岩石学报  2014, Vol. 30 Issue (7): 2101-2111   PDF    
内蒙古霍各乞Cu-Pb-Zn矿床的剪切带与岩性控矿特征及意义
钟日晨1,2, 李文博2 , 陈衍景2, 皮桥辉3    
1. 北京科技大学土木与环境工程学院, 北京 100083;
2. 北京大学造山带与地壳演化教育部重点实验室, 北京 100871;
3. 桂林理工大学地球科学学院, 桂林 541004
摘要:内蒙古霍各乞大型Cu-Pb-Zn矿床地处内蒙西部狼山地区,为狼山-渣尔泰山成矿带的典型矿床。前人依据该矿裂谷沉积赋矿、岩性控矿、具有层状矿体等宏观特征判断其为裂谷环境下形成的热水沉积矿床,但也有部分学者提出其为受构造控制的后生热液矿床。本次研究以岩矿相学观察为基础,结合热力学模拟,提出该矿为受剪切带控制的变质热液矿床。矿区内赋矿围岩普遍经历角闪岩相区域变质作用及韧性剪切变形。宏观上,矿体与矿区内剪切带产状协调。硫化物总体沿围岩糜棱岩片理产出,但局部切割围岩糜棱岩组构,含矿微裂隙具有脆韧性剪切变形特征,可见硫化物交代围岩峰期变质矿物。热液脉石矿物组合及矿物温压计均表明成矿期具有低绿片岩相的温压条件。上述特征表明Cu-Pb-Zn矿化受剪切带控制,发生于剪切变形晚期,围岩退变质抬升阶段。热力学模拟显示当含矿流体流经由碳质千枚岩、石英二云母片岩和富铁夹层构成的岩性柱子,碳质千枚岩层位发生Pb-Zn矿化,而石英二云母片岩层位发生Cu矿化,富铁层位形成富矿体,这与霍各乞的地质事实相一致,矿相学观察也表明围岩岩性对成矿具有控制作用,因此后生热液流体与围岩的水岩反应导致了霍各乞矿床的层控、岩矿特征。通过上述研究建立起的剪切带控矿的成矿模式既符合该矿的显微观察结果,又可以解释该矿层状矿体、岩性控矿等宏观特征。
关键词铜铅锌     矿相学     热力学模拟     剪切带     造山型矿床     内蒙古    
Cu-Pb-Zn mineralization controlled by shear zone and host rock lithology in the Huogeqi deposit, Inner Mongolia
ZHONG RiChen1,2, LI WenBo2 , CHEN YanJing2, PI QiaoHui3    
1. Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China;
2. MOE Key Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China;
3. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
Abstract: The large Huogeqi Cu-Pb-Zn deposit in Inner Mongolia is a typical case of the Langshan metallogenic belt. The genesis of this deposit is controversial. Most researchers regard it as a hydrothermal exhalative deposit, based on its macroscopic geological characteristics, such as the ore-hosting rift sequences and the stratiform and stratabound orebodies. However, other researchers argue that the Huogeqi is a structure-controlled epigenetic hydrothermal deposit. A detailed microscopic observation is the most effective approach to discriminate between metamorphosed and metamorphogenic deposits in metamorphic terranes, but no systematic petrographic and mineragraphic studies have been carried out before this study. In this study, a shear zone controlled genetic model was proposed based on detailed microscopic petrographic and mineragraphic observations, combined with thermodynamic modeling. Host rocks of the deposit were amphibolite facies metamorphosed, with peak temperature of 600~650℃. A shear zone was developed in the mining filed, and most of the host rocks were strongly mylonitized. The orebodies are generally concordant with the shear zone in the mining area, and sulfides were precipitated generally alone mylonite foliations of the host rocks. Although sulfides and hydrothermal gangue minerals are generally parallel to mylonite foliations, they locally cut cross mylonite fabrics of host rocks. Peak metamorphic minerals of the host rocks (e.g., garnet) were locally replaced by hydrothermal sulfides and gangue minerals. Sulfides precipitated with hydrothermal minerals such tremolite, chlorite, epidote, biotite, Fe-talc, spessartine, hydrobiotite, muscovite and quartz, which are resemble the mineral assemblage of lower greenschist facies metamorphic rock. Mineral thermobarometers and microthermometeric analysis of fluid inclusions yield a lower greenschist facies ore-forming P-T condition as well. Ore hosting microfractures show signatures of brittle-ductile shear deformation, indicating that the mineralization took place at the crustal depth of brittle-ductile transition zone, which is characterized by greenschist facies pressure-temperature condition as well. Taken that the host rocks were amphibolite facies metamorphosed, the ore-forming process took place during uplift and retrograde metamorphism of the host rocks. All these observations indicate a shear zone-controlled hydrothermal mineralization that took place postdating peak metamorphism of the host rocks. Since the mineralization process postdates peak metamorphism and ductile deformation of the host rocks, it should be significantly later than sedimentation and diagenesis of the host rocks, i.e., an epigenetic mineralization. In the Huogeqi, Pb-Zn orebodies are mainly hosted by carbonaceous shale, whereas Cu orebodies are hosted by quartzite and mica schist layers of the host rock. This stratabound nature of this deposit has been regarded as one of the most important evidence supporting the exhalative genetic model. A flow-through thermodynamic modeling was carried out to account for the stratabound nature of the deposit. The modeling results show that the sulfide-saturated primary ore-fluids will be strongly reduced when flowing through the carbonic shales, resulting in a dramatic elevation in Cu solubility but a mild increase in Pb and Zn solubility. Due to the great elevation in Cu solubility, the fluid will maintain undersaturated in Cu during the subsequent fluid cooling, and forming Cu-poor Pb-Zn ores in the carbonic shale layers of the host rock. During progressive fluid cooling, Cu finally turned to be oversaturated in the fluid. Massive Cu was precipitated from the ore-fluid accompanying minor Pb and Zn, forming Cu-rich orebodies in the quartzite mica schist layers. This is consistent well the stratabound nature of the Huogeqi deposit. When flowing through Fe-rich layers, reduced sulfur in the ore-fluids were strongly interacted with Fe in the host rocks, leading to sulfidation of the Fe-rich host rocks. Host rock sulfidation will consume a large amount of reduced sulfur in the fluid, which is the major ligand of Cu, Pb, and Zn transport. Consequently massive Cu, Pb and Zn will precipitate from the ore-fluid as a result of host rock sulfidation, forming high-grade ores in Fe-rich host rocks. Sulfidation of Fe-rich host rocks is observed at the contact between Fe-rich rocks and syntectonic hydrothermal veins. In host rocks composed of interlayered quartzite and Fe-rich pyroxene, sulfides were mainly precipitated in the Fe-rich layers. In a single hydrothermal veinlet, high-temperature hydrothermal minerals such as tremolite are commonly replaced by low-temperature mineral assemblages such as chlorite-epidote, and both the high-temperature and low-temperature mineral assemblages are accompanied by sulfides. This indicates that a dramatic fluid cooling event occurred during sulfide precipitation, and fluid cooling is an important mechanism of mineralization. All these observations are consistent well with the modeling result, indicating that the stratabound and stratiform nature of the deposit is a result of fluid-rock interaction between the epigenetic ore-fluid and the host rocks.
Key words: Cu-Pb-Zn     Mineragraphy     Thermodynamic modeling     Shear zone     Orogenic deposit     Inner Mongolia    

