2. 中国地质大学地球科学学院, 武汉 430074;
3. 中国地质大学地球科学与资源学院, 北京 100083
2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
3. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
1 引言
研究表明,造山带的形成和演化是比较复杂的过程,可能包括了多期次的挤压和伸展作用,往往保存了与地壳形成和演化有关的重要构造事件的信息(Aitken and Betts, 2009)。造山带核部的高级变质岩记录了造山带的形成过程(Basu Sarbadhikari and Bhowmik, 2008),可为揭示造山带的演化历史提供重要证据。但是,由于这些高级变质岩常常经历了多期次变质、深熔以及流体活动,导致我们难以准确限定各期热事件的年龄。锆石是高级变质岩中常见的副矿物,具有非常强的稳定性和高的U,Th,Pb和稀土元素封闭温度,因此是限定多期变质与部分熔融作用时限的首选矿物(Cherniak and Watson, 2000; Möller et al., 2002)。
秦岭-桐柏-大别-苏鲁造山带是世界上最著名的高压-超高压变质带,经历了长期、多阶段的大洋俯冲、岛弧增生和陆-陆碰撞过程(Wu and Zheng, 2013)。其中东部的大别-苏鲁造山带以出露大量的三叠纪超高压变质岩为特征,而西部的北秦岭造山带则记录了早古生代的多期高级变质作用(Li et al., 1993,2000; 张国伟等,1996; Meng and Zhang, 1999; Ratschbacher et al., 2003; Zheng et al., 2003,2006; Liu et al., 2004,2006; Wu et al., 2006,2009; Wang et al., 2011a; Cheng et al., 2012; Wu and Zheng, 2013)。秦岭群是北秦岭造山带的主体,且保存了复杂的变质变形记录。在秦岭群北缘的官坡-双槐树一带出露有超高压榴辉岩(Wang et al., 2011a; Cheng et al., 2012),而位于秦岭群南侧的松树沟地区产出有高压麻粒岩(张建新等,2011)。大量研究表明秦岭群南北两侧的高压、超高压变质岩变质时代均为约500Ma,退变质年龄为480~470Ma(Yang et al., 2003,2005; Cheng et al., 2011,2012; 张建新等,2011; Wang et al., 2013a)。同时在桐柏以及双龙地区,还发现有约430Ma的中压高温-超高温麻粒岩(向华等,2009; Liu et al., 2011; Wang et al., 2011b; Bader et al., 2012; Xiang et al., 2012)。在秦岭群内部,广泛分布的是混合岩化片麻岩、片岩和斜长角闪岩。然而,由于缺乏详细的岩石学和年代学约束,对这些岩石是否普遍经历了500Ma左右的(超)高压变质,430Ma左右的中、低压变质,以及这两期变质作用的关系等都还存在争议,严重制约了对于秦岭群的变质演化历史和构造背景的认识。
本文对秦岭群中混合岩及相关的变质岩进行了详细的野外观察,并对混合岩中的浅色脉体、片麻岩和石榴子石黑云母片岩进行了详细的LA-ICPMS锆石U-Pb年代学研究。其结果不仅揭示了秦岭群中混合岩化片麻岩、石榴子石黑云母片岩的原岩年龄、多期变质及深熔时代,而且对了解混合岩与超高压榴辉岩之间的关系以及北秦岭造山带的构造演化亦有重要指示意义。
2 地质背景
秦岭-桐柏-大别-苏鲁造山带被一系列断层及沉积盆地分割为不同的地体(图 1)。不同地体内部又包括有可以相互对比的地质单元(Wu and Zheng, 2013)。西部的秦岭造山带被商丹断裂带分割为南秦岭和北秦岭。南秦岭有零星出露的晚太古代-早古元古代基底,如形成于约2.7Ga的鱼洞子群基底(张寿广等,2005; 张欣等,2010)和约2.5Ga的陡岭群基底(胡娟等,2013);由元古代的裂谷火山沉积系组成的武当群和耀岭河群(李怀坤等,2004; Ling et al., 2008),以及晚元古代-晚古生代的浅变质沉积盖层(Meng and Zhang, 2000)。构造属性上,南秦岭与扬子板块有着明显的亲和性(张国伟等,2001),并广泛发育有印支期花岗岩类(Sun et al., 2002; Jiang et al., 2010)。而北秦岭至今并未发现出露于地表的太古代基底,主要由三个被断层分割的变质单元组成。从北向南,这三个变质单元依次是宽坪群、二郎坪群和秦岭群(图 1)。
![]() | 图 1 北秦岭地质简图Fig. 1 Simplified geological map of North Qinling |
宽坪群主要由一套绿片岩相-角闪岩相变质的石英岩、大理岩和二云母片岩以及原岩为基性火山岩的绿片岩和斜长角闪岩组成。斜长角闪岩中的角闪石给出了434±2Ma的Ar-Ar坪年龄,指示了早古生代的区域变质作用(Zhai et al., 1998)。早期研究认为宽坪群中的变沉积火山岩组合形成于华北板块南缘的被动大陆边缘(Xue et al., 1996)或者是晚元古代的增生楔(Ratschbacher et al., 2003)。而最新的资料显示,宽坪群与秦岭群相似的构造属性,并于440Ma左右增生到华北板块南缘(Liu et al., 2011; Wu and Zheng, 2013)。
二郎坪群是一套低、中级变质为主的变火山岩和变沉积岩组合。原岩主要为基性到中性火山岩和深成岩脉和少量的超基性岩,细粒碎屑岩以及夹置其中的浊积岩和含寒武纪-志留纪化石的燧石条带(Ratschbacher et al., 2003; Wu and Zheng, 2013)。本群中的火山岩具有弧型或者E-MORB 型的微量元素特征,指示其形成于岛弧(Lerch et al., 1996; Xue et al., 1996)或者弧后盆地环境(Kröner et al., 1993; Sun et al., 1996; Dong et al., 2011b)。二郎坪群经历了绿片岩相到角闪岩相的变质作用,锆石U-Pb原位分析获得了440~394Ma的变质年龄(Liu et al., 2011)。
秦岭群为一套中深变质杂岩系,变质程度普遍达角闪岩相,局部达麻粒岩相,伴随强烈深熔混合岩化,多期次变形和岩浆侵入,以深层塑性流变和韧性剪切带为主要变形特征(游振东等,1991; 张国伟等,2001)。秦岭群主要由黑云斜长片麻岩,角闪岩,钙硅酸盐岩,石榴矽线片麻岩,麻粒岩以及大理岩构成(游振东等,1991)。近年还在秦岭群北缘发现有一套高压-超高压岩片,并报道有柯石英假象和锆石中含金刚石包裹体(Hu et al., 1995; Yang et al., 2003)。最近,在退变质榴辉岩的锆石中也发现了金刚石包裹体,说明这些榴辉岩及其围岩经历了超高压变质作用(Wang et al., 2014)。大量的同位素年代学研究表明,榴辉岩的原岩年龄为800Ma左右,峰期变质年龄在485~500Ma之间,480Ma已经开始折返,并在470Ma左右折返到了地壳浅部(Wang et al., 2011a; Cheng et al., 2012; Bader,2013a)。而在秦岭群南部松树沟地区也出露有高压麻粒岩及其退变的榴闪岩,其变质时代与北侧的榴辉岩相似。此外,秦岭群还报道有440~410Ma的中压麻粒岩(张建新等,2011)。侵入秦岭群中的花岗岩主要形成于490~400Ma(Wang et al., 2009)。
