣尔泰山地区白垩纪酸性火山岩地质特征及成矿作用
康明, 杨柳, 王丰, 李振, 王璐阳, 何祎    
长安大学地球科学与资源学院, 西安 710054
摘要:渣尔泰山地区位于内蒙古中西部,大地构造位置处于华北地台北缘狼山-渣尔泰山裂陷槽的东段,根据近几年的找矿实践与研究,在白垩纪的酸性火山岩中已发现银金矿床、金银矿床,主要赋存于下白垩统白女羊盘组酸性火山岩中。该套火山岩具富硅富钾、相对贫钙镁的特点,属于铝过饱和的碱性系列;在球粒陨石标准化图解上岩石化学样品均显示为轻稀土(LREE)相对富集、重稀土(HREE)相对亏损的右倾型配分模式,轻重稀土分异较明显,显示较明显的负铕异常;微量元素显示明显的Rb、Pb正异常和Ba、Sr负异常,不相容元素比值Zr/Nb=2.47~4.87,Zr/Y=18.3~103。属大陆碰撞造山期后作用的产物,来源于地壳部分熔融。其岩石类型主要有:流纹质凝灰角砾岩、流纹质角砾凝灰岩、球粒状流纹岩、珍珠岩、显微嵌晶状流纹岩夹流纹斑岩等。银多金属矿的含矿层主要由复碎裂复硅化流纹质凝灰角砾岩、硅化复碎裂流纹岩、多期次硅化黄铁矿化角砾岩化流纹斑岩等组成。成矿元素Ag、Au、Sb、W显著富集于流纹质凝灰角砾岩、多期次硅化碎裂的流纹岩、流纹斑岩中,其平均含量高于中国流纹岩元素丰度10倍以上,说明该套火山岩提供了成矿物质来源;且元素含量的分异程度较大,指示明显受到后期成矿作用的叠加;有一定的找矿潜力。
关键词白女羊盘组酸性火山岩     地质特征     成矿作用     渣尔泰山地区     内蒙古    
Geological characteristics and mineralization of Cretaceous acid volcanic rock in the Zha'ertaishan area, Inner Mongolia
KANG Ming, YANG Liu, WANG Feng, LI Zhen, WANG LuYang, HE Yi    
College of Earth Science and Resources, Chang'an University, Xi'an 710054, China
Abstract: The Zha'ertaishan area, lied in middle-west area of Inner Mongolia, and is located in the east section of Langshan-Zha'ertaishan Mesoproterozoic rift zone of the northern margin of the North China Plate. In the course of prospecting and research, silver-gold and gold-silver deposits were discovered, which was occurred in acidic volcanic rocks of the Bainuyangpan Formation of the Lower Cretaceous which are peraluminous calc-alkaline series characterized by silicate-rich and potassium-rich, low iron and low magnesium. The rocks are enriched in LREE and relatively depleted in HREE, significant fraction between LREE and HREE, and with obvious negative Eu anomaly. The acidic volcanic rocks are characteristics of clearly positive anomalies of Rb and Pb, and negative anomalies of Ba and Sr. The ratios of incompatible element for Zr/Nb and Zr/Y are 2.47~4.87 and 18.3~103. They were the product of collision orogenics between North China Plate and Siberia Plate in Mesozoic era, which were formed by partial melting of the crust. The rocks are made of rhyolitic tuff breccia, rhyolitic tuff with breccia, spherulitic rhyolite, perlite, microaphanitic rhyolite with rhyolite porphyry, and the ore-bearing layer of silver polymetallic mine consists mainly of multiphase silicified rhyolitic tuff breccias with multiphase fragmentation, multiphase silicified rhyolite with multiphase fragmentation, multiphase brecciated rhyolite porphyry with pyritization and silicification etc. Ore-forming elements of Ag, Au, Sb and W are enriched significantly in rhyolitic tuff breccias, multiphase silicified rhyolite and rhyolite porphyry with multiphase fragmentation, and the average content of metallogenetic elements for Ag, Au, Sb and W in those are more ten times than abundance of chemical elements of the China rhyolite. It demonstrated that the volcanic rocks are the sources of orebodies. The variation of ore-forming elements is obvious, and it indicated that mineralization superposition is significant and is of potentials for prospecting Ag deposit in this region.
Key words: Acid volcanic rocks of Bainuyangpan Formation     Geological characteristics     Metallogenalization     Zha'ertaishan area     Inner Mongolia    
1 引言

渣尔泰山地区位于内蒙古中西部,大地构造位置处于华北地台北缘狼山-渣尔泰山裂谷带的东段(内蒙古自治区地质矿产局,1991芮宗瑶等,1994沈存利等,2004涂光炽,2000王辑等;1989肖荣阁等,2000翟裕生等,1999)(图 1)。华北地台自中生代开始,便处于与古太平洋板块强烈挤压俯冲以及与北面西伯利亚板块、南面华南板块进一步挤压俯冲(A型)所造成的两大构造应力场和构造环境中(胡受奚等,1988胡受奚和郭继春,1989)。在中生代发生“活化”,特别在其东、南和北部边缘发生强烈的构造-岩浆作用,都是与中生代的构造环境有着不可分割的联系(胡受奚等, 19951997199820002002; Zhao et al., 2002; Zhou et al., 2002; Kusky and Li, 2003)。

图 1 华北板块北缘地质构造背景(据沈存利等,2004修编)
1-中新生界;2-古生界;3-中元古界;4-下元古界;5-上太古界;6-印支期侵入岩;7-海西期侵入岩;8-加里东期侵人岩;9-元古宙和太古宙侵入岩;10-断裂
Fig. 1 Tectonic sketch map of the northern margin of North China Plate(after Shen et al., 2004)
1-Mesozoic; 2-Paleozoic; 3-Meso-Proterozoic; 4-Lower Proterozoic; 5-Upper Archaeozoic; 6-Indo-Sinian intrusive rocks; 7-Hercynian intrusive rocks; 8-Caledoian intrusive rocks; 9-Proterozoic-Archaeozoic intrusive rocks; 10-fault