霍各乞(又称“获各琦”)大型Cu-Pb-Zn多金属矿床位于内蒙古西部乌拉特后旗境内,是狼山-渣尔泰山成矿带的典型矿床,为华北北缘重要的铜资源产地。目前对该矿成因还存有争论,多数研究者认为该矿为中元古代喷流沉积矿床(余金杰等,1993耿明山,1997金章东等,1997费红彩等,2004彭润民等, 20062007),其依据主要为矿床的宏观特征,如矿体呈层状、围岩岩性对矿化类型有明显控制作用、矿石具纹层状、条带状组构,矿区可见富重晶石、电气石层位等。此外,赋矿的变质沉积岩中偶见基性变质火山岩夹层,其出现被认为有利于喷流沉积成矿系统的发育(黄崇轲等,2001彭润民等,2007)。然而,部分学者发现围岩构造变形对成矿有控制作用,提出该矿为受构造控制的后生热液矿床(牛树银等,1991; 任爱军等,1992; 杨福新,1998; 张明华和王春增,2002; Zhong et al., 2012)。霍各乞矿床位于角闪岩相变质区,围岩变质变形强烈。区分变质岩区内受变质改造的矿床(metamorphosed deposit)和变质热液矿床(metamorphic deposit)是极为重要的基本问题,但又是矿床学研究的难题。区分二者的关键在于厘清成矿、区域变质、围岩构造变形间的时序,而达成这一目的的最有效手段是对矿石组构和矿物组合系统的显微观察(Cartwright and Oliver, 2000; Marshall et al., 2000)。本文基于显微岩相学证据,结合热力学模拟,系统提出了霍各乞矿化受剪切带和围岩岩性控制的后生热液矿化模式。

1 区域地质

霍各乞大型Cu-Pb-Zn矿床位于内蒙古西部狼山地区。该区为著名的Cu-Pb-Zn多金属矿化带,产出霍各乞、东升庙、炭窑口等大型-超大型Cu-Pb-Zn多金属矿床,及十余个中型矿床(图 1)。狼山地区属华北克拉通北缘西段,区内出露华北克拉通太古宙基底乌拉山群(翟裕生等,2008图 1),其上覆盖中元古代狼山群,为一套经历绿片岩至角闪岩相变质的裂谷沉积(翟裕生等,2008图 1)。古生代时该区除少量石炭-二叠纪海相沉积外,普遍缺沉积地层(图 1)。至侏罗-白垩纪,区内大量沉积陆相红层砂砾岩,不整合覆盖于下伏地层之上(图 1)。Darby and Ritts(2002)认为该套红层砂砾岩为陆内造山带环境的前陆盆地、山间盆地沉积。狼山地区出露的岩浆岩主要为晚古生代中酸性侵入岩,及少量元古代、早古生代、中生代岩体(图 1)。狼山地区构造活动强烈,普遍发育北东走向断层(图 1),及多条韧性剪切带。杨福新(1998)在狼山地区识别出3条北东走向韧性剪切带。每条韧性剪切带延伸数十千米,宽数千米,剪切带中的狼山群变质岩及晚古生代花岗岩变形强烈,形成糜棱岩、千糜岩,区内大型-超大型矿床均位于韧性剪切带范围内。

图 1 狼山地区区域地质图(据彭润民等,2007修改)

Fig. 1 Regional geological map of the Langshan district(after Peng et al., 2007)

2 矿区地质

中元古代狼山群是霍各乞矿区内唯一出露的地层,也是直接赋矿围岩,其岩性主要包括云母片岩、变质石英岩、碳质千枚岩、含透辉石、透闪石的大理岩及绿片岩等(图 2),变质程度达到角闪岩相(约600~650℃)。矿区内出露的岩浆岩包括中元古代角闪岩和晚古生代花岗岩、闪长岩(图 2)。

图 2 霍各乞矿区地质图及围岩片理走向(据黄崇轲等,2001张明华和王春增,2002绘制)

Fig. 2 Geologyof the Huogeqi deposit,also showing the orientations of host rock foliations(modified after Huang et al., 2001; Zhang and Wang, 2002)

霍各乞矿区处于一条宽约3km的大型区域性剪切带之内,该剪切带整体走向50°~60°,沿霍各乞至那仁宝力格一线断续出露,产状陡立(黄崇轲等,2001)。矿区内狼山群普遍遭受糜棱岩化,呈现出“纹层状”外观,糜棱岩片理一致南倾(王春增等,1996)。张明华和王春增(2002)指出矿区内围岩片理多数为糜棱岩片理,并对片理走向进行填图,勾勒出了矿区内剪切带的产状(图 2)。矿区内剪切带顺沉积层理发育(顺层韧性剪切带),其产状与地层界线大体一致(张明华和王春增,2002)。

