岩石学报  2014, Vol. 30 Issue (8): 2435-2445   PDF    
苏鲁造山带古元古代超高温麻粒岩及其构造意义
雷恒聪1, 向华2 , 张泽明2, 祁敏2, 董昕2, 林彦蒿3    
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 中国地质科学院地质研究所, 大陆构造与动力学国家重点实验室, 北京 100037;
3. 中国地质大学研究生院, 武汉 430074
摘要:本文报道了在苏鲁超高压变质带北端威海地区识别出的古元古代超高温泥质麻粒岩。泥质麻粒岩与大理岩、钙硅酸盐岩和片麻岩等变质表壳岩伴生。这些表壳岩以透镜体的形式产于经历了三叠纪超高压变质的新元古代正片麻岩中。泥质麻粒岩由石榴石、夕线石、斜长石、钾长石、反条纹长石、石英、黑云母、白云母和金红石组成。黑云母和白云母呈石榴石和夕线石的冠状体产出,为退变质矿物。相平衡模拟结果表明,麻粒岩峰期变质的温度和压力条件为~940℃和~1.2GPa。泥质麻粒岩中的锆石近等粒状或椭圆形,具有扇状或冷杉状分带,大多数具有平坦甚至亏损的重稀土配分模式,并有Eu负异常,为典型的麻粒岩相变质锆石。锆石的LA-ICP-MSU-Pb定年结果给出了1845±9Ma的207Pb/206Pb加权平均年龄,表明超高温麻粒岩形成于古元古代。结合现有的其他研究结果,我们推测扬子板块北缘经历了古元古代的增生造山作用。
关键词古元古代     超高温麻粒岩     扬子板块北缘     增生造山作用     苏鲁造山带    
Paleoproterozoic UHT granulite in the Sulu orogen and its tectonic implications
LEI HengCong1, XIANG Hua2 , ZHANG ZeMing2, QI Min2, DONG Xin2, LIN YanHao3    
1. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;
2. State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Graduate School, China University of Geosciences, Wuhan 430074, China
Abstract: In this paper, we report the Paleoproterozoic ultrahigh-temperature pelitic granulites from the northern segment of Sulu ultrahigh-pressure metamorphic belt. The pelitic granulites occur as interlayer within other metamorphic supracrustal rocks, such as marble, calc-silicate rock and gneiss. In turn, these rocks together occur as larger lens within the Triassic ultrahigh-pressure metamorphic orthogneisses with the Neoproterozoic protolith ages. The pelitic granulites show the porphyroblast texture, massive structure or weak gneissic foliation, and are composed of garnet, sillimanite, plagioclase, K-feldspar, antiperthite, quartz, biotite, muscovite and rutile. The porphyroblastic garnet set in the matrix of sillimanite, plagioclase, K-feldspar, antiperthite, quartz, biotite, muscovite and rutile. The biotite and muscovite commonly occur as the symplectitic corona around garnet and sillimanite, representing the retrograde phase of the granulite. Garnet shows a homogenous core compositions with XFe=0.508~0.587, XMg=0.394~0.453 and Mg#=0.408~0.471. Phase equilibria modeling in the MnNCFKMASHTO system indicates that the pelitic granulites were metamorphosed under P-T conditions of ~1.2GPa and ~940℃. Zircons from the granulites are nearly isometric granular, and have the sector or fir-like zoning. Most zircons are characterized by flat or even depleted HREE patterns with negative Eu anomalies, typical of granulite-facies metamorphic zircon. LA-ICP-MS U-Pb dating of the zircons yields a weighted mean 207Pb/206Pb age of 1845±9Ma (MSWD=0.77), indicating the peak-metamorphic age of the pelitic granulites. Considering the widespread occurrence of Paleoproterozoic (1.9~1.8Ga) magmatism and metamorphism in the northern margin of the Yangtze plate, we speculate that these tectonothermal events may have derived from an accretionary orogeny during or after the Columbia supercontinent assembly.
Key words: Paleoproterozoic     Ultrahigh-temperature granulite     Northern margin of the Yangtze plate     Accretionary orogeny     Sulu orogen    

1 引言

大别-苏鲁造山带是扬子与华北板块在三叠纪时期俯冲-碰撞造山作用的产物,是世界上出露规模最大的超高压变质带(Xu et al., 19922006; Liou et al., 1995; Ames et al., 1996; Cong and Wang, 1996; Wallis et al., 1999; 许志琴等,2006)。大别-苏鲁造山带的核部是由经历了深俯冲和超高压变质的扬子板块北缘组成的(Chavagnac and Jahn, 1996; Cong,1996; Hacker et al., 1998; Liou et al., 1998)。研究表明,扬子板块经历了太古代至古元古代的多期构造热事件(Zhang et al., 2006a; Wu et al., 200820092012; Peng et al., 2012),以及广泛的新元古代岩浆作用(Li et al., 2003ab; Zheng et al., 2006)。但是,由于三叠纪的超高压变质作用,使我们很难揭示出这些前寒武纪构造热事件的性质和构造意义。