本文所研究的样品采自双龙镇以南的秦岭群(图 1,GPS:33°26′34″N,111°31′48″E)。该地区主要岩性为片麻岩,含榴片麻岩,常含有斜长角闪岩、含榴斜长角闪岩、石榴子石黑云母片岩等透镜体(图 2a)。岩石混合岩化现象明显,浅色脉体为花岗质脉体及含榴花岗质脉体,多呈侵染状或条带状分布(图 2b)。本文所研究的样品11QL19为含榴黑云斜长片麻岩,为混合岩中的中色体,呈灰色,片麻状构造,细粒鳞片花岗变晶结构,主要矿物为石榴子石(5%)、黑云母(10%)、斜长石(45%)、石英(35%)、钾长石(5%)。石榴子石多呈自形-半自形粒状,包裹体少,或无明显包裹体(图 3a)。黑云母细粒片状,褐色,定向排列构成面理。斜长石呈他形不规则状,边缘常与蠕虫状石英交生(图 3b)。所研究的暗色体(11QL17)为石榴子石黑云母片岩,岩石主要由石榴子石(35%)、黑云母(30%)、斜长石(25%)、石英(10%)等矿物组成。石榴子石变斑晶呈半自形粒状,内部包裹有较多的黑云母、石英、斜长石及钛铁矿包裹体(图 3c)。黑云母定向排列,并构成面理。所研究的淡色花岗岩脉体11QL18,主要由石英、斜长和钾长石组成(图 3d)。
![]() | 图 2 双龙地区混合岩及相关岩石野外照片Fig. 2 Outcrop photographs for the migmatite in Shuanglong area |
![]() | 图 3 双龙地区秦岭群中混合岩显微结构照片(a)-片麻岩11QL19中石榴子石+黑云母+斜长石+石英矿物组合;(b)-片麻岩11QL19中长石边缘的蠕英结构;(c)-石榴子石黑云母片岩11QL17的显微照片;(d)-淡色脉体11QL18的显微照片Fig. 3 Microphotographs of the migmatite from Qinling Group in Shuanglong area |
3 分析方法
锆石样品利用标准重矿物分离技术分选,然后在双目镜下挑选出不同晶形、不同颜色、无明显包裹体和透明度好的锆石,在玻璃板上用环氧树脂固定,并抛光至锆石中心。在原位分析之前,通过双目镜和阴极发光(CL)图像详细研究锆石的晶体形貌和内部结构特征,以选择同位素分析的最佳点。锆石阴极发光(CL)照相在西北大学大陆动力学国家重点实验室的扫描电镜+Gatan阴极发光MonoCL3+上完成。
锆石微量元素含量和U-Pb同位素定年在国立台湾大学地质系利用LA-ICP-MS同时分析完成。所使用的仪器为NewWave UP213型激光剥蚀系统和Agilent 7500s四极杆ICPMS。激光斑束为30μm,频率为4Hz。每个点的分析数据包括大约60s的空白信号和70s的样品信号。详细的仪器操作条件和数据处理方法同Chiu et al.(2009)类似。数据处理采用GLITTER(ver 4.4)程序。U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正,并以91500和PLS锆石标样为参考标样。元素浓度计算采用NIST610作外标,29Si作内标。所有锆石样品的U-Pb年龄谐和图绘制和年 龄权重平均计算均采用Isoplot/Ex_ver3(Ludwig,2003)完成。
4 结果 4.1 锆石阴极发光(CL)特征
片麻岩(11QL19)中的锆石呈无色-浅黄色,透明,柱状自形晶,普遍含有少量包裹体,粒径约100~200μm。CL图像显示所有锆石均具有明显的振荡环带,应为岩浆锆石。部分锆石颗粒具有发光较弱,无分带或弱分带的增生边(图 4a)。
![]() | 图 4 锆石阴极发光(CL)和BSE图像(a)-11QL19中锆石CL图像;(b)-11QL17 中锆石CL图像;(c)-11QL18中锆石BSE图像Fig. 4 Zircon CL images and BSE images |
石榴子石黑云母片岩(11QL17)中锆石呈短柱状-粒状,半自形-他形,粒径50~100μm,无色透明-淡黄色。CL图像中显示多数颗粒具有清晰的核幔边结构(图 4b)。核部为不规则状,阴极发光较弱,具宽缓的环带,与基性岩中的岩浆锆石特征相符。幔部CL发光强,呈白色,无分带或弱分带,属典型的变质锆石。多数锆石颗粒边缘还发育有一层CL发光较弱的薄的增生边,无分带。
淡色脉体(11QL18)中锆石呈棕色、透明,短柱状-粒状半自形,粒径较大,可达500μm,包裹体少。所有锆石CL发光性均较弱,近黑色,在BSE图像中未见明显分带(图 4c)。
4.2 锆石U-Pb年龄及微量元素
对片麻岩11QL19样品中18颗锆石进行了22个点的LA-ICPMS分析,结果见表 1和表 2、图 5a。其中岩浆核的分析点显示出富集HREE((Lu/Gd)N=14.0~32.6)、明显Eu负异常(Eu/Eu*=0.06~0.18)和明显Ce正异常特征。Th、U含量分别为27.3×10-6~320×10-6和77.6×10-6~1351×10-6,Th/U比值较高,除点3号点为0.07外,其余点在0.15~0.76之间。这些分析点均获得了谐和或近谐和年龄,206Pb/238U年龄在751±15Ma~1002±20Ma之间,大多数集中在900~960Ma之间。所有数据构成了一条很好的不一致线,上交点年龄为941±63Ma,下交点年龄为470±145Ma(2σ,MSWD=0.25)。位于谐和线附近的13个较集中的点206Pb/238U年龄加权平均值为941±11Ma(2σ,MSWD=0.59),与上交点年龄一致,且误差较小,应代表原岩年龄的最佳估计值。大多数锆石的变质边太窄,无法分析,但一个变质边分析点(6号点)具有平坦的HREE分配模式((Lu/Gd)N=0.99),明显的Eu负异常以及轻稀土含量相对较高,高U(2186×10-6)、低Th(38.1×10-6)含量,Th/U比值为0.02。该分析点获得了498±11Ma的谐和年龄,与锆石岩浆核给出的下交点年龄在误差范围内一致,很可能代表片麻岩的变质时代。
| 表 1 秦岭群混合岩中锆石LA-ICPMS 定年结果Table 1 Zircon U-Pb isotopic data were obtained by LA-ICPMS for migmatite from the Qinling Group |
| 表 2 秦岭群混合岩中锆石微量元素LA-ICPMS分析结果(×10-6)Table 2 Zircon trace elements data were obtained by LA-ICPMS for migmatite from the Qinling Group(×10-6) |
![]() | 图 5 秦岭群混合岩中锆石U-Pb谐和图及球粒陨石标准化REE分配图(标准化值据Sun and McDonough, 1989)Fig. 5 The zircon U-Pb concordia diagram and chondrite-normalized REE pattern for the migmatites in the Qinling Group(normalization values after Sun and McDonough, 1989) |
石榴子石黑云母片岩样品11QL17中25个点的LA-ICPMS分析结果见表 1、表 2和图 5c。其锆石岩浆核分析点显示Th、U含量较高,分别为79.7×10-6~902×10-6和478×10-6~1614×10-6,Th/U比值较高(0.17~0.56),富集HREE((Lu/Gd)N=6.3~43.4,多数集中在20~44之间),明显的Eu负异常(Eu/Eu*=0.29~0.48)和Ce正异常(图 5d)。位于岩浆锆石核部的分析点均获得谐和或近谐和的年龄为,206Pb/238U年龄分布在540±14Ma~783±16Ma,12个最老206Pb/238U年龄加权平均值为756±9.9Ma(2σ,MSWD=1.07),被解释为原岩年龄。6个年轻的分析点年龄为540±14Ma~675±15Ma,表明它们在后期变质过程中经历了不同程度放射成因Pb的丢失。而6个锆石变质边分析点则具有较低的Th含量(1.58×10-6~111×10-6)和中等的U含量(213×10-6~2941×10-6),以及非常低的Th/U比值(0.01~0.09)。除点7和15号分析点明显富集HREE外,其余点具较为平坦的稀土分配模式((Lu/Gd)N=1.57~3.55),较弱的Eu负异常(Eu/Eu*=0.22~0.99)。6个位于变质边分析点中的5个点给出了在误差范围内近一致的206Pb/238U年龄(463±10Ma~500±13Ma),加权平均值为484±9.6Ma(MSWD=0.88),应代表变质年龄。变质边中的2号分析点给出明显年轻的年龄424±9.1Ma,很可能代表后期变质作用改造的年龄。
