2. 山东黄金矿业股份有限公司新城金矿, 莱州 261438
2. Xincheng Gold Company, Shandong Gold Mining Stock Co., LTD, Laizhou 261438, China
1 引言
同位素地球化学在示踪成矿物质来源方面起到十分重要的作用(Zhang et al., 2011; Donoghue et al., 2014; 张良等,2014),其中硫同位素是成矿物质来源的有效指示剂之一,能够有效确定成矿物质中硫的来源,并表征成矿时的物理化学条件(Chinnasamy and Mishra, 2013),进而为确定矿床成因提供重要依据(张静等,2009)。而不同成矿阶段黄铁矿晶形标型可以反映其生成时的地质环境,如成矿流体的氧逸度、硫逸度和成矿温度等(李楠等,2012;赵凯等,2013),这对进一步研究成矿元素的迁移与沉淀机制等成矿机制具有重要意义(Mueller et al., 2012; 刘江涛等,2013)。因此,不同成矿阶段和不同晶形黄铁矿的相关研究在成矿物质来源和成矿物理化学条件等研究中被广泛应用并取得了很好的成果(Yang et al., 2007a; 李楠等,2012; Li et al., 2013b)。
胶西北是我国最重要的金矿区,密集发育着三山岛-仓上金矿带、焦家金矿带和招远-平度金矿带三个金成矿带,已探明新城、焦家和玲珑等超大型金矿床在内的金矿床百余处(杨立强等,2000; Yang et al., 2003; Deng et al., 2008)。金储量和年产量分别占全国金储量的1/4和年产量的1/5(Yang et al., 2007b)。金成矿作用集中爆发于120±10Ma(Deng et al., 2006; Yang et al., 2014),以成矿区域集中、规模巨大、富集程度高和成矿期短为显著特征,但其巨量金的来源一直存在争论(Yang et al., 2007c)。新城金矿床是胶西北金矿集区中典型的破碎带蚀变岩型金矿床,自被发现以来,随着新的成矿理论和勘查技术的应用(Yang and Badal, 2013),已累计探明金资源量>200t,平均品位6.8g/t(Wang et al., 2014a)。黄铁矿是新城金矿床最重要的载金矿物(Wang et al., 2014b),对该矿床赋矿围岩岩石成因(Wang et al., 2014a)、控矿构造(李瑞红等,2014)和隐伏矿体预测(戢兴忠等,2013;张潮等,2013)等方面开展了一些研究,分析了金矿石中黄铁矿和黄铜矿的硫同位素组成(黄德业,1986;王义文等,2002;陆丽娜等,2011),但对不同成矿阶段矿石硫源和黄铁矿晶形地质意义等缺乏系统探讨。其中,黄德业(1986)仅测试1件黄铁矿样品,并不能较好地反映矿石硫同位素组成范围。王义文等(2002)虽测试了23件黄铁矿和1件黄铜矿硫同位素组成,但并未对样品进行成矿阶段划分,因而并不能反映各成矿阶段矿石硫源。陆丽娜等(2011)虽然对样品分阶段进行了测试,但将成矿作用划分为石英-钾长石、石英-黄铁矿和石英-碳酸盐3个阶段,与地质观察不符。野外观察表明,钾长石存在两种赋存状态,一种为围岩花岗质岩石的组成矿物之一,另一种为成矿前热液流体形成的围岩钾长石化作用(王中亮,2012),两种钾长石均为成矿前沉淀的矿物,并不能划入成矿阶段;而金大量沉淀的阶段并非单一的石英-黄铁矿阶段,还包括石英-多金属硫化物阶段,后者也是金沉淀的重要阶段(Wang et al., 2014b)。为此,本文在详实的矿床地质特征与成矿阶段划分基础上,对新城金矿床不同成矿阶段的黄铁矿晶形进行详细观察,对矿区岩体和不同成矿阶段硫化物进行了硫同位素组成测试,剖析了矿区岩体和不同成矿阶段硫同位素组成特征,探讨了各成矿阶段矿石硫源、成矿环境与物理化学条件等信息。 2 区域与矿床地质
新城金矿床位于胶东半岛内胶北隆起的西北部,该隆起由太古代胶东群TTG、古元古代粉子山群和荆山群、以及新元古代蓬莱群变质沉积岩组成(图 1)(Deng et al., 2011a; Zhai and Santosh, 2011)。区域内中生代构造-岩浆作用发育,侵入岩大面积出露,主要包括玲珑黑云母花岗岩、郭家岭花岗闪长岩和艾山花岗岩(Yang et al., 2012);构造主要为NE-NNE向控制区域内金矿床分布的招平断裂带、焦家断裂带和三山岛断裂带3个一级断裂带及其次级断裂(图 1)(Deng et al., 2006,2008; Yang et al., 2006,2014; Goldfarb and Santosh, 2014; 杨立强等,2014a)。
新城金矿床位于山东省莱州市北东方向35km处,是胶西北焦家金矿带内最大的金矿床之一。焦家断裂为主要的控矿构造(图 1、图 2),其走向NE-NNE,长约60km,宽50~500m。主断裂面沿郭家岭岩体内展布,倾向NW,倾角一般为30°~50°。矿区郭家岭岩体岩性为石英二长岩和二长花岗岩,主要为胶东群变质基底经部分熔融形成,侵位年龄为127~132Ma(Wang et al., 2014a)。矿区内亦发育胶东群变粒岩、少量长英质脉岩等。变粒岩主要呈残留体分布在郭家岭岩体内,与郭家岭岩体呈渐变接触,主要赋存在焦家断裂上盘。长英质脉岩是矿区内少量发育的一种浅色脉岩,一般呈宽约5~20cm的脉状侵入到郭家岭岩体内。长英质脉岩为似伟晶结构,块状构造,主要矿物为钾长石(50%~60%),石英(40%~50%),矿物颗粒较大。长英质脉岩常被石英黄铁矿脉切穿,表明其形成应早于脉状黄铁矿化。
![]() | 图 1 胶西北区域地质简图(据Wang et al., 2014b) Fig. 1 Simplified geological map of the Northwest Jiaodong(modified after Wang et al., 2014b) |
![]() | 图 2 新城金矿床地质图(据Wang et al., 2014b) Fig. 2 Geological map of the Xincheng gold deposit(modified after Wang et al., 2014b) |
新城金矿床发育钾长石化、绢云母化、硅化、硫化和碳酸盐化等多种类型热液蚀变,严格受焦家断裂及其次级断裂控制。钾长石化蚀变早于与金矿化有关的热液蚀变(王中亮,2012)。绢云母化蚀变表现为郭家岭岩体中斜长石、钾长石和黑云母等矿物的部分或全部绢云母化,并伴随着细粒石英化和黄铁矿化。硫化作用叠加在绢云母化蚀变之上,常表现为大量呈穿切关系的细脉状-网脉状石英-黄铁矿脉和石英-硫化物脉。碳酸盐化蚀变以石英-碳酸盐脉的形式出现,并切割硫化作用形成的各类脉体。上述与金矿化有关的热液蚀变矿物组合,指示新城金矿床热液蚀变的温度范围在225~400℃(McCuaig and Kerrich, 1998)。
新城金矿床发育两种类型的矿化样式,分别为微细浸染状矿化和细脉-网脉状矿化,均严格受焦家断裂及其次级断裂控制。主矿体为微细浸染状和网脉状矿化的破碎带蚀变岩型矿体,赋存于郭家岭岩体中,以强烈的绢云母化、硅化蚀变为特征(图 2),蚀变围岩与矿体呈渐变过渡。矿体主要赋存于焦家断裂带产状变化处或膨大部位。次要矿体主要为细脉状矿化的含金石英脉型矿体,赋存在钾化郭家岭岩体中走向NE-NNE呈雁列式展布的一系列次级构造内。依据野外露头、手标本和显微镜下详细观察得到的脉体穿切关系、矿物组合等综合信息,将新城金矿床热液成矿期次划分为四个阶段:黄铁矿-石英-绢云母阶段(I);石英-黄铁矿阶段(II);石英-多金属硫化物阶段(III);石英-方解石阶段(IV)。其中II和III阶段是金大量沉淀的阶段(Wang et al., 2014b)。 3 样品与分析方法
