岩石学报  2013, Vol. 29 Issue (11): 3883-3900   PDF    
哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约
李龚健1, 王庆飞1, 禹丽1, 胡兆初2, 马楠1, 黄钰涵1     
1. 中国地质大学,地质过程与矿产资源国家重点实验室,北京 100083;
2. 中国地质大学,地质过程与矿产资源国家重点实验室,武汉 430074
摘要: 金沙江-哀牢山缝合带系三江特提斯构造域东缘一条重要古特提斯缝合带,其南段哀牢山缝合带闭合的时限及其岩浆活动响应,尚缺乏精确的年代学与岩石地球化学制约。本文对出露于哀牢山缝合带北部老王寨矿区的花岗岩类进行了锆石U-Pb年代学、Hf同位素与全岩微量元素地球化学研究。2件花岗斑岩(D12-1与D13-1)206Pb/238U加权平均年龄为247.7±1.8Ma与255.0~251.7Ma,1件石英斑岩(L12-8)为255.1±3.4Ma,表明一次晚二叠世的岩浆事件。微量元素地化结果显示清晰的Rb、U、Th、Pb正异常和Ba、Sr、Ti、Nb负异常以及轻重稀土强烈分异(LREE/HREE=7.2~18.2)与负Eu异常(0.74~0.78)特征,结合前人主量元素分析表现出的过铝质与高钾钙碱质结果,认为其主体系加厚地壳的富铝沉积岩区深熔形成的S型花岗岩。花岗斑岩εHf(t)值总体集中于0.8~3.3,也含有少量异常正值(7.2)和负值(-5.1和-2.9),解释其源区为亏损地幔与地壳(沉积源区特征明显)的混合。石英斑岩εHf(t)值分布很窄,结果均为负值(-5.5~-2.3),认为其可能系下地壳先存弧岩浆岩源区部分熔融的结果。花岗斑岩锆石较石英斑岩锆石显示重稀土元素分馏相对显著与Ti温度计结果偏高的特征,表现出与其源区中地幔组分的涉入作用相关。总体加厚地壳背景下成生的岩浆岩涉入地幔组分,反映岩浆活动发生于哀牢山缝合带的后碰撞伸展背景。综合新近发表的俯冲型与碰撞型岩浆岩锆石U-Pb定年数据,将哀牢山缝合带闭合的时间限定在晚二叠世(~260Ma),其早于西侧昌宁-孟连洋与北段金沙江洋闭合的时限(分别为中三叠世~235Ma和早三叠世~245Ma)。
关键词: 哀牢山缝合带     金沙江缝合带     古特提斯洋     锆石U-Pb定年     锆石Hf同位素     老王寨    
Closure time of the Ailaoshan Paleo-Tethys Ocean: Constraints from the zircon U-Pb dating and geochemistry of the Late Permian granitoids
LI GongJian1, WANG QingFei1, YU Li1, HU ZhaoChu2, MA Nan1, HUANG YuHan1     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
Abstract: The Jinshajiang-Ailaoshan Paleo-Tethys suture zone is an important tectonic boundary developed along the western margin of the South China block. The closure time and related magmatism in the south segment, commonly known as the Ailaoshan, were less constrained for lacking available geochronological and geochemical data. This paper reports zircon U-Pb dating, Hf isotopic compositions and trace element chemistry of the granite porphyry and quartz porphyry from the Laowangzhai area in the northern Ailaoshan. Two granite porphyry samples record 206Pb/238U weighted mean age of 247.7±1.8Ma and 255.0~251.7Ma, and one quartz porphyry sample yields age of 255.1±3.4Ma, indicating that these porphyries were emplaced in Late Permian. Whole rock trace elements result shows distinctive enrichment in the Rb, U, Th, and Pb, and depletion in Ba, Sr, Ti, and Nb, and strong fractionated REE (LREE/HREE=7.2~18.2) and negative Eu anomalies (0.22~0.24). In combination with the peraluminous and high-K calc-alkaline properties revealed by previous major elements analysis, the granite porphyry was classified as the S-type granite which was produced under a thickened crust setting. The zircon εHf(t) of the granite porphyry are mainly of slightly positive values and clustered in 0.8~3.3, with several elevated positive (7.2) and negative values (-5.1 and -2.9). It was explained that the primary magma was derived from a mixture from mantle component and ancient crust materials (sediments source-dominant). The zircon εHf(t) of the quartz porphyry sample are characterized by clustered negative values (-5.5~-2.3) and it was interpreted by partial melting of crustal materials, which is most likely the arc magmatic rocks in lower crust formed during the Ailaoshan oceanic slab subduction. The more fractionated HREE and higher temperature calculated by the zircon Ti thermometry in the granite porphyry than those in the quartz porphyry are consistent with the explanation that the granite porphyry has more mantle contribution as melting. The mantle melting probably induced by mantle upwelling under a thickened crust condition may denote a post-collision extensional setting after the closure of Ailaoshan Paleo-Tethys Ocean. It was summarized that the transition from subduction-related to collision-related magmatisms along the Ailaoshan suture was at ~260Ma. This time is earlier than that of its north extension, Jinshajiang suture (~245Ma) and that of the paralleled Changning-Menglian suture (~235Ma) to the west.
Key words: Ailaoshan suture     Jinshajiang suture     Paleo-Tethys ocean     Zircon U-Pb dating     Zircon Hf isotope     Laowangzhai    
1 引言