淡色花岗岩脉体11QL18中的锆石显示较为一致的微量元素特征(图 5f)。所有锆石均具有较低的Th含量(17.2×10-6~270×10-6)和非常高的U含量(1197×10-6~8126×10-6),以及低的Th/U比值(0.02~0.03)。在球粒陨石标准化图中,它们具平坦的HREE分配模式((Lu/Gd)N=0.62~2.75),明显Eu负异常(Eu/Eu*=0.02~0.24)。22个点的U-Pb年龄分析结果见图 5e。除点10 号分析点的U含量高,导致蜕晶化严重,具有明显的Pb丢失外,其余21个点显示误差范围内一致的谐和年龄,206Pb/238U年龄为404±9.5Ma~438±9.1Ma,加权平均为422±4.0Ma(2σ,MSWD=0.77),代表了淡色脉体的结晶年龄。
5 讨论 5.1 原岩及形成时代
根据锆石TIMS 年龄、全岩Sm-Nd同位素等时线年龄和其它测年结果,较早期的研究认为秦岭群形成时代为古元古代(~2.0Ga),并遭受后期多次变质作用叠加改造(游振东等,1991)。近年来,通过大量SIMS、LA-ICPMS等锆石原位微区分析方法证实秦岭群中广泛出露的正片麻岩的原岩年龄在845~971Ma之间(陆松年等,2003; 时毓等,2009; Liu et al., 2014)。本文研究的片麻岩中锆石核部具明显的振荡环带、高的Th/U比并富集HREE,为典型的岩浆锆石,所获得的206Pb/238U加权平均年龄为941±11Ma(2σ,MSWD=0.59),应代表该片麻岩的原岩形成年龄。碎屑锆石U-Pb年代学研究表明,秦岭群以发育新元古代960Ma主年龄峰为特征(Shi et al., 2013),明显区别于华北陆块。
锆石U-Pb年代学结果显示秦岭群中的变基性岩原岩年龄主要在800~700Ma之间,如秦岭群北侧的榴辉岩原岩年龄约800Ma(Yang et al., 2003; Wang et al., 2011a,2013a);南侧松树沟榴闪岩原岩年龄为763~730Ma(李晔等,2012; 钱加慧等,2013)。本文所研究的秦岭群片麻岩中变基性岩透镜体中的岩浆锆石核获得了756±9.9Ma(2σ,MSWD=1.07)的206Pb/238U加权平均值年龄,代表了其原岩的形成年龄。这些变基性岩透镜体与混合岩化片麻岩、片岩等的原岩年龄明显不一致,说明这些基性岩并不是混合岩化片麻岩的残留体,而很可能是侵入到片麻岩原岩中的基性岩脉。岩石地球化学结果显示,秦岭群内高压-超高压榴辉岩原岩具有大陆拉斑玄武岩的特征,来自相对亏损的地幔源区(Bader et al., 2013b; Wang et al., 2013a)。由于这些榴辉岩的原岩与二郎坪群玄武岩明显不同,而与华南陆块北缘同期大陆裂谷玄武岩相类似,指示榴辉岩原岩形成于新元古代大陆裂谷环境。因此,秦岭群可能是Rodinia超大陆裂解过程中从华南陆块或相似构造属性陆块分离,并向北漂移到华北克拉通南缘的微陆块(Bader et al., 2013b; Wang et al., 2013a)。
5.2 晚寒武纪(超)高压变质作用
已有的岩石学研究表明,北秦岭榴辉岩的矿物组合为石榴子石+绿辉石+绿帘石+角闪石+石英+金红石±多硅白云母,矿物对温压计和相平衡模拟结果获得的温压条件为680~770℃,2.3~2.7GPa之间(张建新等, 2009,2011; Cheng et al., 2011)。但是,Yang et al.(2003)在北秦岭官坡地区榴辉岩及其围岩的锆石中发现了金刚石裹体。最近 Wang et al.(2014)在退变质榴辉岩的锆石中也发现了金刚石包裹体。这表明北秦岭榴辉岩经历了超高压变质作用,峰期压力在金刚石稳定域之上。不同的学者对榴辉岩及围岩进行了大量的年代学研究。早期,通过矿物Sm-Nd等时线获得的榴辉岩变质年龄为400±16Ma(胡能高等,1996)。由于该等时线中包含退变质矿物角闪石,且石榴子石Sm/Nd比值很低,所以这一年龄的可靠性备受质疑。Yang et al.(2003,2005)对北秦岭官坡地区含金刚石副片麻岩和长英质片麻岩进行了锆石SHRIMP 法U-Pb定年,分别获得了511±35Ma和507±37Ma的变质年龄,但是该年龄结果误差较大。最近,Wang et al.(2011a)与Cheng et al.(2011)对秦岭榴辉岩中含石榴子石、绿辉石和多硅白云母包裹体的变质锆石区域进行了原位U-Pb同位素和微量元素分析,将榴辉岩变质时代限定在485~507Ma。Cheng et al.(2011)对秦岭榴辉岩进行了石榴子石+全岩Lu-Hf等时线定年,结果为516.4±5.8Ma和494.3±2.7Ma,分别解释为进变和峰期质年龄。对清油河地区退变质榴辉岩的研究获得了490±4Ma的峰期变质和473±4Ma的角闪岩相退变质年龄信息(Cheng et al., 2011)。
在秦岭群南侧的松树沟地区出露有高压麻粒岩,其峰期变质条件为850~925℃和1.45~1.80GPa,经过早期近等温降压退变质至680~820℃和0.6~1.0GPa,并退变至绿片岩相条件(张建新等, 2009,2011)。松树沟地区的高压变质岩具有变化较大的变质年龄,不同类型岩石中获得的LA-ICPMS/SHRIMP锆石U-Pb年龄信息也略有差别。高压酸性麻粒岩的年龄为506±3Ma(张建新等,2011);高压基性麻粒岩的年龄在485±3.3Ma到512±9.2Ma之间(Chen et al., 2004; 张建新等,2011);石榴辉石岩获得了500±6Ma和501±10Ma的定年结果(苏犁等,2004);榴闪岩记录了484±4Ma到518±19Ma的变质年龄(苏犁等,2004; Liu et al., 2009; 李晔等,2012)。这些结果表明松树沟高压麻粒岩相变质年龄与秦岭榴辉岩变质年龄一致。
本文对双龙镇南部秦岭群中的片麻岩锆石的定年结果表明,锆石核部分析点构成了一条很好的不一致性,上交点年龄为941±63Ma,下交点年龄为470±145Ma(2σ,MSWD=0.25)。一个锆石变质边分析点获得了498±11Ma的谐和年龄,与上述下交点年龄在误差范围内一致。石榴子石黑云母片岩中变质锆石区域获得的206Pb/238U年龄加权平均值为484±9.6Ma。这些年龄在误差范围内与秦岭北缘的榴辉岩以及松树沟的高压麻粒岩变质年龄一致。石榴子石黑云母片岩中部分变质锆石显示较平坦的HREE分配模式,无明显的Eu异常,说明这些锆石形成于存在大量石榴子石而缺乏斜长石的环境中。与秦岭群北缘的榴辉岩中变质锆石以及松树沟高压麻粒岩中的变质锆石特征一致。这些结果表明秦岭群普遍遭受了480~500Ma之间的高压-超高压变质作用。
前人研究认为,北秦岭早古生代高压-超高压变质岩形成于二郎坪弧后盆地向秦岭岛弧的俯冲过程(Dong et al., 2011b)。但是锆石U-Pb年代学研究揭示,超高压片岩和片麻岩的原岩大多形成于中-新元古代,而榴辉岩具有新元代的原岩年龄(~800Ma)(Wang et al., 2013a)。地球化学特征显示,北秦岭榴辉岩明显区别于二郎坪群玄武岩,而与华南陆块和南秦岭造山带内同期大陆玄武岩类似(Wang et al., 2013a),揭示北秦岭超高压变质岩具有陆壳岩石属性。其大地构造属性总体上与华南陆块北缘岩石相似,但是明显不同于华北克拉通(Wu and Zheng, 2013)。因此,北秦岭高压-超高压变质带的形成应代表了一次大陆深俯冲事件,俯冲的是秦岭微陆块而不是华北克拉通(Wu and Zheng, 2013; Wang et al., 2013a)
