秦岭造山带是中央造山带的重要组成部分,是华北板块和扬子板块长期相互作用的产物(图1a)。在该造山带内,沿着商州-丹凤、勉县-略阳2条深大断裂断续出露有超基性岩、枕状玄武岩、辉长岩、硅质岩等蛇绿岩的组成单元(分别简称为“商丹缝合带”和“勉略缝合带”)(图1b)。位于商丹缝合带北侧的北秦岭构造带是由古生代“沟-弧-盆”体系和岛弧基底新元古代秦岭群共同构成,是古秦岭洋向华北板块俯冲的结果,它们是华北板块南缘活动大陆边缘的重要组成部分(张国伟,1988;王宗起等,2009;Dong et al., 2012),而位于商丹和勉略缝合带之间的南秦岭地区被称为“秦岭微板块”(Meng and Zhang,1999;张国伟等,2001),长期以来被认为是由扬子板块北缘被动陆缘(Mattauer et al., 1985;张国伟,1988)在泥盆纪发生裂解所用所形成(Meng and Zhang,1999)。南秦岭以大面积出露晚古生代深海-浅海-河流三角洲相沉积为特征(杜定汉,1988;杜远生,1997;闫臻等,2007;Yan et al, 2006, 2012),同时在这些古生代沉积建造中发育有铅锌、金、汞锑、铁矿床,自西向东构成了西和-成县、凤县-太白、山阳-柞水、镇安-旬阳和勉县-略阳-宁陕五大矿集区,成为我国重要的成矿带之一,长期以来备受关注。
![]() | 图1中央造山带构造位置(a,据 Mattauer et al.,1985),秦岭造山带大地构造简图(b,据Yan et al.,2006)和小磨岭地区 地质图(c) Fig.1 Location of Chinese Central Orogenic Belt (a,after Mattauer et al.,1985),simp lified tectonic framework of Qinling orogenic belt(b,after Yan et al.,2006) and geological sketch map of Xiaomoling area(c) |
郭现轻等: 山阳-柞水矿集区李家砭Ti-Fe矿床成矿构造背景研究 在南秦岭地区,沿着山阳-凤镇断裂周边断续出露有前寒武系变火山-沉积岩组合和超镁铁岩,它们与泥盆-石炭系碎屑沉积之间呈断层接触,具有构造混杂岩之特征(王宗起等,2009)。泥盆系沉积相空间变化特征研究表明,该断裂带两侧的沉积相明显不同(杨志华,1991;闫臻等,2007)。此外,该断裂北侧出露大量晚侏罗世-早白垩世花岗岩以及相关的斑岩-矽卡岩型Cu-Mo-Au-Fe矿化/床。这些事实说明,山阳-凤镇断裂是一条重要的分界断裂,可能为一条重要的板块对接带(王鸿祯等,1982)。在该断裂带内断续出露有小磨岭、黑沟、冷水沟、板板山和耀岭河等前寒武纪古隆起(部分文献也称“杂岩”或“古陆”),其中发育有Cu、Mo、Au、Fe等矿化,以李家砭Ti-Fe矿床和冷水沟CuMo-Au矿床最为典型。锆石U-Pb年龄和岩石地球化学研究表明,这些“古隆起”是878~635Ma大陆裂解或碰撞造山后伸展阶段产物(牛宝贵等,2006;杨钊等,2008;王涛等,2009;刘仁燕等,2011;吴发富等,2012)。然而,对于这些含矿岩体的岩石学、矿物学以及成矿年代学均缺乏系统研究,从而制约了对这些“古隆起”形成与区域构造演化相互关系的深入探讨,进而严重影响了区域找矿。
本文以小磨岭杂岩中的李家砭Ti-Fe矿床为研究对象,通过对其含矿岩体岩石学、矿物学、地球化学及SHRIMP锆石U-Pb年代学综合研究,并结合南秦岭地区同时期岩石组合研究结果,探讨该区区域构造演化和成矿构造环境,以为秦岭造山带构造演化与区域找矿提供依据。
山阳-柞水矿集区位于商丹缝合带和山阳-凤镇断裂之间,是秦岭造山带内重要矿集区之一。在该矿集区内出露的地层主要为泥盆系刘岭群和少量石炭系,同时还发育有大量晚侏罗世-早白垩世花岗岩侵入体。沉积相和砂岩碎屑组成综合研究表明,该矿集区内的刘岭群形成于弧前环境(Yan et al, 2006, 2012; 闫臻等, 2007)。在该矿集区南缘,断续出露有新元古代变火山-沉积组合,以构造隆起形式分布于山阳-凤镇断裂内。
山阳-柞水矿集区内断裂构造发育,以EW向和NNW向为主,在二者交汇部发育晚侏罗世-早白垩世花岗岩侵入体,同时在这些侵入体内部及其外围发生矿化,形成众多的斑岩-矽卡岩型矿化点/床。矿集区的北侧出露有东江口、柞水、曹坪岩体等晚三叠世花岗岩体,而矿集区南侧则主要表现为一系列的新元古代基性岩浆作用和少量晚印支期-燕山期酸性岩浆活动,且伴随有不同矿种的矿化。对于这些新元古代的变火山-沉积组合,前人主要集中于地球化学和同位素年代学研究(崔建堂等,1998;崔建堂,2003;牛宝贵等,2006;杨钊等,2008),初步表明南秦岭在新元古代810~680Ma期间发生了广泛的构造岩浆裂解事件。
李家砭Ti-Fe矿床位于山阳-凤镇构造混杂带内,含矿围岩为李家砭杂岩体(图1c),属于小磨岭杂岩的一部分。该杂岩体与泥盆系之间为断层接触,出露面积约3.5km2;主要由辉石岩、辉长岩、辉绿岩和花岗岩共同组成。其中辉石岩、辉长岩、辉绿岩之间呈渐变过渡关系,缺乏明显的岩相界线;花岗岩与辉长岩呈相互穿插关系,应为同时期形成。矿化主要发生在辉长岩中,同时辉石岩和辉绿岩中也明显存在不同程度的矿化。辉长岩具有堆晶结构(图2a),辉石和长石呈半自形近等粒状,具镶嵌构造。矿体呈透镜状、似层状产出,金属矿物主要为钛磁铁矿和钛铁矿,呈浸染状分布于辉长岩中(图2a)。铁矿石储量约1700万吨,全铁平均品位为25%~27%,氧化钛储量约140万吨,平均品位为9%~10%,铁矿与钛矿储量均达中型规模。含矿岩体蚀变类型主要有纤闪石化(图2c)、硅化、蛇纹石化和绿泥石化。