中生代是我国最重要的成矿期之一,不但有大量的内生金属矿床,也有丰富的表生矿产资源。由分布在东北、古阴山-燕山、华北地台、古秦岭-大别、扬子地台和东南沿海等大型、超大型矿集区的12个主要矿床成矿系列,可大致构筑起中国白垩纪的大陆成矿体系(吴福元等,2000陈斌等, 20022005邓晋福等, 20032005莫宣学等,2003)。白垩纪时期有一些全球性的大事件,如125~120Ma期间翁通爪哇海台的形成与Aptian地幔柱有关(王登红,1998),而这一时期(及其前后)恰恰是中国东部大规模成矿作用的爆发期,如胶东的金矿、长江中下游的多金属矿床、华南的铀矿及有色金属矿床等(王登红,1998陈毓川和王登红,2001王登红等,2005)。白垩纪喷发的陆相火山岩一般伴随有次火山岩,并且保存有发育良好的火山机构,有利于斑岩型铜、金多金属矿床和浅成低温热液型金矿及非金属矿床成矿的形成与保存,但目前已知的矿床很少,应该加强对这些火山岩区的调查与研究,扩大找矿前景是很有希望的(王登红等,2005)。

华北克拉通北缘是一条近东西向的浅成低温热液成矿带,在华北克拉通北缘至少已有13个矿床被报道为浅成低温热液型(陈衍景和富士谷,1992权恒等,1992许晓蜂,1992李兆龙等,1995祁进平等,2004)。浅成低温热液矿床是一种非常重要的矿床类型(Hedenquist et al., 1992; Ioannou and Spooner, 2000; Mehmet,2000; Simpson et al., 20012005; Brathwaite and Faure, 2002; Brathwaite et al., 2006; Faure et al., 2002; Christie et al., 2003; Hudson,2003; Richards and Priyono, 2004; Briggs and Krippner, 2006; Begbie et al., 2007; Warren et al., 2007; Piercey,2010),在储量大于150t的金矿床中,浅成低温热液型占13%(White and Hendenquist, 1990; White et al., 1995; White,2003)。

在内蒙古中西部渣尔泰山地区,白垩纪火山岩的分布面积较大,但其中的找矿问题一直没有突破性进展。长安大学在承担内蒙古自治区西圪堵等三幅15万区域矿产调查项目的基础上,发现了具有找矿前景的W-1综合异常,通过异常查证、地表槽探工程揭露和深部钻探验证等工作,新发现了西山湾羊场银多金属矿床,该矿床的发现对内蒙古中西部渣尔泰山地区火山岩的找矿工作是一个重要突破。 2 地质背景

渣尔泰山地区位于狼山-渣尔泰山铜多金属成矿带东段,出露地层主要为新太古界色尔腾山岩群、中元古界渣尔泰山群及中生界白垩统火山岩;侵入岩主要以加里东期和海西期岩浆活动为主;构造主体上为近东西向,西段呈NEE向,东段呈NWW向,在中部形成一个向北凸出的近东西向的弧形构造格架。

在新太古界色尔腾山岩群出露区,有前寒武纪沉积变质型鞍山式铁矿床产出(彭润民等,2007沈存利等,2004肖荣阁等,2000);在中元古界渣尔泰山群出露区,有霍各乞铜多金属矿床、甲生盘铅锌硫矿床、东升庙铅锌硫矿床、炭窑口铅锌硫矿床以及朱拉扎嘎大型金矿床等;根据近几年的找矿实践与研究,在白垩纪的酸性火山岩中新发现银金矿床,如西山湾羊场银多金属矿床、西水大型金银矿床等(康明等,2013)。

在渣尔泰山地区,分布于南王如地-西山湾羊场一带的火山岩,呈南北向展布,主要为下白垩统金家窑子组(K1jj)和白女羊盘组(K1bn)。金家窑子组主要分布于该火山岩带南部,以中基性火山岩为主;白女羊盘组主要分布于南北向火山岩带中部和北部,白庙子-西山湾羊场一带,以酸性火山熔岩及火山碎屑岩为主,并产有沸石、膨润土、珍珠岩矿和火山热液型银多金属矿(图 2)。具有成矿意义的主要为白女羊盘组酸性火山岩。

图 2 渣尔泰山地区南王如地一带火山岩分布地质简图(据康明等,2011修改)
1-下白垩统白女羊盘组酸性火山岩;2-下白垩统李三沟组河湖相碎屑岩;3-下白垩统金家窑子组中基性火山岩;4-中元古界渣尔泰山群;5-新太古界色尔腾山岩群;6-前燕山期侵入岩;7-铜矿化点;8-银矿床;9-萤石矿点;10-大型沸石、膨润土、珍珠岩矿床;11-岩石地球化学样品位置及编号;12-岩屑测量区
Fig. 2 Geological sketch of volcanic rocks in Zha’ertaishan area,Inner Mongolia
1-acid volcanic rocks of the Bainuyangpan Formation; 2-Lisangou Formation of the Lower Cretaceous; 3-basic-intermediate volcanic rocks of the Jinjiayaozi Formation; 4-Mesoproterozoic Zhaertaishan Group; 5-Sertengshan rock group; 6-pre-Yanshan intrusive rocks; 7-copper mineral; 8-silver deposit; 9-fluorite mineral occurrence; 10-large zeolite,bentonite and pearlite deposit; 11-the position and number of lithogeochemistry samples; 12-debris measurement area

①康明等.2011.内蒙古自治区西圪堵等三幅15万区域地质矿产调查报告.长安大学

关于白女羊盘组火山岩的时代,1993年内蒙古第一区域地质研究院六分队在白女羊盘组火山岩中分别采集了钾氩同位素年龄样。经地科院宜昌地矿所测试,流纹岩的同位素年龄值为130.1Ma、138.7Ma、139.1Ma、137.9Ma,结合火山岩之下沉积地层的时代,白女羊盘组火山岩的时代确定为早白垩世(封书凯,1998)。 3 白女羊盘组酸性火山岩岩相学特征