5.3 志留纪中、低压变质与深熔作用
秦岭群发育区域性的中低压麻粒岩-角闪岩相变质作用。在桐柏地区,变质程度最高,经历了高温-超高温变质和深熔作用。最新的研究表明桐柏麻粒岩峰期变质温压条件在850~920℃和8~10kbar,并经历了一个逆时针的P-T-t演化轨迹(Liu et al., 2011; Bader et al., 2012; Xiang et al., 2012)。锆石U-Pb定年表明桐柏麻粒岩峰期年龄在440~426Ma之间,峰值在430Ma左右,退变质年龄在420~410Ma(向华等,2009; Wang et al., 2011a; Liu et al., 2011; Xiang et al., 2012)。西峡地区秦岭群中也出露有角闪二辉麻粒岩,锆石U-Pb定年为440±2Ma和426±1Ma,分别代表了中低压麻粒岩相的变质时代和区域角闪岩相的变质时代(张建新等,2011)。
在秦岭地区,秦岭群的主体为混合岩化片麻岩,但对其部分熔融的时代一直缺乏有效约束。Faure et al.(2008)对混合岩化片麻岩和浅色体样品进行了锆石LA-ICPMS分析,给出了402±6Ma(MSWD=4.0)的加权平均年龄以及414±20Ma(MSWD=1.3)的下交点年龄。这些年龄指示混合岩化作用发生在晚志留世到早泥盆世。Dong et al.(2011a)在混合岩化片麻岩样品中获得了910±20Ma,517±14Ma和455±4.5Ma的年龄以及在花岗质浅色体中获得了455±4.6Ma的年龄,并将517~455Ma的年龄解释成混合岩化作用的时间。然而517±14Ma的年龄具有较高的MSWD值(14),暗示这一年的地质意义值得商榷。最近Bader et al.(2013a)在秦岭群变质岩样品中获得了515~360Ma的U-Pb年龄,这些样品包括片麻岩,浅色体以及角闪岩。他们将360Ma的年龄解释为后期再升温的年龄,而从未变形的花岗质伟晶岩中获得的约400Ma的年龄被解释为混合岩化作用结束的时间。进一步分析发现Bader et al.(2013a)所获得的变质年龄具有双峰式的特点,峰值分别为478Ma和433Ma。秦岭群在早古生代时经历了两期变质事件,分别为寒武纪晚期到奥陶纪早期的高压-超高压变质事件以及中奥陶世到志留纪的高温变质事件。超高压事件的进变质,峰期变质以及退变质时间分别为515Ma、490Ma和480Ma(Cheng et al., 2011,2012; Wang et al., 2011a,2014),这与Bader et al.(2013a)所获得的第一组年龄相对应,指示这第一组年龄应该对应于超高压变质时间,而不是混合岩化作用的时间。Liu et al.(2014)对混合岩化片麻岩和浅色体进行了锆石U-Pb定年,获得了变质增生锆石和新生锆石的年龄为455~420Ma,主峰在435Ma,并解释为北秦岭混合岩化年龄。
在本研究中,所研究的浅色脉体中的锆石均为新生锆石,粒径较大(300~500μm),CL发光性弱,无明显分带。所有锆石均具有低的Th/U比值(0.02~0.03),平坦的重稀土分配模式((Lu/Gd)N=0.62~2.75),强Eu负异常(Eu/Eu*=0.02~0.24)。这些特征指示锆石是深熔作用过程中从富水熔体中结晶形成的锆石(Liati and Gebauer, 1999; Wu et al., 2007),且在原岩部分熔融过程中存在大量石榴子石和斜长石残余。因此所获得的206Pb/238U加权平均年龄422±4.0Ma(2σ,MSWD=0.77)是部分熔融形成的熔体结晶的年龄。这一解释也与该年龄结果略晚于麻粒岩相峰期变质年龄~430Ma,而与角闪岩相退变质年龄(~420Ma)一致的事实相符。综合已有的结果表明,秦岭群在440~430Ma经历中压高温麻粒岩相变质与深熔作用,并在420Ma左右经历了近等压降温,熔体结晶形成浅色脉体。
在秦岭群,以及整个北秦岭造山带中广泛发育有450~400Ma的岛弧岩浆作用,包括辉长岩、I和S型花岗岩等(Wang et al., 2009,2013b)。这些岩浆岩部分具有正的锆石εHf(t)和全岩εNd(t)值、低的全岩(87Sr/86Sr)i值,指示这一时期伴有新生地壳的生长和再造。秦岭群出露近同时的高温麻粒岩、混合岩以及岛弧岩浆岩,这些地质特征与新特提斯洋俯冲过程中形成的冈底斯岩浆弧非常相似(Zhang et al., 2013),显示出大陆岩浆弧根部的构造特征。因此秦岭群中志留纪中低压变质、深熔以及岩浆作用可能形成于商丹洋壳北向俯冲所导致的增生造山作用过程中。这些高温麻粒岩、混合岩、深成侵入岩等代表了志留纪秦岭岩浆弧的中、下地壳组成。
6 结论
本文对双龙地区秦岭群中混合岩化的片麻岩、石榴子石黑云母片岩以及淡色花岗岩脉体进行了LA-ICP-MS锆石U-Pb年代学研究。结合已有的资料表明秦岭群中正片麻岩原岩年龄为941±11Ma,石榴子石黑云母片岩的原岩年龄为756±9.9Ma(2σ,MSWD=1.07)。秦岭群普遍记录了500~480Ma左右的高压-超高压变质作用,并叠加了440~410Ma的中压-高温变质和深熔作用。
秦岭群可能是Rodinia超大陆裂解过程中从华南陆块或相似构造属性陆块分离并向北漂移到华北克拉通南缘的微陆块,在500~480Ma时与华北克拉通碰撞和深俯冲导致高压-超高压变质,在志留纪商丹洋北向俯冲到秦岭群之下所导致的增生造山作用使秦岭微陆块发生了中压-高温变质、深熔以及岩浆作用。
致谢 谢瑜、祁冬梅参加了野外地质工作,在此表示感谢。感谢许志琴院士的指导,吴元保教授的建设性修改意见。
| [1] | Aitken A and Betts PG. 2009. Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia. Tectonophysics, 476(3-4): 418-435 |
| [2] | Bader T, Franz L, de Capitani C, Mullis J and Zhang L. 2012. The granulite facies metamorphism in the Tongbai area (east-central China): New insights from equilibrium-assemblage calculations and fluid-inclusion studies. EGU General Assembly Conference Abstracts, 3912 |
| [3] | Bader T, Franz L, Ratschbacher L, Capitani C, Webb AAG, Yang Z, Pfnder JA, Hofmann M and Linnemann U. 2013a. The Heart of China revisited, II. Early Paleozoic (ultra) high-pressure and (ultra) high-temperature metamorphic Qinling orogenic collage. Tectonics, 32(3): 661-687 |
