岩石学报  2014, Vol. 30 Issue (9): 2644-2656   PDF    
滇西宝兴厂斑岩铜钼金矿床成矿流体特征
孙诺1, 黄明1, 闵毅2, 陈浪2, 刘江涛1, 曹宝宝3, 熊伊曲1    
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;
2. 武警黄金十支队, 昆明 650000;
3. 中国国土资源部航空物探遥感中心, 北京 100083
摘要:宝兴厂斑岩铜钼金矿床是三江成矿带上与富碱斑岩有关的典型斑岩型矿床,产出于金沙江-哀牢山深大断裂带中部东侧。宝兴厂矿床铜、钼、金、铁等各类型矿化皆有发育,具有复杂的岩浆活动及热液演化。矿区岩浆岩主要为喜马拉雅期富碱复式岩体,包括正长斑岩、石英二长斑岩、花岗斑岩和斑状花岗岩等,具有多期次侵入特征。铜钼矿体主要分布于花岗斑岩和斑状花岗岩内部,铁金矿体主要分布于岩体内外接触带上,矿体呈脉状、透镜状或似层状。热液蚀变由内向外分带显著,依次为钾硅酸盐化(黑云母化)、绢云母化、青磐岩化(绿泥石-绿帘石化),局部黏土化。本文通过系统的野外观测、详细的岩芯编录以及全面的岩相学观察,依据矿物共生组合、矿化热液脉体穿切关系及蚀变特征,将宝兴厂矿床内主要矿化脉体分为3类:A脉、B脉及D脉。通过对3类脉体内石英中流体包裹体的显微测温工作和成矿流体物理化学条件计算,剖析了成矿流体演化特征,探讨了成矿作用过程与成因机理。A脉与钾长石化和黑云母化蚀变关系密切,多为不规则脉状,宽约1~5mm,矿物组合一般为石英±钾长石±黑云母±少量黄铜矿±少量黄铁矿。石英多呈他形细粒,少量黄铁矿、黄铜矿沿石英颗粒边界呈浸染状产出。脉体中常含有黑云母、钾长石,两侧常见钾长石蚀变晕。A脉中一般没有矿化。B脉宽约15~30mm,矿物组合一般为:石英±辉钼矿±黄铜矿±黄铁矿。靠近脉壁的石英多为他形细粒,向中心转变为长柱状垂直于脉壁对称生长。硫化物呈线状分布于脉体的中心或边缘。B脉一般没有蚀变,偶见少量的绿帘石化-绿泥石化。D脉与绿泥石化-绢云母化关系密切,脉体规则连续,脉体宽度变化范围大,为1~30mm。矿物组合一般为石英±绿泥石±黄铁矿±少量黄铜矿。石英数量较少,多呈半自形-他形粗粒,相对于B脉黄铁矿含量明显增多,黄铜矿含量减少,呈浸染状分布,脉体中钾长石、黑云母常蚀变为绢云母和绿泥石,脉体两侧常具有绿泥石-绢云母蚀变晕。A脉形成于成矿早阶段斑岩尚未固结时,其流体包裹体以含子晶(NaCl子晶为主)多相包裹体和富气相包裹体组合为特点,均一温度为364~550℃,盐度分别集中在45.64%~52.89% NaCleqv(含子晶多相包裹体)和3.3%~16.34% NaCleqv(气液两相包裹体)两个区间内,该阶段流体显示出沸腾、不混溶及发生相分离特征。根据A脉中5个含石盐子晶的包裹体压力估算图,得出宝兴厂矿床A脉中LVH相包裹体被捕获时的最低压力为50~145MPa,按地压梯度27MPa/km换算,A脉形成的深度最少1.8~5.4km。B脉形成于成矿主阶段,石英中发育含子晶多相包裹体(NaCl子晶)和富气相包裹体,均一温度为210~410℃,盐度集中在34.24%~52.04% NaCleqv和5.23%~13.99% NaCleqv 两个区间内,该阶段成矿流体发生减压沸腾作用,使得Cu、Mo、Au大量沉淀,根据NaCl-H2O体系P-T相图压力估算,B脉的形成压力大约为15~48MPa,形成深度为0.56~1.78km。D脉形成于成矿晚阶段,石英以发育大量富液相包裹体为特征,均一温度为223~303℃,盐度集中在3.53%~11.71% NaCleqv范围内,该阶段成矿流体以中-低温、低盐度的岩浆热液与大气降水的混合流体为主,流体压力也降低到15MPa,形成深度不超过0.56km。宝兴厂矿床热液流体演化总体趋势为:由早阶段的高温、中-高盐度的岩浆热液向成矿晚阶段中-低温、低盐度的岩浆热液+大气降水混合流体转变。
关键词斑岩铜钼金矿床     矿化脉体     流体包裹体     宝兴厂     滇西    
Characteristics of ore-forming fluid of the Baoxingchang Cu-Mo-Au deposit, western Yunnan, China
SUN Nuo1, HUANG Ming1, MIN Yi2, CHEN Lang2, LIU JiangTao1, CAO BaoBao3, Xiong YiQu1    
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. No.10 Party of Gold Geology, CAPF, Kunming 650000, China;
3. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Abstract: The Baoxingchang Cu-Mo-Au deposit, tectonically occurring in the east-central part of the Jinshajiang-Ailaoshan suture zone, is one of the typical alkali-rich porphyry deposits in the Sanjiang metallogenic belt. The Cu, Mo, Au and Fe are the principal ore-metals developed commonly in the Baoxingchang deposit. Igneous rocks are mainly comprised of Himalayan alkali-rich complex, including syenitic porphyry, quartz monzonite porphyry, and porphyritic granite. Most Cu-Mo orebodies occur within the granitic rocks, while the Fe-Au orebodies distribute along the interface between the granitic rocks and sedimentary rocks, and also these orebodies occur mainly as vein-, lens-and stratoid-shape. Based on the field observation, hydrothermal alteration can be divided into four zones, zoning from proximal to distal as potassium-silicification (biotitization) zone, locally clayization zone, sericitization zone and propylitization zone. Three main types of hydrothermal veins have been identified: A-type, B-type and D-type veins based on its mineral assemblages, cutting relationship and alteration features. A-type veins with width of 1~5mm, occurred as irregular shape, are characterized by biotitization, K-feldsparization, and weak mineralization. Quartz, K-feldspar, biotite, less chalcopyrite and pyrite are the major mineral assemblages in this type of vein. Besides, K-feldspar alteration halo is commonly observed on both sides of A-type veins. B-type veins with a width of 15~30mm, having cut through the A-type veins, have a straight contact with the wall rocks and no alteration halos were observed beside them. Mineral assemblages are mainly quartz, molybdenite, chalcopyrite and pyrite. Quartz developing close to the edge of veins are fined-grained and anhedral, and elongated and symmetrically grow vertically to vein-wall in the center of veins, while the sulfides are linearly distributed in the center or edge of veins. D-type veins varying from 1~30mm in width and cutting through the earlier ore veins, are characterized by developing chlorite-sericite alteration halos on both sides of veins. Quartz, chlorite, pyrite and less chalcopyrite are the main minerals occurred in the veins. D-type veins mainly occurred in the wall rocks closing to the contact zone, with their boundaries more regular and continuous. The quartz in the veins are mostly subhedral or anhedral coarse-grained, with a low quantity, moreover, increasing amount of pyrite and reduced chalcopyrite are disseminated distributed within the veins, and also K-feldspar and biotite were usually altered into sericite and chlorite. In this paper, we conducted systematic micro-thermometric study on fluid inclusions of quartz from individual type of vein. Based on the outcomes, we concluded that the A-type veins were formed at the early mineralization stage while the porphyry was not consolidated yet. The classification of the fluid inclusion at this stage contains daughter mineral (NaCl crystal)-bearing multiphase inclusions and vapor-rich water inclusions. Ore-forming fluids have the homogenization temperature of 364~550℃ with the salinity ranging from 45.64% to 52.89% NaCleqv (daughter mineral-bearing multiphase inclusions) and 3.3% to 16.34% NaCleqv (vapor-rich water inclusions). These signatures indicate that the fluids processes of boiling and immiscibility occurred in this mineralization stage. Based on the pressure estimation of five NaCl crystal-bearing inclusions from the A-type veins, the calculated capture-pressure of daughter minerals-bearing multiphase inclusions are 50~145MPa at least, corresponding to the forming depth of 1.8~5.4km using the geo-pressure gradient of 27MPa/km. B-type veins were formed during the main mineralization stage. Daughter mineral-bearing inclusions and vapor-rich water inclusions are well developed in the quartz. These inclusions have a homogenization temperature of 210~410℃ and salinities of 34.24%~52.04% NaCleqv and 5.23%~13.99% NaCleqv, respectively. Decompression and boiling of ore-forming fluids caused the precipitation of Cu, Mo and Au at this stage. Based on the P-T phase diagram in the NaCl-H2O system, the estimated forming pressure of B-type veins is 15~48MPa, with a corresponding depth of 0.56~1.78km. D-type veins were formed at the late mineralization stage. Liquid-rich water inclusions are characteristically developed in the quartz. These inclusions have a homogenization temperature of 223~303℃, and salinity varying from 3.53% to 11.71% NaCleqv. All of those features show that the ore fluids have gone through the mixing of medium-low temperature, low-salinity magmatic hydrothermal fluids and the meteoric fluids. The ore-forming pressure at this stage has decreased to 15MPa, and the forming depth is lower than 0.56km accordingly. The entire evolving trend of the hydrothermal fluids of the Baoxingchang deposit is: early-stage high-temperature, high-medium-salinity magmatic fluids transforming to the mixing of magmatic fluids and meteoric fluids of medium-low temperature and low salinity at the late stage.
Key words: Porphyry Cu-Mo-Au deposit     Mineralized veins     Fluid inclusions     Baoxingchang deposit     Western Yunnan    
1 引言