![]() | 图2 李家砭含矿标本及显微照片 (a)-发育浸染状钛铁矿化的的堆晶辉长岩;(b)-细粒辉绿岩;(c)-纤闪石化围岩;(d)-具纤闪石和钠黝帘石化的辉石岩;(e)-具辉长结构的辉长岩;(f)-发育辉长-辉绿结构的辉绿岩.Cpx-单斜辉石;Opx-斜方辉石;Pl-斜长石 Fig.2 Field specimens and microscope photos of Lijiabian ore-bearing rock |
辉石岩呈深灰黑色,近等粒结构(图2d),主要由辉石构成,并含少量的斜长石和磷灰石。辉石以单斜辉石为主,含量约75%,局部发生纤闪石化;斜长石约10%,呈自形-半自形板状;副矿物为磷灰石和少量锆石,含量约5%;Fe-Ti氧化物含量约10%。
辉长岩为深绿-深灰黑色(图2a),具粗粒辉长结构(图2e),主要由斜长石(35%)、单斜辉石(25%~30%)和斜方辉石(10%~20%)构成,副矿物主要为磷灰石(5%)和锆石(5%),另外Fe-Ti氧化物含量约15%。斜长石多呈板柱状半自形晶,粒径集中于1~3mm;发育聚片双晶,局部发生绢云母化蚀变。单斜辉石多呈半自形-他形晶,粒径集中于1.5~3mm;具有明显的多色性(浅褐色-浅灰绿色),发育一组密集的裂理。斜方辉石呈半自形-他形粒状,突起高,具有浅粉色-浅蓝灰色多色性,解理不发育,内部较破碎,粒径变化于1~2mm,部分边部发生蛇纹石化蚀变。磷灰石呈自形柱状,或充填于斜长石、辉石磁铁矿之间,或以包裹体形式存在于硅酸盐矿物内部,粒径为100~400μm。Fe-Ti氧化物以不规则状充填于斜长石和辉石之间,电子探针分析结果(见下文)表明其主要为钛磁铁矿和钛铁矿,此外还含有少量黄铜矿。
辉绿岩(图2b)呈典型辉长-辉绿结构(图2f),主要矿物有斜长石(50%)、单斜辉石(25%±)和斜方辉石(10%±),次要矿物为Fe-Ti氧化物(10%),副矿物为少量锆石(5%)。斜长石呈半自形-自形柱状,其长轴为200~500μm,发育卡式双晶和卡钠复合双晶;单斜辉石和斜方辉石均呈他形粒状充填于斜长石之间。单斜辉石发育一组密集裂理,并具有更高的干涉色,两者粒径多集中于100~200μm,最大可达500μm。相对于辉长岩,辉绿岩中Fe-Ti氧化物含量较少,主要为钛磁铁矿和钛铁矿。
为了有效的研究含矿围岩的矿物组成、岩浆演化及其与成矿作用关系,我们对该矿床中辉石岩、辉长岩和辉绿岩中的单斜辉石、斜方辉石、斜长石和Fe-Ti氧化物进行了矿物成分定量分析和背散射电子图像研究。该分析在中国地质科学院矿产资源研究所电子探针室完成,所用仪器型号为JXA-8230,加速电压20kV,电流100nA,束斑直径5μm,各元素分析时间(峰位)为10s。分析结果见表1、表2、表3、表4。
| 表1 单斜辉石电子探针数据结果(wt%) Table 1 Analyses of clinopyroxene from Lijiabian complex (wt%) |
| 表2 斜方辉石电子探针数据结果(wt%) Table 2 Analyses of orthopyroxene from Lijiabian complex (wt%) |
| 表3 斜长石电子探针数据结果(wt%) Table 3 Analyses of plagioclase from Lijiabian complex (wt%) |
| 表4 Fe-Ti氧化物电子探针数据结果(wt%) Table 4 Analyses of Fe-Ti oxides from Lijiabian complex (wt%) |
辉石在辉石岩中表现为单斜辉石,而在辉长岩和辉绿岩中为单斜辉石和斜方辉石。电子探针成分分析表明单斜辉石均为普通辉石(图3a)。辉石岩、辉长岩和辉绿岩中普通辉石平均成分分别为Wo43.8En40.4Fs15.8、Wo40.5En39.9Fs19.6和Wo41.8En37.2Fs21.0(表1),相应Mg#平均值为71.8、67.0和63.9。斜方辉石仅在辉长岩和辉绿岩中可见,为顽火辉石,成分分别为Wo3.3En59.8Fs36.8和Wo2.2En52.4Fs45.4(表2),相应Mg#平均值为61.9和53.5。由此可见,单斜辉石和斜方辉石Mg#值由辉石岩→辉长岩→辉绿岩依次逐渐降低,呈现出岩浆演化程度逐渐升高的特征。
大量研究表明单斜辉石成分在一定程度上可以反映岩浆属性(Le Bas, 1962; Leterrier et al., 1982; Nisbet and Pearce, 1977),总体上,本文中单斜辉石呈现出低Ti、Al和Na的特征,与碱性玄武岩中单斜辉石低Si、高Ti和Na有明显区别(Nisbet and Pearce, 1977)。在SiO2-Al2O3图解中(图3b),所有单斜辉石均属于亚碱性系列;在Ti-AlⅣ图解上(图3c),单斜辉石落于钙碱性系列中,表明其母岩浆属于钙碱性系列。构造环境判别图上,单斜辉石均落于由火山弧玄武岩和大洋玄武岩共同组成的区域内(图3d),表明形成这些辉石的岩浆具有岛弧和大洋板内岩浆的双重属性。