| [4] | Bader T, Ratschbacher L, Franz L, Yang Z, Hofmann M, Linnemann U and Yuan H. 2013b. The Heart of China revisited, I. Proterozoic tectonics of the Qin Mountains in the core of supercontinent Rodinia. Tectonics, 32(4): 922-947 |
| [5] | Basu Sarbadhikari A and Bhowmik SK. 2008. Constraining the metamorphic evolution of a cryptic hot Mesoproterozoic orogen in the Central Indian Tectonic Zone, using P-T pseudosection modelling of mafic intrusions and host reworked granulites. Precambrian Research, 162(1-2): 128-149 |
| [6] | Chen DL, Liu L, Sun Y, Zhang AD, Liu XM and Luo JH. 2004. LA-ICP-MS zircon U-Pb dating for high-pressure basic granulite from North Qinling and its geological significance. Chinese Science Bulletin, 49(21): 2296-2304 |
| [7] | Cheng H, Zhang C, Vervoort JD, Li XH, Li QL, Zheng S and Cao DD. 2011. Geochronology of the transition of eclogite to amphibolite facies metamorphism in the North Qinling orogen of central China. Lithos, 125(3-4): 969-983 |
| [8] | Cheng H, Zhang C, Vervoort JD, Li X, Li Q, Wu Y and Zheng S. 2012. Timing of eclogite facies metamorphism in the North Qinling by U-Pb and Lu-Hf geochronology. Lithos, 136-139: 46-59 |
| [9] | Cherniak DJ and Watson EB. 2000. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5-24 |
| [10] | Chiu HY, Chung SL, Wu FY, Liu D, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang Y and Chu MF. 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3-19 |
| [11] | Dong YP, Genser J, Neubauer F, Zhang GW, Liu XM, Yang Z and Heberer B. 2011a. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Research, 19(4): 881-893 |
| [12] | Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011b. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237 |
| [13] | Faure M, Lin W, Monié P and Meffre S. 2008. Palaeozoic collision between the North and South China blocks, Triassic intracontinental tectonics, and the problem of the ultrahigh-pressure metamorphism. Comptes Rendus Geoscience, 340(2-3): 139-150 |
| [14] | Hu J, Liu XC, Chen LY, Qu W, Li HK and Geng JZ. 2013. A -2.5Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen. Chinese Science Bulletin, 58(28-29): 3564-3579 |
| [15] | Hu NG, Zhao DL, Xu BQ and Wang T. 1995. Discovery of coesite-bearing eclogites from the northern Qinling and its significances. Chinese Science Bulletin, 40(2): 174-176 |
| [16] | Hu NG, Yang JX and Zhao DL. 1996. Sm-Nd isochron age of eclogite from North Qinling mountains. Acta Mineralogica Sinica, 16(4): 349-352 (in Chinese with English abstract) |
| [17] | Jiang YH, Jin GD, Liao SY, Zhou Q and Zhao P. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1-4): 183-197 |
| [18] | Kröner A, Zhang GW and Sun Y. 1993. Granulites in the Tongbai area, Qinling Belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of Eastern Asia. Tectonics, 12(1): 245-255 |
| [19] | Lerch MF, Xue F, Krner A and Todt W. 1996. A Middle Silurian-Early Devonian magmatic arc in the Qinling Mountains of central China: A reply. The Journal of Geology, 104(4): 504-505 |
| [20] | Li HK, Lu SN, Chen ZH, Xiang ZQ, Zhou HY and Hao GJ. 2004. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775-781 (in Chinese with English abstract) |
| [21] | Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR and Wang SS. 1993. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1-4): 89-111 |
| [22] | Li SG, Jagoutz E, Chen YZ and Li QL. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077-1093 |