斑岩型矿床是世界上Cu、Mo和Au的重要来源(Sillitoe,2010; Bissig and Cook, 2014),其形成与岩浆-流体的演化密切相关(Lang et al., 2013; Micko et al., 2014),深入研究成矿流体特征对查明成矿机制和指导找矿具有重要意义(Deng et al., 2009; Yang et al., 2009; 李楠等,2012; 赵凯等,2013; 杨立强等, 19992014a)。而斑岩矿床中矿化脉体是成矿流体演化的产物(Mercer and Reed, 2013),其中的流体包裹体保存了成矿作用的多种地质-地球化学信息(Deng et al., 2004; 邓军等,2005; Yang et al., 2006),是研究成矿环境演化和金属富集机制的最佳对象之一(邓军等,2001; Deng et al., 20022008; Yang et al., 20072008)。

金沙江-哀牢山富碱斑岩成矿带是我国新生代大规模斑岩成矿的典例之一,也是重要的铜、金、铅、锌产区(邓军等, 2010ab2012; 杨立强等, 20102011ab)。近年来仍不断取得新的找矿突破,显示出巨大的找矿潜力。宝兴厂铜钼金矿床是该矿带上富碱斑岩多金属矿床的典型代表,长期以来,人们对其开展了大量调查研究,而对其成矿流体的研究很少,对成矿流体演化和金属富集机制缺乏系统探讨。其中,郭晓东(2009)根据矿物组合及穿插关系,将成矿脉体划分为成矿前期A脉、成矿期B脉和成矿期后D脉,但流体包裹体显微测温及稳定同位素等相关工作并未对应成矿期次展开;王治华等(2010)对该矿床斑岩型、矽卡岩型和角岩型矿石石英中的流体包裹体开展了显微测温和稳定同位素研究,剖析了成矿流体空间上的变化趋势,但缺乏对成矿流体时间上演化特征的探讨。可见,已有对宝兴厂矿床的研究尚未揭示其成矿流体演化过程和成矿机制,这在一定程度上制约了对其成矿规律与找矿方向的准确认识,而正确的成矿认识与新的找矿思路是勘查突破的关键(Deng et al., 2014ab; Yang and Badal, 2013; Yang et al., 2014; 杨利亚等,2013; 杨立强等,2014b)。为此,本文通过系统的野外调查取样、详细的岩芯编录以及全面的岩相学研究,厘定出宝兴厂矿床的脉体类型、特征及相互穿插关系,详细分析了各阶段热液蚀变和矿化特征,对各类型脉体中石英的流体包裹体岩相学特征、均一温度、盐度和压力进行了研究,据此剖析了成矿流体的演化特征,探讨了成矿作用过程和成因机理。 2 区域及矿床地质

