2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原研究所, 北京 100085;
4. 中国地质科学院地质研究所, 北京 100037
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China;
4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
1 引言
东南极普里兹构造带主要由普里兹湾沿岸地质露头组成,并向西延伸至内陆格罗夫山(Grove Mountains)(刘小汉等,2002;俞良军等,2002;刘晓春等, 2007,2013)。普里兹构造带的构造属性和地质演化是近年来受到广泛关注的科学问题(刘晓春等,2007)。东南极拉斯曼丘陵位于普里兹带的中心位置,对该区岩石进行深入研究对于理解普里兹构造带的变质热演化和大地构造属性具有重要意义。目前研究表明,普里兹带主要由早古生代泛非期构造热事件(~530Ma)和新元古代格林威尔期构造热事件组成(刘小汉等,1995;仝来喜等, 1998,2012;Tong et al., 2002; Tong and Wilson, 2006; Wang et al., 2008; Grew et al., 2012)。但是对于两次构造事件在该区的分布及其地质意义仍存在较大争议。主要有两种观点:(1)认为普里兹湾(Prydz Bay)地区格林威尔期构造热事件是局部的,该区以泛非期(500Ma)构造热事件为主,普里兹带是泛非期碰撞造山带(赵越等,1993;Hensen and Zhou, 1995; Carson et al., 1997; Fitzsimons et al., 1997; 刘晓春等,2007),与冈瓦纳大陆的最终拼合有关。主要依据是该带变质岩具有顺时针的P-T轨迹,在格罗夫山(Grove Mountains)存在反应地壳加厚的镁铁质高压麻粒岩(刘小汉等,2002;俞良军等,2002;刘晓春等,2007;胡健民等,2008;Liu et al., 2007,2009);(2)认为两次同样重要的麻粒岩相变质事件独立存在,两者形成于相似的温度条件下而前者具有更高的压力条件,早期的变质事件应该是格林威尔期构造变质事件的残留,而后期变质事件才是泛非期的记录(Dirks et al., 1993; Carson et al., 1995a; 刘小汉等,1995;Dirks and Hand ,1995; 仝来喜等,1998)。因此,泛非期普里兹带应该是具有陆内造山性质的板内造山带(Wilson et al., 2007),可能反映了东西冈瓦纳沿东非造山带拼合形成过程中的陆内构造响应(Wilson et al., 2007; Tong et al., 2002,2014; 仝来喜等,2012)。然而,该带涉及两个变质事件的完整的变质P-T轨迹还没有很好地建立。
镁铁质麻粒岩作为一种常见的高级变质岩石类型,可以很好的记录麻粒岩变质作用过程中的温压信息。镁铁质麻粒岩通常保存不同的“白眼圈”或“红眼圈”后成合晶反应结构,对其进行详细的研究,可以精确地反演一个地区的变质P-T轨迹演化史(Harley,1989; 翟明国,2009)。本研究采用传统的矿物温压计和THERMOCALC软件在NCFMASHTO体系下的变质相图模拟等方法(魏春景,2011),对在东南极拉斯曼丘陵发现的含石榴石镁铁质麻粒岩转石进行了详细的矿物组合与反应结构分析,结合已有的年代学证据,重建了该带涉及两个高级变质事件的完整的变质作用P-T演化轨迹及其可能形成的大地构造背景,并探讨了其可能的来源。这对理解普里兹带的构造性质具有重要意义。
2 区域地质背景普里兹湾地区许多岩石普遍遭受高级变质作用,大多数达到麻粒岩相变质,许多地方甚至达到混合岩化(Carson et al., 1997)。拉斯曼丘陵(Larsemann Hills)位于普里兹带中心部位,主要由米洛(Mirror)、布洛克尼斯(Broknes)和斯托尼斯(Stornes)三个半岛及其他小的岛礁组成,露头面积约60km2(图 1)。拉斯曼丘陵较早被认为是东南极晚元古代高级变质地体的一部分(Sheraton et al., 1984; Black et al., 1987; Stüwe and Powell, 1989; Tingey,1991;仝来喜等,1997),由高角闪岩相至麻粒岩相变泥质、砂质岩组成,夹少量含辉石的镁铁质麻粒岩和长英质复合正片麻岩组成(俞良军等,2002;王彦斌等,1994;仝来喜等,1997),镁铁质和长英质的正片麻岩主要呈透镜状、扁豆状和香肠状产出于泥质麻粒岩中。麻粒岩相副变质岩中以存在富硼和磷的岩石单元为特征,如电气石石英岩及一系列含高温的硼硅酸盐矿物硅硼镁铝石和柱晶石、电气石(任留东等,2007;任留东和刘小汉,1994)。副片麻岩中广泛发育部分熔融作用,形成各种含夕线堇青混合质片麻岩和混合岩(Stüwe and Powell, 1989; Ren et al., 1992; Dirks et al., 1993; Carson et al., 1997; 刘晓春等,2007)。后期花岗岩、伟晶岩广泛侵入早期形成的变质岩中。泥砂质副片麻岩被认为代表了沿普里兹湾广泛分布的盆地沉积序列的一部分,其范围可能从赖于尔群岛(Rauer Group)延伸约130km直到伯灵恩群岛(Bolingen Isl and s)(Fitzsimons and Harley, 1991; Thost et al., 1994; Carson et al., 1995a,1997; Dirks and Hand ,1995)。该盆地沉积时代可能为中元古代(刘晓春等, 2007,Wang et al., 2008)。而由长英质片麻岩和镁铁质岩组成的正片麻岩类则代表盆地的基底岩系(Fitzsimons and Harley, 1991; Dirks et al., 1993; 仝来喜等,2012),其侵位时代为晚中元古代(~1100Ma)(刘晓春等,2007;Wang et al., 2008)。
![]() | 图 1 东南极拉斯曼丘陵地区地质图(据仝来喜等,2012)及采样点,小图显示拉斯曼丘陵在普里兹湾的位置 小图中:LH-拉斯曼丘陵;S-Sstrene岛;B-伯灵恩群岛;BB-Brattstr and 海岸带;RG-赖于尔群岛;VH-西福尔丘陵 Fig. 1 Geological map of the Larsemann Hills,East Antarctica and the sample location,the small map shows the location of the Larsemann Hills in Prydz Bay Acronyms in the small map: LH-Larsemann Hills; S-Sstrene Isl and ; B-Bolingen Isl and s; BB-Brattstr and Bluffs; RG-Rauer Group; VH-Vestfold Hills |
该区最初研究认为存在格林威尔期(1100~1000Ma)低压的麻粒岩相变质作用,峰期变质条件为4.5kb/750℃的减压顺时针的P-T轨迹(Stüwe and Powell, 1989)。后来进一步详细的年代学和构造地质学的研究指示了大部分高级构造变质作用发生于泛非期(~500Ma),峰期变质条件为4.5kb/750℃(Ren et al., 1992)。Dirks and H and (1995)的研究表明该区存在两期高级构造热事件,早期变质条件为10kb/980℃(~1000Ma),后期经历泛非期(~500Ma)变质条件为6kb/800℃顺时针的P-T轨迹。Carson et al.(1997)则报道了峰期条件为7kb/800℃的泛非期(~500Ma)顺时针P-T轨迹。对该区构造早期的残留体的进一步研究表明,该区经历了至少两期高级构造热事件(Ren et al., 1992; 刘小汉等,1995; 仝来喜等,1998;Wang et al., 2008)。早期存在峰期变质条件为9 kb/850℃(Ren et al., 1992)或6.3kb/750℃的变质事件。详细的研究发现可能存在早期的蓝晶石假象,因此早期真正的峰期变质条件可能达到9.5kb/870℃并且早期~1000Ma变质事件具有近等压冷却的逆时针P-T轨迹(仝来喜等, 1996,1997,2012; Tong et al., 2014)。后期的传统U-Pb锆石年龄(Zhang et al., 1998)和40Ar-39Ar年龄(仝来喜等,1998;Tong et al., 2002)及 SHRIMP U-Pb变质锆石的年龄(Wang et al., 2008)都显示该区存在~1000Ma的高级变质事件。
根据前人研究,目前确定了拉斯曼丘陵至少四期变形(D1-D4)(Dirks et al., 1993; Carson et al., 1995a,b)。麻粒岩中残留的D1 构造可能形成于1000Ma,代表早期前进增厚事件的残迹。D2 及其后变形表现为一系列紧闭褶皱和剪切构造,同时形成镁铁质麻粒岩中典型的“白眼圈”的减压结构(Dirks et al., 1993; 王彦斌等,1994;Carson et al., 1995a)。对于 D1 组合及其历史则是不清楚的(Carson et al., 1995a,1997)。Wang et al.(2008)则系统的总结了拉斯曼丘陵地区的主要地质事件(表 1),早期(~1000Ma)麻粒岩相变质伴随D1变形事件,随后花岗片麻岩、同构造紫苏花岗岩的侵入。泛非期(~500Ma)也存在一次麻粒岩相变质并伴随强烈的深熔作用,同时发生D2北西西向逆冲及D3南北向伸展变形,后期同构造花岗岩的侵入。