白女羊盘组酸性火山熔岩及火山碎屑岩的岩石类型主要有:流纹质凝灰角砾岩、流纹质角砾凝灰岩、球粒状流纹岩、珍珠岩、显微嵌晶状流纹岩夹流纹斑岩等。其岩石学特征如下。 3.1 流纹质凝灰角砾岩

凝灰质结构,角砾状构造。矿物成分:流纹质凝灰岩角砾30%,流纹质凝灰熔岩角砾35%,沉凝灰岩角砾10%,花岗质角砾及岩屑5%,熔结凝灰质胶结物20%(图 3a)。该类岩石的硅化较强,且是多期次的。镜下鉴定可见有大量已被玉髓和褐铁矿取代的乳滴状(蜂窝状)的并且背景已为大晶粒石英所取代的流纹质变余角砾(或岩屑),还见有已变为褐铁矿染的绢云母集晶团斑,它有可能是较为中性的火山岩岩屑之蚀变产物。此岩的早期硅化,表现为与火山碎屑脱玻化同生的自形粒状及六边形石英;晚期硅化表现为在上述火山碎屑岩之晚生裂缝中,新生玉髓的网脉的充填,亦偶见粒状、棒状石英伴生其间。矿化以乳滴状褐铁矿化-髓石化为早,而在网脉状玉髓和石英中的自形褐铁矿化不透明矿物则生成较晚(图 3b)。

图 3 渣尔泰山地区白垩纪酸性火山岩显微照片
(a)-流纹质凝灰角砾岩;(b)-复碎裂复硅化流纹质凝灰角砾岩;(c)-流纹质含角砾凝灰岩;(d)-显微嵌晶状流纹岩;(e)-多期矿化角砾状流纹岩;(f)-玉髓(硅)化复构造复碎裂流纹岩;(g)-显微嵌晶状流纹斑岩;(h)-多期次硅化矿化角砾岩化流纹斑岩;(i)-含凝灰夹层多期次硅化矿化碎裂流纹斑岩 Fig. 3 Microphotographs of Cretaceous acid volcanic rocks in Zha’ertaishan area
(a)-rhyolitic tuff breccia;(b)-rhyolitic tuff breccias with multiphase fragmentation and multiphase silicification;(c)-rhyolitic tuff with breccia;(d)-microaphanitic rhyolite;(e)-breccioid rhyolite with polymineralization;(f)-creolite rhyolite with multiphase fragmentation;(g)-microaphanitic rhyolite porphyry;(h)-brecciation rhyolite porphyry with multiphase silicification and polymineralization;(i)-cataclastic rhyolite porphyry with tuff for multiphase silicification and polymineralization
3.2 流纹质角砾凝灰岩

角砾凝灰质结构,块状构造。矿物成分:火山角砾<10%,变质岩角砾1%~2%,火山碎屑凝灰质85%(岩屑50%,晶屑15%,脱玻化玻屑+脱玻化火山尘20%),正常砂屑<3%。全岩主要由含火山角砾的流纹质晶屑-岩屑为主的凝灰质组分所构成(图 3c)。该类岩石中,具成矿意义的是沸石化流纹质沉角砾凝灰岩,为白庙子大型沸石、膨润土、珍珠岩矿床的主要岩石类型。 3.3 球粒状流纹岩

球粒状流纹岩在白女羊盘组的火山熔岩中为主要的岩石类型。矿物成分:斑晶≤15%,以透长石为主,奥长石次之,石英少,基质(球粒状长英集合体为主,其中以碱性长石为主,针状赤铁矿较少,碳酸盐-文石)≥85%。岩石呈熔蚀斑状结构,基质为球粒结构,变余流纹结构,块状构造。 3.4 显微嵌晶状流纹岩

微嵌晶结构、局部霏细-微晶结构,不均匀(斑杂状)构造、变余流纹构造。矿物成分:微嵌晶状石英+长石嵌晶颗粒>55%,霏细-微晶状脱玻化长英集合体>35%,斑团状-条痕状石英集晶体≤3%,褐铁矿化黄铁矿星散晶体≥1%,褐铁矿染绢云母(或叶腊石、高岭土)<5%(图 3d),具成矿意义的是复硅化复碎裂显微嵌晶状流纹岩。矿区中的流纹岩均有不同程度的硅化、褐铁矿化及碎裂现象,具复硅化复构造特点。

D1010b1的薄片(图 3e)中可以看出,①早期大面积出现的略具板条的石英集晶脉团,并在脉团之中见到被壳状已褐铁矿化的金属矿物残留;②以微晶状玉髓为主的晚期硅化呈再充填裂隙的形态,亦见有褐铁矿化物—“乳滴状”的伴生,说明矿化的经历亦为久远。TC25b2的薄片(图 3f)鉴定也有同样结果,具早期、中期、晚期的硅化和多次碎裂现象。可以看出,此岩的角砾级碎屑大多可与相临近的碎屑互相呼应,而且表现为愈大的角砾其边部愈具棱角状形态,而沉浸在玉髓贯入物中的“砂”级(小碎屑)却具有比较浑圆的外貌(是被玉髓交代溶蚀的结果)。从图 3f可以看出:早期为大晶粒浸润性(交代性)取代原微嵌晶状流纹岩,而变为硅化他形粒状流纹岩,并且在此阶段伴生黄铁矿化(已褐铁矿化);中期为无黄铁矿化的玉髓细脉穿插;晚期表现为上述二期硅化流纹岩的进一步角砾岩化和玉髓化(即硅化)。 3.5 显微嵌晶状流纹斑岩

斑状结构,基质为霏细-微嵌晶结构,块状构造。斑晶主要为石英,次为透长石;基质主要为他形粒状石英和长石绢云母集晶体,次为微嵌晶状石英和长石。有玉髓细脉穿插。矿物成分:斑晶>10%(石英为主),基质85%(碱性长石为主),次生矿物>5%(褐铁矿化黄铁矿1%,硅化石英脉4%)。斑晶大小0.2~1mm,以0.35mm者居多。基质中以碱性长石微晶为主,嵌布在他形粒状石英背景之上。黄铁矿呈自形,大多已褐铁矿化,有的还伴有微晶碳酸盐充填,多呈星散状均匀分布于岩石之中,这种黄铁矿多与早期硅化有关,亦见似脉状产出。而呈乳滴状褐铁矿化的金属硫化物,常伴生在晚期石英脉之中,可见石英脉切穿石英斑晶,但未见石英脉切穿褐铁矿化黄铁矿现象,说明黄铁矿化系流纹岩生成之后由矿化和硅化蚀变所引起,而非熔岩期所生(图 3g)。具成矿意义的是复硅化复碎裂显微嵌晶状流纹斑岩。