宝兴厂Cu-Mo-Au矿床是马厂箐矿田的主体部分,铜、钼、金、铁等各类型矿化皆有发育,具有复杂的岩浆活动及热液演化。马厂箐矿田位于金沙江-哀牢山深大断裂带中部东侧,是滇西富碱斑岩带中产出的最具代表性的大型矿田之一(Hou et al., 2007; 邓军等, 2010ab2012; 葛良胜等, 19992012)。该矿田总体呈NE向展布,由北向南依次为金厂箐、人头箐、乱硐山、宝兴厂和双马槽五个矿床(图 1)。矿田位于EW向展布的向阳复背斜的南端,断裂构造主要为NW向、SN向以及近EW向基底构造。地层出露简单,北部为二叠系玄武岩,其余为奥陶统、下泥盆统碳酸盐岩及碎屑岩建造和第四系。矿田主要发育喜马拉雅期马厂箐复式岩体。其中马厂箐复式岩体由260多个小岩体组成,具有多期次侵入特征,岩性主要包括正长斑岩、石英二长斑岩、花岗斑岩、斑状花岗岩。铜钼矿体主要产出于马厂箐岩体的内部及岩体内外接触带上,呈透镜状或似层状,矿体向深部成条状尖灭。金矿体产于围岩地层中,受地层中构造破碎带控制,在近南北向与东西向构造带的 交汇部位往往形成较为厚大的富矿体,多为似层状、板状。

图 1 马厂箐矿田地质简图(据西南冶金地质勘探公司310地质队,1981) Fig. 1 Simplified geological map of Machangqing ore field

①西南冶金地质勘探公司310地质队. 1981. 云南祥云县马厂箐矿区铜钼矿评价地质报告 3 矿化脉体特征

经典的斑岩型矿床蚀变分带模式自内而外依次是钾硅酸盐化带→石英绢云母化带→青磐岩化带,且呈环带状分布。晚阶段形成的长石分解蚀变(泥化与绢英岩化)叠加在早期形成的钾硅酸盐化和青磐岩化蚀变之上,并在空间上介于两者之间(Sillitoe,1973)。作者在岩芯编录和岩相学观察中发现,宝兴厂矿床的蚀变分带与上述经典蚀变分带有相似特征(图 2),但也有特殊之处:钾硅酸盐化在宝兴厂矿床表现较强,且以早阶段的钾长石化为主,有时伴随黑云母化,蚀变组合为钾长石-黑云母,主要分布在花岗斑岩体内,紧靠斑岩体接触带附近的角岩内也有少量出现,多呈肉红色。青磐岩化在宝兴厂矿床的围岩和内接触带分布较广,蚀变组合为绿泥石-绿帘石。晚阶段主要为低温蚀变,石英-绢云母化和绿泥石-黏土化(长石分解蚀变)作用强烈,叠加在新鲜斑岩及早期蚀变组合之上,使得钾化带被强烈改造而破坏。

图 2 宝兴厂矿床横剖面图(据王绍明,2010修改) Fig. 2 The cross profile of Baoxingchang deposit(modified after Wang,2010)

宝兴厂矿床矿化作用非常复杂,发育大量各类型脉体,较完整记录了蚀变与矿化过程中流体演化过程。但是,早期岩浆-热液过渡期的一些脉体,如岩浆房破裂时所形成的脉状岩枝和斑岩内部的单向固结结构(UST)等(杨志明等,2008),目前在宝兴厂矿床尚未发现,因此,本文主要详细介绍热液演化过程中所形成的脉体。依据宝兴厂矿床样品中脉体的矿物组成、切穿关系及蚀变类型,同时参考Gustafson and Hunt(1975)关于斑岩型矿床脉体划分及命名原则,将宝兴厂矿床脉体划分为3大类,分别为:成矿早阶段,斑岩尚未完全固结时形成的A脉;成矿主阶段,各类斑岩已经固结,大规模热液及裂隙事件发育时形成的B脉;成矿晚阶段,大气降水大量加入形成的D脉。

A脉:宝兴厂矿床发育的此类脉体显著特点是与钾长石化和黑云母化关系密切,宽一般为1~5mm,脉体两侧常见钾长石蚀变晕,或者脉体本身含有钾长石,产出形态多为不规则细脉状(图 3a,b)。脉体中的石英颗粒多为细粒、他形。脉体矿化较弱,或有极少量黄铁矿、黄铜矿沿石英颗粒边界呈浸染状产出。其矿物组合一般为:粒状石英±钾长石±黑云母±少量黄铁矿±少量黄铜矿。

图 3 宝兴厂矿床内发育的A、B、D脉体特征照片
(a、b)-不规则A脉,脉体两侧见钾长石、黑云母蚀变晕,脉体中可见少量黄铁矿,A脉被后期D脉切穿;(c、d)-含黄铁矿和辉钼矿的较平直B脉,脉体较宽,两侧可见弱钾长石化和弱绿帘石化;(e、f)-含黄铁矿的D脉,脉体延伸性好,两侧发育强烈的绿帘石-绢云母蚀变晕.Py-黄铁矿;Q-石英;Ccp-黄铜矿;Moly-辉钼矿;Chl-绿帘石;Ser-绢云母
Fig. 3 Photographs of samples,showing A,B,D veins characteristics

B脉: 此类脉体相对于A脉更靠近岩体顶部,多产出于外接触带的围岩中,其脉体明显变宽,宽一般为15~30mm,一般无蚀变晕,或见少量后期叠加的绿帘石、绿泥石蚀变,该类脉体脉壁相对平直且连续(图 3c,d)。紧靠脉壁的石英颗粒多为细粒、他形,向中心转变为长柱状垂直于脉壁对称生长。硫化物呈线状分布于脉体的中心或边缘。其矿物组合一般为:石英±辉钼矿±黄铜矿±黄铁矿。