![]() | 图3 辉石成分分类命名图(a,据Morimoto, 1988)、单斜辉石的SiO2-Al2O3图解(b,据Le Bas, 1962)、Ti-AlⅣ图解(c据Leterrier et al., 1982)和构造环境判别图(d,据Nisbet and Pearce, 1977) WPA-板内碱性玄武岩;WPT-板内拉斑玄武岩;VAB-火山弧玄武岩;OFB-大洋玄武岩 Fig.3 Classification of pyroxene (a, after Morimoto, 1988), SiO2-Al2O3 (b, after Le Bas, 1962), Ti-AlⅣ (c, after Leterrier et al., 1982) and tectonic setting discrimination diagrams (d, after Nisbet and Pearce, 1977) |
辉长岩中斜长石为拉长石(An50.6-52.6Ab45.9-48.0Or1.2-1.5),辉绿岩中斜长石以拉长石为主(An49.4-51.5Ab47.0-49.2Or1.4-1.8)(表3);而辉石岩中少量的斜长石则为钠长石(An0.7-0.9Ab98.7Or0.4-0.5),这显然与斜长石钠黝帘石化有关,并不能代表原生斜长石组成,这种现象伴随纤闪石化的单斜辉石在辉长岩中十分普遍(Shaw and Penczak, 1996)。
Fe-Ti氧化物呈钛磁铁矿和钛铁矿两种形式产出(表4)。钛磁铁矿中TiO2含量为6.68%~16.10%,FeO含量为72.02%~85.20%,V2O3含量为0.19%~0.51%。钛铁矿中TiO2含量为48.85%~52.75%,FeO含量为43.18%~47.79%,V2O3含量为0%~0.58%。钛铁矿多呈他形与钛磁铁矿呈镶嵌共生(图4d),少部分呈出溶条带产出于钛磁铁矿中(图4a)。钛磁铁矿呈半自形-他形粒状结构,是辉长岩中Fe-Ti氧化物的主要成分。两者密切共生,呈包裹体形式存在于辉石中(图4b),或充填于矿物颗粒间(图4c),这说明钛铁矿化与成岩近同期形成。
![]() | 图4 李家砭含矿岩体中钛磁铁矿和钛铁矿产出特征 (a、b)-辉石岩、辉长岩中钛磁铁矿内具有出溶结构,钛铁矿呈出溶条带或与钛磁铁矿呈镶嵌状两种状态产出于斜方辉石中;(c)-辉长岩中钛磁铁矿和钛铁矿呈共生关系产于辉石和斜长石空隙;(d)-辉绿岩中钛铁矿、钛磁铁矿、斜方辉石、单斜辉石和斜长石共生.Cpx-单斜辉石;Opx-斜方辉石;Pl-斜长石;Ti-Mag-钛磁铁矿;Ilm-钛铁矿 Fig.4 Characteristics of titanomagnetite and ilmenite in Lijiabian ore-bearing rock |
在显微结构观察基础上,我们选择了9件蚀变相对较弱的辉长岩、辉绿岩和辉石岩进行岩石地球化学成分分析。主量、微量元素含量测试工作在中国地质科学院国家测试中心完成。主量元素利用Phillips 4400 X-荧光光谱仪进行测试;FeO含量是用HF和H2SO4对样品进行稀释后,利用重铬酸钾滴定法测定;烧失量(LOI)通过对样品加热至1000℃后1h称量其重量变化获得。微量元素和稀土元素利用VG Elemental PQⅡPlus电感耦合等离子体质谱仪(ICP-MS)来测定。主量元素检测限为<0.01%(其中TiO2和MnO<0.001%);微量、稀土元素检测限为1×10-6~0.05×10-6。详细测试结果见表5。由于分析样品中均含有不同程度的铁矿化,因此全铁含量普遍偏高(FeOT=14.64%~23.77%)并导致其它主量元素含量相对偏低。
| 表5 李家砭含矿岩体地球化学分析结果(主量元素:wt%;稀土和微量元素:×10-6) Table 5 Major and trace elements of Lijiabian ore-bearing rock (major elements: wt%; trace elements: ×10-6) |
辉石岩SiO2为34.9%,Al2O3为7.79%,FeOT为23.77%,CaO为11.1%,MgO为7.05%,MnO为0.4%,K2O为0.5%,Na2O为1.81%,TiO2为6.13%,Mg#值为34.8;辉长岩SiO2含量较为均一,为34.36%~35.57%,CaO为11.33%~11.83%,K2O为0.23%~0.53%,Na2O为1.57%~1.86%,与辉石岩相比,辉长岩具有较低的FeOT(20.18%~21.71%)、MgO(4.97%~6.17%)、MnO(0.24%~0.30%)含量和Mg#值(30.0~34.8),而具有较高的Al2O3(9.48%~11.22%)和TiO2(6.34%~6.99%)含量;由于辉绿岩中钛铁矿化含量较辉长岩低,辉绿岩具有较高的SiO2(42.48%~46.39%)、Al2O3(11.90%~13.57%)、MgO(5.32%~6.04%)、K2O(0.58%~0.93%)、和Na2O(2.31%~2.92%)含量和Mg#值(34.8~42.6),而FeOT(14.64%~18.23%)、CaO(9.19%~10.09%)、TiO2(2.71%~4.28%)含量偏低。该地球化学成分与显微结构观察和电子探针分析结果相一致,均表明辉长岩是主要含矿围岩。
辉石岩稀土总量(∑REE)为160.7×10-6,辉长岩∑REE较高(224.6×10-6~250.7×10-6)。辉石岩和辉长岩 具有相似的稀土配分曲线和微量元素蛛网图解,呈现出富集LREE亏损HREE特征,总体呈右倾配分模式(图5a),LREE和HREE元素中等程度分异((La/Yb)N=4.33~5.65,(Gd/Yb)N=3.54~4.24)。具有弱的Eu负 异常(δEu=0.79~0.87),暗示曾发生斜长石的分离结晶作用。辉绿岩同样具有右倾稀土配分模式(图5a),LREE和HREE元素分异相对于辉石岩和辉长岩较弱,分别为(La/Yb)N=3.25~3.69,(Gd/Yb)N=1.72~2.24,Eu无明显异常(δEu=0.90~1.00)。辉绿岩∑REE为151.9×10-6~168.2×10-6,相对于辉长岩较低,尤其是LREE含量明显偏低,这可能与辉绿岩中缺乏磷灰石等富集LREE元素的矿物有关。