工作区出露的流纹斑岩呈岩脉、岩墙等形式出现,都有不同程度的蚀变和矿化现象,主要为硅化、黄铁矿化、萤石化等。并见有多期次硅化、碎裂现象,TC23b2、TC23b3等薄片(图 3h)中可见硅化黄铁矿化微嵌晶流纹斑岩,后来经构造破裂为角砾状;已褐铁矿染为褐红色的玉髓质硅化网脉充填在角砾之间隙;无色、无矿化的玉髓脉又切穿了褐色玉髓脉;最后一期,是梳节状石英质细脉的贯入,同时伴生了大量的少褐铁矿化的含黄铁矿的硅化网脉。再如TC22b2薄片所见(图 3i),早期为浅色隐晶状玉髓,稍晚一些的玉髓网脉晶粒较粗一些,脉的颜色更淡,而大晶粒星散状的褐铁矿化黄铁矿自形晶多 见于此期网脉近旁。个别黄铁矿褐铁矿化孔洞 中充填了萤石。主期硅化以细粒石英为主,广布在主碎裂期所形成的角砾之间,见伴有较多细小自形黄铁矿,最后是无矿化梳节状石英细脉的贯穿。 4 岩石地球化学 4.1 主量元素地球化学

对白女羊盘组酸性火山岩,采集蚀变微弱、风化程度低的不同岩石类型的样品(样品采样位置见图 2),进行了主量、稀土和微量元素测试(表 1)。从表 1可以看出,酸性火山熔岩及火山碎屑岩具有高SiO2=73.18%~83.82%(平均76.67%);低Ti2O=0.05%~0.08%(平均0.06%)、低MgO≤0.01%~0.17%(平均0.09%,<0.01%按0.01%计算)、贫钙CaO=0.07%~0.90%、Al2O3=7.65%~13.43%(平均11.87%)、低Na2O=0.14%~3.78%(平均2.0%)、高K2O=4.82%~8.84%(平均5.82%),K2O>Na2O,K2O/Na2O=1.28~54.21,Mg#=0.01~0.19,A/CNK值=1.01~1.32,属于过铝质系列;在TAS分类图解上(图 4a),样品全部落在流纹岩区域;在AR-SiO2图解上(图 4b),绝大多数样品落在碱性区域。可以得出,研究区的酸性火山岩为富钾硅而相对贫钙镁的碱性系列(具有高硅、低铁、富钾、贫钙、镁的特点,属于铝过饱和的碱性系列),反映了成岩物质源于相对富钾的壳源。

表 1 渣尔泰山地区白垩纪酸性火山岩岩石地球化学数据(主量元素:wt%;稀土和微量元素:×10-6) Table 1 Element composition for Cretaceous acid volcanic rocks in Zha’ertaishan area(major elements: wt%; trace elements: ×10-6)

图 4 渣尔泰山地区白垩纪酸性火山岩TAS图(a,据Le Maitre et al., 1989)和SiO2-碱度图(b,据Wright,1969) Fig. 4 TAS(a,after Le Maitre et al., 1989) and SiO2 vs. Alk(b,after Wright,1969)diagrams for Cretaceous acid volcanic rocks in Zha’ertaishan area
4.2 稀土、微量元素地球化学

酸性火山熔岩稀土元素总量∑REE=13.0×10-6~29.89×10-6,LREE/HREE=2.91~6.59,(La/Yb)N=2.53~7.69,(La/Sm)N=1.16~3.08,δEu=0.02~0.25,δCe=0.97~1.40;酸性火山碎屑岩稀土元素总量∑REE=31.0×10-6~52.90×10-6,LREE/HREE=2.92~14.30,(La/Yb)N=2.59~28.44,(La/Sm)N=1.59~4.57,δEu=0.07~0.23,δCe=1.10~1.33;流纹斑岩稀土元素总量∑REE=31.73×10-6~85.58×10-6,LREE/HREE=4.51~8.86,(La/Yb)N=4.20~15.38,(La/Sm)N=1.70~2.30,δEu=0.02~0.11,δCe=1.09~1.40。

所有样品都表现为轻稀土(LREE)相对富集、重稀土(HREE)相对亏损的特征,在球粒陨石标准化图解上(图 5a)样品均显示为LREE富集右倾型配分模式,表明它们之间具有同源岩浆演化的特征;轻重稀土分异较明显,均显示较明显的负铕异常,表明岩浆分离结晶程度较高,初始岩浆中斜长石分异作用较强。

图 5 酸性火山岩球粒陨石标准化稀土元素配分曲线图(a,标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and MacDonough, 1989) Fig. 5 Chondnite-normalized REE distribution pattern(a,normalizing values after Boynton,1984) and Primitive mantle-normalized trace element spider diagram(b,normalizing values after Sun and McDonough, 1989)for Cretaceous acid volcanic rocks in Zha’ertaishan area

原始地幔标准化蛛网图显示(图 5b),Rb、Th、U、Pb、Nb、Ta、Zr、Hf正异常和Ba、Sr负异常,不相容元素比值Zr/Nb=2.47~4.87,Zr/Y=18.3~103.0(流纹质角砾岩为5.67),与稀土元素地球化学信息一致,共同指示岩浆为地壳熔融形成。 5 含矿性特征 5.1 水系沉积物异常特征

在该地区通过15万水系沉积物测量,样品密度为4.2点/km2,获得了W-1(甲1)综合异常(图 6)。该综合异常长约7.5km,宽3~5km,面积约24.3km2,其元素组合为Ag、W、As、Au、Sb、Pb、Bi、Mo、Zn、Cu、Hg,异常形态为不规则状。异常峰值Ag为8.228×10-6,W为53.4×10-6,As为56.8×10-6,Au为32.4×10-9,Sb为35.7×10-6,Pb为116.2×10-6,Zn为139.6×10-6,Hg为60.0×10-9。Ag异常极值点有一定的连续性,Ag、As、Sb、W、Au异常套合较好,具有明显的浓度分带和组份分带。