D脉:此类脉体显著特点是两侧多具有绿泥石-绢云母蚀变晕,它们切穿了早期的A脉和B脉(图 3e,f)。该类脉体较规则且连续,脉体宽度变化范围大,一般为1~30mm,主要产在内外接触带的围岩中,部分脉体被方解石脉切穿。石英颗粒较粗且数量较少,半自形到他形。黄铁矿含量明显增多,黄铜矿含量较少,呈浸染状分布。脉体中早期的钾长石、黑云母蚀变为绢云母和绿泥石。其矿物组合一般为:黄铁矿±石英±少量黄铜矿。

4 流体包裹体分析 4.1 样品采集与分析方法

本文用于流体包裹体测试分析的样品为各成阶段的石英,即A、B、D脉中的石英,采自于宝兴厂矿床平硐PD2721、PD2795和钻孔ZK42804、ZK44404(图 1)。

流体包裹体显微测温在中国地质大学(北京)地球科学与资源学院包裹体实验室完成,使用仪器为英国产Linkam THMS600型冷热台。技术参数为:铂电阻传感器,控制稳定温度±0.01℃,温度显示0.01℃,测温范围为-196~600℃,样品轴向移动16mm,光孔直径1.3mm,加热/冷冻速率0.01~130℃/min。仪器标定采用标准物质(KNO3、CCl4、K2CrO3和人工配制的NaCl标准溶液),400℃时相对于标准物质误差为±2℃,-22℃时误差为±0.1℃。在加热或冷冻过程中设置的控温速率一般为10℃/min,在相变点附近速率小于1℃/min。本次显微测温的包裹体一般大于5μm,包裹体通过加热测得了气液相均一温度(ThL-V)、冰点温度(Tmice)及子矿物的熔化温度(TmNaCl)。VL相及LV相包裹体的盐度(NaCleqv)利用Potter et al.(1978)Hall et al.(1988)公式求出,LVH相包裹体的盐度用Bischoff(1991)公式求出,CO2包裹体的盐度和密度根据Shepherd et al.(1985)的均一温度-密度图解确定。 4.2 包裹体岩相学特征

根据流体包裹体在室温下的相态及加热过程中的相变化特征,可将宝兴厂矿床各脉体中流体包裹体划分为4类:

(1)富气相包裹体(VL):常温下大多数由气相和液相组成,有时可呈纯气相,加热后绝大部分均一至气相,少量呈临界或液相均一,其气相所占体积多大于50%。该类包裹体主要存在于A脉及B脉中。

(2)含子晶多相包裹体(LVH):由气相、液相和子晶组成,气相所占体积一般为10%~30%。包裹体中子矿物为透明NaCl立方体子晶。主要存在于A脉和B脉中。

(3)富液相包裹体(LV):由液相和气相组成,其气相所占体积多小于40%,加热后均一至液相。该类包裹体存在于各类脉体之中,但以D脉最为发育。

(4)富CO2溶液包裹体(LVCO2):室温下由水溶液相和CO2相组成,低温时气相CO2的边缘会出现液相CO2液圈,形成含CO2的三相流体包裹体。该类包裹体主要见于A脉和B脉中。以下将对各类脉体中流体包裹体的特征进行讲述。

A脉:本次进行包裹体研究的A脉为含少量黄铁矿的石英-钾长石脉,脉体局部可见被后期叠加的绿泥石化蚀变。该类脉体主要捕获4种类型的包裹体(图 4),富气相包裹体(VL)、含子晶多相包裹体(LVH)、富液相包裹体(LV)及少量的CO2包裹体(LVCO2),但以富气相包裹体为主,其大小多为10~15μm,少数可达20μm,形态较好,多呈椭圆状、负晶形孤立生长,为原生包裹体,局部可出现富气相包裹体群。含子晶多相包裹体的子矿物为透明NaCl立方体子晶,未见到不透明的金属硫化物子晶。含CO2包裹体中的CO2比例比较恒定,在30%左右,且相对于含子晶包裹体(LVH)和富气相包裹体(VL)数量较少。

图 4 A脉及A脉中的包裹体特征
(a)-粒状石英A脉,脉体边界不平直,含少量黄铁矿;(b)-富液相包裹体(气液比小于50%);(c)-石英中捕获的含透明子晶(NaCl子晶)的包裹体;(d)-捕获含CO2三相包裹体(温度降至10℃左右可见气泡由两相变为三相);(e)-富气相包裹体(气液比大于50%)
Fig. 4 Photographs of A-type veins and their fluid inclusions

B脉:本次进行包裹体研究的B脉为黄铜矿-黄铁矿沿中心线生长的石英脉,脉体较宽,石英颗粒粗大,且垂直于脉壁生长,脉体边界平直。该类脉体主要捕获四种类型的包裹体(图 5),既有富气相(VL)和富液相(LV)包裹体,还有含子晶多相包裹体,另外发现少量CO2包裹体(LVCO2)。有时可见VL、LV以及LVCO2包裹体在同一视域内出现,表现出沸腾包裹体组合的特征。相对于A脉而言,B脉中的VL包裹体明显减少,LV包裹体明显增多,LVH包裹体所含的子晶也为NaCl子晶,但是相比于A脉数量也有所减少。含CO2的三相包裹体LVCO2的气相比有所减少(在30%以下),表现了密度和压力均减少的特征。

图 5 B脉及B脉中的包裹体特征
(a)-黄铁矿黄铜矿大致沿中心发育的石英B脉,石英沿脉壁呈梳状对称生长.B脉将A脉切穿,B脉晚于A脉;(a1)-矿相片的局部单偏光照片,石英B脉中心发育共生的黄铁矿和黄铜矿;(b)-共生的富液相和富气相包裹体;(c)-B脉中捕获的不规则形状的含子晶的包裹体;(d)-捕获的含CO2的三相和两相包裹体
Fig. 5 Photographs of B-type veins and their fluid inclusions

D脉:本次进行包裹体研究的D脉为脉体两侧有绢云母蚀变晕的黄铁矿-石英脉。该类脉体捕获富液相包裹体(LV)和少量的富气相包裹体(VL)以及呈线性排列的次生包裹体(图 6)。D脉中包裹体体积较小,大多为2~5μm。在D脉中还发现一个特殊现象:黄铁矿周围少数的石英颗粒内包裹体相对较发育,其形态相对较规则,多呈负晶形、椭圆形,气泡颜色较深,且气相分数明显比外围的大,有时可达50%以上,有时甚至可见LV包裹体与VL包裹体共存,至于其成因还有待研究。此外,在D脉中未见到含子矿物包裹体(LVH)和CO2三相包裹体。