霍各乞是以Cu为主的大型Cu-Pb-Zn多金属矿床,矿石矿物主要包括黄铜矿、方铅矿、闪锌矿、磁黄铁矿和黄铁矿。此外含有少量的毒砂、红锑镍矿、硫锑钴矿、硫锑铁矿、自然铋等。该矿Cu金属量71.73万吨,平均品位1.35%;Pb 97.32万吨,品位1.49%,Zn 78.16万吨,品位1.46%(黄崇轲等,2001)。此外,狼山群中部分铁建造被作为一小型铁矿开采。Cu-Pb-Zn矿体多呈板状、似层状产出(图 3图 4a),少数呈透镜状、分枝状、脉状(图 3图 4b黄崇轲等,2001)。矿体集中分布于三个矿带(图 2),其中1号矿带最具代表性和经济价值。该矿带东西走向,长约1.5km(图 2),其中矿体大致彼此平行,全部向南陡倾,倾角65°~80°(内蒙古巴盟岭原地质矿产勘查有限责任公司,2002),在剖面图上呈现为舒缓的Z字形(图 3)。本次研究样品采自1号矿带,地理坐标41.2705°N,106.6668°E。

内蒙古巴盟岭原地质矿产勘查有限责任公司. 2002. 内蒙古自治区乌拉特后旗霍各乞及外围铜多金属矿普查地质报告
图 3 霍各乞1号矿带剖面图(据西部矿业,私人通讯提供资料绘制)

Fig. 3 Cross section of the No.1 ore belt of the Huogeqi deposit


图 4 霍各乞矿体、矿石组构

(a)-井下矿体露头,可见阶 步;(b)-石英脉型矿体;(c)-赋存于糜棱岩化石英岩的Cu矿石,正交偏光;(d)与图 4c同一视域,反射光;(e)-石英-硫化物细脉切穿围岩糜棱岩组构,细脉两侧呈拖曳构造,正交偏光;(f)-发生剪切变形石榴石黑云母片岩中,硫化物平行于糜棱岩片理方向沉淀并溶蚀交代石榴石变斑晶,单偏光;(g)-赋存于碳质千糜岩中的纹层状Pb-Zn矿石,硫化物沿剪切片理沉淀,单偏光;(h)-透闪石、绿帘石、绿泥石与硫化物共生,可见绿帘石-绿泥石-硫化物组合交代透闪石-硫化物组合,电子背散射图像

Fig. 4 Ore fabrics of the Huogeqi deposits

(a)-outcrop of b and ed orebody;(b)-vein-type ore;(c)-mylonite-hosted Cu ore(+);(d)-the same filed of view as for Fig. 4c,but in reflected light;(e)-a quartz-sulfide veinlet cut cross mylonite fabrics of the host rock,showing dragging structure(+);(f)-sulfides were precipitated along mylonite foliation of a shear-deformed garnet biotite schist, and locally replace garnet porphyroblasts(-);(g)-a carbonic shale-hosted Pb-Zn ore. The carbonic shale was mylonitized and sulfides were precipitated parallel to the mylonite foliation(-);(h)-tremolite was replaced by epidote-chlorite assemblages, and all these minerals are coeval with sulfide(backscatter electron image)

矿体具有较为明显的岩控特征,矿化类型与围岩岩性关系密切。由底板至顶板,赋矿围岩依次为碳质千枚岩、石英岩夹云母片岩、富含透辉石的大理岩、石英岩夹云母片岩。其中石英岩、云母片岩层位主要赋存Cu矿体(图 4c-e),而碳质千枚岩为Pb-Zn矿体的主要赋矿层位(图 4g)。尽管多数矿体受围岩岩性控制,但局部可见同一矿体穿过不同岩性层(有色内蒙古地勘局第1队,1992)。

有色内蒙古地勘局第1队. 1992. 内蒙古乌拉特后旗霍各乞铜多金属矿区1号矿床3~16线(1630米标高以上)勘探地质报告 3 剪切带控矿特征

Cu矿体多赋存于糜棱岩化的石英岩中,围岩石英定向拉长且发生动态重结晶,边缘细粒化(图 4c)。黄铜矿等硫化物多平行于糜棱岩组构分布(图 4c,d),但局部交代溶蚀围岩中韧性变形的石英颗粒(如图 4c、d右下角黄铜矿颗粒)。常见黄铜矿细脉切穿围岩糜棱岩组构,且细脉两侧围岩向不同方向弯折,呈拖曳构造(图 4e)。黄铜矿整体平行、但又局部切穿糜棱岩组构(图 4c-e),表明Cu矿化受剪切带控制,但矿化发生于剪切变形的晚期,滞后于围岩韧性变形。含矿裂隙的拖曳构造也表明含矿构造形成于剪切应力之下(图 4e)。含矿构造兼具脆性(含矿细脉的存在表明围岩发生破裂;图 4e)和韧性变形(拖曳构造表明细脉两侧围岩石英发生塑性变形;图 4e)的特征,表明成矿事件发生于脆韧性转换带深度,其温压范围相当于绿片岩相变质条件,此类现象在剪切带控制的热液矿床中非常常见(McCuaig and Kerrich, 1998; Sibson et al., 1988)。含矿细脉中可见热液石英伴随硫化物沉淀(图 4e),表明硫化物是从热液流体中沉淀出的。在流体通量较大,含矿空间较大处,可形成石英脉型矿体(图 4b)。如前文所述,围岩峰期变质条件达到角闪岩相,石英岩发生韧性变形;而成矿过程发生于绿片岩相温压条件,成矿期构造具有脆韧性变形特征,这也表明成矿发生围岩抬升降温、退变质阶段。