在详细的野外调研基础上,系统采集了具有代表性的金矿石和新鲜岩体样品。从矿石样品中分离出不同成矿阶段的黄铁矿、黄铜矿、闪锌矿和方铅矿单矿物,纯度达98%以上。硫化物样品共33件,其中黄铁矿样品27件、闪锌矿样品3件、方铅矿样品2件和黄铜矿样品1件(表 1);在双目镜下对各成矿阶段样品中的黄铁矿晶形进行详细观察并记录。全岩样品共15件,其中变粒岩3件、郭家岭岩体7件(石英二长岩5件、花岗二长岩2件)和长英质脉岩5件(表 2)。金矿石样品中脉石矿物主要为石英、绢云母、方解石、斜长石和钾长石等;矿石矿物主要有黄铁矿、磁黄铁矿、黄铜矿、闪锌矿、方铅矿和黝铜矿等,含金矿物主要为银金矿、次为自然金和金银矿。鉴于本文重点讨论的是新城金矿床不同成矿阶段硫化物及其硫同位素组成,因而将重点描述矿石矿物特征,特别是具有标型意义的黄铁矿。
| 表 1 新城金矿床不同成矿阶段硫化物硫同位素测试结果 Table 1 Sulfur isotope analysis results of different mineralization stages in Xincheng gold deposit |
| 表 2 新城金矿床不同岩体硫同位素测试结果 Table 2 Sulfur isotope analysis results of different magmatic rocks in Xincheng gold deposit |
黄铁矿是新城金矿床最重要的载金矿物,同时也是贯通性矿物之一,在整个热液成矿过程中均有产出。但不同成矿阶段沉淀的黄铁矿在晶形、粒径和共生矿物组合等方面存在较大差异(图 3),下面将对不同成矿阶段的黄铁矿特征进行详细描述。I阶段黄铁矿(Py1)粒径介于5~600μm,为半自形-他形晶体,主要为立方体晶形(图 3a,b),呈微细浸染状 赋存于蚀变破碎的绢英岩中或绢英岩化花岗类岩石中。II阶段黄铁矿(Py2)粒径介于为100μm~2.5mm,为自形-半自形晶体,主要为五角十二面体晶形。相对Py1晶形,Py2中五角十二面体晶形显著增多而立方体晶形明显减少(图 3c,d)。Py2主要叠加充填于绢英岩、硅化和钾化花岗岩类裂隙的石英黄铁矿脉中。III阶段黄铁矿(Py3)粒径一般为3~500μm,最大可达7mm,为自形晶体,主要为五角十二面体晶形和立方体晶形(图 3e-g),少量八面体晶形。相对于Py1和Py2,Py3较少经历破碎变形,晶体完好,主要分布在石英多金属硫化物脉中,与同成矿阶段沉淀的黄铜矿、闪锌矿、方铅矿、磁黄铁矿和黝铜矿等呈共生组合关系。这些硫化物或充填于Py1、Py2的微裂隙中、或与同阶段沉淀的石英共生,均呈它形,粒度不等,主要分布在沿花岗岩类裂隙充填的石英多金属硫化物脉中。IV阶段黄铁矿(Py4)粒径约为1~5μm,为自形晶体,立方体晶形,分布于石英-方解石脉中(图 3h)。
![]() | 图 3 新城金矿床各成矿阶段黄铁矿显微特征
(a)-成矿I阶段黄铁矿(XC10D005B5,反射光);(b)-成矿I阶段黄铁矿(XC10D211B11,反射光);(c)-成矿II阶段黄铁矿(XC10D007B7,反射光);(d)-成矿II阶段黄铁矿(XC10D211B18,背散射图像);(e)-成矿III阶段黄铁矿(XC10D204B6,反射光);(f)-成矿III阶段黄铁矿(XC10D204B6,背散射图像);(g)-成矿III阶段黄铁矿(XC10D204B6,反射光);(h)-成矿IV阶段黄铁矿(XC12D003B7,透射光).Q-石英;Cal-方解石;Ser-绢云母;Py-黄铁矿;Ccp-黄铜矿;Sp-闪锌矿 Fig. 3 The morphology of pyrites from different mineralization stages in Xincheng gold deposit (a)-ore stage I pyrite(XC10D005B5,reflected light);(b)-ore stage I pyrite(XC10D211B11,reflected light);(c)-ore stage II pyrite(XC10D007B7,reflected light);(d)-ore stage II pyrite(XC10D211B18,BSE image);(e)-ore stage III pyrite(XC10D007B11,reflected light);(f)-ore stage III pyrite(XC10D204B6,BSE image);(g)-ore stage III pyrite(XC10D204B6,reflected light);(h)-ore stage IV pyrite(XC12D003B7,transmitted light). Q-quartz; Cal-calcite; Ser-sericite; Py-pyrite; Ccp-chalcopyrite; Sp-sphalerite |
综上所述,新城金矿床发育多种晶形黄铁矿,但以立方体、五角十二面体和八面体单形为主,偶见由其组成的聚形晶体黄铁矿。因聚形黄铁矿数量极少无统计意义,故没有对其进行讨论。手标本观察以及镜下岩石学和矿相学工作表明,除少量样品发育多个成矿阶段硫化物叠加外,大部分样品只发育一个成矿阶段的硫化物(表 1)。由于成矿IV阶段黄铁矿发育很少、没有挑出足够量的黄铁矿,因而无法测试该阶段黄铁矿硫同位素组成。硫同位素测试由核工业北京地质研究院分析测试研究中心完成,分别使用MAT 251与MAT 253同位素质谱仪对硫化物样品和岩体样品硫同位素进行分析,分析方法已由Giesemann et al.(1994)详细介绍。硫同位素测试结果采用CDT标准,用δ34S表示,δ34S值测试精度为±0.3‰。 4 测试结果 4.1 硫化物硫同位素组成
新城金矿床不同成矿阶段硫化物δ34S值如表 1和图 4b-d所示,δ34S值介于4.3‰~10.6‰,均值为8.3‰,分布范围较为集中,以富集δ34S、变异小和明显的塔式分布为特征。但各成矿阶段硫化物δ34S值略有不同。I阶段黄铁矿δ34S值介于8.4‰~10.6‰,均值为9.7‰,分布范围较为集中;II阶段黄铁矿δ34S值介于7.7‰~9.7‰,均值为8.7‰,具有较窄的δ34S值范围。III阶段硫化物δ34S值介于4.3‰~9.4‰,均值为7.1‰,具有较宽的δ34S值范围。其中黄铁矿δ34S值介于5.7‰~9.4‰,闪锌矿δ34S值介于7.7‰~8.1‰,黄铜矿δ34S值只有1个,为5.8‰,方铅矿δ34S值介于4.3‰~5.7‰。
4.2 全岩硫同位素组成
新城金矿床不同岩体全岩δ34S值如表 2和图 4a所示,不同岩性硫同位素组成较为一致,但长英质脉岩和二长花岗岩δ34S值具有较宽的范围。新城金矿床3件变粒岩全岩δ34S值介于6.9‰~9.4‰,均值为8.0‰,分布较为集中。7件郭家岭岩体全岩δ34S值介于6.0‰~16.0‰,均值为8.6‰,分布范围较宽。5件长英质脉岩全岩δ34S值介于0.8‰~8.5‰,均值为6.7‰,其中4件样品δ34S值介于7.4‰~8.5‰,而1件样品δ34S值为0.8‰,与其它4件差异较大,见表 2、图 4a。
![]() | 图 4 新城金矿床岩体和不同成矿阶段硫化物硫同位素分布直方图
(a)-岩体;(b)-成矿I阶段;(c)-成矿II阶段;(d)-成矿III阶段 Fig. 4 Sulfur isotope histogram of magmatic rocks and sulfides from different mineralization stages in Xincheng gold deposit (a)-magmatic rocks;(b)-mineralization stage I;(c)-mineralization stage II;(d)-mineralization stage III |
前人应用不同的方法和技术对成矿物质和成矿流体来源及其运移进行了探讨(Deng et al., 2009,2010,2014a; Yang et al., 2009; Wang et al., 2011; 郭林楠等,2014)。硫同位素作为成矿物质来源的有效指示剂,在矿床学研究中得到了极为广泛的应用且取得了较好的研究成果(Sun et al., 2009; Li et al., 2013a; 杨立强等,2014b)。