| [23] | Li Y, Zhou HW, Zhong ZQ, Xiang H, Zeng W, Qi DM and Zhang L. 2012. Two Early-Paleozoic metamorphic events in North Qinling: Petrology and zircon U-Pb geochronology evidences from basic rocks in the Songshugou area. Earth Science, 37(Suppl.): 111-124 (in Chinese with English abstract) |
| [24] | Liati A and Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contributions to Mineralogy and Petrology, 135(4): 340-354 |
| [25] | Ling W, Ren B, Duan R, Liu X, Mao X, Peng L, Liu Z, Cheng J and Yang H. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192-2199 |
| [26] | Liu FL, Xu ZQ, Liou JG and Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4): 315-326 |
| [27] | Liu FL, Gerdes A, Liou JG, Xue HM and Liang FH. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569-589 |
| [28] | Liu JF, Sun Y, Tong LX and Sun WD. 2009. Emplacement age of the Songshugou ultramafic massif in the Qinling orogenic belt, and geologic implications. International Geology Review, 51(1): 58-76 |
| [29] | Liu Q, Wu YB, Wang H, Gao S, Qin ZW, Liu XC, Yang SH and Gong HJ. 2014. Zircon U-Pb ages and Hf isotope compositions of migmatites from the North Qinling terrane and their geological implications. Journal of Metamorphic Geology, 32(2): 177-193 |
| [30] | Liu XC, Jahn BM, Hu J, Li SZ, Liu X and Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision. Journal of Metamorphic Geology, 29(9): 979-1002 |
| [31] | Lu SN, Li HK, Chen ZH, Hao GJ, Zhou HY, Guo JJ, Niu GH and Xiang ZQ. 2003. Geological Evolution of Qinling in Mesoproterozoic Neoproterozoic: Implications for Response to Rodinia Supercontinental Events. Beijing: Geological Publishing House, 1-193 (in Chinese with English abstract) |
| [32] | Ludwig KR. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley |
| [33] | Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123-126 |
| [34] | Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3-4): 183-196 |
| [35] | Möller A, O'Brien PJ, Kennedy A and Krner A. 2002. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): Constraints for Pb diffusion in zircon. Journal of Metamorphic Geology, 20(8): 727-740 |
| [36] | Qian JH, Yang XQ, Cao YT, Chen DL and Yang WQ. 2013. Zircon U-Pb dating, mineral inclusions, Lu-Hf isotopic data and their geological significance of garnet amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087-3098 (in Chinese with English abstract) |
| [37] | Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53 |
| [38] | Shi Y, Yu JH, Xu XS, Qiu JS and Chen LH. 2009. Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen. Acta Petrologica Sinica, 25(10): 2651-2670 (in Chinese with English abstract) |
| [39] | Shi Y, Yu JH and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19-60 |
| [40] | Su L, Song SG, Song B, Zhou DW and Hao JR. 2004. The SHRIMP zircon U-Pb ages of the garnet pyroxenite and Fushui complex from Songshugou area and its constrainon the tectonic evolution of Qinling orogenic belt. Chinese Science Bulletin, 49(12): 1307-1310 |
| [41] | Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345 |
| [42] | Sun WD, Li SG, Chen YD and Li YJ. 2002. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt. The Journal of Geology, 110(4): 457-468 |
| [43] | Sun Y, Lu X, Han S, Zhang G and Yang S. 1996. Composition and formation of Paleozoic Erlangping ophiolitic slab, North Qinling: Evidence from geology and geochemistry. Science in China (Series D), 39: 50-59 |