| 表 1 东南极拉斯曼丘陵及邻区主要地质事件(据Wang et al., 2008) Table 1 The main geological events in the Larsemann Hills and its adjacent regions,East Antarctica(after Wang et al., 2008) |
该麻粒岩样品LT-147采自东南极拉斯曼丘陵布洛克尼斯半岛(图 1),为近原地的转石,岩性为石榴角闪二辉麻粒岩。手标本为青灰色,中粗粒花岗变晶结构,块状构造。该岩石主要由石榴子石(20%~30%)、斜长石(15~20%)、单斜辉石(10%)、斜方辉石(20%)、角闪石(10%~15%)、钛铁矿(5%~10%)等主要矿物组成,其他如磁铁矿、石英、黑云母、金红石等均含量较少,含量均不超过5%,为典型的镁铁质麻粒岩矿物组合。其中,石榴石、斜方辉石、钛铁矿等矿物组成大的变斑晶,小颗粒的斜长石、斜方辉石、黑云母等矿物组成基质。石榴子石粒径可达5~10mm,常包含斜方辉石、角闪石、石英、黑云母、钛铁矿、磁铁矿等早期矿物组合,其边部发育后成合晶组合单斜辉石+斜方辉石+斜长石+黑云母等矿物(图 2a)。有的石榴子石几乎完全分解形成蠕虫状的后成合晶矿物组合(图 2d)。斜方辉石斑晶粒径可达1~2mm,并且具有密集的机械双晶和膝折现象,表明其在重结晶过程中可能受到较强的应力作用。单斜辉石较自形,粒径约为0.3~1mm,与斜方辉石、角闪石、钛铁矿、斜长石等矿物呈平衡共生结构(图 2b),普遍出溶斜方辉石条纹(图 2f),部分包裹早期斜长石、石英及角闪石等矿物颗粒。大的自形角闪石与斜方辉石、单斜辉石、斜长石等矿物共生,可能代表峰期组合。小的他形角闪石颗粒则被变斑晶包裹,应属于早期进变质阶段矿物。黑云母普遍存在于各变质阶段,早期阶段被大的斑晶包裹,基质中黑云母成两个方向定向排列,S1阶段黑云母多与基质中矿物共生,推测对应于峰期变质。S2阶段黑云母则与后成合晶共生,推测形成于退变质阶段。斜长石普遍存在于各个变质阶段,基本成包裹体、基质矿物和后成合晶三种形态产出。石英出现于基质及被大的斑晶矿物所包裹。峰期阶段可能存在石英,被后期石榴石的分解反应消耗。钛铁矿在各变质其次广泛出现,早期的钛铁矿被石榴石包裹,峰期则以大的变斑晶颗粒出现于基质中,后期退变质的则围绕大的石榴石和斜方辉石颗粒边缘分布峰期大的石榴石颗粒部分析出针状的钛铁矿,大的黑云母斑晶沿着解理缝也会析出钛铁矿,早期形成的钛铁矿中出溶磁铁矿条纹。
![]() | 图 2 含石榴石镁铁质麻粒岩样品LT-147的显微照片 (a)-大的石榴石斑晶内包裹早期进变质阶段矿物opx+hb+ilm+pl+bi+mt+ap;(b)-峰期阶段粗粒的角闪石斑晶、斜方辉石、斜长石和钛铁矿等共生;(c)-基质中黑云母明显沿S1、S2两个方向大致定向排列,S1为峰期矿物,S2为后期退变质生成;(d)-峰期粗粒石榴石和斜方辉石斑晶及后期退变质的后成合晶矿物,即opx+pl+ilm+bi等;(e)-石榴石斑晶边部发育的后成合晶矿物;(f)-单斜辉石斑晶出溶斜方辉石叶片.矿物缩写:g-石榴石;opx-斜方辉石;cpx-单斜辉石;hb-普通角闪石; bi-黑云母; ilm-钛铁矿; mt-磁铁矿; ap-磷灰石; pl-斜长石 Fig. 2 Microphotographs of garnet-bearing mafic granulite sample LT-147 (a)-inclusions in the garnet porphyroblast which represent prograde metamorphism,opx + hb + ilm + pl + bi ± mt ± ap;(b)-the peak metamorphic minerals,hb+opx+pl+ilm±mt;(c)-biotites divide into S1 and S2 due to their arrange orientation, and S1 biotites belong to the peak metamorphism,S2 biotites due to the retrograde metamorphism;(d)-the peak metamorphic minerals orthopyroxene and garnet, and the vermicular minerals consist the corona;(e)-coronas opx+pl+bi+ilm±mt develop around garnet;(f)-orthopyroxene exsolusion lamellae in clinopyroxenes |
观察薄片矿物组合和反应结构,该镁铁质麻粒岩被分为三期。
(1)M1早期进变质阶段:主要由包裹在石榴石核部或核幔过渡部位的早期矿物包裹体组成。主要包裹矿物为斜方辉石、角闪石、黑云母和钛铁矿,少量的长石、石英颗粒,可偶见磷灰石和锆石等副矿物。早期消耗角闪石和石英,可能的变质反应是: hb+q=opx+q+liq
(2)M2峰期阶段:由大的石榴石变斑晶和由基质中大的变斑晶矿物组成。主要为斜长石、斜方辉石、单斜辉石、角闪石、石榴石和钛铁矿及少量黑云母等共生。其中,斜长石和斜方辉石等显示明显的机械双晶,可能为高温变质同时受应力作用重结晶形成。可能指示了的变质反应:hb+cpx+q=g+opx+pl+liq。
(3)M3退变质阶段:主要由石榴石斑晶边部的后成合晶组合构成,主要组成矿物为斜方辉石、单斜辉石、斜长石、黑云母、钛铁矿等组成。
4 矿物化学矿物化学成分分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室的JXA-8100电子探针完成。分析条件为:加速电压15kV,束流3.000±0.002E-0.8(A),束斑大小为1μm,大部分元素的分析时间为10s,采用ZAF校正方法。电子探针分析结果见表 2。
| 表 2 拉斯曼丘陵镁铁质麻粒岩中代表性矿物电子探针数据(wt%) Table 2 The representative mineral microprobe data(wt%)of the mafic granulite from Larsemann Hills |
石榴子石 一般主要是铁铝榴石-镁铝榴石-钙铝榴石的固溶体。石榴石含量主要从Alm55-57Pyr18-19Grs14-16Sps1-2到Alm63-64Pyr23-24Grs19-21Sps2-3变化(图 3)。石榴石主要以大的斑晶出现于镁铁质麻粒岩中,保存较好的石榴石大斑晶具有不太显著的扩散环带。分别选取两颗大的石榴石斑晶做了成分剖面。从核部到边部,各种成分基本不变或变化很小。而到了石榴石的最边部,可见各种成分显著的变化。Fe2+/(Fe2++Mg)的含量明显增加,铁铝榴石含量增加,镁铝榴石和钙铝榴石含量降低,而锰铝榴石含量则略微升高(图 4a)。这种成分剖面特征反应了后期存在石榴石的分解反应。以上特征表明石榴石的核部成分保留了峰期变质时的特征,未受到后期退变质的影响,而边部则发生退变质性质的分解,形成opx+pl±hb+bi+ilm等矿物组成的后成合晶。
![]() | 图 3 麻粒岩相中石榴石的Grs-Alm+Sps-Prp图解 A、B、C为分别为科尔曼三类榴辉岩中石榴石成分区,D为麻粒岩相石榴石分布区 Fig. 3 Grs-Alm+Sps-Prp diagram for garnet in granulite |
![]() | 图 4 大的石榴石斑晶(a)和斜方辉石斑晶(b)成分剖面 Fig. 4 Compositional profiles of a garnet porphyroblast(a) and an orthopyroxone porphyroblast(b) |
斜方辉石 主要以大的变斑晶和后期后成合晶出现,早期进变质的斜方辉石则被包裹在石榴石颗粒内。早期及峰期斜方辉石斑晶其Al2O3含量明显比后期退变质斜方辉石高。早期M1阶段的斜方辉石Al2O3含量约为1.98%~2.34%,峰期M2阶段Al含量略低,为1.69%~1.90%,后期退变质阶段Al2O3含量降低,为0.96%~1.66%。峰期斜方辉石斑晶没有明显环带,其Al2O3含量核部略高于边部,核部多为1.6%~1.7%,而边部Al2O3含量类似于退变质的后成合晶斜方辉石Al2O3含量,多为1.2%~1.5%。XMg(=Mg/(Fe2++Mg))核部略低于边部,Si的含量核部低于边部(图 5a)。
![]() | 图 5 镁铁质麻粒岩矿物化学图解 (a)-各变质阶段斜方辉石XMg-Al图解;(b)-各变质阶段黑云母XMg-Ti图解;(c)-镁铁质麻粒岩中角闪石分类图解(据Leake et al., 2003) Fig. 5 The mineral chemistry diagrams of the mafic granulite (a)XMg-Al diagram of orthopyroxenes;(b)XMg-Ti diagram of biotites;(c)classification diagram of amphiboles in the mafic granulite |