在糜棱岩化的石榴石黑云母片岩中,石榴石(峰期变质矿物)变斑晶呈眼球状,其中的石英包体呈S型排列(图 4f),表明石榴石变斑晶的生长同步于围岩剪切变形。硫化物及热液脉石矿物沿糜棱岩片理方向沉淀,且局部交代溶蚀石榴石变斑晶(图 4f),表明矿化受剪切带控制,但晚于围岩峰期变质。

Pb-Zn矿体主要赋存于碳质千枚岩。围岩遭受剪切变形,绢云母、石英细粒化并定向排列,形成碳质千糜岩(图 4g)。碳质千糜岩富含绢云母等片状矿物,在剪切变形晚期优先沿片理方向破裂并沉淀硫化物及热液脉石矿物,形成纹层状矿石(图 4g)。相比于围岩中强烈变形的绢云母和石英,热液脉石矿物和硫化物变形微弱,仅见部分石英波状消光,表明热液成矿过程发生于围岩剪切变形的晚期,热液矿物沉淀之后仅遭受了微弱的递进剪切变形。

综上所述,成矿受剪切带控制,但发生于围岩剪切变形的晚期,滞后于围岩的峰期变质和韧性变形。当围岩由深部韧性域(相当于角闪岩相温压范围)抬升至脆韧性转换带(相当于绿片岩相温压范围)深度时,在剪切应力下发生脆韧性破裂,成矿流体注入这些微裂隙中成矿。伴随硫化物沉淀的热液脉石矿物包括锰铝榴石、绿色透闪石、绿帘石、绿泥石、铁滑石、黑云母、白云母、水黑云母、磷灰石、石英、方解石等(图 4h)。该矿物组合与变质岩中低绿片岩相(约300~500℃,2~4kbar)矿物组合相一致(Miyashiro,1994)。利用绿泥石温度计和闪锌矿压力计计算矿化温度为334~420℃,平均362±26℃(1σ,n=9),压力3.4~3.9kbar(Zhong et al., 20122013)。流体包裹体显微测温结果显示成矿温度为310~370℃(利用两种包裹体等容线相交)或364±41℃(1σ,n=57,利用水溶液包裹体压力校正),成矿深度10~12km(Zhong et al., 2013)。上述成矿温压条件均与低绿片岩相温压条件和地壳深度一致,低于围岩峰期变质,进一步证明矿化发生于围岩退变质抬升阶段。

宏观上,矿体多呈似层状、条带状(图 4a),其“层面”实际多为糜棱岩的片理面,而非沉积层理。井下矿体可见剥露出的片理面,其上可见擦痕、阶步等指示剪切变形的构造,而硫化物则平行于这些片理面产出,表明成矿过程受围岩剪切变形控制(图 4a)。对围岩片理面走向的填图也显示矿体的空间分布与剪切带产状协调(图 2),且矿体与剪切带产状一致,都向南陡倾。在矿体南侧存在一条与矿体和剪切带产状相同的脆性破碎带(图 3),表明围岩在由深部抬升至浅部的过程中一直伴随着剪切带活动,使脆性剪切变形叠加在韧性剪切变形之上。 4 岩性控矿特征

霍各乞矿床具有较为明显的岩性控矿特征,Cu矿体主要赋存于变质石英岩、云母片岩层位,而Pb-Zn矿体主要赋存于碳质千枚岩中。矿体的岩控特征曾被认为是霍各乞矿床同生沉积的证据之一,但该现象亦可通过围岩化学性质的差异和Cu与Pb-Zn在流体中不同的行为加以解释。

4.1 热力学模拟

为定量验证围岩化学性质对于成矿的控制作用,我们利用HCh软件(Bastrakov,1999)对霍各乞矿床的成矿过程进行热力学模拟。HCh软件采用最小自由能方法,可以在广大温压范围内(0~1000℃、0~5kbar)计算复杂多相体系的相平衡,特别适用于水岩平衡的计算。模拟采用HCh软件内置的Unitherm热力学数据库,并将新近发表的金属络合物热力学数据(Akinfiev and Zotov, 2010)整合其中。

图 5a所示,我们模拟霍各乞矿区的围岩层序建立岩石柱子,底部为碳质千枚岩,上部为石英二云母片岩(化学性质稳定,模拟变质石英岩和云母片岩层位)夹一层磁铁石英岩(模拟富铁层位,如铁建造和富透辉石层)。初始成矿流体为与石英二云母片岩平衡的硫化物饱和溶液(设定流体含4.5% NaCl,与霍各乞成矿流体盐度接近;Zhong et al., 2013)。当硫化物饱和时,初始成矿流体中含2.6×10-6 Cu、0.9×10-6 Zn、1.4×10-6 Pb。为限定体系自由度,初始成矿流体受黄铁矿-磁黄铁矿-磁铁矿三相点控制,但实际自然界成矿体系中H2S(aq)活度通常高于此三相点,因此上述体Cu、Pb、Zn溶解度实际代表了自然界成矿流体的金属含量下限。令初始含矿流体从下至上流过岩石柱子,并不断降温。含矿流体流经岩石柱子时,由于流体降温和水岩反应,硫化物会不断从流体中沉淀成矿。

模拟初始阶段,当初始含矿流体流入碳质千枚岩层位时,流体被围岩中的石墨还原,引发两个重要变化:首先是流体氧逸度显著降低(logfO2降低约3.5个单位),其次是流体中部分的氧化性硫转变为还原性硫,导致H2S活度升高(logaH2S升高约0.3个单位)。模拟显示Cu、Pb、Zn在流体中都是以硫氢化合物为主要存在形式,因而流体的还原性硫(包括S2-、HS-和H2S(aq))含量对于矿物搬运具有重要意义(图 5b)。

对Cu而言,其主要存在形式为CuHS(aq),控制其溶解度反应为:

CuFeS2(黄铜矿)+0.5H2O=CuHS(aq)+
FeS(磁黄铁矿)+0.25O2(g),

其溶解度受流体氧逸度控制,氧逸度降低将导致Cu溶解度显著升高。对Pb和Zn而言,其在流体中主要以Pb(HS)2(aq)和Zn(HS)2(aq)形式存在,控制其溶解度的反应为:

PbS(方铅矿)+H2S(aq)=Pb(HS)2(aq)
和ZnS(方铅矿)+H2S(aq)=Zn(HS)2(aq)。

从反应方程看,流体氧逸度变化对其溶解度无直接影响,仅能通过改变流体中H2S(aq)活度间接影响Pb、Zn溶解度。由于流体氧逸度变化的幅度远大于H2S活度变化,水岩反应所导致的Cu溶解度提升远比Pb、Zn溶解度提升显著。因此,初始的Cu、Pb、Zn饱和含矿流体与碳质千枚岩水岩反应的最终结果是使流体转化为Cu强烈不饱和,而Pb、Zn微弱不饱和的还原性流体。

由于流体Cu、Pb、Zn不饱和,流体流经碳质千枚岩的初期没有发生矿化,仅有磁黄铁矿的沉淀(图 5b,c)。随着流体温度降低和还原性硫含量逐渐降低,Pb、Zn很快达到饱和,闪锌矿、方铅矿沉淀(图 5c)。但是由于流体中Cu高度不饱和,在流经碳质千枚岩层位始终无Cu矿化,形成Pb-Zn矿石(图 5c)。

图 5 各乞矿床水岩反应热力学模拟,计算压力3kbar

(a)-水岩反应模型,初始含矿流体由碳质千枚岩、石英二云母片岩和磁铁石英岩构成的地层柱子,温度逐渐降温;(b)-流体中还原性硫含量和不同岩性层中磁黄铁矿沉淀量;(c)-矿石矿物在不同岩性层中沉淀量

Fig. 5 Thermodynamic modeling the interaction between ore-fluids and host rocks under 3kbar

(a)-sequence of rock types used for water-rock interaction modeling;(b)-concentration of reduced sulfur in ore-fluids and pyrrhotite deposited from the ore-fluid;(c)-ore minerals deposited from the ore-fluid

当流体流经石英二云母片岩层位时,围岩化学性质稳定,无显著的水岩反应发生。流体温度继续下降,Cu最终达到饱和,黄铜矿开始大量沉淀。与此同时少量闪锌矿、方铅矿继续沉淀,形成以Cu为主的矿化层位(图 5c)。

当流体流经磁铁石英岩层位时,发生围岩硫化作用,流体中还原性硫含量陡降(图 5b),与此同时伴随大量磁黄铁矿、黄铜矿、闪锌矿、方铅矿沉淀,形成高品位矿石(图 5c)。

4.2 岩矿相学证据

热力学模拟的结果显示Pb-Zn矿体赋存于碳质千枚岩层位,Cu赋存于石英岩及云母片岩层位,而富铁层位形成高品位矿石,这与霍各乞矿床的地质事实拟合较好。

矿区内狼山群中存在由磁铁矿和菱铁矿构成的铁建造。部分铁建造强烈剪切变形,磁铁矿变斑晶呈眼球状且定向排列,基质由细粒化的、定向排列的菱铁矿构成。伴随剪切变形发生同构造流体活动,形成平行于剪切方向的热液脉(图 6 a)。热液脉附近,铁建造发生蚀变,基质菱铁矿重结晶(图 6a),磁铁矿变斑晶部分或全部被黄铁矿、磁黄铁矿交代(图 6b);远离热液脉的部分则未发生蚀变,仍由磁铁矿变斑晶和细粒菱铁矿基质构成(图 6b)。这表明同构造流体流经富铁围岩时流体中的S与围岩中的Fe反应,生成磁黄铁矿、黄铁矿,发生围岩硫化蚀变,这与热力学模拟结果 相吻合(图 5b)。

热力学模拟结果显示Cu、Pb、Zn在流体中以硫氢化合物形式搬运,富铁围岩的硫化作用会导致流体中S含量的降低,引发闪锌矿等硫化物沉淀。在由互层的透辉石(富铁矿物)与石英构成的围岩中,硫化物优先在透辉石晶体的微裂隙或晶间沉淀,而在以石英为主的围岩中矿化微弱(图 6c,d),宏观上形成条纹状矿石。上述现象说明富铁围岩确为矿化的有利围岩,与热力学模拟结果一致。值得注意的是图 6c,d所示围岩中石英定向排列,且石英晶体长轴与石英排列方向呈一定角度,显示出糜棱岩的S-C组构(图 6d)。这表明围岩经历了剪切变形和片理置换,其中的“层”早已不是原生的沉积层理。

图 6 霍各乞矿床富铁围岩控矿特征

(a)-发生剪切变形的铁矿石,由眼球状磁铁矿变斑晶和菱铁矿基质构成,平行于剪切方向发育同构造热液脉.靠近热液脉的铁矿石发生蚀变,菱铁矿晶体重结晶加粗;远离热液脉的铁矿石未蚀变,由细粒菱铁矿和磁铁矿变斑晶构成(正交偏光);(b)-蚀变带中磁铁矿变斑晶被黄铁矿、磁黄铁矿交代,而未蚀变部分仍未磁铁矿变斑晶(反射光,图 6a矩形区域放大);(c)-在透辉石、石英互层的围岩中,硫化物优先在富铁的透辉石层中沉淀,透射光;(d)与图 6c同一视域,注意围岩石英定向排列,构成S-C组构,正交偏光

Fig. 6 Role of iron-rich host rock in mineralization

(a)-a hydrothermal vein was developed parallel to mylonite foliation of a mylonitized iron ore. Iron ore adjacent to the vein was altered(crossed polars);(b)-the magnetite porphyroblasts were totally or partly replaced by pyrite or pyrrhotites(magnification of the box area in Fig. 6a,reflected light);(c)-in a host rock composed of interlayered diopside and quartz,sulfides were preferentially deposited in diopside-domains of the host rock(plane-polarized light);(d)-the same filed of view as for Fig. 6c,but in crossed polars