最近,我们在苏鲁超高压变质带北部威海地区经历了三叠纪超高压变质的新元古代正片麻岩中识别出一套变质表壳岩。本文报道了变质表壳岩中泥质麻粒岩的岩石学和锆石U-Pb定年研究结果。研究显示,泥质麻粒岩经历了古元古代的超高温变质作用,为扬子板块北缘古元古代的构造演化提供了重要的信息。

2 地质背景

苏鲁超高压变质带位于郯庐断裂以东,其与华北板块的构造边界为五莲-烟台断裂(图 1)。造山带核部的超高压变质带主要由片麻岩、斜长角闪岩、榴辉岩、石榴石橄榄岩和少量的变质表壳岩组成。这些岩石被中生代的花岗岩侵入。片麻岩和斜长角闪岩的原岩主要是新元古代形成的双峰式火成岩,被认为是Rodinia超大陆裂解时岩浆作用的产物(唐俊等,2005; Zheng et al., 2006; Tang et al., 2008; Zhang et al., 2009; Liu et al., 2010a)。

图 1 苏鲁造山带地质简图及采样位置(据Liu et al., 2010a修改)YQWF-烟台-青岛-五莲断裂;JXF-嘉山-响水断裂 Fig. 1 Tectonic sketch of the Sulu orogen and sample location(after Liu et al., 2010a) YQWF-Yantai-Qingdao-Wulian fault; JXF-Jiashan-Xiangshui fault

本文所研究的泥质麻粒岩样品采于苏鲁造山带北部的威海地区。研究区内出露的岩性主要为含榴辉岩透镜体的正片麻岩。片麻岩的锆石中含柯石英包体,表明与榴辉岩一起经历了超高压变质作用(Ye et al., 2000; 刘福来等,2001; Liu et al., 2004)。泥质麻粒岩呈层状产出,与副片麻岩、片岩、大理岩、钙硅酸盐岩和少量角闪岩伴生。这些变质表壳岩一起呈透镜状在正片麻岩中产出。所研究的泥质麻粒岩呈斑状变晶结构,块状或弱的片麻状构造。变斑晶石榴石发育由黑云母组成的退变质边缘,变基质矿物为夕线石、长石和石英(图 2a)。

图 2 泥质麻粒岩标本(a)和显微照片(b-e)(a)-泥质麻粒岩,具斑状变晶结构,红色的变斑晶石榴石边缘发育黑色的黑云母集合体替代,基质矿物为夕线石、钾长石、斜长石、黑云母、石英和白云母;(b)-泥质麻粒岩中的变斑晶石榴石,其边缘和裂隙中发育黑云母集合体;(c)-泥质麻粒岩中的石榴石和夕线石被黑云母和白云母替代呈残留体;(d)-泥质麻粒岩中的金红石和夕线石残留体,金红石被钛铁矿部分替代,夕线石被白云母和黑云母部分替代;(e)-泥质麻粒岩中的反条纹长石;(f)-泥质麻粒岩中反条纹长石,斜长石中含钾长石叶片.矿物代号:Gt-石榴石;Bi-黑云母;Ms-白云母;Sil-夕线石;Ru-金红石;Ilm-钛铁矿;Atp-反条纹长石;Pl-斜长石;Kfs-钾长石Fig. 2 Specimen photo(a) and photomicrographs of the pelitic granulite(b-e)

3 分析方法

全岩主量元素成分在国家地质实验测试中心用Rigaku3080型XRF测定,分析误差小于0.5%。矿物电子探针成分分析在中国地质科学院地质研究所大陆构造与动力学国家重点实验室进行。所用仪器型号JXA-8100,工作时的加速电压15kV,束流2×10-8A,束斑为2μm。