单斜辉石 主要出现在峰期矿物组合中,后成合晶中也存在少量的蠕虫状单斜辉石+斜方辉石+斜长石组合。各期次单斜辉石矿物化学成分基本一致,SiO2含量变化很小,即50%~51%之间。CaO含量从20%~22%之间变化,Al2O3含量基本从1.9%~2.1%变化,少数颗粒可达2.4%。从核部到边部无明显成分变化。
角闪石 多为钙镁闪石,Si原子数在6.1~6.4之间变化(角闪石分子以23个氧原子为基础),XMg(XMg=Fe/(Fe+Mg))值变化在0.50~0.69之间(图 5c),Ti原子数在0.14~0.27之间变化。根据岩相学划分,第一期进变质阶段角闪石以包体形式存在于大的石榴石斑晶中,其矿物化学成分特点为XMg含量较高,为0.6~0.7,Ti含量较低,其原子数约为0.14~0.18,Al原子数为2.4~2.6,Na2O含量1.8%~2.0%,K2O含量为1.4%~1.8%。第二期峰期变质角闪石以变斑晶的形式存在,矿物化学特征以XMg、Na和Al含量较低,而Ti和K含量相对较高位特征。其XMg含量约为0.5~0.53,Ti原子数为0.22~0.28,Al原子数在2.0~2.2之间,Na2O含量为1.50%~1.87%之间,K2O含量为1.74%~1.95%。
斜长石 在镁铁质麻粒岩中广泛存在,不同变质其次的矿物组合中都出现,其An变化为87~92,主要为培长石和钙长石。早期斜长石被大的石榴石、斜方辉石颗粒所包裹,其成分中CaO含量较高,K2O含量极低,主要成分变化约为An80-92Ab6-7Or0-1。峰期阶段形成的斜长石其成分中CaO含量基本不变,其成分变化为An90-93Ab4-7Or0-1。后期退变质后成合晶中的斜长石CaO含量为稍微偏低,An87-90Ab7-9Or0-1。
黑云母 早期被石榴石包裹的黑云母Ti含量较低,基质中的黑云母根据定向排列方向明显可分为两期。各变质期次黑云母成分有较大差别。部分黑云母沿解理方向析出钛铁矿。黑云母中Ti含量最高可达4.5%左右。早期进变质阶段的黑云母Ti含量为2.9%~3.1%,XFe(XFe=Fe2+/(Fe2++Mg))约为20~30之间(图 5b),F的含量为1.0%~1.5%。峰期变质阶段S1对应的黑云母,具有富Ti、富Fe的特点,其Ti含量普遍分布在3.5%~4.5%之间,XFe约为40~45之间,F含量为0.1%~0.5%。后期退变质阶段S2对应黑云母,其Ti含量变化在M1阶段和M2阶段之间,即3.0%~3.7%之间,XFe约为30~40,F含量在0.5%~0.9%之间。
5 传统温压计算根据变质阶段划分,结合矿物化学数据,使用传统的矿物温压计和THERMOCACL平均温压计算方法(Powell and Holl and ,1994)对不同变质阶段矿物组合进行温度和压力计算,温压计计算结果见表 3,THERMOCALC 平均温压计算结果见表 4。
| 表 3 利用传统矿物温压计计算的各阶段变质P-T条件 Table 3 The calculated P-T results of different metamorphic stages by conventional mineral thermobarometry |
| 表 4 应用Powell and Holl and (1994)平均温压计算方法对镁铁质麻粒岩样品LT-147的各阶段温压计算结果,所有P、T计算fit值均落入95%置信度内 Table 4 Average P-T calculations for the mafic granulite LT-147 using the approach of Powell and Holl and (1994),all the fit values fall within 95% confidence level |
(1)进变质阶段(M1)矿物组合为:hb+opx+pl+bi+ilm±q±mt,其中与hb,bi和opx接触的石榴石核部与这些矿物可能达到局部平衡,因此采用g-opx-pl-q温压计,及g-hb-pl-q压力计估算M1阶段的温压条件,其温度还可以通过THERMOCALC平均温压计求算。进变质阶段M1:650~750℃/5.5~6.5kb,在5.5~7.5kb压力范围内,计算了其平均温度,置信度95%范围内计算的平均温度在670~780℃范围内,与传统矿物温压计吻合较好。
(2)峰期阶段(M2)矿物组合:g+opx+cpx+hb+bi+ilm+pl±q±mt,根据石榴石幔部成分结合其他峰期矿物组合,利用g-opx-pl-q温压计和hb-pl温度计计算该阶段温压条件。计算结果表明,峰期阶段M2:大部分温度计计算结果集中在850~900℃,少数高于950℃,压力在7~9kb范围内。峰期阶段分别计算了平均温度和压力,当设置温度变化在800~950℃范围内时,对应计算的平均压力为7.5~8.8kb;当设置压力变化在7~9kb范围内时,对应的温度为810~910℃。综合M2阶段平均温压计算结果,该阶段温压条件应该在850~900℃/8~8.5kb范围内。
(3)后期叠加变质阶段(M3)矿物组合: opx+pl+bi+ilm±mt,后成合晶opx+pl与石榴石边部局部平衡,所以可以利用g-opx-pl-q温压计计算温度和压力。温度相对于M2阶段稍微降低,750~850℃,压力则降低为6~7kb。叠加变质阶段,我们设置温度在700~900℃内变化,对应的压力变化在5.5~7.5kb。各阶段平均温压计算基本与传统温压计相差不大,给出了有意义的温压估算结果。
6 变质相平衡模拟变质相图通常由一系列视剖面图构成,并指示具有特定全岩成分的相平衡关系。在P-T视剖面图上,可以定量计算每个矿物摩尔含量等值线、矿物成分等值线,从而可以通过矿物电子探针成分很好的限定变质岩石的P-T演化,从定量的角度来理解变质作用过程。因此,变质相图模拟被认为是研究变质作用非常有效的方法(魏春景,2011)。
本文利用THERMOCALC 3.33程序(Powell and Holland ,1998)及ds55数据库(Powell and Holland ,1998,2003年升级),忽略MnO,P2O5及K2O等次要成分,在NCFMASHTO体系下对本区镁铁质麻粒岩做了相平衡模拟。由于镁铁质麻粒岩缺乏合适的熔体活度模型,因此在计算过程中不考虑熔体,假设变质过程中流体为纯水。实验和野外的研究表明不考虑熔体对于相图的拓扑结构和相边界没有大的影响,而高温部分由于不考虑熔体,可能是亚稳定(Daczko and Halpin, 2009)。少量的K2O和MnO在计算过程中不考虑。前人研究表明,对于典型的大洋中脊玄武岩而言,Fe3+含量约为全铁含量的12%~16%(Bezos and Humler, 2005; Cottrell and Kelley, 2011),本文采用14%这一数值。本文视剖面图计算采用的矿物活度模型分别为石榴石(g; White et al., 2007),斜方辉石(opx; White et al., 2002),单斜辉石(cpx; Green et al., 2007),普通角闪石(hb; Diener et al., 2007),绿帘石(ep; Holland and Powell,1998)斜长石(pl; Holland and Powell,2003),钛铁矿(ilm; White et al., 2000),磁铁矿(mt;White et al., 2000),流体相为纯水,金红石、石英为纯相矿物。结合主要矿物电子探针数据和矿物含量,得出用于模拟计算的有效全岩成分为SiO2=49.10,Al2O3=8.98,CaO=12.87,MgO=10.92,FeO=13.86,Na2O=1.42,TiO2=1.90,O=0.95(mol%)。
图 6显示的是该麻粒岩在NCFMASHTO体系下计算的P-T视剖面图。在该视剖面图中,以二变域和三变域为主,石英、流体(纯水)及钛铁矿过量。通过石榴石核部到边部的成分变化结合各阶段矿物组合稳定域及前述温压计算结果对P-T条件可以作出有效限定。早期进变质阶段矿物组合opx+hb+pl+ilm可能处于图中cpx+pl+mt+opx+hb区域内,实际早期未见单斜辉石,原因可能是反应消耗未保存下来或者由于切片方位所致。该阶段温度限定在750~800℃范围内,压力变化较大,大概在4~7kb。峰期阶段由于早期矿物经历升温升压,角闪石等矿物脱水,石榴石出现,形成g+cpx+opx+pl+hb组合被限制在较小的温压范围内,在8~11kb,800~900℃范围内稳定,通过石榴石的XFe(0.69~0.72)和XCa(0.18~0.21)等值线可以限定峰期温压条件为8.5~9kb/880℃,与传统矿物温压计和THERMOCALC平均温压计算结果相比,压力偏高而温度相当,这可能是由于矿物活度模型不同造成,并且在NCFMASHTO体系下黑云母被忽略流体假设为纯水对计算结果都有影响。后期退变质阶段发生降压反应,石榴石分解形成opx+pl的后成合晶,矿物组合位于opx+pl+mt+cpx区域,压力范围明显在峰期之下,小于8kb,温度变化范围大,从800℃到1000℃变化。结合传统矿物温压计算结果和avPT计算结果(表 3、表 4),得出如图所示P-T轨迹(图 6)。从早期M1阶段到峰期M2阶段是一个增温增压的阶段,峰期M2到峰期后M3阶段是一个典型的近等温降压的退变质阶段。