新城金矿床硫同位素测试结果表明(图 4),3件变粒岩全岩硫同位素组成与前人测试结果一致(王义文等,2002),均位于变质岩类硫同位素储库范围之内(表 3、图 5)。5件石英二长岩和1件二长花岗岩(7.4‰)的硫同位素组成与3件变粒岩的硫同位素组成一致,表明由胶东群变质基底部分熔融形成的郭家岭岩体总体上继承了胶东群硫同位素的特征(杨立强等,2014b)。而另一件二长花岗岩δ34S值为16.0‰,高于矿区变粒岩的硫同位素组成,但仍位于花岗岩类储库的硫同位素组成范围之内(表 3、图 5)。4件长英质岩脉的硫同位素组成具有较窄的范围,介于变粒岩和郭家岭岩体的硫同位素组成范围之内,前已述及,野外露头尺度显示长英质岩脉呈脉状侵入到郭家岭岩体内,表明其可能混染了郭家岭岩体硫,变粒岩也可能贡献了部分硫源。而其中1件长英质脉岩的δ34S值却很低仅为0.8‰,符合深部岩浆硫特征(郑永飞和陈江峰,2000),表明长英质脉岩除郭家岭岩体和变粒岩硫源外,深部岩浆可能也提供了部分硫源。因而,长英质脉岩可能为深部岩浆成因,在其从深部向上侵入的过程中混染了郭家岭岩体和变粒岩硫源。
| 表 3 新城金矿床、胶西北蚀变岩型金矿床、典型造山型金矿床和岩石储库的硫同位素组成 Table 3 Sulfur isotope composition of Xincheng gold deposit,altered-type gold deposits in Northwest Jiaodong goldfield,typical orogenic gold deposits and rock reservoirs |
![]() | 图 5 新城金矿床、岩体、胶西北蚀变岩型金矿床、典型造山型金矿床和岩石储库的硫同位素组成对比(数据来源见表 3) Fig. 5 The comparison of sulfur isotope composition between Xincheng gold deposit,magmatic rocks,altered-type gold deposits in northwest Jiaodong goldfield,typical orogenic gold deposits and rock reservoirs(data from Table 3) |
前人研究表明,热液矿床中的硫化物硫同位素组成与热液流体的同位素组成、矿物形成的温度、成矿期的pH值和fO2等因素有关(Hoefs,2009)。由于新城金矿床的含硫矿物主要为黄铁矿等硫化物,形成于中低温、弱酸性和还原环境(王中亮,2012),其成矿流体中硫可能主要以HS-、S2-等形式存在,因而沉淀出的黄铁矿δ34S值与成矿流体的δ34S值相近(Ohmoto and Goldhaber, 1997),因此,黄铁矿的硫同位素组成可以代表成矿流体中的硫同位素组成。新城金矿床硫化物δ34S值介于4.3‰~10.6‰,与胶西北金矿集区内的典型破碎带蚀变岩型金矿床硫化物δ34S值较为一致(表 3、图 5)。其中,I阶段黄铁矿δ34S值(8.4‰~10.6‰,均值为9.7‰)较高,矿石硫可能主要源于δ34S值较高的郭家岭岩体和变粒岩(表 3、图 5)。II阶段和III阶段黄铁矿δ34S值分别为7.7‰~9.7‰(均值为8.7‰)、5.7‰~9.4‰(均值为7.1‰),表明II阶段矿石硫源除上述郭家岭岩体和变粒岩外,δ34S值较低的长英质脉岩可能也贡献了部分硫源;III阶段矿石硫源可能来自于郭家岭岩体、变粒岩和长英质脉岩。上述长英质脉岩硫具有深部岩浆硫特征,邻近焦家金矿床黄铁矿He-Ar同位素研究也证明深部幔源流体参与金成矿(张连昌等,2002),但新城金矿床成矿各阶段硫同位素组成显著富集δ34S,正向偏离陨石硫值,表明矿石硫源于深部地幔硫或岩浆硫的可能性很小。这与前人总结分析胶西北破碎带蚀变岩型金矿床岩体与硫化物硫同位素组成得到认识相一致(王义文等,2002)。研究(Wang et al., 2014b; 杨立强等,2014b)表明,新城金矿床矿化样式、蚀变组合、矿物组合和成矿流体地球化学特征与造山型金矿相像。而新城金矿床黄铁矿硫同位素组成显著富集δ34S,高于bendigo金矿床和Juneau金矿带等典型造山型金矿床(带)矿石中黄铁矿硫同位素组成(图 4b-d、图 5),这些金矿床的矿石硫被认为主要来源于矿区的赋矿围岩,如沉积变质岩等(Goldfarb et al., 1991; Jia et al., 2001)。新城金矿床矿区岩体和矿石中黄铁矿硫同位素组成虽与bendigo金矿床和Juneau金矿带差异较大,但都表明矿石硫主要源自于矿区岩体。新城金矿床矿石硫源较为复杂,来源多样,可能源于郭家岭岩体、变粒岩和长英质脉岩等岩体。前已述及,矿区内变粒岩和长英质脉岩发育较少,因而可能仅贡献较少的硫源,巨量的矿石硫可能源自于郭家岭岩体。而矿石硫源最终主要来源于胶东群变质基底(杨立强等,2014b)。
成矿期内黄铁矿δ34S值分布范围总体上较为集中(介于5.7‰~10.6‰),而各成矿阶段黄铁矿硫同位素组成不同,从I阶段、II阶段到III阶段,黄铁矿δ34S值总体上呈现出逐渐降低的趋势(表 1、图 4b-d)。在平衡条件下,硫化物中δ34S的富集顺序为:Bi2S3
前人通过应用多种方法和技术很好地对成矿条件、成矿作用过程等进行了厘定(邓军等,2000; 龚庆杰等,2004; Deng et al., 2011b,2014b; 杨立强等, 2010,2011a,b; Zoheir,2012; Sarangi et al., 2013)。而硫化物硫同位素组成除了示踪成矿物质来源之外(Ohmoto and Goldhaber, 1997; 张静等,2009; 邓军等,2011; Yan et al., 2014),还能够很好地反映成矿时的物理化学条件(郑永飞和陈江峰,2000;杨向荣等,2010)。同时,新城金矿床中黄铁矿是最常见矿物之一,也是最重要的载金矿物。黄铁矿晶体形态不仅由铁硫成分和晶体结构决定,而且还受其形成条件的制约,如fO2、fS2、T(℃)和介质盐度等条件。前人研究表明,黄铁矿晶体习性特征能够反映出其生成时的地质环境(陈光远等,1987;蔡元吉和周茂,1993;李楠等,2012)。
新城金矿床Py1以浸染状,细粒立方体晶形为主(表 1、图 3a,b),代表一种较高温度(300~350℃)、快速冷却、同时过饱和度较低的成矿环境;立方体晶形占优,而五角十二面体晶形很少表明此时成矿环境为低氧逸度和硫逸度条件(陈光远等,1987;蔡元吉和周茂,1993;李楠等,2012)。Py2和Py3以细粒-粗粒五角十二面体晶形为主(图 3c-e),仅发育少量细粒-粗粒立方体和八面体晶形(表 1),表明黄铁矿形成于中-低温度(200~300℃)、成矿流体过饱和度高、高氧逸度和硫逸度,缓慢冷却同时物质供应充分的成矿环境(陈光远等,1987;蔡元吉和周茂,1993;李楠等,2012)。闪锌矿和方铅矿同属成矿III阶段产物,在新城金矿床中密切共生,且两者达到和保持了同位素平衡状态,是硫同位素地质温度计测温时优先考虑的对象(丁悌平等,1992)。应用Smith et al.(1977)和Li and Liu(2006)平衡方程计算分别得出3个闪锌矿-方铅矿硫同位素热力学平衡温度:282℃、193℃和180℃,整体上略高于该阶段流体包裹体所提供的成矿温度范围(170~230℃,薛琮一,2011),考虑到流体包裹体均一温度指示成矿流体温度的下限,与其被捕获时的温度之间存在差值(卢焕章等,2004)。因此,闪锌矿-方铅矿硫同位素热力学平衡温度可以代表该阶段的成矿温度。Py4则为细粒立方体晶形(图 3h),表明该阶段处于较低温度(<200℃),热液流体过渡饱和度较低、低氧逸度和硫逸度、同时物质供应不足的成矿环境(陈光远等,1987;蔡元吉和周茂,1993;李楠等,2012)。
前已述及,III阶段硫化物之间硫同位素达到了分馏平衡,因而可视其满足硫同位素平衡且封闭体系内质量平衡的条件。考虑到新城金矿床成矿热液盐度约为10%(Wang et al., 2014b),因而成矿热液离子强度I为1.0(程伟基和支霞臣,1983)。因此,可以应用图 6估算III阶段的成矿热液氧逸度。依据III阶段黄铁矿δ34S值,结合王中亮(2012)得到的焦家金矿床田III阶段pH值(6.69),可得到成矿III阶段成矿热液的氧逸度约为10-37.3~10-36.8(图 6)。