热力学模拟结果显示,流体冷却是导致硫化物沉淀的主要机制之一,这与矿相学观察一致。在矿石中常见透闪石等相对高温的热液矿物被绿泥石-绿帘石或绿泥石-白云母等相对低温的热液矿物组合交代,且二者都与硫化物共生(图 4g)。这表明硫化物沉淀过程伴随着流体温度的降低,流体冷却是矿质沉淀的机制之一。

热力学模拟及岩矿相学观察说明后生含矿流体与围岩的水岩反应可以形成具有层控、岩控特征的后生热液矿床,而层控、岩控特征也未必是同生沉积成矿的铁证。此外,矿区内剪切带顺沉积层理和岩性界线发育(张明华和王春增,2002),也导致了矿体的层控特征。

5 讨论与结论 5.1 变质流体形成Cu-Pb-Zn矿化的可能性

区域变质流体被多数学者认为是造山型金矿的成矿流体,但对于其是否可以形成贱金属(Cu、Pb、Zn)矿床,许多学者持怀疑态度。部分学者认为贱金属在成矿流体中主要以氯化合物形式搬运,而变质流体的低盐度特征决定了它搬运贱金属的能力非常有限(Cartwright and Oliver, 2000; Phillips and Powell, 2010)。相反,Au主要以硫氢化合物的形式存在,在富含还原性硫的变质流体中可以大量溶解(Phillips and Evans, 2004; Goldfarb et al., 2005)。然而,新近的实验地球化学工作表明Cu等贱金属的硫氢化合物在高温下具有很好的稳定性(Etschmann et al., 2010),暗示贱金属同样具有以硫氢化合物搬运的潜力。我们利用新近发表的热力学数据进行热力学模拟,表明在霍各乞成矿条件下Cu、Pb、Zn主要以硫氢化合物搬运,而非氯络合物(与Au类似),因此变质流体的低盐度特征不成为其搬运贱金属的障碍。这暗示通过区域变质脱水有可能形成具有经济价值的Cu-Pb-Zn矿床。我们对区域变质过程中金属的萃取过程进行了更为具体的热力学模拟,结果将另文发表。

除霍各乞外,国内外大量的矿床典例研究已经揭示了变质热液Cu-Pb-Zn矿床的存在,部分学者称其为造山型矿床(陈衍景,2006; Bierlein et al., 2009; Pirajno,2009),如美国Coeur dAlene Ag-Pb-Zn-Cu-Au矿(Leach et al., 1988),挪威Kautokein 绿岩带中的Au-Cu矿(Ettner et al., 1993),澳大利亚Cobar盆地中的CSA Cu-Pb-Zn矿(Giles and Marshall, 2004)和Elura Ag-Pb-Zn矿(De Roo,1989),纳米比亚Omitiomire Cu矿(未发表,具体资料见http://www.interbasemetals.com); 国内的铁炉坪Ag-Pb矿(Chen et al., 2004),白乃庙Cu-Au矿(李文博等, 20072008),铁木尔特Pb-Zn-Cu矿(Zhang et al., 2012),乌拉斯沟Cu矿等(Zheng et al., 2012)。上述矿床具有和造山型金矿类似的矿床地质和成矿流体特征,表明变质热液确实是具有Cu-Pb-Zn矿化潜力的。 5.2 霍各乞Cu-Pb-Zn矿化模式

狼山地区经历角闪岩相区域变质之时,区内发育韧性剪切带。流体包裹体工作显示霍各乞成矿流体具有中温、低盐度、富CH4特征,为深源变质流体与碳质千枚岩水岩反应的产物(Zhong et al., 2013)。含矿变质流体沿韧性剪切带向地壳浅部运移,当流体运移至脆韧性转换带深度(10~12km)时,由于流体冷却与H2S活度降低,矿质在脆韧性剪切裂隙中沉淀成矿。矿化发生于围岩退变质抬升阶段,其温压条件与低绿片岩相变质相当。在碳质千枚岩层位,流体还原性较强,Cu强烈不饱和,发生Pb-Zn矿化;而在石英岩和云母片岩层位,Cu由于流体冷却而大量沉淀,形成Cu矿石;在富铁层位,发生围岩硫化作用,流体中的H2S含量大幅度降低,促使金属大量沉淀,形成富矿石。

霍各乞Cu-Pb-Zn为后生热液矿化,但是否有可能在围岩沉积成岩过程中发生了Cu-Pb-Zn同生矿化,而后区域变质过程中Cu-Pb-Zn再活化形成新矿体呢?如前文所述,Cu-Pb-Zn矿化发生于围岩退变质抬升阶段,此阶段围岩不可能产生变质流体,因此霍各乞的Cu-Pb-Zn矿化不太可能是成矿物质原地再活化迁移的产物。然而,在深部的变质流体源区很有可能发生了同生沉积期Cu、Pb、Zn预富集,而后在区域变质过程中成矿物质的再次活化迁移,在地壳浅部重新富集成矿。前人(李兆龙等,1986余金杰等,1993)对霍各乞矿床硫化物的铅同位素研究表明其亏损放射性成因铅,具有元古代的两阶段铅模式年龄,表明成矿物质最初很可能来自元古代的同生沉积预富集。此外,矿区内存在同生Fe矿化,形成狼山群中的铁建造。伴随这次同生Fe矿化,可能存在海底热液活动,形成了矿区内含电气石、重晶石、硅质岩层位。

致谢 巴彦淖尔西部铜业有限公司支持野外考察并提供部分图件,杨永飞、曾亮博士,霍洪亮、岳德臣、钟世杰工程师协助了野外工作;研究工作得到了魏春景、肖文交、刘树文、宋述光、许成、祝新友等老师的指点;电子探针测试得到舒桂明老师帮助、激光拉曼测试得到任景秋老师帮助;在此一并表示感谢!