![]() | 图5 李家砭矿床含矿岩体稀土配分模式图(a)和微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig.5 Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagram for ore-bearing magma in Lijiabian Fe-Ti deposit (normalization values after Sun and McDonough, 1989) |
在微量元素原始地幔标准化图解上(图5b),所有样品呈现出强烈亏损Th、U、Zr、Hf等高场强元素,而相对富集大离子亲石元素(如Rb、Ba等元素)。高场强元素Th-U-Zr-Hf的亏损体现出可能岩浆形成过程中受到俯冲流体的影响(Brenan et al., 1994),其中Zr、Hf等元素主要赋存于锆石中(Bea et al., 2006),锆石通常在含Fe-Ti氧化物的辉长岩中作为晚期结晶的矿物相出现(Rubatto and Hermann, 2003),这使得演化程度较高的辉绿岩中可能含有更高的Zr和Hf元素(图5b)。而辉长岩和辉石岩中P元素的显著富集与两者中磷灰石的发育有直接联系。不同分析样品的稀土和微量元素具有相似的配分模式曲线,显示其具有相似源区及形成构造环境。
我们对李家砭辉长岩通过SHRIMP锆石U-Pb年代学测定,以确定其成岩成矿时代,进而为其形成与区域演化关系研究提供依据。该测试是在中国地质科学院地质研究所北京离子探针中心SHRIMP Ⅱ仪器完成的,具体测试条件及流程见宋彪等(2002)。对测试结果采用204Pb进行普通铅年龄校正。数据处理采用SQUID 11.03d和ISOPLOT 程序(Ludwig, 2001)。单个数据的误差为1σ,加权平均年龄误差为95%置信度。测试结果见表6和图6。
| 表6 李家砭辉长岩SHRIMP锆石U-Pb测年数据 Table 6 SHRIMP zircon U-Pb data of gabbro from Lijiabian complex |
![]() | 图6 李家砭辉长岩SHRIMP锆石U-Pb谐和图(左)和锆石阴极发光图像(右) Fig.6 Zircon SHRIMP U-Pb concordia diagram (left) and CL images (right) of gabbro from Lijiabian complex |
辉长岩中的锆石呈无色透明,多为半自形晶,发育不完整晶面,锆石内部较为干净,裂隙和包裹体不发育,锆石粒径变化于70~180μm。锆石阴极发光图像呈灰白色-深灰黑色,多发育微弱且宽缓的板状环带(点6.1),仅少数发育微弱震荡环带(点1.1),显示典型岩浆锆石特征。
对该样品中的13粒锆石进行了SHRIMP锆石U-Pb年代学分析。其中12粒锆石发育板状环带结构,其Th、U含量分别为59×10-6~465×10-6和72×10-6~431×10-6,Th/U比值为0.58~1.15,206Pb/238U加权平均年龄为621±6Ma(MSWD=0.79),该年龄代表了辉长岩形成时代;另一粒锆石(点3.1)具有棱柱状晶型,发育楔状分带结构,明显不同于其他12粒锆石的CL图像,其206Pb/238U表面年龄为845±22Ma,可能代表了继承性锆石年龄。
李家砭Ti-Fe矿床中的含矿围岩具有高TiO2(平均5.07%)和FeOT(平均19.21%)、低Na2O+K2O(平均2.87%)地球化学特征。除辉石岩发育单斜辉石的纤闪石化和斜长石的钠黝帘石化外,辉长岩和辉绿岩均由普通辉石、顽火辉石、拉长石以及Ti-Fe氧化物共同构成,具有钙碱性岩浆岩的典型矿物组合(Irvine and Baragar, 1971; Ewart et al., 1992),同时普通辉石成分同样显示出钙碱性岩浆特征(图3c),这些事实说明李家砭杂岩体具有钙碱性岩浆特征。岩体中MgO、Cr、Ni含量相对于原始地幔较低,反应岩浆熔融后发生过分异作用(Aspler et al., 2002),同时LREE富集和较低的Mg#值(30.0~42.6)显示这些镁铁质岩石来自于演化程度较高的岩浆。而随SiO2含量增加,辉绿岩中更低的FeOT、MgO、CaO含量以及辉绿中辉石较低的Mg#,均显示辉绿岩具有比辉石岩和辉长岩更高的演化程度。
显微镜下观察结果表明辉石岩和辉长岩中均有较多的钛铁氧化物(图2d-f),但辉石岩和辉长岩地球化学成分则表现出这些岩石比辉绿岩含有更多的FeOT;同时辉石岩和辉长岩中发育有大量自形磷灰石。大量研究表明富含F、Cl和OH等挥发分的磷灰石对Fe-Ti氧化物矿床的成矿过程具有重要作用(Ripley et al., 1998; Mitsis and Economou-Eliopoulos, 2001; Clark and Kontak, 2004;Zhou et al., 2005)。伴随岩浆演化后期挥发分减少,辉绿岩中几乎不含磷灰石,从而不利于成矿作用的进行。