通过对新城金矿床各成矿阶段黄铁矿晶形和结构特征的分析,表明I阶段处于温度较高(300~350℃)、成矿流体的过饱和度较低、氧逸度和硫逸度低、冷却较为快速和物质供应不足的成矿环境;II和III阶段处于中-低温度(200~300℃)、成矿流体过饱和度高、氧逸度和硫逸度高、缓慢冷却同时物质供应充分的成矿环境;IV阶段处于较低温度(<200℃),过渡饱和度较低、氧逸度和硫逸度低、同时物质供应不足的成矿环境。
通过对新城金矿床矿区岩体和不同成矿阶段硫化物硫同位素组成分析表明,郭家岭岩体硫主要源自于变粒岩。长英质脉岩硫源可能以郭家岭岩体和变粒岩为主,深部岩浆也提供了部分硫源。矿石硫可能主要源于郭家岭岩体、变粒岩和长英质脉岩,最终主要来源于胶东群变质基底。I阶段矿石硫可能源于δ34S值较高的郭家岭岩体和变粒岩。II和III阶段矿石硫源自于郭家岭岩体、变粒岩和长英质脉;III阶段硫化物δ34S值变化范围较大是硫同位素分馏达到平衡的结果,闪锌矿-方铅矿硫同位素热力学平衡温度范围约为180~282℃,成矿热液的氧逸度约为10-37.3~10-36.8。
致谢 王中亮博士后为论文的完善提出了宝贵的意见;野外工作得到山东黄金矿业股份有限公司新城金矿有关领导与相关技术人员的大力支持及帮助;硫同位素实验工作得到了核工业北京地质研究院分析测试研究中心刘汉彬高工支持;研究生张良、郭林楠、刘跃、李瑞红和陈炳翰等参与了部分工作;两位审稿人提出了宝贵的修改建议;在此一并致以诚挚的感谢!

图 6 新城金矿床成矿III阶段lgfO2-pH-δ34Spy图(据王义文等,2002)
T=250℃,I=1.0,δ34S=+10‰,K区和Q区分别为蚀变岩型金矿床和石英脉型金矿床相平衡的fO2、pH范围.Ksp-钾长石;Ms-白云母;Q-石英;Cal-方解石;Wo-硅灰石;Fs-碱性长石;Kaol-高岭土;Py-黄铁矿
Fig. 6 lgfO2-pH-δ34Spy diagram of the third mineralization stage in the Xincheng gold deposit(after Wang et al., 2002)
T=250℃,I=1.0,δ34S=+10‰. Areas of K and Q represent ranges of fO2 and pH of phase equilibrium between altered rock type gold deposits and quartz vein gold deposits,respectively. Ksp-potassium feldspar; Ms-muscovite; Q-quartz; Cal-calcite; Wo-wollastonite; Fs-alkali feldspar; Kaol-kaolinite; Py-pyrite
| [1] | Cai YJ and Zhou M. 1993. Experimental study of crystal habit of pyrite in gold deposits. Science in China (Series B), 23(9): 972-978 (in Chinese) |
| [2] | Chen GY, Sun DS, Zhang L, Zang WS, Wang J and Lu AH. 1987. Morphogenesis of pyrite. Geoscience, 1(1): 60-76 (in Chinese with English abstract) |
| [3] | Cheng WJ and Zhi XC. 1983. The physicochemical properties and sulfur isotope evolution of the hydrothermal system: Principle, application and using methods. Geology and Prospecting, (9): 21-29 (in Chinese) |
| [4] | Chinnasamy SS and Mishra B. 2013. Greenstone metamorphism, hydrothermal alteration, and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India. Economic Geology, 108(5): 1015-1036 |
| [5] | Deng J, Yang LQ, Zhai YS, Sun ZS and Chen XM. 2000. Theoretical framework and methodological system of tectonics-fluids-mineralization system and dynamics. Earth Science, 25(1): 71-78 (in Chinese with English abstract) |
| [6] | Deng J, Yang LQ, Ge LS, Wang QF, Zhang J, Gao BF, Zhou YH and Jiang SQ. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science, 16(8): 777-784 |
| [7] | Deng J, Wang QF, Yang LQ, Zhou L, Gong QJ, Yuan WM, Xu H, Guo CY and Liu XW. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geologica Sinica, 82(4): 769-780 |
| [8] | Deng J, Wang QF, Wan L, Yang LQ, Gong QJ, Zhao J and Liu H. 2009. Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal of Geochemical Exploration, 102(2): 95-102 |
| [9] | Deng J, Wang QF, Yang SJ, Liu XF, Zhang QZ, Yang LQ and Yang YC. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 412-424 |
| [10] | Deng J, Wang QF, Wan L, Liu H, Yang LQ and Zhang J. 2011a. A multifractal analysis of mineralization characteristics of the Dayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China. Ore Geology Reviews, 40(1): 54-64 |
| [11] | Deng J, Wang QF, Xiao CH, Yang LQ, Liu H and Gong QJ. 2011b. Tectonic-magmatic-metallogenic system, Tongling ore cluster area, Anhui Province, China. International Geology Review, 53(5-6): 449-476 |
| [12] | Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509 (in Chinese with English abstract) |
| [13] | Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China, Gondwana Research, 26(2): 419-437 |