图 6 D脉及D脉中的包裹体特征
(a)-含少量石英的黄铁矿-黄铜矿D脉;(a1)-(a)的局部放大,沿D脉两侧发育绢云母-绿帘石蚀变晕;(a2)-(a)的局部放大,D脉中发育大量的黄铁矿-黄铜矿,石英少量;(b)-与石英同期的原生富液相包裹体,气液比小于50%;(c)-黄铁矿周围的包裹体,形态相对规则,颜色较深,且气相占体积比外围大;(d)-次生包裹体,呈线性排布
Fig. 6 Photographs of D-type veins and their fluid inclusions
4.3 均一温度和盐度

A脉:详细的包裹体测温列于表 1图 7a,b和图 8中。该脉LVH含子晶多相包裹体最终均以子晶熔化达到完全均一,NaCl子晶均一温度为383~447℃,盐度为45.64%~52.89% NaCleqv,平均47.41% NaCleqv。LVH包裹体的气相均一温度为364~392℃,平均为374.6℃。富气相包裹体(VL)的完全均一方式既有均一至液相,也有均一至气相,后者温度高于前者,另有少量呈临界均一(表 1)。富气相包裹体均一温度为390~475℃,平均温度为446℃,盐度为5.25%~12.76% NaCleqv,平均为9.54% NaCleqv。富液相包裹体(LV)的均一温度为368~550℃,平均为422℃,盐度为9.86%~16.34% NaCleqv,平均为6.69% NaCleqv。CO2包裹体,CO2体积比占30%,完全均一温度为326~389℃,平均为363℃,盐度相比前3个类型的包裹体较低,盐度为3.3%~7.7% NaCleqv,平均为4.70% NaCleqv,CO2均一时密度为0.55~0.73g/cm3

B脉:详细的包裹体测温表明(表 1图 7c,d和图 8),该类脉体的含子晶多相包裹体既有以子晶最终均一也有部分为气相最终均一。子晶均一温度为243~440℃,平均为318℃,盐度为34.24%~52.04% NaCleqv。富气相包裹体(VL)最终均一至气相,均一温度为245~533℃,平均为400℃,盐度为4.49%~13.99% NaCleqv,平均为9.72% NaCleqv。富液相包裹体均一温度为227~330℃,平均为256℃。盐度为5.25%~12.07% NaCleqv,平均为8.57% NaCleqv,比富气相包裹体盐度略低。CO2包裹体(LVCO2),CO2占包裹体体积小于30%,包裹体密度为0.55~0.59g/cm3,密度低于A脉中测定的CO2包裹体密度值,暗示了此时捕获的流体密度压力有所下降。

D脉:详细的包裹体测温表明(表 1图 7e,f和图 8)表明,D脉所发育的包裹体大部分为富液相包裹体(LV),均一温度为120~303℃,平均为272℃。盐度为3.53%~10.99% NaCleqv,平均为7.40% NaCleqv。

图 7 宝兴厂矿床各期脉体中流体包裹体测温结果统计直方图 Fig. 7 Histograms of homogenization temperatures-salinity of fluid inclusions in all types of veins from the Baoxingchang deposit

图 8 宝兴厂矿床各期脉体中流体包裹体盐度与均一温度关系图 Fig. 8 Diagrams of salinity vs. homogeneous temperature fluid inclusions of all types of veins from Baoxingchang deposit

表 1 宝兴厂矿床A、B、D脉石英中原生包裹体显微测温结果 Table 1 Microthermometer of primary fluid inclusions in quartz from A,B,D-type veins in Baoxingchang deposit
5 成矿流体特征 5.1 早阶段

宝兴厂斑岩矿床A脉中LVH相包裹体在进行显微升温过程中全部以石盐子晶的消失而均一,即子矿物熔化的平均温度(383~447℃,平均为399℃),高于气泡消失的平均温度(364~392℃,平均为374.6℃)。这种现象与美国Questa斑岩钼矿(Cline and Bodanr, 1994)、驱龙铜矿(杨志明等,2008)的早期含子晶矿物包裹体均一方式一样,全部以石盐子晶矿物的消失而均一,不同于常见的以气泡消失而均一的含子矿物多相包裹体,该现象表明宝兴厂矿床此类包裹体可能存在两种捕获条件:①温压条件在相饱和压力线之上捕获的石盐饱和溶液;②温压条件介于液相线和等容线区间内捕获的流体(Roedder,1984; Bodnar,1995)。不论何种条件,均表明宝兴厂矿床早期的脉体(A脉)形成于较高的压力条件。假定本次所测的A脉中5个含石盐子晶的包裹体是在高压条件下均一捕获了不饱和石盐溶液而形成,按照Cline and Bodanr(1994)给出的压力估算图,得出宝兴厂矿床A脉中LVH相包裹体被捕获时的最低压力为50~145MPa(图 9),按地压梯度27MPa/km换算,A脉形成的深度为最少为1.8~5.4km。由于含子晶包裹体的最高温度可达447℃,该温度可能代表了该阶段脉体沉淀的温度。

图 9 宝兴厂矿床A脉中LVH包裹体的P-T相图(据Cline and Bodanr, 1994修改)
本次计算以石盐熔融温度383~447℃为准,对应的气液相均一温度为386~392℃,对应盐度为45.64%~52.89% NaCleqv,阴影部分为宝兴厂矿床A脉捕获LVH包裹体的最小P-T区域
Fig. 9 Pressure-temperature diagram illustrating trapping conditions of hypersaline liquid inclusions in A-type vein from the Baoxingchang deposit(modified after Cline and Bodanr, 1994)