| [44] | Wang H, Wu YB, Gao S, Liu XC, Gong HJ, Li QL, Li XH and Yuan HL. 2011a. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China blocks. Journal of Metamorphic Geology, 29(9): 1019-1031 |
| [45] | Wang H, Wu YB, Gao S, Zhang HF, Liu XC, Gong HJ, Peng M, Wang J and Yuan HL. 2011b. Silurian granulite-facies metamorphism, and coeval magmatism and crustal growth in the Tongbai orogen, central China. Lithos, 125(1-2): 249-271 |
| [46] | Wang H, Wu YB, Gao S, Liu XC, Liu Q, Qin ZW, Xie SW, Zhou L and Yang SH. 2013a. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 230: 13-30 |
| [47] | Wang H, Wu YB, Qin ZW, Zhu LQ, Liu Q, Liu XC, Gao S, Wijbrans JR, Zhou L and Gong HJ. 2013b. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: Implications for the geodynamic evolution of the North Qinling arc-back-arc system. Lithos, 179(1): 1-15 |
| [48] | Wang H, Wu YB, Gao S, Zheng JP, Liu Q, Liu XC, Qin ZW, Yang SH and Gong HJ. 2014. Deep subduction of continental crust in accretionary orogen: Evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos, 190-191: 420-429 |
| [49] | Wang T, Wang XX, Tian W, Zhang CL, Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52(9): 1359-1384 |
| [50] | Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761 |
| [51] | Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY and Liu XM. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partialmelting. Journal of Metamorphic Geology, 25(9): 991-1009 |
| [52] | Wu YB, Hanchar JM, Gao S, Sylvester PJ, Tubrett M, Qiu HN, Wijbrans JR, Brouwer FM, Yang SH, Yang QJ, Liu YS and Yuan HL. 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters, 277(3-4): 345-354 |
| [53] | Wu YB and Zheng YF. 2013. Tectonic evolution of a continental collision orogen: An overview on the Qinling-Tongbai-Dabie orogenic belt in central China. Gondwana Research, 23(4): 1402-1428 |
| [54] | Xiang H, Zhang L, Zhong ZQ, Zhang HF, Zheng JP and Liu L. 2009. Zircon U-Pb geochronology and metamorphism of mafic granulite from north Tongbai, central China. Acta Petrologica Sinica, 25(2): 348-358 (in Chinese with English abstract) |
| [55] | Xiang H, Zhang L, Zhong ZQ, Santosh M, Zhou HW, Zhang HF, Zheng JP and Zheng S. 2012. Ultrahigh-temperature metamorphism and anticlockwise PTt path of Paleozoic granulites from north Qinling-Tongbai orogen, Central China. Gondwana Research, 21(2-3): 559-576 |
| [56] | Xue F, Krner A, Reischmann T and Lerch F. 1996. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. Journal of the Geological Society, 153(3): 409-417 |
| [57] | Yang JS, Xu ZQ, Dobrzhinetskaya LF, Green HW, Pei XZ, Shi RD, Wu CL, Wooden JL, Zhang JX, Wan YS and Li HB. 2003. Discovery of metamorphic diamonds in central China: An indication of a >4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova, 15(6): 370-379 |
| [58] | Yang JS, Liu FL, Wu CL, Xu ZQ, Shi RD, Chen SY, Deloule E and Wooden JL. 2005. Two ultrahigh-pressure metamorphic events recognized in the central orogenic belt of China: Evidence from the U-Pb dating of coesite-bearing zircons. International Geology Review, 47(4): 327-343 |
| [59] | You ZD, Suo ST, Han YQ, Zhong ZQ and Chen NS. 1991. The Metamorphic Processes and Tectonic Analyses in the Core Complex of an Orogenic Belt: An Example from the Eastern Qinling Mountains. Wuhan: China University of Geosciences Press, 1-326 (in Chinese with English abstract) |