参考文献
[1] Akinfiev NN and Zotov AV. 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0-600℃ and pressures of 1-3000bar.   Geochemistry International, 48(7): 714-720
[2] Bastrakov EN. 1999. HCh: A Software Package for Geochemical Equilibrium Modelling. Users Guide. Canberra: Australian Geological Survey Organization
[3] Bierlein FP, Groves DI and Cawood PA. 2009. Metallogeny of accretionary orogens: The connection between lithospheric processes and metal endowment.   Ore Geology Reviews, 36(4): 282-292
[4] Cartwright I and Oliver NHS. 2000. Metamorphic fluids and their relationship to the formation of metamorphosed and metamorphogenic ore deposits.   Reviews in Economic Geology, 11: 81-96
[5] Chen YJ, Pirajno F and Sui YH. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting.   Mineralium Deposita, 39(5-6): 560-575
[6] Chen YJ. 2006. Orogenic-type deposits and their metallogenetic model and exploration potential. Geology in China, 33(6): 1181-1196 (in Chinese with English abstract)
[7] Darby BJ and Ritts BD. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold-thrust belt, China.   Earth and Planetary Science Letters, 205(1-2): 13-24
[8] De Roo JA. 1989. The Elura Ag-Pb-Zn mine in Australia ore genesis in a slate belt by syndeformational metasomatism along hydrothermal fluid conduits.   Economic Geology, 84: 256-278
[9] Etschmann BE, Liu W, Testemale D, Müller H, Rae NA, Proux O, Hazemann JL and Brugger J. 2010. An in situ XAS study of copper (I) transport as hydrosulfide complexes in hydrothermal solutions (25-592℃, 180-600bar): Speciation and solubility in vapor and liquid phases.   Geochimica et Cosmochimica Acta, 74(16): 4723-4739
[10] Ettner DC, Bjorlykke A and Andersen T. 1993. Fluid evolution and Au-Cu genesis along a shear zone: A regional fluid inclusion study of shear zone-hosted alteration and gold and copper mineralization in the Kautokeino greenstone belt, Finnmark, Norway.   Journal of Geochemical Exploration, 49(3): 233-267
[11] Fei HC, Dong P, An GY and Xiao RG. 2004. Ore-bearing formation and its genesis analysis of the Huogeqi polymetal deposit in Inner Mongolia.   Geoscience, 18(1): 32-40 (in Chinese with English abstract)
[12] Geng MS. 1997. Geochemistry and metallogenic environments of the Huogeqi copper polymetallic ore field, Inner Mongolia. Geological Exploration for Nonferrous Metals, 6(4): 226-231 (in Chinese with English abstract)
[13] Giles AD and Marshall B. 2004. Genetic significance of fluid inclusions in the CSA Cu-Pb-Zn deposit, Cobar, Australia.   Ore Geology Reviews, 24(3-4): 241-266
[14] Goldfarb RJ, Baker T, Dube B, Groves D, Hart CJR and Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes.   Economic Geology, 100th Anniversary Volume: 407-475
[15] Huang CK, Bai Z, Zhu YS, Wang HZ and Shang XZ. 2001. Copper Deposit of China. Beijing: Geological Publishing House, 1-371 (in Chinese)
[16] Jin ZD, Li Y and Zhu JC. 1997. A discussion on hot sedimentary rock in Huogeqi copper-polymetallic ore deposits. Geology of Inner Mongolia, 25(2): 22-58 (in Chinese with English abstract)
[17] Leach DL, Landis GP and Hofstra AH. 1988. Metamorphic origin of the Coeur dAlene base-and precious-metal veins in Belt basin, Idaho and Montana.   Geology, 16(2): 122-125
[18] Li ZL, Xu WD and Pang WZ. 1986. S, Pb, C and O isotopic compositions and ore genesis of the stratabound polymetallic sulfide deposits in middle Inner Mongol, China.   Geochimica, 15(1): 13-22 (in Chinese with English abstract)
[19] Li WB, Lai Y, Sun XW and Wang BG. 2007. Fluid inclusion study of the Bainaimiao Cu-Au deposit in Inner Mongolia, China.   Acta Petrologica Sinica, 23(9): 2165-2176 (in Chinese with English abstract)
[20] Li WB, Chen YJ, Lai Y and Ji JQ. 2008. Metallogenic time and tectonic setting of the Bainaimiao Cu-Au deposit, Inner Mongolia.   Acta Petrologica Sinica, 24(4): 890-898 (in Chinese with English abstract)
[21] Marshall B, Vokes FM and Larocque ACL. 2000. Regional metamorphic remobilisation: Upgrading and formation of ore deposits. Reviews in Economic Geology 11: 19-38
[22] McCuaig TC and Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics.   Ore Geology Reviews, 12(6): 381-453
[23] Miyashiro A. 1994. Metamorphic Petrology. London: University College London Press
[24] Niu SY, Xu CS, Hu X and Sun AQ. 1991. A study of ore-control structure in the Langshan Montain area, Inner Mongolia.   Journal of Changchun University of Earth Science, 21(3): 313-320 (in Chinese with English abstract)