用于锆石年代学测试的代表性样品首先经过破碎,经浮选和电磁选等方法挑选出单颗粒锆石,然后在双目镜下挑纯。阴极发光(CL)图像在北京锆年领航科技有限公司采用扫描电镜完成。锆石U-Pb同位素测年和微量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。分析仪器为Geolas2005激光剥蚀系统和Agilent7500a电感耦合等离子质谱仪(ICP-MS)。分析激光束斑直径为32μm,频率为6Hz。采用锆石标准91500作外标进行同位素分馏校正,元素含量以NIST610为外标,29Si作内标进行校正。详细的操作条件和数据处理方法见Liu et al.(2010b)。采用ICPMSDataCal8.3软件对样品的同位素比值和U-Pb表面年龄数据进行处理,锆石U-Pb年龄计算及谐和图均采用ISOPLOT3.0(Ludwig,2003)程序完成。

4 岩石学

泥质麻粒岩呈斑状变晶结构,变斑晶为石榴石,变基质为夕线石、钾长石、斜长石、反条纹长石、黑云母、石英、白云母和金红石(图 2)。变斑晶石榴石被黑云母替代,并多沿石榴石的边缘和裂隙分布(图 2a,b),部分石榴石被替代成残余(图 2c)。夕线石边缘常被白云母替代(图 2c,d)。金红石被钛铁矿部分替代(图 2d)。反条纹长石表现为斜长石主晶中含钾长石叶片(图 2e,f)。基于矿物之间的替代关系,我们推测泥质麻粒岩的早期 矿物组合是石榴石+夕线石+三元长石+金红石+石英,并可以存在黑云母,而晚期形成的退变质矿物是黑云母、白云母、斜长石、钾长石和钛铁矿。

探针成分分析结果表明,麻粒岩中的石榴石主要为镁铝榴石-铁铝榴石固溶体(表 1)。变斑晶石榴石的成分剖面分析结果表明,石榴石核部成分均匀,其XFe=0.508~0.587,XMg=0.394~0.453,Mg#=0.408~0.471。而石榴石的边缘FeO含量增高,MgO和Mg#降低,XCa变化不明显(图 3),最低的XMg和Mg#分别为0.15和0.16,XFe最高为0.78。石榴石整体贫Ca和Mn,从核部到边部CaO与MnO基本无变化,XCa和XMn分别为约0.03和0.01。黑云母的FeO含量为16.26%~19.93%,MgO含量为9.89%~14.6%,TiO2含量为0.06%~2.52%(表 2)。斜长石的Na2O与CaO含量分别为7.70%~8.33%和6.18%~6.30%,为中长石(表 2)。

表 1 代表性的石榴石电子探针分析结果(wt%)Table 1 Representative electron microprobe analyses of garnet(wt%)

图 3 泥质麻粒岩中石榴石背散射电子图像(a)和成分剖面(b)图(a)中红线为石榴石成分剖面位置Fig. 3 BSE image(a) and the compositional profile of the garnet in the pelitic granulite The red line in image(a)showing the location of compositional profile

表 2 麻粒岩中代表性的黑云母和斜长石电子探针分析结果(wt%)Table 2 Representative electron microprobe analyses of the biotite and plagioclase in the granulite(wt%)

5 相平衡模拟与变质作用温压条件

相平衡模拟使用Perple_X 程序(6.6.8,2013年升级),数据库选择Holland and Powell(1998)2003年的升级版。所涉及的矿物及熔体相的活度-成分关系模型选自Perple_X文件(solution_model.dat)。考虑到P2O5主要形成磷灰石,在硅酸盐矿物中含量很少,因此忽略该组分。

相平衡模拟中在MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2(MnNCKFMASHTO)体系进行,所采用的全岩成分通过全岩化学分析获得,其SiO2 64.53%,TiO2 0.54%,Al2O3 17.01%,Fe2O3 7.38%,MgO 2.82%,CaO 1.50%,Na2O 1.73%,K2O 2.99%,MnO 0.08%。体系中的H2O含量根据岩石中含水矿物云母的含量计算得到,约为0.5%。岩石中未见有磁铁矿或其他富含Fe3+的矿物,因此假设5%的Fe为Fe3+图 4为700~1000℃和0.1~1.5GPa条件计算获得的P-T视剖面图。由图可见,石榴石在>0.15~0.4GPa的压力条件下稳定存在,金红石仅稳定在相对高温和高压区域内(T>900℃和P>0.9GPa)。石榴石+夕线石+斜长石+钾长石+石英+金红石±黑云母组合稳定在T>900℃和P>0.94GPa区域。

图 4 麻粒岩的P-T视剖面图(a)和石榴石成分等值线图(b)红色和黑色虚线为石榴石的Mg#=Mg/(Fe+Mg)和XCa=Ca/(Fe+Mg+Ca+Mn)等值线.Bi-黑云母;Pl-斜长石;Kfs-钾长石;Gt-石榴石;Sp-尖晶石;Ilm-钛铁矿;Sil-夕线石;Q-石英;Crd-堇青石;Ky-蓝晶石;Cpx-单斜辉石;Mi-微斜长石;Ru-金红石;Opx-斜方辉石Fig. 4 P-T pseudosection(a) and the compositional isopleths of the garnet(b)for the granulite The red and black dashes lines represent isopleths of Mg#=Mg/(Fe+Mg) and XCa=Ca/(Fe+Mg+Ca+Mn)for garnet respectively