| [60] | Zhai XM, Day HW, Hacker BR and You ZD. 1998. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology, 26(4): 371-374 |
| [61] | Zhang GW, Meng QR, Yu ZP, Sun Y, Zhou DW and Guo AL. 1996. Orogenesis and dynamics of the Qinling orogen. Science in China (Series D), 39(3): 225-234 |
| [62] | Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continent Dynamics. Beijing: Science Press, 1-855 (in Chinese) |
| [63] | Zhang JX, Yu SY, Meng FC and Li JP. 2009. Paired high-pressure granulite and eclogite in collision orogens and their geodynamic implications. Acta Petrologica Sinica, 25(9): 2050-2066 (in Chinese with English abstract) |
| [64] | Zhang JX, Yu SY and Meng FC. 2011. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt. Acta Petrologica Sinica, 27(4): 1179-1190 (in Chinese with English abstract) |
| [65] | Zhang SG, Zhang ZQ, Song B, Tang SH, Zhao ZR and Wang JH. 2005. On the existence of Neoarchean materials in the Douling complex, eastern Qinling: Evidence from U-Pb SHRIMP and Sm-Nd geochronology. Acta geologica Sinica, 78(6): 800-806 (in Chinese with English abstract) |
| [66] | Zhang X, Xu XY, Song GS, Wang HL, Chen JL and Li T. 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China. Geological Bulletin of China, 29(4): 510-517 (in Chinese with English abstract) |
| [67] | Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep gangdese arc, south Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547-2580 |
| [68] | Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161 |
| [69] | Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM and Wu FY. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chemical Geology, 231(1-2): 135-158 |
| [70] | 胡娟, 刘晓春, 陈龙耀, 曲玮, 李怀坤, 耿建珍. 2013. 扬子克拉通北缘约 2.5Ga 岩浆事件: 来自南秦岭陡岭杂岩锆石 U-Pb 年代学和 Hf 同位素证据. 科学通报, 58(34): 3579-3588 |
| [71] | 胡能高, 杨家喜, 赵东林. 1996. 北秦岭榴辉岩Sm-Nd同位素年龄. 矿物学报, 16(4): 349-352 |
| [72] | 李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2004. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报 22(10): 775-781 |
| [73] | 李晔, 周汉文, 钟增球, 向华, 曾雯, 祁冬梅, 张利. 2012. 北秦岭早古生代两期变质作用: 来自松树沟基性岩岩石学及锆石 U-Pb 年代学的记录. 地球科学, 37(S1): 111-124 |
| [74] | 陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社, 1-193 |
| [75] | 钱加慧, 杨秀清, 刘良, 曹玉亭, 陈丹玲, 杨文强. 2013. 北秦岭松树沟榴闪岩锆石U-Pb定年, 矿物包裹体和Lu-Hf同位素特征及其地质意义. 岩石学报, 29(9): 3087-3098 |
| [76] | 时毓, 于津海, 徐夕生, 邱检生, 陈立辉. 2009. 秦岭造山带东段秦岭岩群的年代学和地球化学研究. 岩石学报, 25(10): 2651-2670 |
| [77] | 苏犁, 宋述光, 宋彪, 周鼎武, 郝建荣. 2004. 松树沟地区石榴辉石岩和富水杂岩 SHRIMP锆石U-Pb年龄及其对秦岭造山带构造演化的制约. 科学通报, 49(12): 1209-1211 |
| [78] | 向华, 张利, 钟增球, 张宏飞, 郑建平, 刘理. 2009. 北桐柏地区镁铁质麻粒岩锆石U-Pb年代学及变质作用. 岩石学报, 25(2): 348-358 |
| [79] | 游振东, 索书田, 韩郁箐, 钟增球, 陈能松. 1991. 造山带核部杂岩变质过程与构造解析——以东秦岭为例. 武汉: 中国地质大学出版社, 1-326 |
| [80] | 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑), 26(3): 193-200 |
| [81] | 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855 |
| [82] | 张建新, 于胜尧, 孟繁聪, 李金平. 2009. 造山带中成对出现的高压麻粒岩与榴辉岩及其地球动力学意义. 岩石学报, 25(9): 2050-2066 |
| [83] | 张建新, 于胜尧, 孟繁聪. 2011. 北秦岭造山带的早古生代多期变质作用. 岩石学报, 27(4): 1179-1190 |
| [84] | 张寿广, 张宗清, 宋彪, 唐索寒, 赵子然, 王进辉. 2005. 东秦岭陡岭杂岩中存在新太古代物质组成——SHRIMP锆石U-Pb和Sm-Nd年代学证据. 地质学报, 78(6): 800-806 |
| [85] | 张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义. 地质通报, 29(4): 510-517 |
2014, Vol. 30