[25] Peng RM, Zhai YS, Wang ZG, Han XF, Qin JW, Wang JP and Mei JM. 2006. Characteristics and exploration of submarine sedex deposits in the Langshan-Zhaertai ore concentration area, Inner Mongolia. Mineral Deposits, 25(S1): 221-224 (in Chinese with English abstract)
[26] Peng RM, Zhai YS, Han XF, Wang ZG, Wang JP, Shen CL and Chen XF. 2007. Mineralization respond to the structural evolution in the Langshan orogenic belt, Inner Mongolia. Acta Petrologica Sinica, 23(3): 679-688 (in Chinese with English abstract)
[27] Phillips GN and Evans KA. 2004. Role of CO2 in the formation of gold deposits.   Nature, 429(6994): 860-863
[28] Phillips GN and Powell R. 2010. Formation of gold deposits: A metamorphic devolatilization model.   Journal of Metamorphic Geology, 28(6): 689-781
[29] Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Netherlands: Springer, 1-1243
[30] Ren AJ, Yu JJ, Yang HM and Chi SC. 1992. Study on the polyphase deformation and its control on ore bodies in Huogeqi copper polymetallic mining field, Inner Mongolia.   Volcanology and Mineral Resources, 13(2): 81-90 (in Chinese with English abstract)
[31] Sibson RH, Robert F and Poulsen KH. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposit.   Geology, 16(6): 551-555
[32] Wang CZ, Zhang MH and Zeng J. 1996. Reestablishing stratigraphic sequence of Langshan Group and the determination of Huogeqi overturned composite syncline, Inner Mongolia.   Geotectonica et Metallogenia, 20(3): 212-219 (in Chinese with English abstract)
[33] Yang FX. 1998. Characteristics of mylonites in the Langshan district and its tectonic implications. Northwestern Geology, 19(1): 1-7 (in Chinese)
[34] Yu JJ, Yang HM and Ye HS. 1993. Geological and geochemical characteristics and material sources of the Huogeqi copper-polymetallic deposit, Inner Mongolia. Mineral Deposits, 12(1): 67-76 (in Chinese with English abstract)
[35] Zhai YS, Peng RM, Chen CX, Cai KQ, Deng J, Chen XM, Cheng XJ and Wang JP. 2008. Genesis and Structure of Major Metallogenic Series of China. Beijing: Geological Publishing House, 1-173 (in Chinese)
[36] Zhang L, Zheng Y and Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems.   Journal of Asian Earth Sciences, 49: 69-79
[37] Zhang MH and Wang CZ. 2002. Extensional tectonics and ore control in Huogeqi ore area of Inner Mongolia. Guangxi Sciences, 9(3): 188-192 (in Chinese with English abstract)
[38] Zheng Y, Zhang L, Chen YJ, Qin YJ and Liu CF. 2012. Geology, fluid inclusion geochemistry, and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, and their implications for ore genesis, Altay, Xinjiang, China.   Ore Geology Reviews, 49: 128-140
[39] Zhong RC, Li WB, Chen YJ and Huo HL. 2012. Ore-forming conditions and genesis of the Huogeqi Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton: Evidence from ore petrologic characteristics.   Ore Geology Reviews, 44: 107-120
[40] Zhong RC, Li WB, Chen YJ, Yue DC and Yang YF. 2013. P-T-X conditions, origin, and evolution of Cu-bearing fluids of the shear zone-hosted Huogeqi Cu-(Pb-Zn-Fe) deposit, northern China.   Ore Geology Reviews, 50: 83-97
[41] 陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力.   中国地质, 33(6): 1181-1196
[42] 费红彩, 董普, 安国英, 肖荣阁. 2004. 内蒙古霍各乞铜多金属矿床的含矿建造及矿床成因分析.   现代地质, 18(1): 32-40
[43] 耿明山. 1997. 内蒙古霍各乞铜多金属矿的地球化学特征及成矿构造环境.   有色金属矿产与勘查, 6(4): 226-231
[44] 黄崇轲, 白冶, 朱裕生, 王慧章, 尚修志. 2001. 中国铜矿床. 北京: 地质出版社, 1-371
[45] 金章东, 李英, 朱金初. 1997. 霍各乞铜多金属矿区热水沉积岩类初探.   内蒙古地质, 25(2): 22-58
[46] 李文博, 赖勇, 孙希文, 王保国. 2007. 内蒙古白乃庙铜金矿床流体包裹体研究.   岩石学报, 23(9): 2165-2176
[47] 李文博, 陈衍景, 赖勇, 季建清. 2008. 内蒙古白乃庙铜金矿床的成矿时代和成矿构造背景.   岩石学报, 24(4): 890-898
[48] 李兆龙, 许文斗, 庞文忠, 1986. 内蒙古中部层控多金属矿床硫、铅、碳和氧同位素组成及矿床成因. 地球化学, 15(1): 13-22
[49] 牛树银, 许传诗, 胡晓, 孙爱群. 1991. 内蒙狼山地区的控矿构造研究.   长春地质学院学报, 21(3): 313-320
[50] 彭润民, 翟裕生, 王志刚, 韩雪峰, 秦俊文, 王建平, 梅建明. 2006. 内蒙古狼山-渣尔泰山矿集区海底喷流成矿特征与勘查.   矿床地质, 25(S1): 221-224
[51] 彭润民, 翟裕生, 韩雪峰, 王志刚, 王建平, 沈存利, 陈喜峰. 2007. 内蒙古狼山造山带构造演化与成矿响应.   岩石学报, 23(3): 679-688
[52] 任爱军, 余金杰, 杨海明, 池三川. 1992. 内蒙古霍各乞铜多金属矿区多期变形及对成矿的控制.   火山地质与矿产, 13(2): 81-90
[53] 王春增, 张明华, 曾剑, 1996. 狼山群的层序划分与霍各乞矿区复式倒转向斜的厘定. 大地构造与成矿学, 20(3): 212-219
[54] 杨福新. 1998. 内蒙狼山地区糜棱岩岩石特征及构造意义.   西北地质, 19(1): 1-7
[55] 余金杰, 杨海明, 叶会寿. 1993. 霍各乞铜多金属矿床的地质-地球化学特征及矿质来源. 矿床地质, 12(1): 67-76
[56] 翟裕生, 彭润民, 陈从喜, 蔡克勤, 邓军, 陈学明, 程小久, 王建平. 2008. 中国重要成矿系列的形成机制和结构特征. 北京: 地质出版社, 1-173
[57] 张明华, 王春增. 2002. 内蒙古霍各乞矿区狼山群伸展构造及其控矿作用.   广西科学, 9(3): 188-192