| [14] | Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, doi:10.1016/j.earscirev.2014.05.015 |
| [15] | Ding DP, Zhang CX, Wan DF, Liu ZJ, Li YH and Zhang GL. 1992. Calibration of sphalerite galena sulfur isotope geothermometer experiment. Chinese Science Bulletin, (15): 1392-1395(in Chinese) |
| [16] | Donoghue KA, Ripley EM and Li CS. 2014. Sulfur isotope and mineralogical studies of Ni-Cu sulfide mineralization in the bovine igneous complex intrusion, Baraga, Northern Michigan. Economic Geology, 109(2): 325-341 |
| [17] | Giesemann A, Jger HJ, Norman AL, Krouse HR and Brand WA. 1994. Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Analytical Chemistry, 66(18): 2816-2819 |
| [18] | Goldfarb RJ, Newberry RJ, Pickthorn WJ and Gent CA. 1991. Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: Constraints on the origin of hydrothermal fluids. Economic Geology, 86(1): 66-80 |
| [19] | Goldfarb RJ and Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139-153 |
| [20] | Gong QJ, Yu CW and Zhang RH. 2004. Physical chemistry study on the ore-forming process of Shizhuyuan tungsten-polymetallic deposit. Earth Science Frontiers, 11(4): 617-625 (in Chinese with English abstract) |
| [21] | Guo LN, Zhang C, Song YZ, Chen BH, Zhou Z, Zhang BL, Xu XL and Wang YW. 2014. Hydrogen and oxygen isotopes geochemistry of the Wang'ershan gold deposit, Jiaodong. Acta Petrologica Sinica, 30(9): 2481-2494 (in Chinese with English abstract) |
| [22] | Hoefs J. 2009. Stable Isotope Geochemistry. 6th Edition. Berlin: Springer Berlin Heidelberg, 123-136 |
| [23] | Huang DY. 1986. A brief analysis on the basic metallogenetic model of gold and silver deposits in the northwestern Jiaodong. Geology and Prospecting, (12): 10-15 (in Chinese) |
| [24] | Ji XZ, Yang LQ and Wang ZL. 2013. Thermoelectricity characteristics of pyrite from Xincheng gold deposit, eastern Shangdong. Geoscience, 27(1): 37-45 (in Chinese with English abstract) |
| [25] | Jia Y, Li X and Kerrich R. 2001. Stable isotope (O, H, S, C and N) systematics of quartz vein systems in the tubidite-hosted Central and North Deborah gold deposits of the Bendigo gold field, Central Victoria, Australia: Constraints on the origin of ore-forming fluids. Economic Geology, 96(4): 705-721 |
| [26] | Li GJ, Wang QF, Wang JQ and Fang QL. 2013a. Geological and geochemical characteristics of the Huangshilao stratabound gold deposit in the Tongguanshan orefield, Tongling, East-Central China. Resource Geology, 63(2): 141-154 |
| [27] | Li N, Yang LQ, Zhang C, Zhang J, Lei SB, Wang HT, Wang HW and Gao X. 2012. Sulfur isotope characteristics of the Yangshan gold belt, West Qinling: Constraints on ore-forming environment and material source. Acta Petrologica Sinica, 28(5): 1577-1587 (in Chinese with English abstract) |
| [28] | Li N, Deng J, Yang LQ, Goldfarb RJ, Zhang C, Marsh E, Lei S, Koenig A and Lowers H. 2013b. Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China. Mineralium Deposita, 49(4): 427-449 |
| [29] | Li RH, Liu Y, Li HL, Zheng XL, Zhao H and Sun Z. 2014. Ore-controlling structure deformation environment of Xincheng gold deposit, Jiaodong: Mcrostructure and EBSD fabrics analysis constrain. Acta Petrologica Sinica, 30(9): 2546-2558 (in Chinese with English abstract) |
| [30] | Li YB and Liu JM. 2006. Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 70(7): 1789-1795 |