![]() | 图 6 在NCFMASHTO(+q+H2O+ilm)体系下模拟的拉斯曼丘陵镁铁质麻粒岩的视剖面图及石榴石成分等值线 (a)-石榴石中铁含量等值线(XFe=Fe/(Fe+Mg));(b)-石榴石中的钙含量等值线(XCa=Ca/(Fe+Mg+Ca)) Fig. 6 The P-T pseudosection and garnet composition isopleth in the NCFMASHTO(+q+H2O+ilm)system for the mafic granulite from the Larsemann Hills (a)-isopleths of XFe in garnet(XFe=Fe/(Fe+Mg));(b)-isopleths of XCa in garnet(XCa=Ca/(Fe+Mg+Ca)) |
本文通过详细的岩相学观察和各种变质温压条件计算,确定了拉斯曼丘陵含石榴石镁铁质麻粒岩近原地转石的P-T轨迹。结果表明该镁铁质麻粒岩样品经历的是一个早期增温增压、峰期后近等温减压的顺时针P-T轨迹。一般认为,一次构造事件对应的顺时针的P-T轨迹通常与大陆俯冲增厚的构造过程相关,如俯冲带或者陆-陆碰撞环境(England and Thompson,1984; Bohlen,1987)。而对于多次构造事件或者多相变质对应的P-T轨迹,其构造意义则是不同的,多相变质作用则对应于多次构造变质事件。
前人对于拉斯曼丘陵地区同位素年代学已有较深入研究,总的来讲,该区存在两期变质年龄。较早研究认为,早期变质年龄可能集中于在~600Ma(赵越等,1993;Zhao et al., 1995; 任留东和刘小汉,1995)或者~770Ma(仝来喜等,1995;Tong et al., 1995)或者~1000Ma(Dirks et al., 1993; Carson et al., 1995),但是之后的研究支持了早期变质热事件应该是在~1000Ma左右,主要从1000Ma 到900Ma变化(Hensen and Zhou, 1995; Tong et al., 1995; Liu et al., 2007; Wang et al., 2008; Grew et al., 2012)。在埃默里冰架东缘的基性麻粒岩和正片麻岩中,锆石U-Pb SHRIMP年代都存在1000~1100Ma的数据(Liu et al., 2007)。在斯托尼斯半岛,Grew et al.(2012)等对石英岩和正片麻岩做了锆石U-Pb定年,也获得了1023±19Ma等变质年龄 。以上广泛存在的格林威尔期同位素年龄,表明东南极拉斯曼丘陵及其邻区,确实存在~1000Ma的高级变质事件(Wang et al., 2008)。后期年龄数据则主要集中于550~500Ma(Zhao et al., 1992,1993; Hensen and Zhou, 1995; Zhang et al., 1996; Fitzsimons et al., 1997; Kelsey et al., 2003; Liu et al., 2006,2007,2009; Wang et al., 2008),Kelsey et al.(2003)在赖于尔群岛富镁富鋁的超高温泥质麻粒岩中,利用电子探针独居石(Th-U)-Pb 化学定年法,也获得了511±4Ma的泛非期年龄,在赖于尔群岛变沉积岩中锆石中U-Pb年龄也有490~590的年龄数据(Kelsey et al., 2008)。在埃默里冰架东缘的基性麻粒岩和副片麻岩中,也获得了450~500Ma的Sm-Nd等时线年龄和533±10Ma的锆石U-Pb SHRIMP年龄(Liu et al., 2007)。格罗夫山的基性高压麻粒岩中锆石U-Pb SHRIMP年龄为530~570Ma,Sm-Nd等时线年龄为470~530Ma(Liu et al., 2009),花岗岩中的锆石年龄为500~550Ma(Liu et al., 2006)。Wang et al.(2008)在斯托尼斯半岛、Vogoy岛、米洛半岛、格洛夫尼斯半岛等地利用锆石U-Pb SHRIMP方法,都获得了500~550Ma的泛非期年代学数据。该样品的锆石U-Pb年龄也存在~1000Ma的上交点和~500Ma的下交点年龄(据仝来喜等未发表资料)。550~500Ma的同位素年龄应该代表着泛非期构造热事件在该区的叠加影响。
上述年代学数据和变质作用P-T演化,支持了拉斯曼丘陵地区存在两次高级变质事件,早期高温高压变质事件时代约为~1000Ma,对应格林维尔运动。后期近等温减压变质事件时间为550~500Ma,对应于泛非期构造热事件的叠加。拉斯曼丘陵及其相邻地区是普里兹构造带中研究较详细的区域(刘晓春等,2007)Wang et al.(2008)系统总结了拉斯曼丘陵及其邻区主要地质事件序列(见表 1)。主要分为格林威尔期和泛非期两次独立无关的构造事件。该区近原地的镁铁质麻粒岩转石岩相学结构和热力学模拟的结果支持该区存在两次无关的高级变质事件。早期包体矿物构成进变质阶段矿物组合由opx+pl+bi+hb+ilm±q组成,变质温压为650~750℃/5.5~6.5kb,随后经历升温升压达到峰期变质8.5~9kb/880℃,矿物组合为g+opx+cpx+hb+pl+ilm+bi,这一过程应该代表格林威尔期(~1000 Ma)的构造热事件在该区的岩石学记录。而后从峰期变质经历近等温减压反应至6~7kb/750~850℃,形成退变质阶段组合opx+pl+ilm+bi±hb±mt±q。这种结构被普遍认为代表典型的减压结构。“白眼圈”结构在我国华北克拉通中部造山带(Zhao et al., 1999)、南极(Harley,1989)等地有广泛发育。在研究我国华北镁铁质麻粒岩时肖玲玲等(2011)提出石榴石周围这种白眼圈结构通常具有两种地质含义:(1)这种细粒交生结构是石榴石在相对较低的压力条件下发生分解形成的,代表一种典型的减压结构(Harley,1989);(2)它反映退变质作用持续的时间不长,是一个相对快速抬升的过程,导致石榴石的分解反应并没有进行彻底(郭敬辉等,1998)。而Pitra et al.(2010)认为这种结构得以保存的重要原因是麻粒岩相变质峰期后缺水。该区镁铁质麻粒岩发育的“白眼圈”结构,代表一个近等温降压的过程。该结构可能对应于一个快速剥露的地质过程,结合各阶段的温压计算及相平衡模拟,它可能会为拉斯曼丘陵地区地质过程做进一步的制约。这一过程则代表了泛非期(~500Ma)的构造热事件在该区的响应。
普里兹带是一个典型的多相变质带,目前普遍认为格林威尔期(~1000Ma)和泛非期(~500Ma)的构造热事件在该区广泛存在。关于拉斯曼丘陵及其所在的普里兹湾地区,普遍认为东南极泛非期普里兹带被普遍认为是继东南极莫桑比克带之后的又一主要构造带,但对于其构造属性却存在碰撞造山带(Fitzsimons,2000; Boger,2001; Zhao et al., 2003; Liu et al., 2006,2007,2009)和板内活动带(Wilson et al., 1997,2007; Tong et al., 2002; Tong and Wilson et al., 2006)两种不同观点。
该镁铁质麻粒岩样品为近原地转石,磨圆较差显示其未经冰川的长距离搬运,推测其可能来自于拉斯曼丘陵附近冰盖下的基岩露头。该麻粒岩样品与发现于埃默里冰架东缘(Eastern Amery Ice Shelf)的镁铁质麻粒岩相比,其结构类似,峰期温压条件也很接近(Liu et al., 2007)。Liu et al.(2007)认为其代表泛非期碰撞造山事件。然而目前普里兹带并未发现泛非期蛇绿岩、榴辉岩等典型的碰撞造山带的岩石学记录(Fitzisimons,2000; 刘晓春,2009),只有在格罗夫山发现了唯一比较可信的碰撞造山产物镁铁质高压麻粒岩转石(Liu et al., 2009)。因此我们认为镁铁质麻粒岩的进变质到峰期变质阶段代表格林威尔期构造事件(~1000Ma),后期退变质过程则代表泛非期(~500Ma)构造热事件。从本文的研究结果来看,泛非期普里兹带更可能是受东非碰撞造山作用或者罗斯主动大陆边缘俯冲作用在东南极陆内的远程活动响应(Tong et al., 2002; Tong and Wilson et al., 2006)。
8 结论本文通过对该区含石榴石镁铁质麻粒岩详细的岩相学观察,传统矿物温压计算和平均温压计算方法,结合变质相平衡模拟的方法,给出了该镁铁质麻粒岩相对可靠的P-T演化轨迹。结合已有的变质年代学资料,得出以下认识:
(1)拉斯曼丘陵近原地的镁铁质麻粒岩转石存在三个阶段变质矿物组合,早期(M1)以矿物包体组合hb+opx+pl+q±cpx为代表,温压条件为650~750℃/6~7kb;峰期变质(M2)则以颗粒较大的变斑晶组合g+opx+cpx+hb+pl+bi为代表,计算的温压条件为850~950℃/8~8.5kb;后期叠加变质(M3)则以后成合晶矿物组合opx+cpx±hb+pl+bi+ilm为代表,温压条件为850~900℃/6~7kb。整个P-T轨迹为顺时针,早期增温增压进变质,峰期后则经历了一个近等温降压的过程。