A脉中大量的富气相包裹体(VL)既有液相均一也有气相均一,同时也暗示了压力较高的捕获条件。两类包裹体均一温度在集中范围内相近,且同时出现,可能表明A脉形成过程中捕获了正在沸腾的热液流体。在A脉中发现少量富气相包裹体呈临界均一现象。呈临界均一的包裹体通常被认为捕获的是超临界流体(Roedder,1984),因此可用其近似代表岩浆出溶的流体,Redmond et al.(2004)在研究Bingham斑岩铜矿床时发现了类似的超临界包裹体,并用其代表从深部岩浆房中出溶的流体。一般认为,从深部岩浆房出溶的流体为中等盐度的超临界流体(~10% NaCleqv; Richards,2005),本次在A脉中发现的临界均一VL包裹体的盐度为13.6%和12.46%,与之非常接近,但是它们与LVH、LV、LVCO2以及个别盐度极低的包裹体(2.22%,表 1)共存,这种现象基本说明该阶段发生过临界流体的相分离,即岩浆出溶的高温、高压、中等盐度(Hedenquist and Lowenstern, 1994; Richards,2005)的超临界流体,在出溶之后就立即发生了相分离,导致低盐度富气相包裹体与高盐度包裹体共存,并且A脉中存在的H2O-CO2-NaCl体系的包裹体(CO2包裹体),很可能也有CO2的参与,进一步说明A脉形成过程中流体发生了不混溶现象。该阶段所产生的中-高温、中-高盐度的流体引起了宝兴厂矿床早期的钾长石化蚀变,产物就是该阶段形成的与钾长石蚀变有关的Kfs±Qtz脉。 5.2 主阶段

B脉与A脉存在一些共同点,岩相学上表现为B脉的两侧仍可以看到很少量的钾长石弱蚀变晕,但是少数B脉两侧可见少量绢云母蚀变晕,由此推测B脉的形成处于钾硅酸盐化蚀变向长石分解蚀变转变的阶段。该阶段流体仍以岩浆热液为主,但特征相对于早期成矿流体已有不同:在B脉中,原生富液相包裹体(LV)明显增多,且包裹体均一温度相对于A脉有下降趋势,均一温度集中在227~330℃,平均为256℃,盐度变化范围也相对较大,集中在34.24%~52.04% NaCleqv和5.25%~12.07% NaCleqv两个区间内。B脉中富气相包裹体(VL)和富液相包裹体(LV)同时存在,并且盐度与温度变化范围相近,表明捕获流体时发生沸腾作用(图 5d)。富气相包裹体(VL)基本都以气相均一,盐度大致相近,可能表明低密度的气相在沉淀脉体时压力较低,不能使低密度气相在发生相变就直接发生冷凝收缩。该脉体中的含子晶多相包裹体(LVH)有以子晶最终均一,也有以气相最终均一,均一温度也相对集中,暗示脉体捕获流体时压力波动较大,同时也表明压力已经有所降低,因此,不能按照Cline and Bodanr(1994)的压力估算方式来计算。根据Pitzer and Pabalan(1986)确定的NaCl-H2O体系P-T相图(图 10)上所指示的压力,B脉的形成压力大约为15~48MPa。另外,宝兴厂矿床发育大量的B脉,其脉壁平直,界线清楚,脉体中石英颗粒粗大,加上流体包裹体的盐度及温压条件所显示的特征,都表明B脉形成于张性裂隙的大规模发育的阶段。大量的裂隙导致流体压力迅速降低,流体发生沸腾,使金属发生大量的沉淀,因此,该阶段的脉体发育大量的Cu、Mo矿化,为宝兴厂矿床矿化的主要阶段。

图 10 NaCl-H2O体系压力-盐度(P-X)相图(据Pitzer and Pabalan, 1986; Sourirajan and Kennedy, 1962; Bodnar et al., 1985; Ulrich et al., 2002修改)
宝兴厂矿床B脉和D脉中包裹体形成的温度及压力条件;L-液相稳定区;V-气相温度区
Fig. 10 Pressure-salinity phase-diagram for NaCl-H2O system(modified after Pitzer et al., 1986; Sourirajan et al., 1962; Bodnar et al., 1985; Ulrich et al., 2002)
5.3 晚阶段

晚阶段的蚀变主要以长石分解蚀变为特征,主要为绢云母、绿泥石蚀变。与蚀变有关的D脉的温度和盐度明显低于早期流体,均一温度为223~337℃,盐度为3.53%~11.71% NaCleqv,流体压力也降低到15MPa(图 10)。大多数学者认为,该阶段的流体除了有岩浆热液外,还有大量的大气降水的混入(Reynolds and Beane, 1985; Taylor,1986),导致成矿流体被稀释。该阶段主要形成大量的黄铁矿,脉体多为板状,尤其在绢云母化蚀变发育的部位,矿化更加明显。 6 结论

(1)宝兴厂铜钼金矿床发育有A、B、D三种类型热液脉体,完整记录了该矿床成矿早阶段、成矿主阶段和成矿晚阶段流体演化及其与蚀变关系。A脉矿物组合一般为粒状石英±钾长石±黑云母±少量黄铁矿±少量黄铜矿,与钾长石化和黑云母化关系密切,多为不规则细脉状;B脉切穿早阶段A脉,矿物组合一般为石英±辉钼矿±黄铜矿±黄铁矿,一般无蚀变晕,或见少量后期叠加的绿帘石、绿泥石蚀变,脉体脉壁相对平直且连续,硫化物呈线状分布于脉体的中心或边缘;D脉切穿主阶段B脉和早阶段A脉,矿物组合一般为黄铁矿±石英±少量黄铜矿,多具有绿泥石-绢云母蚀变晕,脉体较规则且连续。

(2)宝兴厂铜钼金矿床成矿早阶段为高温、中-高盐度岩浆流体,压力较大,形成早阶段钾硅酸盐蚀变,该阶段流体发生相分离作用,且CO2的参与表明形成过程中流体发生了不混溶现象;成矿主阶段为中-高温、中-高盐度的岩浆流体,压力有所下降,是钾硅酸盐化向长石分解蚀变转变的阶段,且该阶段发生减压沸腾,使得Cu、Mo因过饱和而大量沉淀;成矿晚阶段由于地下水和雨水等的加入,成矿流体被稀释,为中-低温、低盐度的混合流体,压力降至最低,该阶段发生了大规模的长石分解蚀变,同时沉淀出大量硫化物。