图 6 渣尔泰山地区水系沉积物异常与白垩纪火山岩关系剖析图
K1bn-白女羊盘组酸性火山岩
Fig. 6 The relationship between stream sediment anomalies and Cretaceous volcanic rocks in Zha’ertaishan area
K1bn-acid volcanic rocks of Bainuyangpan Formation

异常区内出露岩性主要为新太古界色尔腾山岩群斜长角闪片岩,寒武纪英云闪长岩,二叠纪二长花岗岩,下白垩统白女羊盘组流纹质角砾岩、流纹岩、流纹斑岩,异常主要发育于白女羊盘组酸性火山岩分布范围。 5.2 成矿元素含量特征

为了进一步了解白女羊盘组酸性火山岩中成矿元素的富集特征,在其分布地段以100×40m网度采集岩屑样品(岩屑测量区位置见图 2),粒级为-4~+20目,采样深度30~40cm,样品由3~5个采样点组合为一件样,样品代表性较强,能充分反映各地质单元成矿元素的变化特征,其含量特征见表 2。为了表征成矿元素在不同地质体的分配特征,引入浓集克拉克值K(元素在地质体中的平均含量/中国流纹岩元素丰度)反映其相对浓集特征,表 3以K≥10、5≤K<10、1≤K<5、K<1为界,列出了特征元素组合,分别表示显著富集、富集、中等和偏低。从表 3可以看出:与中国流纹岩元素丰度值相比,Ag、Sb、W、Au的 富集程度最高,主要富集于流纹质凝灰角砾岩、显微嵌晶状流纹岩、流纹斑岩中;Pb、Cu、Mo、Bi为中等,Zn偏低。As作为指示元素在该套火山岩中显示为富集特征。

表 2 渣尔泰山地区成矿元素在白垩纪酸性火山岩不同类型岩石中的含量特征 Table 2 Characteristics of content of ore-forming elements in Cretaceous acid volcanic rocks in Zha’ertaishan area

表 3 渣尔泰山地区白垩纪酸性火山岩不同类型岩石中相对富集与贫化的成矿元素 Table 3 The relative levels of concentration of ore-forming elements in Cretaceous acid volcanic rocks in Zha’ertaishan area

同时,为了说明不同元素在各地质体的相对离散程度,采用了标准离差(S)-变异系数(Cv)这一地化指标,表征元素含量的相对离散程度和元素在地质体中的分异程度(表 2),按元素分异程度的不同,将其分为以下三种类型:

Cv≥1.5为强分异型,即元素含量分布极不均匀;0.5≤Cv≤1.5为明显分异型,即元素含量明显不均匀;Cv<0.5为均匀分异型。据此列出了各地质单元中变化性相对大小的成矿元素(表 4),从表 4可知:该套火山岩中多数成矿元素的变化性比较明显,说明后期成矿作用的叠加是明显不均匀的。Au、Ag、Sb、W在白女羊盘组酸性火山岩的各岩性段基本表现为强分异型;Mo除在石泡流纹岩中表现为均匀分异外,基本上为明显分异型-强分异型;Cu、Pb、Zn、As表现为明显分异型;Bi为均匀分异型。总体而言,Au、Ag、Sb、W的变化性最大,Mo、Cu、Pb、Zn、As次之,Bi偏低。

表 4 渣尔泰山地区白垩纪酸性火山岩不同类型岩石中变化性相对大与小的成矿元素 Table 4 The relative levels of variation of ore-forming elements in Cretaceous acid volcanic rocks in Zha’ertaishan area

根据以上成矿元素含量特征可以得出,流纹质角砾岩、显微嵌晶状流纹岩、流纹斑岩中有找Ag、Au、Sb、W矿的潜力。目前我单位在研究区通过深部钻探工程验证已见到银矿体,其它地勘单位在西水已见到金矿体(康明等,2013)。 5.3 矿产时空分布特征

在中生代,渣尔泰山地区受断裂控制的陆相火山活动强烈。早期以中基性火山喷发为主,局部形成含铜玄武岩,如兴胜召铜矿化点;晚期以中酸性火山喷发为主,主要分布于王如地-白庙子-马鬃山等地,在酸性火山熔岩及火山碎屑岩中形成了沸石、膨润土和珍珠岩矿及多金属矿,如白庙子大型沸石、膨润土、珍珠岩矿、西山湾羊场火山热液型银多金属矿、西水大型火山岩型金银矿等。

火山岩在区域上沿近南北向呈锯齿状展布,由南向北显示为中基性到酸性,其矿产分布从南向北形成铜多金属-沸石、膨润土、珍珠岩-银(萤石)-金(银)的成矿系列,也是一种沿火山岩带纵向上的成矿分带。 6 讨论与结论

(1)在内蒙古渣尔泰山地区,白垩纪成矿火山岩提供了成矿物质,不同的岩石类型,其矿化类型不同,具有成矿意义的主要为白女羊盘组酸性火山岩。

内蒙古渣尔泰山地区早白垩世这次火山喷发活动虽然规模不大,但比较广泛地分布于白垩纪沉积盆地之中,分布于南王如地-西山湾羊场一带的火山岩在区域应力场影响下,发生两期陆相火山喷发,早期以中基性火山喷发为主,局部形成含铜玄武岩,如兴胜召铜矿化点;晚期以酸性火山喷发为主,形成球粒流纹岩、显微嵌晶状流纹岩,流纹质角砾凝灰岩,流纹质凝灰角砾岩,并形成火山热液型银多金属矿、火山岩型金银矿等。岩屑样品中成矿元素Ag、Au、Sb、W的富集程度最高,显著富集于流纹质凝灰角砾岩、显微嵌晶状流纹岩、流纹斑岩中,高于中国流纹岩元素丰度值10倍以上(Ag的富集已高达20倍以上),说明在成矿作用过程中白女羊盘组酸性火山熔岩及火山碎屑岩提供了成矿物质来源。