在Hf/3-Th-Ta图解上(图7a),所有样品落于由E-MORB和板内拉斑玄武岩组成的区域,而在Th/Yb-Nb/Yb图解上(图7b),分析样品落于E-MORB附近区域内,表现出岩浆来自于E-MORB性质的源区。然而,微量元素图上并未呈现出典型的E-MORB岩浆性质,这除了与李家砭镁铁质岩演化程度较高外,可能还与受俯冲流体的影响所致,体现为高场强元素Th-U-Zr-Hf的亏损(Brenan et al., 1994)。综上所述,李家砭杂岩体可能形成于经俯冲流体改造后的E-MORB岩浆源区。同时,单斜辉石成分表现出岛弧和大洋板内岩浆的双重属性,表明李家砭杂岩体可能形成于弧后环境。
![]() | 图7 李家砭含矿岩体Hf/3-Th-Ta(a, 据Wood et al., 1979)和Th/Yb-Nb/Yb图解(b, 据Pearce, 2008) IAT-岛弧拉斑玄武岩;CAB-钙碱性玄武岩;E-MORB-富集型洋中脊玄武岩;WPT-板内拉斑玄武岩;WPAB-板内碱性玄武岩;N-MORB-正常洋中脊玄武岩;OIB-洋岛玄武岩 Fig.7 Hf/3-Th-Ta (a, after Wood et al., 1979)和Th/Yb-Nb/Yb figures (b, after Pearce, 2008) for Lijiabian ore-bearing rock |
岩浆结晶分异型矿床是镁铁质-超镁铁质岩的一种重要成矿类型(Lister, 1966),其成矿特征表现为矿体主要产于岩浆岩内部,矿化多呈浸染状分布,矿石矿物组成与母岩浆基本相同,成矿作用和成岩作用近同时进行,世界上众多形成于辉长岩(斜长岩-苏长岩)体内的(钒)钛磁铁矿均属于该成矿类型。李家砭杂岩体由辉石岩、辉长岩、辉绿岩和花岗岩共同组成,是小磨岭杂岩的一部分,辉石岩、辉长岩和辉绿岩均发育不同程度的钛铁矿化,其中钛铁矿化主要呈透镜状、似层状发育于大量出露具堆晶结构的辉长岩中。金属矿物主要为钛磁铁矿、钛铁矿以及少量的黄铜矿,而钛磁铁矿含量最高。镜下可见半自形-他形钛磁铁矿和钛铁矿相伴产出,并与斜长石和辉石等矿物呈镶嵌构造,表明矿化与成岩是同期进行的,这些结构特征显示该矿床为岩浆分异型矿床(Lister, 1966; Mathison, 1975)。区域上发育多个与新元古代镁铁质-超镁铁质岩相关的Ti-Fe矿床,如产于晚元古宙白雀寺杂岩体内的略阳中坝子钛磁铁矿矿床(陈剑祥等,2013),矿化受辉长岩相带控制,同样是岩浆分异的产物。
区域研究表明,秦岭造山带内广泛发育新元古代岩浆作用。沿山阳-凤镇断裂带,断续出露一系列新元古代岩体,如磨沟峡闪长岩(SHRIMP 743±12Ma;牛宝贵等,2006)、黑沟杂岩体内碱性花岗岩(SHRIMP 686±10Ma;牛宝贵等,2006)和冷水沟辉长岩(SHRIMP 680±9Ma;作者未发表资料)、色河二长花岗岩(SHRIMP 709±8Ma;王涛等,2009)以及板板山钾长花岗岩(SHRIMP 730±8Ma;吴发富等,2012)。矿物组合和地球化学特征表明南秦岭发育743~680Ma具有高钾钙碱性-碱性的A型花岗质岩石(Chen et al., 2006;Wang et al., 2013)。此外,勉略蛇绿混杂带内也发育大量新元古代(1006~808Ma)超镁铁质和镁铁质岩块(张宗清,1996,2005;夏林圻等,1996;闫全人等,2007),具有N-MORB地球化学特征(许继锋等,1997;赖绍聪等,2003);在该混杂带北侧白水江增生杂岩中也存在778~667Ma辉长辉绿岩,具有OIB地球化学特征(王涛等,2011)。这些新元古代MORB和OIB型基性火山岩的发育,记录了新元古代时期古秦岭洋的演化(闫全人等,2007;王宗起等,2009)。岩石学和岩石地球化学分析结果表明,南秦岭镇安一带新元古代耀岭河群形成岛弧环境(凌文黎等,2002a;苏春乾等,2006);在南秦岭南缘碧口、西乡、安康一带也存在有新元古代岛弧火山岩和花岗岩(凌文黎,1996, 2002b;张宏飞等,1997;王宗起,1998;Yan et al, 2003, 2004;刘树文,2009a,b)。同时,Yan et al.(2010)通过砂岩碎屑组成及物源区性质研究认为新元古代时期在扬子板块北缘存在有与大洋俯冲作用密切相关的岛弧岩浆事件。这些事实共同表明,新元古代时期扬子板块北缘为活动大陆边缘。然而,大量740~660Ma的碱性火山岩和花岗岩可能是由于新元古代晚期俯冲作用引起的岛弧裂陷或弧后扩张背景下的产物。
SHRIMP锆石U-Pb年代学的研究表明,李家砭辉长岩形成时代为621±6Ma,其中有845±22Ma的继承锆石。该继承性锆石发育完整的晶面,不具有辉长岩锆石的板状环带,并且辉长岩中还捕获了部分发育密集岩浆环带的自形锆石,具有中-酸性岩浆岩特征,这些继承锆石的特征表明该辉长岩岩浆在形成过程中捕获了部分早期中-酸性岩浆岩,可与本区发育的早-中新元古代中酸性岛弧岩石相对应。同时,矿物学、地球化学共同表明,李家砭辉长岩岩浆属于钙碱性岩浆岩,且具有岛弧和大洋板内玄武岩的双重地球化学属性。这进一步表明,李家砭辉长岩及相关的Ti-Fe矿床形成于弧后盆地,同时也表明新元古代晚期(621Ma)在扬子北缘存在弧后盆地伸展作用。
(1)李家砭杂岩体由辉石岩、辉长岩、辉绿岩和少量的花岗岩共同组成;钛铁矿化主要发育于堆晶辉长岩中;该矿床为岩浆分异型矿床。
(2)李家砭杂岩体具有E-MORB和岛弧玄武岩的双重岩浆性质,形成于弧后盆地。
(3)SHRIMP锆石U-Pb测年结果表明,李家砭杂岩体及Ti-Fe矿床形成于621±6Ma。
致谢 北京离子探针中心杨淳副研究员、董春艳博士在SHRIMP锆石U-Pb测年工作中给予了指导和帮助;中国地质科学院矿产资源研究所陈振宇博士在电子探针分析过程中提供了帮助;贵刊编辑和二位匿名审稿人对本文提出了建设性修改意见;在此一并表示感谢!