| [31] | Liu JT, Yang LQ and Lü L. 2013. Pulang reduced porphyry copper deposit in the Zhongdian area, Northwest China: Constrains by the mineral assemblages and the ore-forming fluid compositions. Acta Petrologica Sinica, 29(11): 3914-3924 (in Chinese with English abstract) |
| [32] | Lu HZ, Fan HR, Ni P, Ou GX, Shen K and Zhang WH. 2004. Fluid Inclusion. Beijing: Science Press, 184 (in Chinese) |
| [33] | Lu LN, Fan HR, Hu FF, Yang KF, Zheng XL and Zhao H. 2011. Ore-forming fluids and genesis of Xincheng altered rock gold deposit in northwestern Jiaodong Peninsula. Mineral Deposits, 30(3): 522-532 (in Chinese with English abstract) |
| [34] | McCuaig TC and Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geology Reviews, 12(6): 381-453 |
| [35] | Mueller AG, Lawrance LM, Muhling J and Pooley GD. 2012. Mineralogy and PTX relationships of the Archean Hannan South Au-Cu (Co-Ni) deposit, Kalgoorlie, Western Australia: Thermodynamic constraints on the formation of a zoned intrusion-related skarn. Economic Geology, 107(1): 1-24 |
| [36] | Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York: John Wiley, 517-612 |
| [37] | Sarangi S, Srinivasan R and Balaram V. 2013. REE geochemistry of auriferous quartz carbonate veins of Neoarchean Ajjanahalli gold deposit, Chitradurga schist belt, Dharwar Craton, India. Geoscience Frontiers, 4(2): 231-239 |
| [38] | Smith JW, Doolan S and McFarlane EF. 1977. A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite. Chemical Geology, 19(1-4): 83-90 |
| [39] | Sun X, Deng J, Yang ZR, Yang LQ, Gong QJ and Wang QF. 2009. Using REE and isotope geochemsity to trace the origin of ore forming materials in Yixian fluorite deposits, China. Geochimica et Cosmochimica Acta, 73(Suppl.): A1293 |
| [40] | Wang QF, Deng J, Huang DH, Xiao CH, Yang LQ and Wang YR. 2011. Deformation model for the Tongling ore cluster region, east-central China. International Geology Review, 53(5-6): 562-579 |
| [41] | Wang YW, Zhu FS and Gong RT. 2002. Tectonic isotope geochemistry: Further study on sulphur isotope of Jiaodong gold concentration area. Gold, 23(4): 1-16 (in Chinese with English abstract) |
| [42] | Wang ZL. 2012. Metallogenic system of Jiaojia gold orefield, Shandong Province, China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-226 (in Chinese with English summary) |
| [43] | Wang ZL, Yang LQ, Deng J, Santosh M, Zhang HF, Liu Y, Li RH, Huang T, Zheng XL and Zhao H. 2014a. Petrogenesis and tectonic setting of gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, northwest Jiaodong Peninsula, East China: Mineralogy, geochemistry, zircon U-Pb and Lu-Hf isotopes. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2014.03.001 |
| [44] | Wang ZL, Yang LQ, Guo LN, Marsh E, Wang JP, Liu Y, Zhang C, Li RH, Zhang L, Zheng XL and Zhao RX. 2014b. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geology Reviews, doi: 10.1016/j.oregeorev.2014.06.006 |
| [45] | Xue CY. 2011. Characteristics of ore-forming fluids of Xincheng gold deposit, Jiaodong Peninsula, eastern China. Master Degree Thesis. Beijing: China University of Geosciences, 1-61 (in Chinese with English summary) |
| [46] | Yan YT, Zhang N, Li SR and Li YS. 2014. Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, eastern China. Geoscience Frontiers, 5(2): 205-213 |
| [47] | Yang KF, Fan HR, Santosh M, Hu FF, Wilde SA, Lan TG, Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127 |
| [48] | Yang LQ, Wang GJ, Zhang ZJ, Deng J, Zhao AH and Wang JP. 2000. Lithospheric structure and deep-seated mineralization in Jiaodong gold deposit concentration region, Shandong, China. Earth Science, 25(4): 421-427 (in Chinese with English abstract) |