致谢

感谢武警黄金部队第十支队工作人员对野外工作的大力支持和帮助;感谢孟健寅博士、赵凯博士、高雪硕士、孔令号、于皓丞和顾亚等学士在室内工作中给予的大力帮助。

参考文献
[1] Bischoff JL. 1991. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300-500℃. American Journal of Science, 291(4): 309-338
[2] Bissig T and Cook DR. 2014. Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au deposits. Economic Geology, 109(4): 819-825
[3] Bodnar RJ. 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposit. Mineralogical Association of Canada Short Course Series, 23: 139-152
[4] Cline JS and Bodnar RJ. 1994. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Economic Geology, 89(8): 1780-1802
[5] Deng J, Yang LQ, Liu W, Sun ZS, Li XJ and Wang QF. 2001. Gold origin and fulid ore-forming effect of Zhao-Ye ore deposits concentrating area in Jiaodong, Shangdong, China. Chinese Journal of Geology, 36(3): 257-268 (in Chinese with English abstract)
[6] Deng J, Wang QF and Sun ZS. 2002. Origin of gold-bearing fluid and its initiative localization mechanism in Xiadian gold deposit, Shangdong Province. Chinese Journal of Geochemistry, 21(3): 282-288
[7] Deng J, Wang QF, Huang DH, Sun ZS and Zhang DQ. 2004. The evolutionary frame of tectonic-fluid-metallogenic system in Tongling ore deposit concentrated district. Earth Science Frontiers, 11(1): 121-129
[8] Deng J, Gao BF, Wang QF and Yang LQ. 2005. Formation and evolution of ore-forming fluid system. Geological Science and Technology Information, 24(1): 49-54 (in Chinese with English abstract)
[9] Deng J, Wang QF, Yang LQ, Zhou L, Gong QJ, Yuan WM, Xu H, Guo CY and Liu XW. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geologica Sinca, 82(4): 769-780
[10] Deng J, Yang LQ, Gao BF, Sun ZS, Guo CY, Wang QF and Wang JP. 2009. Fluid evolution and metallogenic dynamics during tectonic regime transition: Example from the Jiapigou gold belt in Northeast China. Resource Geology, 59(2): 140-152
[11] Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ and Wang CM. 2010a. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrologica Sinica, 26(6): 1633-1645 (in Chinese with English abstract)
[12] Deng J, Hou ZQ, Mo XX, Yang LQ, Wang QF and Wang CM. 2010b. Superimposed orogenesis and metal ogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37-42 (in Chinese with English abstract)
[13] Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)
[14] Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437
[15] Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, doi: 10.1016/j.earscirev.2014.05.015
[16] Ge LS, Yang JH, Guo XD, Zuo YL, Chen SX and Zhang XH. 1999. The hidden EW-structure existing northwestern Yunnan and the evidence. Yunnan Geology, 18(2): 155-167 (in Chinese)
[17] Ge LS, Deng J, Yang LQ, Wang ZH, Guo XD and Yuan SS. 2012. Characteristics of deep-seated structure and its control action for magmatic activity and mineralization in western Yunnan Province. Acta Petrologica Sinica, 28(5): 1387-1400 (in Chinese with English abstract)
[18] Guo XD. 2009. The Machangqing porphyry Cu-Mo-Au deposit in Yunnan Province: Magmatism and mineralization. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-180 (in Chinese with English summary)
[19] Gustafson LB and Hunt JP. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5): 857-912
[20] Hall DL, Sterner SM and Bondar RJ. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202
[21] Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527
[22] Hou ZQ, Khin Z, Pan GT, Mo XX, Xu Q, Hu RZ and Li XZ. 2007. Sanjing Tethyan metallogenesis in S. W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 21: 48-87
[23] Lang JR, Gregory MJ, Rebagliati CM, Payne JG, Oliver JL and Roberts K. 2013. Geology and magmatic-hydrothermal evolution of the Giant Pebble porphyry copper-gold-molybdenum deposit, Southwest Alaska. Economic Geology, 108(3): 437-462
[24] Li N, Yang LQ, Zhang C, Zhang J, Lei SB, Wang HT, Wang HW and Gao X. 2012. Sulfur isotope characteristics of the Yangshan gold belt, West Qinling: Constraints on ore-forming environment and material source. Acta Petrologica Sinica, 28(5): 1577-1587 (in Chinese with English abstract)
[25] Mercer CN and Reed MH. 2013. Porphyry Cu-Mo stockwork formation by dynamic, transient hydrothermal pulses: Mineralogic insights from the deposit at Butte, Montana. Economic Geology, 108(6): 1347-1377
[26] Micko J, Tosdal RM, Bissig T, Chamberlain CM and Simpson KA. 2014. Hydrothermal alteration and mineralization of the Galore Creek alkalic Cu-Au porphyry deposit, northwestern British Columbia, Canada. Economic Geology, 109(4): 891-914
[27] Pitzer KS and Pabalan RT. 1986. Thermodynamics of NaCl in steam. Geochimica et Cosmochimica Acta, 50(7): 1445-1454
[28] Potter RW, Clynne MA and Brown DL. 1978. Freezing point depression of aqueous sodium chloride solutions. Economic Geology, 73(2): 284-285
[29] Redmond PB, Einaudi MT, Inan EE, Landtwing MR and Heinrich CA. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32(3): 217-230
[30] Reynolds TJ and Beane RE. 1985. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico: Porphyry copper deposit. Economic Geology, 80: 1328-1347
[31] Richards JP. 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposit. Geokniga, 1: 7-25
[32] Roedder E. 1984. Fluid inclusions. Mineralogical Society of America Reviews in Mineralogy, 12: 644
[33] Shepherd TJ, Rankin AH and Alderton DHM. 1985. A Prcatical Guide to Fluid Inclusion Studies. Blakie: Chapman & Hall, 1-239