(2)断裂构造提供了成矿的空间,后期热液使成矿物质得到进一步富集而成矿。

成矿作用与裂谷环境的火山岩浆活动密切相关。成矿区在新太古代形成了结晶基底,中元古代被动陆缘裂陷槽裂解(李英等,1997胡骁和牛树银,1992)。在海西运动期间,受西伯利亚板块向南俯冲的影响,华北地台北缘地壳受到南北方向的强烈挤压,渣尔泰山群产生早期褶皱变形,中酸性岩浆上侵,形成了大量海西期花岗岩,使地壳增生、变厚。中生代(印支运动)以来,华北地台北缘进一步受到南北方向的挤压(彭润民等,2007胡受奚等,1995)。先存的太古界色尔腾山岩群、中元古界渣尔泰山群和早期的寒武纪侵入岩、二叠纪侵入岩进一步受到强烈挤压,产生断裂和变形,同时伴有较强烈的中酸性岩浆侵入活动。区域上EW向断裂带形成了导矿构造,次一级的NE向、NW向的扭裂,甚至韧性剪切构造形成容矿构造。由岩浆房分异出的次火山热液沿着导矿构造向上运移,同时萃取潜火山岩侵入体以及基底地层中的矿物质,逐渐富集形成含矿热液(康明等,2013);岩屑样品元素含量的分异程度较大,指示受到后期成矿作用的叠加明显;岩相学的复碎裂复硅化、多期次硅化等特征也证明这一点。