| [49] | Yang LQ, Deng J, Zhang ZJ, Wang GJ and Wang JP. 2003. Crust-mantle structure and coupling effects on mineralization: An example from Jiaodong Gold Ore Deposits Concentrating Area, China. Journal of China University of Geosciences, 14(1): 42-51 |
| [50] | Yang LQ, Deng J, Wang QF and Zhou YH. 2006. Coupling effects on gold mineralization of deep and shallow structures in the northwestern Jiaodong Peninsula, eastern China. Acta Geologica Sinica, 80(3): 400-411 |
| [51] | Yang LQ, Deng J, Gong QJ, Zhang J, Wang QF and Yuan WM. 2007a. Using isotope geochemsity to trace the origin of ore forming materials in the Jiaodong gold province, China. Geochimica et Cosmochimica Acta, 71 (Spec. Suppl.): A1139 |
| [52] | Yang LQ, Deng J, Zhang J, Wang QF, Gao BF, Zhou YH, Guo CY and Jiang SQ. 2007b. Preliminary studies of fluid inclusions in Damoqujia gold deposit along Zhaoping fault zone, Shandong Province, China. Acta Petrologica Sinica, 23(1): 153-160 |
| [53] | Yang LQ, Deng J, Ge LS, Wang QF, Zhang J, Gao BF, Jiang SQ and Xu H. 2007c. Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula, eastern China: A regional review. Progress in Natural Sciences, 17(2): 138-143 |
| [54] | Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology, 59(2): 181-193 |
| [55] | Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract) |
| [56] | Yang LQ, Deng J, Zhao K and Liu JT. 2011a. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519-2532 (in Chinese with English abstract) |
| [57] | Yang LQ, Deng J, Zhao K, Liu JT, Ge LS, Zhou DQ, Li SH and Cao BB. 2011b. Geological characteristics and genetic type of Daping gold deposit in the Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 27(12): 3800-3810 (in Chinese with English abstract) |
| [58] | Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 78: 327-344 |
| [59] | Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469-1483 |
| [60] | Yang LQ, Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In: Chen YT, Jin ZM, Shi YL, Yang WC and Zhu RX (eds.). The Deep-seated Structures of Earth in China. Beijing: Sciences Press, 1006-1030 (in Chinese) |
| [61] | Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract) |
| [62] | Yang XR, Peng JT, Hu RZ, Qi HW and Liu S. 2010. Sulfur isotopes characteristics and genesis of Tamu lead and zinc ore deposit, southwest margin of Tarim, Xinjiang. Acta Petrologica Sinica, 26(10): 3074-3084 (in Chinese with English abstract) |
| [63] | Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 |
| [64] | Zhang C, Yang LQ, Wang ZL and Liu Y. 2013. Primary halo characteristics and concealed ore body prognosis in the Xincheng gold deposit, Jiaodong. Geological Journal of China Universities, 19(Suppl.): 378 (in Chinese) |
| [65] | Zhang J, Yang Y, Hu HZ, Wang ZG, Li GP and Li ZL. 2009. C-S-Pb isotope geochemistry of the Yindonggou orogenictype silver deposit in He'nan Province. Acta Petrologica Sinica, 25(11): 2833-2842 (in Chinese with English abstract) |
| [66] | Zhang J, Chen YJ, Yang Y and Deng J. 2011. Lead isotope systematics of the Weishancheng Au-Ag belt, Tongbai Mountains, central China: Implication for ore genesis. International Geology Review, 53(5-6): 656-676 |
| [67] | Zhang L, Liu Y, Li RH, Huang T, Zhang RZ, Chen BH and Li JK. 2014. Lead isotope geochemistry of Dayingezhuang gold deposit, Jiaodong Peninsula, China. Acta Petrologica Sinica, 30(9): 2468-2480 (in Chinese with English abstract) |