| [1] | Aspler LB, Cousens BL and Chiarenzelli JR. 2002. Griffin gabbro sills (2.11Ga), Hurwita Basin, Nunavut, Canada: Long-distance lateral transport of magmas in western Churchill province crust. Precambrian Research, 117(3-4): 269-294 |
| [2] | Bea F, Montero P and Ortega M. 2006. A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44(3): 693-714 |
| [3] | Brenan JM, Shaw HF, Phinney DL and Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327-339 |
| [4] | Chen JX, Wu XB, Zhang HF and Wei ZD. 2013. Geological characteristics and prospecting direction study of Zhongbazi Ti magnetite deposit in Lueyang County, Shaanxi Province. Northwestern Geology, 46(2): 111-118 (in Chinese with English abstract) |
| [5] | Chen ZH, Lu SN, Li HK, Li HM, Xiang ZQ, Zhou HY and Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences. Journal of Asian Earth Sciences, 28(1): 99-115 |
| [6] | Clark AH and Kontak DJ. 2004. Fe-Ti-P oxide melts generated through magma minxing in the Antauta Subvolcanic Center, Peru: Implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Economic Geology, 99(2): 377-395 |
| [7] | Cui JT, Zhao CY and Ji WH. 1998. Early pre-Cambrian metamorphic rock series have been recognized in primary Devonian system, Zhashui, Shaanxi. Geology of Shaanxi, 16(2): 17-26 (in Chinese with English abstract) |
| [8] | Cui JT. 2003. Lao'ansi terrane and its geological tectonic characterisitics in Zhashui area, Shaanxi. Northwestern Geology, 36(1): 18-24 (in Chinese with English abstract) |
| [9] | Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF and Zhang GW. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze block, China: Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274 |
| [10] | Du DH. 1986. Study of the Devonian of the Qinba Area, Shaanxi Province. Xian: Xi'an Jiaotong University Press, 230 (in Chinese) |
| [11] | Du YS. 1997. Devonian Sedimentary Geology of Qinling Orogenic Belt. Wuhan: China University of Geosciences Press, 130 (in Chinese) |
| [12] | Ewart A, Schon RW and Chappell BW. 1992. The Cretaceous volcanic-plutonic province of the central Queensland (Australia) coast-a rift related 'calc-alkaline' province. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 327-345 |
| [13] | Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 |
| [14] | Lai SC, Zhang GW, Dong YP, Pei XZ and Chen L. 2003. Geochemistry and regional distribution of ophiolites and associated volcanic in Mianlue suture, Qinling-Dabie Mountains. Science in China (Series D), 32(12): 1174-1183 (in Chinese) |
| [15] | Le Bas MJ. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267-288 |
| [16] | Leterrier J, Maury RC, Thonon P, Girard D and Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139-154 |
| [17] | Ling WL, Zhang BR, Zhang HF and Luo TC. 1996. An isotopic envidence for oceanic crust subduction and crust-mantle recycling in Meso-Neproterozoic along northern margin of Yangtze Craton. Earth Science, 21(3): 332-336 (in Chinese with English abstract) |
| [18] | Ling WL, Wang XH, Cheng JP, Yang YC and Gao S. 2002a. Recognition and geological significance of Zhen'an arc-volcanic suite, South Qinling orogenic belt. Geochimica, 31(3): 222-229 (in Chinese with English abstract) |
| [19] | Ling WL, Gao S, Ouyang JP, Zhang BR and Li HM. 2002b. Time andectonic setting of the Xixiang Group: Constraints from zircon U-Pb geochronology and geochemistry. Science in China (Series D), 32(2): 101-112 (in Chinese) |
| [20] | Lister GF. 1966. The composition and origin of selected Iron-Titanium deposits. Economic Geology, 61(2): 275-310 |
| [21] | Liu RY, Niu BG, He ZJ and Ren JS. 2011. LA-ICP-MS zircon U-Pb geochronology of the eastern part of the Xiaomaoling composite intrusive in Zhashui area, Shaanxi, China. Geological Bulletin of China, 30(2-3): 448-460 (in Chinese with English abstract) |
| [22] | Liu SW, Yan QR, Li QG and Wang ZQ. 2009a. Petrogenesis of granitoid rocks in the Kangding Complex, weastern margin of the Yangtze Craton and its tectonic significance. Acta Petrologica Sinica, 25(8): 1883-1896 (in Chinese with English abstract) |
| [23] | Liu SW, Yang K, Li QG, Wang ZQ and Yan QR. 2009b. Petrogenesis of the Neoproterozoic Baoxing Complex and its constraint on the tectonic environment in western margin of Yangtze Craton. Earth Science Frontiers, 16(2): 107-118 (in Chinese with English abstract) |
| [24] | Ludwig KR. 2001. Squid 1.02: A User Manual. Berkeley: Berkeley Geochronology Center Special Publication, 2: 19 |
| [25] | Mathison CI. 1975. Magnetites and ilmenites in the Somerset dam layered basic intrusion, southeastern Queensland. Lithos, 8(2): 93-111 |
| [26] | Mattauer M, Matte P, Malavielle J, Tapponnier P, Maluski H, Xu ZQ, Lu YL and Tang YQ. 1985. Tectonics of the Qinling belt: Build up and evolution of eastern Asia. Nature, 317(6037): 496-500 |