在压力为0.6~1.5GPa的区域内,计算出的石榴石Mg#等值线具有很陡的正斜率,即随着温度的增加而增大,而XCa等值线在>0.6GPa条件下具有缓的正斜率,随压力增加而增大。因此石榴石的Mg#和XCa等值线可以用来较好地限定岩石形成的温、压条件。由于石榴石核部成分相对均匀,所以我们取石榴石核部的平均Mg#和XCa值,即分别为0.44和0.035的交点代表石榴石核部的形成条件。在P-T视剖面图中这两条等值线的交点给出的温、压条件是~940℃和~1.2GPa。该交点落在石榴石+夕线石+斜长石+钾长石+石英+金红石+黑云母组合稳定的P-T区间。所以,我们认为上述条件很可能代表麻粒岩的峰期变质条件,而且麻粒岩的峰期矿物组合中可能含少量黑云母。如果峰期矿物组合中没有黑云母,麻粒岩的峰期变质温度将会更高。

6 锆石U-Pb定年结果

泥质麻粒岩中的锆石无色透明,呈椭圆状和近圆形,阴极发光(CL)图像显示其具有扇状或冷杉状分带(图 5),与典型的麻粒岩相变质锆石特征相似(Hanchar and Miller, 1993; Rubatto and Gebauer, 2000; Whitehouse and Platt, 2003)。个别锆石具有一个很小的继承核。全部32个测点的Th和U含量分别是8×10-6~287×10-6和152×10-6~1005×10-6,相应的Th/U比值在0.01~0.55之间,且多数集中在0.1~0.3之间(表 3)。所分析的锆石具有较低的稀土元素含量(表 4),在球粒陨石标准化的稀土元素配分模式中大多表现为HREE亏损,并具明显的Eu负异常(图 6a)。这表明 锆石是与石榴石和斜长石同时生长的(Schaltegger et al., 1999; Rubatto,2002; Whitehouse and Platt, 2003; Bingen et al., 2004; Rubatto and Hermann, 2007)。少数锆石具有相对较高的HREE含量和HREE富集的配分模型。32个分析点获得了一个谐和的上交点年龄为1847±27Ma(MSWD=0.21)。全部分析点给出的207Pb/206Pb年龄为1779~1887Ma,其加权平均年龄为1845±9Ma(MSWD=0.77)(图 6b),与上交点年龄在分析误差范围内完全一致。由于大多数锆石具有典型麻粒岩相变质锆石的特征,少数锆石具有较富集的HREE含量,很可能形成在石榴石的分解过程中,所以我们认为1845±9Ma很可能代表麻粒岩的峰期变质或早期退变质年龄。

图 5 泥质麻粒岩锆石CL图像和分析点位置及年龄Fig. 5 CL image of the representative zircons from the granulite,showing the analytical spots and related ages

表 3 泥质麻粒岩中锆石LA-ICP-MS U-Pb分析结果Table 3 The LA-ICP-MS zircon U-Pb isotopic data of the pelitic granulite

表 4 泥质麻粒岩中锆石的稀土元素含量(×10-6)Table 4 REE contents of zircon in the pelitic granulite(×10-6)

图 6 泥质麻粒岩锆石球粒陨石标准化稀土元素配分模式图(a)和U-Pb谐和图(b)Fig. 6 Chondrite-normalized REE patterns(a) and U-Pb concordia diagram(b)for the zircon from the pelitic granulite