| [68] | Zhang LC, Shen YC, Li HM, Zeng QD, Li GM and Liu TB. 2002. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrologica Sinica, 18(4): 559-565 (in Chinese with English abstract) |
| [69] | Zhao K, Yang LQ, Li P and Xiong YQ. 2013. Morphology characteristics and chemistry compositions of pyrites in the Laowangzhai gold deposit, Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 29(11): 3937-3948 (in Chinese with English abstract) |
| [70] | Zheng YF and Chen JF. 2000. Stable Isotope Geochemistry. Beijing: Science Press, 218-239 (in Chinese) |
| [71] | Zoheir BA. 2012. Controls on lode gold mineralization, Romite deposit, South Eastern Desert, Egypt. Geoscience Frontiers, 3(5): 571-585 |
| [72] | 蔡元吉, 周茂. 1993. 金矿床黄铁矿晶形标型特征实验研究. 中国科学(B辑), 23(9): 972-978 |
| [73] | 陈光远, 孙岱生, 张立, 臧维生, 王健, 鲁安怀. 1987. 黄铁矿成因形态学. 现代地质, 1(1): 60-76 |
| [74] | 程伟基, 支霞臣. 1983. 热液系统的物理化学性质和硫同位素演化——lgfO2-pH-δ34Si图解的原理、用途与使用方法. 地质与勘探, (9): 21-29 |
| [75] | 邓军, 杨立强, 翟裕生, 孙忠实, 陈学明. 2000. 构造-流体-成矿系统及其动力学的理论格架与方法体系. 地球科学, 25(1): 71-78 |
| [76] | 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509 |
| [77] | 丁悌平, 张承信, 万德芳, 刘志坚, 李延河, 张桂兰. 1992. 闪锌矿-方铅矿硫同位素地质温度计的实验标定. 科学通报, (15): 1392-1395 |
| [78] | 龚庆杰, 於崇文, 张荣华. 2004. 柿竹园钨多金属矿床形成机制的物理化学分析. 地学前缘, 11(4): 617-625 |
| [79] | 郭林楠, 张潮, 宋宇宙, 陈炳翰, 周铸, 张炳林, 徐晓磊, 王彦玮. 2014. 胶东望儿山金矿床氢-氧同位素地球化学. 岩石学报, 30(9): 2481-2494 |
| [80] | 黄德业. 1986. 试论胶东地区西北部金、银矿床的基本成矿模式. 地质与勘探, (12): 10-15 |
| [81] | 戢兴忠, 杨立强, 王中亮. 2013. 胶东新城金矿床黄铁矿热电性特征. 现代地质, 27(1): 37-45 |
| [82] | 李楠, 杨立强, 张闯, 张静, 雷时斌, 王恒涛, 王宏伟, 高雪. 2012. 西秦岭阳山金矿带硫同位素特征: 成矿环境与物质来源约束. 岩石学报, 28(5): 1577-1587 |
| [83] | 李瑞红, 刘育, 李海林, 郑小礼, 赵海, 孙政. 2014. 胶东新城金矿床控矿构造变形环境: 显微构造和EBSD组构约束. 岩石学报, 30(9): 2546-2558 |
| [84] | 刘江涛, 杨立强, 吕亮. 2013. 中甸普朗还原性斑岩型铜矿床: 矿物组合与流体组成约束. 岩石学报, 29(11): 3914-3924 |
| [85] | 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 184 |
| [86] | 陆丽娜, 范宏瑞, 胡芳芳, 杨奎峰, 郑小礼, 赵海. 2011. 胶西北新城金矿成矿流体与矿床成因. 矿床地质, 30(3): 522-532 |
| [87] | 王义文, 朱奉三, 宫润谭. 2002. 构造同位素地球化学——胶东金矿集中区硫同位素再研究. 黄金, 23(4): 1-16 |
| [88] | 王中亮. 2012. 焦家金矿田成矿系统. 博士学位论文. 北京: 中国地质大学: 1-226 |
| [89] | 薛琮一. 2011. 胶东新城金矿床成矿流体特征. 硕士学位论文. 北京: 中国地质大学: 1-61 |
| [90] | 杨立强, 王光杰, 张中杰, 邓军, 赵爱华, 王建平. 2000. 胶东金矿集中区岩石圈结构与深部成矿作用. 地球科学, 25(4): 421-427 |
| [91] | 杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739 |
| [92] | 杨立强, 邓军, 赵凯, 刘江涛. 2011a. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519-2532 |
| [93] | 杨立强, 邓军, 赵凯, 刘江涛, 葛良胜, 周道卿, 李士辉, 曹宝宝. 2011b. 滇西大坪金矿床地质特征及成因初探. 岩石学报, 27(12): 3800-3810 |
| [94] | 杨立强, 邓军, 王中亮. 2014a. 胶东金矿控矿构造样式: 地质-地球物理综合约束. 见: 陈运泰, 金振民, 石耀霖, 杨文采, 朱日祥主编. 中国大陆地球深部结构与动力学研究——庆贺滕吉文院士从事地球物理研究60周年. 北京: 科学出版社, 1006-1030 |
| [95] | 杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014b. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467 |
| [96] | 杨向荣, 彭建堂, 胡瑞忠, 戚华文, 刘燊. 2010. 新疆塔里木西南缘塔木铅锌矿硫同位素特征与成因. 岩石学报, 26(10): 3074-3084 |
| [97] | 张潮, 杨立强, 王中亮, 刘育. 2013. 胶东新城金矿床原生晕特征与隐伏矿体预测. 高校地质学报, 19(增刊): 378 |
| [98] | 张静, 杨艳, 胡海珠, 王志光, 李忠烈. 2009. 河南银洞沟造山型银矿床碳硫铅同位素地球化学. 岩石学报, 25(11): 2833-2842 |
| [99] | 张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎. 2014. 胶东大尹格庄金矿床铅同位素地球化学. 岩石学报, 30(9): 2468-2480 |
| [100] | 张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪. 岩石学报, 18(4): 559-565 |
| [101] | 赵凯, 杨立强, 李坡, 熊伊曲. 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937-3948 |
| [102] | 郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社, 218-239 |
2014, Vol. 30