三江特提斯构造带位于横贯欧亚大陆之巨型特提斯构造域东段,经历了晚古生代-中生代冈瓦纳大陆裂解、微地块北向漂移与顺次拼贴的历程,从而发育了多条代表古特提斯洋盆消逝的缝合带(刘增乾等,1993Metcalfe, 2002, 2013Deng et al., 2013)。金沙江-哀牢山缝合带系三江特提斯东缘一条重要的古特提斯缝合带,其洋盆演化史备受关注。前人基于放射虫硅质岩年代学(吴浩若等,1993Feng and Ye, 1996孙晓猛等, 1995, 1997沈上越等, 2001)、蛇绿岩套基性-超基性岩(Zhan et al., 1999Jian et al., 2008, 2009a, b王冬兵等, 2012Zi et al., 2012a)及弧岩浆岩(Reid et al., 2007; Jian et al., 2009a, bFan et al., 2010高睿等,2010Zi et al., 2012b杨喜安等,2013)U-Pb年代学与地球化学,对金沙江-哀牢山洋开启与俯冲时代进行了系统的研究,并逐渐取得了一致的认识,即洋盆开启于中晚泥盆世,西向俯冲伊始于早二叠世。

然而,作为古特提斯洋演化史中最关键环节之一的洋盆闭合时限,一直颇具争议。云南地矿局(1990) 资料表明,上二叠统与下三叠统层序之间系角度不整合接触关系,反映了晚二叠世末期的一次造山作用。Wang et al. (2000) 根据上三叠统地层底部存在着的角度不整合现象,将洋盆闭合时代限定在晚三叠世。Metcalfe(2006, 2011) 综合地层古生物与古地磁资料,认为洋盆在早石炭世时已经发生了闭合。

最近,不少学者对北段金沙江缝合带碰撞型(同碰撞与后碰撞)岩浆岩进行了精细的年代学与地球化学研究。羊拉地区大量花岗质岩体锆石U-Pb年龄结果为239~214Ma(高睿等,2010王彦斌等,2010杨喜安等,2011Zhu et al., 2011),全岩Sr-Nd-Pb同位素和锆石Hf-O同位素显示出了明显的后碰撞岩浆岩特征(Zhu et al., 2011)。王保弟等(2011) 报导了德钦几家顶一带人支雪山组双峰式火山岩套中流纹岩LA-ICP-MS锆石U-Pb年龄为249~247Ma,认为金沙江缝合带在早三叠世已经进入了后碰撞伸展时期。Zi et al. (2012c) 对缝合带西侧三叠纪火山岩套进行了系统的SHRIMP锆石U-Pb年代学研究,结果表明下部攀天阁组流纹岩年龄为247~246Ma,上部崔依比组双峰式火山岩(基性与中酸性火山岩)年龄为245~237Ma,结合全岩主微量与Sr-Nd同位素数据,认为该火山岩套系金沙江洋盆闭合造山后伸展作用的产物。这些研究丰富了古特提斯洋演化史的资料,并且较好的制约了北段金沙江洋的闭合时限,相比之下,南段哀牢山洋闭合时限的岩浆岩证据则尚显不足。本文对出露于哀牢山北部老王寨地区的花岗岩类进行了锆石U-Pb年代学、Hf同位素与全岩微量元素地球化学研究,结合区域地质与地球化学资料,探讨其岩浆源区与岩石成因,并籍以约束古特提洋的闭合时限。