(2)已有的年龄证据表明,拉斯曼丘陵及其邻区经历了两次无关的高级变质事件,进变质阶段对应~1000Ma的格林威尔高级变质事件,峰期后的等温减压过程则对应于~500Ma的泛非期高级变质事件。顺时针P-T轨迹是多相变质事件的结果,~500Ma的高级变质事件更可能代表的是对应于泛非运动引起的一次陆内造山活动。
致谢 感谢国家海洋局极地办和中国极地研究中心在第29次南极考察期间提供的后勤支持和保障;电子探针分析得到广州地化所同位素地球化学国家重点实验室陈林丽的帮助;两位审稿人给出了有益的修改建议;在此一并表示诚挚的感谢。
| [1] | Boger SD, Wilson CJL and Fanning CM. 2001. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana? Geology, 29: 463-466 |
| [2] | Bezos A and Humler E. 2005. The Fe 3+/∑Fe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta, 69(3): 711-725 |
| [3] | Bhattacharya A, Krishnakumar KR, Raith M and Sen SK. 1991. An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and the orthopyroxene-garnet-plagioclase-quartz barometer. Journal of Petrology, 32(3): 629-656 |
| [4] | Black LP, Harley SL, Sun SS and Mcculloch MT. 1987. The Rayner complex of East Antarctica: Complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology, 5(1): 1-26 |
| [5] | Bohlen SR. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology, 95: 617-632 |
| [6] | Carson CJ, Dirks PHGM, Hand M, Sims JP and Wilson CJL. 1995a. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132(2): 151-170 |
| [7] | Carson CJ, Hand M and Dirks PHGM. 1995b. Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism. Mineralogical Magazine, 59(395): 327-339 |
| [8] | Carson CJ, Powell R, Wilson CJL and Dirks PHGM. 1997. Partial melting during tectonic exhumation of a granulite terrane: An example from the Larsemann hills, east Antarctica. Journal of Metamorphic Geology, 15(1): 105-126 |
| [9] | Cottrell E and Kelley KA. 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3-4): 270-282 |
| [10] | Daczko NR and Halpin JA. 2009. Evidence for melt migration enhancing recrystallization of metastable assemblages in mafic lower crust, Fiordland, New Zealand. Journal of Metamorphic Geology, 27(2): 167-185 |
| [11] | Diener JFA, Powell R, White RW and Holland TJB. 2007. A new thermodynamic model for clino-and orthoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631-656 |
| [12] | Dirks PHGM, Carson CJ and Wilson CJL. 1993. The deformation history of the Larsemann Hills, Prydz Bay: The importance of the Pan-African (500Ma) in East Antarctica. Antarctic Science, 5: 179-192 |
| [13] | Dirks PHGM and Hand M. 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Journal of Earth Sciences, 42(2): 157-172 |
| [14] | Eckert JO, Newton R and Kleppa O. 1991. The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist, 76: 148-160 |
| [15] | England PC and Thompson AB. 1984. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928 |
| [16] | Fitzsimons ICW and Harley SL. 1991. Geological relationships in high-grade gneiss of the Brattstrand Bluffs Coastline, Prydz Bay, East Antarctica. Australian Journal of Earth Sciences, 38(5): 497-519 |
| [17] | Fitzsimons ICW, Kinny PD and Harley SL. 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 9(1): 47-51 |
| [18] | Fitzsimons ICW. 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Sciences, 31(1): 3-23 |
| [19] | Green ECR, Holland TJB and Powell R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. American Mineralogist, 92(7): 1181-1189 |
| [20] | Grew ES, Carson CJ, Christy AG, Maas R, Yaxley GM, Boger SD and Fanning CM. 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Research, 206: 87-108 |
| [21] | Guo JH, Zhai MG, Li YG and Yan YH. 1998. Contrasting metamorphic P-T maths of Archaean migh-pressure granulites from the North China craton: Metamorphism and tectonic significance. Acta Petrologica Sinica, 14(4): 430-448 (in Chinese with English abstract) |
| [22] | Harley SL. 1984. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. Journal of Petrology, 25(3): 665-696 |
| [23] | Harley SL. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215-247 |
| [24] | Hensen BJ and Zhou B. 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature. Geology, 23(3): 225-228 |
| [25] | Holland TJB and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447 |
| [26] | Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343 |