| [27] | Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27: 123-126 |
| [28] | Mitsis I and Economou-Eliopoulos M. 2001. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. American Mineralogist, 86(10): 1143-1150 |
| [29] | Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1): 55-76 |
| [30] | Nisbet EG and Pearce JA. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149-160 |
| [31] | Niu BG, He ZJ, Ren JS, Wang J and Deng P. 2006. SHRIMP U-Pb ages of zircons from the intrusions in the western Douling-Xiaomaoling uplift and their geological significances. Geological Review, 52(6): 826-835 (in Chinese with English abstract) |
| [32] | Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Litho, 100(1-4): 14-48 |
| [33] | Ripley EM, Severson MJ and Hauck SA. 1998. Evidence for sulfide and Fe-Ti-P-rich liquid immiscibility in the Duluth Complex, Minnesota. Economic Geology, 93(7): 1052-1062 |
| [34] | Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187 |
| [35] | Shaw CSJ and Panczak RS. 1996. Barium-and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell Alkaline Complex, Northwestern Ontario. The Canadian Mineralogist, 34(5): 967-975 |
| [36] | Song B, Zhang YH, Wan YS and Jian P. 2002. Mount Making and Procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English abstract) |
| [37] | Su CQ, Hu JM, Li Y and Liu JQ. 2006. The existence of two different tectonic attributes in Yaolinghe Group in south Qinling region. Acta Petrologica et Mineralogica, 25(4): 287-298 (in Chinese with English abstract) |
| [38] | Sun SS and Mcdonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 |
| [39] | Wang HZ, Xu CY and Zhou ZG. 1982. Tectonic development of the continental margins on both sides of the palaeo-Qinling margin realm. Acta Geologica Sinica, 56(3): 270-280 (in Chinese with English abstract) |
| [40] | Wang T, Wang ZQ, Yan Z, Yan QR, Zhan YL and Xiang ZJ. 2009. Geochemical characteristics and zircon SHRIMP U-Pb dating of Sehe granite in Shanyang County, Shaanxi Province and its geological significance. Acta Geologica Sinica, 83(11): 1657-1666 (in Chinese) |
| [41] | Wang T, Wang ZQ, Yan QR, Yan Z, Qin XF, Zhang YL and Xiang ZJ. 2011. The formation age and geochemical characteristics of the metavolcanic rock blocks of the Baishuijiang Group in South Qinling. Acta Petrologica Sinica, 27(3): 645-656 (in Chinese with English abstract) |
| [42] | Wang XX, Wang T and Zhang CL. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151 |
| [43] | Wang ZQ. 1998. Collision orogenic process of the South Qinling and its coupling with the evolution of the northern Yangtze margin, China. Ph. D. Dissertation. Beijing: Institute of Geology, Chinese Academy of Sciences, 1-103 (in Chinese with English summary) |
| [44] | Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic belt, central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract) |
| [45] | Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth and Planetary Science Letters, 45(2): 326-336 |
| [46] | Wu FF, Wang ZQ, Wang T, Yan Z and Chen L. 2012. SHRIMP zircons U-Pb ages and geochemical characteristics of the Banbanshan K-feldspar granite in Shanyang, southern Qinling orogenic belt. Journal of Mineral Petrology, 32(2): 63-73 (in Chinese with English abstract) |
| [47] | Xia LQ, Xia ZC and Xu XY. 1996. The confirmation of continental flood basalt of the Proterozoic Xixiang Group in the South Qinling Mountains, and its geological implications. Geological Review, 42(6): 513-522 (in Chinese with English abstract) |
| [48] | Xu JF, Yu XY, Li XH, Han YW, Sheng JH and Zhang BR. 1997. The discovery of highly depleted N-MORB volcanic rock: The new evidence of Mianlue old ocean basin. Chinese Science Bulletin, 42(22): 2414-2418 (in Chinese) |
| [49] | Yan QR, Wang ZQ, Hanson AD, Yan Z, Druschke PA, Wang T, Liu DY, Song B and Jiang CF. 2003. SHRIMP age and geochemistry of the Bikou volcanic terrane: Implications for Neoproterozoic tectonics on the northern margin of the Yangtze Craton. Acta Geologica Sinica, 77(4): 479-490 |
| [50] | Yan QR, Hanson AD, Wang ZQ, Druschke PA, Yan Z, Wang T, Liu DY, Song B, Jian P, Zhou H and Jiang CF. 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China: Implications for Rodinia reconstruction. International Geology Review, 46(9): 817-832 |
| [51] | Yan QR, Wang ZQ, Yan Z, Xiang ZJ, Chen JL and Wang T. 2007. SHRIMP analyses for ophiolitic-mafic bllocks in the Kangxian-Mianxian section of the Mianxian-Lueyang mélange: Their geological implications. Geological Review, 53(6): 755-764 (in Chinese with English abstract) |
| [52] | Yan Z, Wang ZQ, Yan QR, Wang T, Xiao WJ, Li JL, Han FL, Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling Orogen: Constraints on Late Paleozoic southward accretionary tectonics of the North China Craton. International Geology Review, 48(7): 585-615 |