7 讨论

古元古代(2.1~1.8Ga)的构造热事件在全球各主要陆块内都有强烈记录,被认为是Columbia超大陆汇聚事件的响应(Rogers et al., 20022009; Hou et al., 2008; Zhao et al., 20092011; Santosh and Kusky, 2010)。 在扬子板块北缘已经发现了古元古代变质作用的记录。如大别造山带核部的黄土岭地区有约2.0Ga的高压和高温麻粒岩(吴元保等,2002; Chen et al., 2006; Wu et al., 20082009)。秦岭-大别造山带南部的崆岭杂岩包括麻粒岩、片麻岩、角闪岩和混合岩,其原岩年龄属于太古代,经历了2.01~1.93Ga的麻粒岩相变质作用,其峰期变质条件为P>1.2GPa和T>870℃,该麻粒岩相变质作用被认为是与Columbia超大陆汇聚相关的碰撞造山作用过程中形成的(Wu et al., 2009; Yin et al., 2013)。在苏鲁造山带北部海阳所地区镁铁质麻粒岩的变质年龄为1854±18Ma(Liou et al., 2006),变质条件为>750℃和0.9~1.1GPa(Zhang et al., 2006b)。Zhai et al.(2000)在文登地区也发现了高压基性麻粒岩,峰期变质条件为840~870℃和1.3~1.4GPa,矿物-全岩Sm-Nd等时线给出了1743±79Ma到1846±76Ma的麻粒岩相变质年龄。在桐柏造山带三叠纪榴辉岩中的继承锆石核获得了1.95~1.82Ga的变质年龄,且同地区的变沉积岩中也有大量的1.93~1.82Ga的变质碎屑锆石(Liu et al., 2008; 胡娟等,2010)。

在扬子板块北缘也广泛发育古元古代的岩浆作用。如在桐柏地区,三叠纪高压变质沉积岩中有大量2.1~1.8Ga的碎屑岩浆锆石(Liu et al., 2008; 2010a)。在大别造山带东部双河、新店、黄镇等地区的超高压变质岩获得了1.9~1.8Ga的原岩年龄(Ayers et al., 2002; Chen et al., 2003; Li et al., 2004; Wu et al., 2006)。荣成榴辉岩的原岩年龄为1.84~1.82Ga(Yang et al., 2003; Tang et al., 2008),威海地区的含橄榄石辉石岩也具有1.85~1.84Ga的原岩年龄(刘福来等,2011)。据孔庆波(2009)报道,在苏鲁造山带威海和桃行地区花岗质片麻岩的原岩年龄为1.84~1.82Ga,锆石εHf(t)值介于-9.1~-7.6,相应的模式年龄(tDM2)变化于2.83~2.91Ga,表明花岗质片麻岩的原岩是更古老的太古代地壳部分熔融的产物。

超高温麻粒岩的变质温度在900℃以上,甚至高达1150℃,形成压力在0.7~1.5GPa之间,即通常形成在25~45km深度,所以可以提供下地壳演化的重要信息(Harley, 1998ab2004; Kelsey,2008)。超高温变质作用通常发生在地温梯度超过20℃/km的高热流条件下(Brown, 20072009),增生造山是发生大规模超高温变质作用的有利构造环境(Kelsey,2008)。在增生造山过程中,大量幔源岩浆物质的加入,加厚岩石圈地幔的拆沉、深俯冲大洋板片断离和回转引起的软流圈上涌,以及洋中脊俯冲都可能导致增生造山带的下地壳发生区域性高温/超高温变质作用(Baba,1999; Sengupta et al., 1999; Underwood et al., 1999; Iwamori,2000; Collins, 2002ab; Bradley et al., 2003; Brandt et al., 2003; Saleeby et al., 2003; Zandt et al., 2004; Santosh and Kusky, 2010; Zhang et al., 2010ab2013; Santosh et al., 2012)。大量研究表明,增生造山作用普遍以高热流、麻粒岩相变质作用和部分熔融以及同时代的深成岩侵入作用为特征(Collins, 2002ab; Hyndman et al., 2005; Currie and Hyndman, 2006; Klepeis et al., 2007; Zhang et al., 2013)。

本研究表明,苏鲁造山带北部存在古老的变质表壳岩,并经历了古元古代(1845Ma)的超高温变质作用。正如上面描述的,现有的研究也表明扬子板块北缘存在同时期的超基性、基性岩浆作用(Yang et al., 2003; Tang et al., 2008; 刘福来等,2011)、古老地壳的部分熔融事件(孔庆波,2009)和高温变质事件(Zhai et al., 2000; Liou et al., 2006; Zhang et al., 2006b)。这些证据很可能表明扬子板块北缘经历了古元古代(1.85~1.82Ga)的增生造山作用。由于该期构造热事件发生在整个古元古代(2.0~1.8Ga)构造热事件幕的晚期,很可能与Columbia超大陆汇聚晚期或汇聚后的增生造山作用相关。

8 结论

苏鲁超高压变质带北部威海地区的变质表壳岩经历了古元古代的超高温变质作用,泥质麻粒岩的峰期变质矿物组合为石榴石+夕线石+钾长石+斜长石/反条纹长石+石英+金红石±黑云母,峰期变质作用的温、压条件分别为~940℃和~1.2GPa,变质年龄为1845±9Ma。结合同时期发生的基性、超基性岩浆作用和古老地壳深熔融作用,我们推测扬子板块北缘很可能经历了增生造山作用。