| [27] | Holland TJB and Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492-501 |
| [28] | Hu JM, Liu XC, Zhao Y, Xu G and Ren LD. 2008. Advances in the study of the orogeny and structural deformation of Prydz tectonic belt in east Antarctica. Acta Geoscientica Sinica, 29(3): 343-354 (in Chinese with English abstract) |
| [29] | Kelsey DE, Powell R, Wilson CJL and Steele DA. 2003. (Th+U)-Pb monazite ages from Al-Mg-rich metapelites, Rauer Group, East Antarctica. Contributions to Mineralogy and Petrology, 146(3): 326-340 |
| [30] | Kelsey DE, Wade BP, Collins, AS, Hand M, Sealing CR and Netting A. 2008. Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 161(3-4): 355-388 |
| [31] | Kohn MJ and Spear FS. 1990. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. American Mineralogist, 75: 89-96 |
| [32] | Leake BE, Woolley AR, Birch WD, Burke EA, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG and Schumacher JC. 2003. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's 1997 recommendations. The Canadian Mineralogist, 41(6): 1355-1362 . |
| [33] | Liu XC, Jahn BM, Zhao Y, Li M, Li H and Liu X. 2006. Late Pan-African granitoids from the Grove Mountains, East Antarctica: Age, origin and tectonic implications. Precambrian Research, 145(1-2): 131-154 |
| [34] | Liu XC, Zhao Y, Zhao GC, Jian P and Xu G. 2007. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. Journal of Petrology, 48(8): 1443-1470 |
| [35] | Liu XC, Zhao Y, Liu XH, Hu JM and Xu G. 2007. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica. Earth Science Frontiers, 14(1): 56-63 (in Chinese with English abstract) |
| [36] | Liu XC. 2009. Polymetamorphism of the Prydz Belt, East Antarctica: Implications for the reconstruction of the Rodinia and Gondwana supercontinents. Acta Petrologica Sinica, 25(8): 1808-1818 (in Chinese with English abstract) |
| [37] | Liu XC, Hu JM, Zhao Y, Lou Y, Wei C and Li X. 2009. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana. Precambrian Research, 174(1-2): 181-199 |
| [38] | Liu XC, Zhao Y, Hu JM, Liu XH and Qu W. 2013. The Grove Mountains: A typical Pan-African metamorphic terrane in the Prydz belt, East Antarctica. Chinese Journal of Polar Research, 25(1): 7-24 (in Chinese with English abstract) |
| [39] | Liu XH, Tong LX, Li JL, Zhao Y, Ren LD and Wang YB. 1995. Tectonic evolution of East Antarctica shield during Mesoproterozoic and Early Palaeozoic. In: Program and Extended Abstracts, Conference on Geology across Taiwan Strait. 2: 165-169 (in Chinese) |
| [40] | Liu XH, Zhao Y, Liu XC and Yu LJ. 2002. The geological features of Grove Mountain, East Antarctica: A new evidence of last suturation zone in Gondwana. Science China (Series D), 32(6): 457-468(in Chinese) |
| [41] | Newton R and Perkins D. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene-(clinopyroxene)-quartz. American Mineralogist, 67(3-4): 203-222 |
| [42] | Perchuk LL and Lavrent'yeva IV. 1990. Garnet-orthopyroxene and garnet-amphibole geothermobarometry: Experimental data and thermodynamics. International Geology Review, 32(5): 486-507 |
| [43] | Pitra P, Kouamelan AN, Ballèvre M and Peucat JJ. 2010. Palaeoproterozoic high-pressure granulite overprint of the Archean continental crust: Evidence for homogeneous crustal thickening (Man Rise, Ivory Coast). Journal of Metamorphic Geology, 28(1): 41-58 |
| [44] | Powell R and Holland TJB. 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79(1-2): 120-133 |
| [45] | Ren L, Zhao Y, Liu X. and Chen T. 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds.). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing, 145-153 |
| [46] | Ren LD and Liu XH. 1994. Occurrence of the assemblage grandidierite, kornerupine, and tourmaline in Antarctica. Antarctica Research, 6(1): 1-7 (in Chinese with English abstract) |
| [47] | Ren LD and Liu XH. 1995. Age of the metamorphic event of the garnet-pyroxene granulite from the Sostrenes land, Prydz Bay, East Antarctica and its relation to the neighbouring area. Antarctic Research, 7: 13-17 (in Chinese with English abstract) |