[34] Sillitoe RH. 1973. Geology of the Los Pelambres porphyry copper deposit, Chile. Economic Geology, 68(1): 1-10
[35] Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
[36] Sourirajan S and Kennedy GC. 1962. The system H2O-NaCl at elevated temperatures. American Journal of Science, 260(2): 115-141
[37] Taylor BE. 1986. Magmatic volatiles: Isotopic variation of C, H and S. Reviews in Mineralogy, 16(1): 185-225
[38] Ulrich T, Gunther D and Heinrich CA. 2002. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 97(8): 1889-1920
[39] Wang SM. 2010. Analysis of Baoxingchang polymetallic ore deposit geological characteristics and conditions, Yunnan Province. Mineral Deposits, 20(Suppl.): 139-144 (in Chinese with English abstract)
[40] Wang ZH, Guo XD, Ge LS, Xu T and Yu WQ. 2010. Geologic, geochemistry characteristics and ore-forming mechanics of the Machangqing polymetallic deposit, Yunnan Province. Geochimica, 39(6): 553-565 (in Chinese with English abstract)
[41] Yang LQ, Deng J, Fan Y, Chen CX, Han SQ, Liang DC and Meng QF. 1999. Numerical simulation of structures-fluids coupled ore-forming effects. Acta Geoscientia Sinica, 20 (Suppl.): 433-437 (in Chinese with English abstract)
[42] Yang LQ, Deng J, Wang QF and Zhou YH. 2006. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, eastern China. Acta Geologica Sinica, 80(3): 400-411
[43] Yang LQ, Deng J, Zhang J, Wang QF, Ge LS, Zhou YH, Guo CY and Jiang SQ. 2007. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone, Shandong Province, China. Acta Petrologica Sinica, 23(1): 153-160
[44] Yang LQ, Deng J, Zhang J, Guo CY, Gao BF, Gong QJ, Wang QF, Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China: Implications for metallogeny and exploration. Journal of China University of Geosciences, 19(4): 378-390
[45] Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology, 59(2): 182-193
[46] Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract)
[47] Yang LQ, Deng J, Zhao K and Liu JT. 2011a. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519-2532 (in Chinese with English abstract)
[48] Yang LQ, Deng J, Zhao K, Liu JT, Ge LS, Zhou DQ, Li SH and Cao BB. 2011b. Geological characteristics and genetic type of Daping gold deposit in the Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 27(12): 3800-3810 (in Chinese with English abstract)
[49] Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 78: 327-344
[50] Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469-1483
[51] Yang LQ, Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In: Chen YT, Jin ZM, Shi YL, Yang WC and Zhu RX (eds.). The Deep-Seated Structures of Earth in China. Beijing: Sciences Press, 1006-1030 (in Chinese)
[52] Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract)
[53] Yang LY, Yang LQ, Yuan WM, Zhang C, Zhao K and Yu HJ. 2013. Origin and evolution of ore fluid for orogenic gold trace by D-O isotopes: A case from the Jiapigou gold belt, China. Acta Petrologica Sinica, 29(11): 4025-4035 (in Chinese with English abstract)
[54] Yang ZM, Hou ZQ, Song YC, Li ZQ, Xia DX and Pan FC. 2008. Qulong giant porphyry copper depsoit in Tibet: Geology, alteration and metallogeny. Mineral Deposits, 27(3): 279-317 (in Chinese with English abstract)
[55] Zhao K, Yang LQ, Li P and Xiong YQ. 2013. Morphology and chemistry composition of pyrite in the Laowangzhai gold deposit, Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 29(11): 3937-3948 (in Chinese with English abstract)
[56] 邓军, 杨立强, 刘伟, 孙忠实, 李新俊, 王庆飞. 2001. 胶东招掖矿集区巨量金质来源和流体成矿效应. 地质科学, 36(3): 257-268
[57] 邓军, 高帮飞, 王庆飞, 杨立强. 2005. 成矿流体系统的形成与演化. 地质科技情报, 24(1): 49-54
[58] 邓军, 杨立强, 葛良胜, 袁士松, 王庆飞, 张静, 龚庆杰, 王长明. 2010a. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报, 26(6): 1633-1645
[59] 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010b. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37-42
[60] 邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361
[61] 葛良胜, 杨嘉禾, 郭晓冬, 邹依林, 陈树新, 张晓辉. 1999. 滇西北地区(近)东西向隐伏构造带的存在及证据. 云南地质, 18(2): 155-167
[62] 葛良胜, 邓军, 杨立强, 王治华, 郭晓东, 袁士松. 2012. 滇西地区深部构造特征及其对成岩-成矿的控制作用. 岩石学报, 28(5): 1387-1400
[63] 郭晓东. 2009. 云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因. 博士学位论文. 北京: 中国地质大学, 1-180
[64] 李楠, 杨立强, 张闯, 张静, 雷时斌, 王恒涛, 王宏伟, 高雪. 2012.西秦岭阳山金矿带硫同位素特征: 成矿环境与物质来源约束. 岩石学报, 28(5): 1577-1587
[65] 王绍明. 2010. 云南宝兴厂多金属矿床地质特征及成矿条件分析. 矿床地质, 29(增刊): 139-144
[66] 王治华, 郭晓东, 葛良胜, 徐涛, 喻万强. 2010. 云南马厂箐多金属矿床地质地球化学特征及成矿机制探讨. 地球化学, 39(6): 553-565
[67] 杨立强, 邓军, 方云, 陈从喜, 韩淑琴, 梁德超, 孟庆芬.1999.构造-流体-成矿系统及其动力学流体耦合成矿效应计算模拟.地球学报,20(增刊):433-437
[68] 杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739
[69] 杨立强, 邓军, 赵凯, 刘江涛. 2011a. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519-2532
[70] 杨立强, 邓军, 赵凯, 刘江涛, 葛良胜, 周道卿, 李士辉, 曹宝宝. 2011b. 滇西大坪金矿床地质特征及成因初探. 岩石学报, 27(12): 3800-3810
[71] 杨立强, 邓军, 王中亮. 2014a. 胶东金矿控矿构造样式: 地质-地球物理综合约束. 见: 陈运泰, 金振民, 石耀霖, 杨文采, 朱日祥主编. 中国大陆地球深部结构与动力学研究——庆贺滕吉文院士从事地球物理研究60周年. 北京: 科学出版社, 1006-1030
[72] 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014b. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467
[73] 杨利亚, 杨立强, 袁万明, 张闯, 赵凯, 于海军. 2013. 造山型金矿成矿流体来源与演化的氢-氧同位素示踪: 夹皮沟金矿带例析. 岩石学报, 29(11): 4025-4035
[74] 杨志明, 侯增谦, 宋玉财, 李振清, 夏代详, 潘凤雏. 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-317
[75] 赵凯, 杨立强, 李坡, 熊伊曲. 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937-3948