致谢     感谢赵志丹和朱弟成教授在研究工作中的支持与帮助!两位评审专家对本文进行了细致的评阅,提出了有益的修改意见,在此表示感谢。

参考文献
[1] Ames L, Zhou GZ and Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489
[2] Ayers JC, Dunkle S, Gao S and Miller CF. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3-4): 315-331
[3] Baba S. 1999. Sapphiring-bearing orthopyroxene-kyanite/sillimanite granulites from South Harris, NW Scotland: Evidence for Proterozoic UHT metamorphism in the Levisian. Contributions to Mineralogy and Petrology, 136(1-2): 33-47
[4] Bingen B, Austrheim H, Whitehouse MJ and Davis WJ. 2004. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contributions to Mineralogy and Petrology, 147(6): 671-683
[5] Bradley D, Kusky T, Haeussler P, Goldfarb R, Miller M, Dumoulin J, Nelson SW and Karl S. 2003. Geological signature of early Tertiary ridge subduction in Alaska. In: Sisson VB, Roseske SM and Pavlis TL (eds.). Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction along the North Pacifica Margin: Boulder, Coorado. Geological Society of America Special Paper, 371: 19-49
[6] Brandt S, Klemd R and Okrusch M. 2003. Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 44(6): 1121-1144
[7] Brown M. 2007. Metamorphism, plate tectonics, and the supercontinent cycle. Earth Science Frontiers, 14(1): 1-18
[8] Brown M. 2009. Metamorphic patterns in orogenic systems and the geological record. The Geological Society of London Special Publications, 318(1): 37-74
[9] Chavagnac V and Jahn BM. 1996. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133(1-4): 29-51
[10] Chen DG, Deloule E, Cheng H, Xia QK and Wu YB. 2003. Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: Ion probe in situ analyses. Chinese Science Bulletin, 48(16): 1670-1678
[11] Chen Y, Ye K, Liu JB and Sun M. 2006. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China: Implications for the tectonometamorphic evolution of subducted lower continental crust. Journal of Metamorphic Geology, 24(7): 633-654
[12] Collins WJ. 2002a. Hot orogens, tectonic switching, and creation of continental crust. Geology, 30(6): 535-538
[13] Collins WJ. 2002b. Nature of extensional accretionary orogens. Tectonics, 21(4): 6-1-6-12
[14] Cong BL. 1996. Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press, 1-224
[15] Cong BL and Wang QC. 1996. A review on researches of UHPM rocks in the Dabieshan-Sulu Region. In: Cong BL (ed.). Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press, 1-170
[16] Currie CA and Hyndman RD. 2006. The thermal structure of subduction zone back arcs. Journal of Geophysical Research: Solid Earth, 111(B8): doi: 10.1029/2005JB004024
[17] Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Dong SW. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230
[18] Hanchar JM and Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images-implications for interpretation of complex crustal histories. Chemical Geology, 110(1-3): 1-13
[19] Harley SL. 1998a. Ultrahigh temperature granulite metamorphism (1050 degrees C, 12kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 16(4): 541-562
[20] Harley SL. 1998b. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar PJ and O'Brien PJ (eds.). What Drives Metamorphism and Metamorphic Reactions? Geological Society of London Special Publication, 138: 81-107
[21] Harley SL. 2004. Extending our understanding of ultrahigh temperature crustal metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140-158
[22] Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343
[23] Hou G, Santosh M, Qian XL, Lister GS and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409
[24] Hu J, Liu XC, Qu W and Cui JJ. 2012. Zircon U-Pb ages of paleoproterozoic metabasites from the Tongbai orogen and their geological significance. Acta Geoscientica Sinica, 33(3): 305-315 (in Chinese with English abstract)
[25] Hyndman RD, Currie CA and Mazzotti SP. 2005. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15(2): 4-10
[26] Iwamori H. 2000. Thermal effects of ridge subduction and its implications for the origin of granitic batholith and paired metamorphic belts. Earth and Planetary Science Letters, 181(1-2): 131-144
[27] Kelsey DE. 2008. On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13(1): 1-29
[28] Klepeis KA, King D, De M, Clarke GL and Gehrels G. 2007. Interaction of strong lower and weak middle crust during lithospheric extension in western New Zealand. Tectonics, 26(4): TC4017, doi: 10.1029/2006TC002003