| [48] | Ren LD, Geng YS, Wang YB and Zhao Y. 2007. On the protolith of the sillimanite gneisses in the Larsemann Hills, East Antarctica. Earth Science Frontiers, 14(1): 75-84 (in Chinese with English abstract) |
| [49] | Sen SK and Bhattacharya A. 1984. An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contributions to Mineralogy and Petrology, 88(1-2): 64-71 |
| [50] | Sheraton JW, Black LP and Mcculloch MT. 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: The extent of Proterozoic reworking of Archaean continental crust in East Antarctica. Precambrian Research, 26(2): 169-198 |
| [51] | Stüwe K and Powell R. 1989. Metamorphic segregations associated with garnet and orthopyroxene porphyroblast growth: Two examples from the Larsemann Hills, East Antarctica. Contributions to Mineralogy and Petrology, 103(4): 523-530 |
| [52] | Thost DE, Hensen BJ and Motoyoshi Y. 1994. The geology of a rapidly uplifted medium and low-pressure granulite terrane of Pan-African age: the Bolingen Islands, Prydz Bay, East Antarctica. Petrology, 2: 293-316 |
| [53] | Tong LX, Liu XH, Zhang LS and Chen FK. 1995. The U-Pb zircon chronology of mafic granulite from the Larsemann Hills, East Antarctica and its possible geological implications. Terra Antartica, 2: 123-126 |
| [54] | Tong LX, Liu XH, Xu P, Han LL, Zhao Y, Ren LD and Wang YB. 1996. Discovery of sapphirine-bearing hyperthine-quartzite in the Larsemann Hills, East Antarctica and its geological implication. Chinese Science Bulletin, 41(13): 1205-1208 (in Chinese) |
| [55] | Tong LX, Liu XH, Zhang LS, Chen HH, Ren LD, Wang YB and Zhao Y. 1997. Characteristics of the early remnant mineral associations in granulite-facies rocks from the Larsemann Hills, East Antarctica and their metamorphic conditions. Acta Petrologica Sinica, 13(2): 127-138 (in Chinese with English abstract) |
| [56] | Tong LX, Liu XH, Zhang L, Chen HH, Chen FK, Wang YB and Ren LD. 1998. The 40Ar-39Ar ages of hornblendes in Grt-Pl-bearing amphibolite from the Larsemann Hills, East Antarctica and their geological implications. Chinese Journal of Polar Research, 10(3): 167-171 (in Chinese with English abstract) |
| [57] | Tong LX, Wilson CJL and Liu XH. 2002. A high-grade event of -1000Ma preserved within the -500Ma mobile belt of the Larsemann Hills, East Antarctica: Further evidence from 40Ar/39Ar dating. Terra Antarctica, 9: 73-86 |
| [58] | Tong LX and Wilson CJL. 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica. Precambrian Research, 149(1-2): 1-20 |
| [59] | Tong LX, Liu XH, Wang YB and Wilson CJL. 2012. Metamorphism evolution of pelitic granulites from the Larsemann Hills, East Antarctica. Acta Geologica Sinica, 86(8): 1273-1290 (in Chinese with English abstract) |
| [60] | Tong LX, Liu XH, Wang YB and Liang X. 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica. Lithos, 192-195: 102-115 |
| [61] | Tingey RJ. 1991. The Geology of Antarctica. Oxford: Oxford University Press |
| [62] | Wang YB, Zhao Y, Ren LD, Chen TY, Liu XH and Tong LX. 1994. Geochemical characteristics and medium pressure granulite facies metamorphism of mafic granulite rocks from the Larsemann Hills, East Antarctica. Antarctic Research, 6(3): 1-11 (in Chinese with English abstract) |
| [63] | Wang YB, Liu D, Chung SL, Tong LX and Ren LD. 2008. SHRIMP zircon age constraints from the Larsmann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectono-thermal event in East Antarctica. American Journal of Science, 308(4): 573-617 |
| [64] | Wei CJ. 2011. Approaches and advancement of the study of metamorphic P-T-t paths. Earth Science Frontiers, 18(2): 1-16 (in Chinese with English abstract) |
| [65] | White RW, Powell R, Holland TJB and Worley BA. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497-511 |
| [66] | White RW, Powell R and Clarke GL. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20(1): 41-55 |
| [67] | White RW, Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5): 511-527 |