| [53] | Yan Z, Wang ZQ, Wang T, Yan QR, Xiao WJ, Li JL, Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen: Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica, 23(5): 1023-1042 (in Chinese with English abstract) |
| [54] | Yang Z, Dong YP, Zhou DW, Yu J and Ma HY. 2008. Geochemistry and geologic significance of basic rocks in the Xianmoling complex in the Zhashui area, South Qinling, China. Geological Bulletin of China, 27(5): 611-617 (in Chinese with English abstract) |
| [55] | Yan Z, Wang ZQ, Chen JL, Yan QR and Wang T. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Science, 37(4): 322-334 |
| [56] | Yan Z, Wang ZQ, Yan QR, Wang T and Guo XQ. 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Sedimentary Research, 82(1): 9-20 |
| [57] | Yang ZH. 1991. Tectonic Facies and Mineralization of Marginal Translation Basins. Beijing: Science Press, 228 (in Chinese) |
| [58] | Zhang GW. 1988. Formation and Evolution of the Qinling Orogenic Belt. Xi'an: Northwest University Publishing House, 1-192 (in Chinese) |
| [59] | Zhang GW, Zhang BR and Yuan XC. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 485 (in Chinese) |
| [60] | Zhang HF, Zhang BR, Ling WL, Gao S and Ouyang JP. 1997. Late Proterozoic crustal accretion of South Qinling: Nd isotopic study from granitic rocks. Geochemica, 26(5): 16-24 (in Chinese with English abstract) |
| [61] | Zhang ZQ, Tang SH, Wang JH, Zhang GW, Chen JY and Yang YC. 1996. Age of ophiolites in the Qinling Mountains: Isotopic and fossil evidences, their contradiction and explanation. In: Zhang Q (ed.). Study on Ophiolites and Geodynamics. Beijing: Geological Publishing House, 146-149 (in Chinese) |
| [62] | Zhang ZQ, Tang SH, Zhang GW, Yang YC and Wang JH. 2005. Ages of metamorphic mafic-andesitic volcanic rock blocks and tectonic evolution complexity of Mianxian-Lueyang ophiolitic mélange belt. Acta Geologica Sinica, 79(4): 531-539 (in Chinese) |
| [63] | Zhou MF, Robinson PT, Lesger CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280附中文参考文献 |
| [64] | 陈剑祥, 吴新斌, 张海峰, 卫中弟. 2013. 陕西略阳中坝子钛磁铁矿床地质特征及找矿方向研究. 西北地质, 46(2): 111-118 |
| [65] | 崔建堂, 赵长缨, 计文化. 1998. 柞水原划泥盆系中发现早前寒武纪变质岩系. 陕西地质, 16(2): 17-26 |
| [66] | 崔建堂. 2003. 陕西柞水地区老安寺岩群及其地质构造特征. 西北地质, 36(1): 18-24 |
| [67] | 杜定汉. 1986. 陕西秦巴地区泥盆系研究. 西安: 西安交通大学出版社, 1-230 |
| [68] | 杜远生. 1997. 秦岭造山带泥盆纪沉积地质学研究. 武汉: 中国地质大学出版社, 1-130 |
| [69] | 赖绍聪, 张国伟, 董云鹏, 裴先治, 陈亮. 2003. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布. 中国科学(D辑), 33(12): 1174-1183 |
| [70] | 凌文黎, 张本仁, 张宏飞, 骆庭川. 1996. 扬子克拉通北缘中、新元古代洋壳俯冲及壳幔再循环作用的同位素地球化学证据. 地球科学, 21(3): 332-336 |
| [71] | 凌文黎, 王歆华, 程建萍, 杨永成, 高山. 2002a. 南秦岭镇安岛弧火山岩的厘定及其地质意义. 地球化学, 31(3): 222-229 |
| [72] | 凌文黎, 高山, 欧阳建平, 张本仁, 李惠民. 2002b. 西乡群的时代与构造背景: 同位素年代学及地球化学制约. 中国科学(D辑), 32(2): 101-112 |
| [73] | 刘仁燕, 牛宝贵, 何政军, 任纪舜. 2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年. 地质通报, 30(2-3): 448-460 |
| [74] | 刘树文, 闫全人, 李秋根, 王宗起. 2009a. 扬子克拉通西缘康定杂岩中花岗质岩石的成因及其构造意义. 岩石学报, 25(8): 1883-1896 |
| [75] | 刘树文, 杨凯, 李秋根, 王宗起, 闫全人. 2009b. 新元古代宝兴杂岩的岩石成因及其对扬子西缘构造环境的制约. 地学前缘, 16(2): 107-118 |
| [76] | 牛宝贵, 何政军, 任纪舜等. 2006. 秦岭地区陡岭-小茅岭隆起带西段几个岩体的SHRIMP锆石U-Pb测年及其地质意义. 地质论评, 52(6): 826-835 |
| [77] | 宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30 |
| [78] | 苏春乾, 胡建民, 李勇, 刘继庆. 2006. 南秦岭地区存在两种不同构造属性的耀岭河群. 岩石矿物学杂志, 25(4): 287-298 |
| [79] | 王鸿祯, 徐成彦, 周正国. 1982. 东秦岭古海域两侧大陆边缘区的构造发展. 地质学报, 56(3): 270-280 |
| [80] | 王涛, 王宗起, 闫臻, 闫全人, 张英利, 向忠金. 2009. 山阳色河花岗岩地球化学特征和锆石SHRIMP U-Pb年代学. 地质学报, 83(11): 1657-1665 |
| [81] | 王涛, 王宗起, 闫全人, 闫臻, 覃小锋, 张英利, 向忠金. 2011. 南秦岭白水江群变基性火山岩块体的形成时代及其地球化学特征. 岩石学报, 27(3): 645-656 |
| [82] | 王宗起. 1998. 南秦岭中段碰撞造山带及其与陆缘盆地演化的耦合关系. 博士学位论文. 北京: 中国科学院地质研究所, 1-103 |
| [83] | 王宗起, 闫全人, 闫臻, 王涛, 姜春发, 高联达, 李秋根, 陈隽璐, 张英利, 刘平, 谢春林, 向忠金. 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, 83(11): 1527-1546 |
| [84] | 吴发富, 王宗起, 王涛, 闫臻, 陈雷. 2012. 南秦岭山阳板板山钾长花岗岩体SHRIMP锆石U-Pb年龄与地球化学特征. 矿物岩石, 32(2): 63-73 |
| [85] | 夏林圻, 夏祖春, 徐学义. 1996. 南秦岭元古宙西乡群大陆溢流玄武岩的确定及其地质意义. 地质论评, 42(6): 513-522 |
| [86] | 许继锋, 于学元, 李献华, 韩吟文, 盛吉虎, 张本仁. 1997. 高度亏损的N-MORB型火山岩的发现: 勉略古洋盆存在的新证据. 科学通报, 42(22): 2414-2418 |
| [87] | 闫全人, 王宗起, 闫臻, 向忠金, 陈隽璐, 王涛. 2007. 秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义. 地质论评, 53(6): 755-764 |
| [88] | 闫臻, 王宗起, 王涛, 闫全人, 肖文交, 李继亮, 韩芳林, 陈隽璐. 2007. 秦岭造山带泥盆系形成构造环境: 来自碎屑岩组成和地球化学方面的约束. 岩石学报, 23(5): 1023-1042 |
| [89] | 杨钊, 董云鹏, 周鼎武, 于君, 马海勇. 2008. 南秦岭柞水地区小磨岭杂岩基性岩类的地球化学特征及其地质意义. 地质通报, 27(5): 611-617 |
| [90] | 杨志华. 1991. 边缘转换盆地的构造岩相与成矿. 北京: 科学出版社, 1-228 |
| [91] | 张国伟. 1988. 秦岭造山带的形成及其演化. 西安: 西北大学出版社, 1-192 |
| [92] | 张国伟, 张本仁, 袁学成. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 485 |
| [93] | 张宏飞, 张本仁, 凌文黎, 高山, 欧阳建平. 1997. 南秦岭新元古代地壳增生事件: 花岗质岩石钕同位素示踪. 地球化学, 26(5): 16-24 |
| [94] | 张宗清, 唐索寒, 王进辉, 张国伟, 陈家义, 杨永成. 1996. 秦岭蛇绿岩的年龄: 同位素年代学和古生物证据, 矛盾及其理解. 见: 张旗主编. 蛇绿岩与地球动力学. 北京: 地质出版社, 146-149 |
| [95] | 张宗清, 唐索寒, 张国伟, 杨永成, 王进辉. 2005. 勉县-略阳蛇绿混杂岩带镁铁质-安山质火山岩块年龄和该带构造演化的复杂性. 地质学报, 79(4): 531-539 |
2014, Vol. 30