[29] Kong QB. 2009. Zircon U-Pb dating, REE and Lu-Hf isotopic characteristics of Paleoproterozoic orthogneiss in Sulu UHP terrane, eastern China. Geological Bulletin of China, 28(1); 51-62 (in Chinese with English abstract)
[30] Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y and Wingate MTD. 2003a. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma? Precambrian Research, 122(1-4): 45-83
[31] Li XP, Zheng YF, Wu YB, Chen F, Gong B and Li YL. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443-470
[32] Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109
[33] Liou JG, Banno S and Ernst WG. 1995. Ultrahigh-pressure metamorphism and tectonics. Island Arc, 4(4): 233-239
[34] Liou JG, Zhang RY, Ernst WG, Rumble D and Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Review in Mineralogy and Geochemistry, 37(1): 33-96
[35] Liou JG, Tsujimori T, Chu W, Zhang RY and Wooden JL. 2006. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineralogy and Petrology, 88(1-2): 207-226
[36] Liu FL, Xu ZQ, Yang JS, Maruyama S, Liou JG, Katayama I and Masago H. 2001. Mineral inclusions of zircon and UHP metamorphic evidence from paragneiss and orthogneiss of pre-pilot drillhole CCSD-PP2 in north Jiangsu Province, China. Chinese Science Bulletin, 46(12): 1038-1042
[37] Liu FL, Xu ZQ and Xue HM. 2004. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos, 78(4): 411-429
[38] Liu FL, Robinson PT, Gerdes A, Xue HM, Liu PH and Liou JG. 2010a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the North Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 117(1-4): 247-268
[39] Liu FL, Shi JR, Liu JH, Ye JG, Liu PH and Wang F. 2011. Protolith and ultranhigh-pressure (UHP) metamorphic ages of ultramafic rocks in Weihai area, North Sulu UHP terrane. Acta Petrologica Sinica, 27(4): 1075-1084 (in Chinese with English abstract)
[40] Liu XC, Jahn BM, Dong SW, Lou YX and Cui JJ. 2008. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism. Lithos, 105(3-4): 301-318
[41] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
[42] Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley
[43] Peng M, Wu YB, Gao S, Zhang HF, Wang J, Liu XC, Gong HJ, Zhou L, Hu ZC, Liu YS and Yuan HL. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications. Gondwana Research, 22(1): 140-151
[44] Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22
[45] Rogers JJW and Santosh M. 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research, 15(3-4): 373-380
[46] Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P and Ohnenstetter D (eds.). Cathodoluminescence in Geosciences. Berlin: Springer, 373-400
[47] Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138
[48] Rubatto D and Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241(1-2): 38-61
[49] Saleeby J, Ducea M and Clemens-Knott D. 2003. Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics, 22(6): doi: 10.1029/2002TC001374
[50] Santosh M and Kusky T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova, 22(1): 35-42
[51] Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106
[52] Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K and Gebauer D. 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134(2-3): 186-201
[53] Sengupta P, Sen J, Dasgupta S, Raith M, Bhui UK and Ehl J. 1999. Ultrahigh-temperature metamorphism of metapelitic granulites from Kondapalle, Eastern Chats Belt: Implications for the Indo-Antarctic Correlation. Journal of Petrology, 40(7): 1065-1087
[54] Tang J, Zheng YF, Wu YB and Gong B. 2005. A study of zircon U-Pb dating and oxygen isotopes in UHP granitic gneiss from the Weihai region in Northeast Sulu. Earth Science, 30(6): 692-706 (in Chinese with English abstract)
[55] Tang J, Zheng YF, Wu YB, Gong B, Zha XP and Liu XM. 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research, 161(3-4): 389-418
[56] Underwood MB, Shelton KL, McLaughlin RJ, Laughland MM and Solomon RM. 1999. Middle Miocene paleotemperature anomalies within the Franciscan Complex of Northern California: Thermo-tectonic responses near the Mendocino triple junction. GSA Bulletin, 111(10): 1448-1467
[57] Wallis S, Enami M and Banno S. 1999. The Sulu UHP terrane: A review of the petrology and structural Geology. International Geology Review, 41(10): 906-920
[58] Whitehouse MJ and Platt JP. 2003. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145(1): 61-74