致谢  王晓功研究员参与了样品的采集工作;岩矿鉴定过程中得到了王崇礼教授的帮助和指导;成文过程中李永军教授提出了宝贵的修改建议与意见;在此一并表示感谢!
参考文献
[1] Begbie MJ, Spörli KB and Mauk JL. 2007. Structural evolution of the Golden Cross epithermal Au-Ag deposit, New Zealand. Economic Geology, 102(5): 873-892
[2] Brathwaite RL and Faure K. 2002. The Waihi epithermal gold-silver-base metal sulfide quartz vein system, New Zealand: Temperature and salinity controls on electrum and sulfide deposition. Economic Geology, 97(2): 269-290
[3] Brathwaite RL, Torckler LK and Jones PK. 2006. The Martha Hill epithermal Au-Ag deposit, Waihi: Geology and mining history. In: Christie AB and Brathwaite RL (eds.). Geology and Exploration of New Zealand Mineral Deposits. Parkville, Vic: Australasian Institute of Mining and Metallurgy Monograph, 25: 171-178
[4] Briggs RM and Krippner SJP. 2006. The control by caldera structures on epithermal Au-Ag mineralization and hydrothermal alteration at Kapowai, central Coromandel volcanic zone. In: Christie AB and Brathwaite RL (eds.). Geology and Exploration of New Zealand Mineral Deposits. Parkville, Vic: Australasian Institute of Mining and Metallurgy Monograph, 25: 101-107
[5] Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region. 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. Beijing: Geological Publishing House, 32-70 (in Chinese)
[6] Chen B, Zhai MG and Shao JA. 2002. Petrogenesis and significance of the Mesozoic North Taihang complex: Major and trace element evidence. Science in China (Series D), 32(11): 896-907 (in Chinese)
[7] Chen B, Tian W, Zhai MG and Arakawa Y. 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang mountains and other places of the North China Craton, with implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(1): 13-24 (in Chinese with English abstract)
[8] Chen YC and Wang DH. 2001. Study on Himalayan Endogenic Mineralization. Beijing: Scismological Press (in Chinese)
[9] Chen YJ and Fu SG. 1992. Gold Mineralization in West Henan. Beijing: Seismological Press, 234 (in Chinese)
[10] Chi QH and Yan MC. 2007. Handbook of Elemental Abundance for Applied Geochemistry. Beijing: Geological Publishing House, 148 (in Chinese)
[11] Christie AB, Faure K, Rabone SDC and Barker RG. 2003. Boiling and mixing of hydrothermal fluids in the Wharekirauponga rhyolite-hosted epithermal gold-silver deposit, Hauraki goldfield, New Zealand. In: Eliopoulos DG (ed.). Mineral Exploration and Sustainable Development. Rotterdam: Millpress Science, 453-456
[12] Deng JF, Su SG, Zhao HL et al. 2003. Deep processes of Mesozoic Yanshanian lithosphere thinning in North China. Earth Science Frontiers, 10(3): 41-50 (in Chinese with English abstract)
[13] Deng JF, Zhao GC, Su SG et al. 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era. Geotectonica et Metallogenia, 29(2): 157-165 (in Chinese with English abstract)
[14] Faure K, Matsuhisa Y, Metsugi H, Mizota C and Hayashi S. 2002. The Hishikari Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids. Economic Geology, 97(3): 481-498
[15] Feng SK. 1998. Time and stratigraphic sequence of Bainuyangpan Formation, Bainuyangpan area, Inner Mongolia. Geology of Inner Mongolia, (4): 20-26 (in Chinese)
[16] Hedenquist JW, Reyes AG, Simmons SF and Taguchi S. 1992. The thermal and geochemical structure of geothermal and epithermal systems: A framework for interpreting fluid inclusion data. European Journal of Mineralogy, 4(5): 989-1015
[17] Hu SX, Lin QL, Chen ZM and Li SM. 1988. Geology and Metallogeny of the Collision Belt between the North and South China Plates. Nanjing: Nanjing University Press, 1-558 (in Chinese)
[18] Hu SX and Guo JC. 1989. 1850±150Ma B.P.: An important period of transition in the evolution of the earth. Geological Review, 35(6): 556-573 (in Chinese with English abstract)
[19] Hu SX, Ye Y, Zhao YY et al. 1995. The Mesozoic tectonic setting of north china platform and its relation to hydrothermal metallogenesis. Geological Journal of Universities, 1(1): 58-66 (in Chinese with English abstract)
[20] Hu SX, Zhao YY, Xu JF and Ye Y. 1997. Geology of Gold Deposits in North China Platform. Beijing: Science Press, 220 (in Chinese)
[21] Hu SX, Wang HN, Wang DZ and Zhang JR. 1998. Geology and Geochemistry of Gold Deposits in East China. Beijing: Science Press, 343 (in Chinese)
[22] Hu SX, Zhao YY, Zhou SZ et al. 2000. Geology and geochemistry of gold deposits in the North China Platform. Journal of Nanjing University (Natural Sciences), 36(2): 133-139 (in Chinese with English abstract)
[23] Hu SX, Zhao YY, Sun JG et al. 2002. Fluids and their sources for gold mineralizations in the North China platform. Journal of Nanjing University (Natural Sciences), 38(3): 381-391 (in Chinese with English abstract)
[24] Hu X and Niu SY. 1992. Middle Proterozoic tectonic deformation and evolution of the Langshan-Zhartai Mountains in Inner Mongolia. Regional Geology of China, (1): 75-82 (in Chinese with English abstract)
[25] Hudson DM. 2003. Epithermal alteration and mineralization in the Comstock district, Nevada. Economic Geology, 98(2): 367-386
[26] Ioannou SE and Spooner ETC. 2000. Miocene epithermal Au-Ag vein mineralization, Dixie claims, Midas district, North-Central Nevada: Characteristics and controls. Exploration and Mining Geology, 9(3-4): 233-252
[27] Kang M, Liu C, Siqin BLG et al. 2013. The discovery of the Xishanwanyangchang volcanics-hosted silver deposit in Zha'ertaishan area, Inner Mongolia. Geophysical and Geochemical Exploration, 37(1): 11-16 (in Chinese with English abstract)
[28] Kusky TMA and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Science, 22(4): 383-397
[29] Le Maitre RW, Bateman P, Dudek A et al. 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendation of the International Union of the Geological Subcommission on the Systematic of Igneous Rocks. London: Blackwell Scientific, 1-193
[30] Li Y, Qi SJ, Zhang ZF et al. 1997. Favorable conditions for super large sulphide deposits in Yinshan district. Geology of Chemical Minerals, 19(4): 217-225 (in Chinese with English abstract)
[31] Li ZL, Zhang LY and Luo BH. 1995. Isotope geochemistry of volcanic Au-Ag deposits in North Shanxi Province. Contributions to Geology and Mineral Resources Research, 10(1): 1-8 (in Chinese with English abstract)
[32] Mehmet FT. 2000. The geology of the volcanic-associated polymetallic (Zn, Cu, Ag and Au) Selbaie deposits, Abitibi, Quebec, Canada. Exploration and Mining Geology, 9(3-4): 189-214