| [68] | Wilson CJL, Quinn C, Tong L and Phillips D. 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology. Antarctic Science, 19: 339-353 |
| [69] | Xiao LL, Jiang ZS, Wang GD, Wan YS, Wang T and Wu CM. 2011. Metamorphic reaction textures and metamorphic P-T-t loops of the Precambrian Zanhuang metamorphic complex, Hebei, North China. Acta Petrologica Sinica, 27(4): 980-1002 (in Chinese with English abstract) |
| [70] | Yu LJ, Liu XH, Zhao Y, Ju YT and Liu XC. 2002. Metamorphism of mafic granulites in the Grove Mountains, East Antarctica. Acta Petrologica Sinica, 18(4): 501-516 (in Chinese with English abstract) |
| [71] | Zhai MG. 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton: Their genetic relation and geotectonic implications. Acta Petrologica Sinica, 25(8): 1753-1771 (in Chinese) |
| [72] | Zhang L, Tong LX, Liu XH and Scharer U. 1998. Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica. In: Pang Z, Zhang J and Sun J (eds.). Advances in Solid Earth Sciences. Beijing: Science Press, 27-35 |
| [73] | Zhao GC, Wilde SA, Cawood PA and Lu LL. 1999. Thermal evolution of two textural types of mafic granulites in the North China craton: Evidence for both mantle plume and collisional tectonics. Geological Magazine, 136(3): 223-240 |
| [74] | Zhao Y, Song B, Wang Y, Ren L, Li J and Chen T. 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds.). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing, 155-161 |
| [75] | Zhao Y, Song B, Zhang ZQ, Fu LY, Chen TY, Wang YB, Ren LD, Yao YP, Li JL and Liu XH. 1993. Pan-Africa tectothermal event in the Larsemann Hills and its adjacent regions, East Antarctica. Science in China (Series B), 23(9): 1001-1008 (in Chinese) |
| [76] | Zhao Y, Liu X, Song B, Zhang Z, Li J, Yao Y and Wang Y. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann hills, East Antarctica: Possible implications for neoproterozoic tectonics. Precambrian Research, 75(3-4): 175-188 |
| [77] | Zhao Y, Liu X, Liu X and Song B. 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics. Geological Society, London, Special Publications, 206(1): 231-245 |
| [78] | 郭敬辉, 翟明国, 李永刚, 阎月华. 1998. 华北太古宙高压基性麻粒岩的两类P-T轨迹及其构造意义: 矿物化学和变质作用研究. 岩石学报, 14(4): 430-448 |
| [79] | 胡健民, 刘晓春, 赵越, 徐刚, 任留东. 2008. 南极普里兹造山带性质及构造变形过程. 地球学报, 29(3): 343-354 |
| [80] | 刘晓春, 赵越, 刘小汉, 胡健民, 徐刚. 2007. 东南极普里兹带高级变质作用演化. 地学前缘, 14(1): 56-63 |
| [81] | 刘晓春. 2009. 东南极普里兹带多期变质作用及其对罗迪尼亚和冈瓦纳超大陆重建的启示. 岩石学报, 25(8): 1808-1818 |
| [82] | 刘晓春, 赵越, 胡健民, 刘小汉, 曲玮. 2013. 东南极格罗夫山: 普里兹造山带中一个典型的泛非期变质地体. 极地研究, 25(1): 7-24 |
| [83] | 刘小汉, 仝来喜, 李继亮, 赵越, 任留东, 王彦斌. 1995. 东南极地盾元古-早古生代构造演化. 海峡两岸地球科学研讨会论文集(详细摘要), 2: 165-169 |
| [84] | 刘小汉, 赵越, 刘晓春, 俞良军. 2002. 东南极格罗夫山地质特征——冈瓦纳最终缝合带的新证据. 中国科学(D辑), 32(6): 457-468 |
| [85] | 任留东, 刘小汉. 1994. 硅硼镁铝矿-柱晶石-电气石组合在南极的发现. 南极研究, 6(1): 1-7 |
| [86] | 任留东, 刘小汉. 1995. 南极普里兹Sostrene岛麻粒岩变质年代及其与邻区的关系. 南极研究, 7: 13-17 |
| [87] | 任留东, 耿元生, 王彦斌, 赵越. 2007. 关于东南极拉斯曼丘陵夕线片麻岩类原岩恢复问题的讨论. 地学前缘, 14(1): 75-85 |
| [88] | 仝来喜, 刘小汉, 徐平, 韩秀伶, 赵越, 任留东, 王彦斌. 1996. 东南极拉斯曼丘陵含假蓝宝石紫苏辉石石英岩的发现及其地质意义. 科学通报, 41(13): 1205-1208 |
| [89] | 仝来喜, 刘小汉, 张连生, 陈海泓, 任留东, 王彦斌, 赵越. 1997. 东南极拉斯曼丘陵麻粒岩相岩石中早期残留矿物组合的特征及其变质作用条件. 岩石学报, 13(2): 127-138 |
| [90] | 仝来喜, 刘小汉, 张连生, 陈海泓, 陈福坤, 王彦斌, 任留东. 1998. 东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的40Ar-39Ar年龄及其地质意义. 极地研究, 10(3): 167-171 |
| [91] | 仝来喜, 刘小汉, 王彦斌, Wilson CJL. 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化. 地质学报, 86(8): 1273-1290 |
| [92] | 王彦斌, 赵越, 任留东, 陈廷愚, 刘小汉, 仝来喜. 1994. 东南极拉斯曼丘陵镁铁质麻粒岩的地球化学特征及其中压变质作用. 南极研究, 6(3): 1-11 |
| [93] | 魏春景. 2011. 变质作用P-T-t轨迹的研究方法与进展. 地学前缘, 18(2): 1-16 |
| [94] | 肖玲玲, 蒋宗胜, 王国栋, 万渝生, 王涛, 吴春明. 2011. 赞皇前寒武纪变质杂岩区变质反应结构与变质作用 PTt 轨迹. 岩石学报, 27(4): 980-1002 |
| [95] | 俞良军, 刘小汉, 赵越, 琚宜太, 刘晓春. 2002. 东南极格罗夫山(Grove Mountains)镁铁质麻粒岩的变质作用. 岩石学报, 18(4): 501-516 |
| [96] | 翟明国. 2009. 华北克拉通两类早前寒武纪麻粒岩 (HT-HP 和 HT-UHT) 及其相关问题. 岩石学报, 25(8): 1753-1771 |
| [97] | 赵越, 宋彪, 张宗清, 富云莲, 陈廷愚, 王彦斌, 任留东, 姚玉鹏, 李继亮, 刘小汉. 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件. 中国科学(B辑), 23(9): 1001-1008 |
2014, Vol. 30