[59] Wu YB, Chen DG, Xia QK, Deloule E and Cheng H. 2002. SIMS U-Pb dating of zircons in granulite of Huangtuling from northern Dabieshan. Acta Petrologica Sinica, 18(3): 378-382 (in Chinese with English abstract)
[60] Wu YB, Zheng YF, Zhao ZF, Gong B, Liu X and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761
[61] Wu YB, Zheng YF, Gao S, Jiao WF and Liu YS. 2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322
[62] Wu YB, Gao S, Gong HJ, Xiang H, Jiao WF, Yang SH, Liu YS and Yuan HL. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27(6): 461-477
[63] Wu YB, Gao S, Zhang HF, Zheng JP, Liu XC, Wang H, Gong HJ, Zhou L and Yuan HL. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research, 200: 26-37
[64] Xu ST, Su W, Liu YC, Jiang LL, Ji SY, Okay AI and şengör AMC. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80-82
[65] Xu ZQ, Zeng LS, Liu FL,Yang JS and Zhang ZM. 2006. Polyphase subduction and exhumation of the Sulu high pressure-ultrahigh pressure metamorphic terrane. Geological Society of America, Special Paper, 403: 93-113
[66] Xu ZQ, Qi XX, Yang JS, Zeng LS, Liu FL, Liang FH, Tang ZM and Cai ZH. 2006. Deep subduction erosion model for continent-continent collision of the Sulu HP-UHP metamorphic terrain. Earth Science, 31(4): 427-436 (in Chinese with English abstract)
[67] Yang JS, Wooden JL, Wu CL, Liu FL, Xu ZQ, Shi RD, Katayama I, Liou JG and Maruyama S. 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, East China. Journal of Metamorphic Geology, 21(6): 551-560
[68] Ye K, Yao YP, Katayama I, Cong BL, Wang QC and Maruyama S. 2000. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52(1-4): 157-164
[69] Yin CQ, Lin SF, Davis DW, Zhao GC, Xiao WJ, Li LM and He YH. 2013. 2.1-1.85Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182: 200-210
[70] Zandt G, Gilbert H, Owens TJ, Ducea M, Saleeby J and Jones GH. 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature, 431(7004): 41-46
[71] Zhai MG, Cong BC, Guo JH, Liu WJ, Li YG and Wang QC. 2000. Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication. Lithos, 52(1-4): 23-33
[72] Zhang RY, Liou JG, Tsujimori T and Maruyama S. 2006b. Non-ultrahigh-pressure unit bordering the Sulu ultrahigh-pressure terrane, eastern China: Transformation of Proterozoic granulite and gabbro to garnet amphibolite. Geological Society of America Special Papers, 403: 169-206
[73] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006a. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288
[74] Zhang ZM, Shen K, Wang JL and Dong HL. 2009. Petrological and geochronological constraints on the formation, subduction and exhumation of the continental crust in the southern Sulu orogen, eastern-central China. Tectonophysics, 475(2): 291-307
[75] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010a. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733
[76] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010b. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-oceanic ridge subduction? Gondwana Research, 17(4): 615-631
[77] Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep Gangdese arc, South Tibet: Paleocene plutonism and Granulite-Facies metamorphism. Journal of Petrology, 54(12): 2547-2580
[78] Zhao GC, He Y and Sun M. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181
[79] Zhao GC, Li SZ, Sun M and Wilde SA. 2011. Assembly, accretion and breakup of the Palaeo-mesoproterozoic Columbia Supercontinent: Record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356
[80] Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM and Wu FY. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chemical Geology, 231(1-2): 135-158
[81] 胡娟, 刘晓春, 曲玮, 崔建军. 2010. 桐柏造山带古元古代变质基性岩的锆石U-Pb年龄及其地质意义. 地球学报, 33(3): 305-315
[82] 孔庆波. 2009. 苏鲁地体古元古代花岗质片麻岩锆石的U-Pb定年、REE和Lu-Hf同位素特征. 地质通报, 28(1): 51-62
[83] 刘福来, 许志琴, 杨经绥, Maruyama S, Liou JG, Katayama I, Masago H. 2001.中国苏北预先导孔CCSD-PP2片麻岩中锆石的矿物包裹体及其超高压变质作用的证据. 科学通报, 46(3): 241-246
[84] 刘福来, 施建荣, 刘建辉, 叶建国, 刘平华, 王舫. 2011. 北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代. 岩石学报, 27(4): 1075-1084
[85] 唐俊, 郑永飞, 吴元保, 龚冰. 2005. 威海地区超高压变质花岗片麻岩锆石U-Pb定年和氧同位素研究. 地球科学, 30(6): 692-706
[86] 吴元保, 陈道公, 夏群科, Deloule E, 程昊. 2002. 北大别黄土岭麻粒岩锆石U-Pb离子探针定年. 岩石学报, 18(3): 378-382
[87] 许志琴, 戚学祥, 杨经绥, 曾令森, 刘福来, 梁风华, 唐哲民, 蔡志慧. 2006. 苏鲁高压-超高压变质地体的陆-陆碰撞深俯冲剥蚀模式. 地球科学, 31(4): 427-436