[33] Mo XX, Zhao ZD, Deng JF et al. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract)
[34] Peng RM, Zhai YS, Han XF et al. 2007. Mineralization response to the structural evolution in the Langshan orogenic belt, Inner Mongolia. Acta Petrologica Sinica, 23(3): 679-68 (in Chinese with English abstract)
[35] Piercey SJ. 2010. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits. Geochemistry: Exploration, Environment, Analysis, 10(2): 119-136
[36] Qi JP, Chen YJ and Li QZ. 2004. The epithermal deposits in the northern margin of northern China Craton: Spatiotemporal distribution and tectonic setting. Journal of Mineralogy and Petrology, 24(3): 82-92 (in Chinese with English abstract)
[37] Quan H, Han QY, Ai YF, Lin YC and Wei JY. 1992. The Features and Prospects of Metallogenesis of Polymetals, Gold and Silver in Yan-Liao Area of China. Beijing: Geological Publishing House, 1-134 (in Chinese)
[38] Richards TH and Priyono MDBD. 2004. Discovery of the Toguraci epithermal Au-Ag deposits, Gosowong goldfield, Halmahera Island, East Indonesia. Australasian Institute of Mining and Metallurgy Publication Series, Adelaide, Australia, 359-366
[39] Rui ZY, Shi LD, Fang RH et al. 1994. Geology of Nonferrous Metallic Deposits in the Northern Margin of the North China Landmass and Its Adjacent Areas. Beijing: Geological Publishing House, 110-140 (in Chinese with English abstract)
[40] Sheng CL, Wang SG, Su XX et al. 2004. Regional metallogenic characteristics in Proterozoic Chaertaishan Group, Inner Mongolia. Earth Science Frontiers, 11(1): 279-286 (in Chinese with English abstract)
[41] Simmons SF, White NC and John D. 2005. Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume: 1905-2005. Littleton, CO, U.S.A.: Society of Economic Geologists, 485-522
[42] Simpson MP, Mauk JL and Simmons SF. 2001. Hydrothermal alteration and hydrologic evolution of the Golden Cross epithermal Au-Ag deposit, New Zealand. Economic Geology, 96(4): 773-796
[43] Tu GC. 2000. Superlarge Deposits in China (Ⅰ). Beijing: Science in Press, 88-134 (in Chinese)
[44] Wang DH. 1998. Mantle Plume and Mineralization. Beijing: Scismological Publishing House (in Chinese)
[45] Wang DH, Chen YC and Xu ZG. 2005. Preliminary study on Cretaceous mineralization systems in China: Implications for future prospecting. Earth Science Frontiers, 12(2): 231-239 (in Chinese with English abstract)
[46] Wang J, Li SQ, Wang BL et al. 1989. The Langshan-Baiyunebo Rift System. Beijing: Peking University Press, 1-132 (in Chinese)
[47] Warren I, Simmons SF and Mauk JL. 2007. Whole-rock geochemical techniques for evaluating hydrothermal alteration, mass changes, and compositional gradients associated with epithermal Au-Ag mineralization. Economic Geology, 102(5): 923-948
[48] White NC and Hendenquist JW. 1990. Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(1-3): 445-474
[49] White NC, Leake MJ, McCaughey SN and Parris BW. 1995. Epithermal gold deposits of the southwest Pacific. Journal of Geochemical Exploration, 54(2): 87-136
[50] White NC. 2003. Epithermal Gold Deposits, SEG Short Courses on Gold Deposits. Beijing: China University of Geosciences, 1-107
[51] Wu FY, Sun YD, Zhang GL and Ren XW. 2000. Deep geodynamics of Yanshain Movement. Geological Journal of China Universities, 6(3): 379-388 (in Chinese with English abstract)
[52] Xiao RG, Peng RM, Wang MJ et al. 2000. Analysis of major metallogenic system in western section, northern margin of North China Platform. Earth Science, 25(4): 362-368 (in Chinese with English abstract)
[53] Xu XF. 1992. Later Yanshanian terrestrial volcanic-subvolcanic hydrothermal silver deposits in the middle northern margin of northern China Platform. Geological Exploration for Non-ferrous Metals, 1(1): 216-224, 251 (in Chinese with English abstract)
[54] Zhai YS, Deng J and Li XB. 1999. Essentials of Metallogeny. Beijing: Geological Publishing House, 1-287 (in Chinese)
[55] Zhao GC, Sun M and Wilde SA. 2002. Reconstruction of a pre-Rodinia supercontinent: New advances and perspectives. Chinese Science Bulletin, 47(19): 1585-1588
[56] Zhou TH, Goldfarb RJ and Phillps GN. 2002. Tectonics and distribution of gold deposits in China: An overview. Mineralium Deposita, 37(3-4): 249-282
[57] 陈斌, 翟明国, 邵济安. 2002. 太行山北段中生代岩基的成因和意义: 主要和微量元素地球化学证据. 中国科学(D辑), 32(11): 896-907
[58] 陈斌, 田伟, 翟明国, 荒川洋二. 2005. 太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义. 岩石学报, 21(1): 13-24
[59] 陈毓川, 王登红. 2001. 喜马拉雅期内生成矿作用研究. 北京: 地震出版社
[60] 陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社, 234
[61] 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京: 地质出版社, 148
[62] 邓晋福, 苏尚国, 赵海玲等. 2003. 华北地区燕山期岩石圈减薄的深部过程. 地学前缘, 10(3): 41-50
[63] 邓晋福, 赵国春, 苏尚国等. 2005. 燕山造山带燕山期构造叠加及其大地构造背景. 大地构造与成矿学, 29(2): 157-165
[64] 封书凯. 1998. 内蒙古白女羊盘地区白女羊盘组火山岩地层层序及时代. 内蒙古地质, (4): 20-26
[65] 胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社, 1-558
[66] 胡受奚, 郭继春. 1989. 距今1850±150Ma——地球发展演化的重要转折时期. 地质评论, 35(6): 556-573
[67] 胡受奚, 叶瑛, 赵懿英等. 1995. 华北地台中生代热液成矿的构造环境. 高校地质学报, 1(1): 58-66
[68] 胡受奚, 赵懿英, 徐金方, 叶瑛. 1997. 华北地台金矿地质. 北京: 科学出版社, 220
[69] 胡受奚, 王鹤年, 汪德滋, 张静容. 1998. 中国东部金矿地质学及地球化学. 北京: 科学出版社, 343
[70] 胡受奚, 赵懿英, 周顺之等. 2000. 华北地台金矿成矿规律. 南京大学学报(自然科学版), 36(2): 133-139
[71] 胡受奚, 赵乙英, 孙景贵等. 2002. 华北地台重要金矿成矿过程中的流体作用及其来源研究. 南京大学学报(自然科学版), 38(3): 381-391
[72] 胡骁, 牛树银. 1992. 内蒙古狼山-尔泰山中元古界的构造变形与演化. 中国区域地质, (1): 75-82
[73] 康明, 刘琛, 斯琴毕力格等. 2013. 内蒙古渣尔泰山地区西山湾羊场火山岩型银矿床的发现. 物探与化探, 37(1): 11-16
[74] 李英, 祁思敬, 张振飞等. 1997. 阴山超大型硫化物矿床形成的有利条件. 化工地质, 19(4): 217-225
[75] 李兆龙, 张连营, 骆华宝. 1995. 晋东北地区中生代次火山岩及金银成矿作用地球化学. 地质找矿论丛, 10(1): 1-8
[76] 莫宣学, 赵志丹, 邓晋福等. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148
[77] 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社, 32-70
[78] 彭润民, 翟裕生, 韩雪峰等. 2007. 内蒙古狼山造山带构造演化与成矿响应. 岩石学报, 23(3): 679-688
[79] 祁进平, 陈衍景, 李强之. 2004. 华北克拉通北缘浅成低温热液矿床: 时空分布和构造环境. 矿物岩石, 24(3): 82-92
[80] 权恒, 韩庆云, 艾永富, 林彦春, 魏菊英. 1992. 燕辽地区多金属、金、银成矿与远景. 北京: 地质出版社, 1-134
[81] 芮宗瑶, 施林道, 方如恒等. 1994. 华北陆块北缘及邻区有色金属矿床地质. 北京: 地质出版社, 110-140
[82] 沈存利, 王守光, 苏新旭等. 2004. 内蒙古中元古界渣尔泰山群区域成矿特征研究. 地学前缘, 11(1): 279-286
[83] 涂光炽. 2000. 中国超大型矿床(Ⅰ). 北京: 科学出版社, 88-134
[84] 王登红. 1998. 地幔柱及其成矿作用. 北京: 地震出版社
[85] 王登红, 陈毓川, 徐志刚. 2005. 中国白垩纪大陆成矿体系的初步研究及找矿前景浅析. 地学前缘, 12(2): 231-239
[86] 王辑, 李双庆, 王保良等. 1989. 狼山-云鄂博裂谷系. 北京: 北京大学出版社, 1-132
[87] 吴福元, 孙有德, 张光良, 任向文. 2000. 论燕山运动的深部地球动力学本质. 高校地质学报, 6(3): 379-388
[88] 肖荣阁, 彭润民, 王美娟等. 2000. 华北地台北缘西段主要成矿系统分析. 地球科学, 25(4): 362-368
[89] 许晓蜂. 1992. 华北地台北缘中段燕山晚期陆相火山-火山热液型银矿床. 有色金属矿产与勘查, 1(1): 216-224, 251
[90] 翟裕生, 邓军, 李晓波. 1999. 区域成矿学. 北京: 地质出版社, 1-287