2 地质背景与样品

三江特提斯构造域由多个地块及其间的缝合带构成,经历了原特提斯旋回(前寒武纪-志留纪)、古特提斯旋回(泥盆纪-三叠纪)、中特提斯旋回(二叠纪-白垩纪)及新特提斯旋回(新生代)(Metcalfe, 2011邓军等,2012)。古特斯演化旋回是构筑三江特提斯构造格架的主体,自西向东,三江地区依次发育昌宁-孟连缝合带(北衔龙木错-双湖缝合带)(Ueno et al., 2003Sone and Metcalfe, 2008)、金沙江-哀牢山缝合带(Wang et al., 2000, 2013)与甘孜-理塘缝合带(Yan et al., 2005)等三条古特提斯缝合带(图 1a)。

图 1 三江特提斯构造域简化格架图(a, 据云南省地矿局, 1990; Deng et al., 2013)、金沙江-哀牢山缝合带岩浆岩时空分布图(b)和老王寨地区地质略图(c, 据云南省地质矿产局第三地质大队, 1993) 金沙江缝合带岩浆岩锆石U-Pb年龄引自:Roger et al. (2000) , Reid et al. (2007) , 高睿等(2010) , 王彦斌等(2010) , 王保弟等(2011) , 杨喜安等(2011, 2013), Zhu et al. (2011) , Zi et al.(2012b, c);哀牢山缝合带岩浆岩锆石U-Pb年龄引自:Jian et al.(2009a, b), Fan et al. (2010) , 刘翠等(2011) , 刘汇川等(2013) , 赵德军等(2013) , 王冬兵等(2013) , Wang et al. (2013) Fig. 1 Tectonic sketch map of the Sanjiang Tethyan domain (a, after BGMRY, 1990; Deng et al., 2013), temporal-spatial distribution of the magmatic rocks along the Jinshajiang-Ailaoshan suture zone (b) and simplified geological map of the Laowangzhai area showing the sample localities of the granitoids (c)

①云南省地质矿产局第三地质大队. 1993. 云南省镇沅县镇沅金矿田冬瓜林矿段详细普查地质报告, 1-271

金沙江-哀牢山缝合带夹持于西侧兰坪-思茅地块(北印支地块)与东侧华南板块之间,总体呈北西-南东向展布,包括北段金沙江缝合带和南段哀牢山缝合带两个分支(图 1a, b)。关于金沙江-哀牢山缝合带的性质,存在着两种主要的观点:(1) 古特提斯洋东向俯冲的弧后盆地(Wang et al., 2000Pan et al., 2012);(2) 古特提斯分支洋(Jian et al., 2009a, bMetcalfe, 2011, 2013)。一个洋盆的演化史,蕴含着开启、消减和关闭的全部历程。北段金沙江洋的演化史研究较为成熟,Metcalfe (2013) Deng et al. (2013) 综合了沉积古地理与古地磁、蛇绿岩套及俯冲型和碰撞型岩浆岩的地质与地球化学资料,认为金沙江洋开启于中泥盆世,自早二叠世开始西向俯冲于兰坪-思茅地块之下,最终闭合于早三叠世早期。

南段哀牢山缝合带属于哀牢山构造带的重要组成单元(邓军等,2011刘俊来等,2011; Wang et al., 2013),该构造带以哀牢山断裂为界,分为两套变质程度不同的深、浅变质岩系,南西侧为低绿片岩相带,主要由古生代(马邓群)及三叠纪的千枚岩、片岩、板岩和变质砂岩等组成;北东侧为高绿片岩-低角闪岩相带,主要由早元古代哀牢山群片麻岩、斜长角闪岩、石榴石二云母片岩及大理岩等组成(云南省地矿局,1990李兴林,1994方维萱等,2002)。哀牢山构造带内蛇绿岩套发育,主要分布于浅变质岩系中,与其呈断裂接触的围岩涵盖志留系至下三叠统。蛇绿岩套以双沟地区出露最为完整(长约30km,宽2km),从下至上由3个岩石单元组成,即底部蛇纹石化橄榄岩、中部辉绿岩-辉长岩组合和顶部玄武岩及少量安山质玄武岩等(沈上越等,1998Yumul et al., 2008)。双沟辉长岩和斜长花岗岩SHRIMP锆石U-Pb年龄分别为382.9±3.9Ma和375.9±1.7Ma,全岩地球化学结果均显示正常洋中脊(NMOR)型特征(Jian et al., 2009a, b )。哀牢山放射虫硅质岩记录时段为中泥盆世-早石炭世早期(Feng and Ye, 1996沈上越等, 2001)。因此,哀牢山洋盆至少在中泥盆世已经开启。板片的俯冲消减作用使哀牢山缝合带西侧发育火山岩浆弧,即墨江-绿春火山岩浆弧(莫宣学等, 1993Mo et al., 1994)。雅轩桥弧火山岩SHRIMP锆石U-Pb年龄结果为287~265Ma (Jian et al., 2009a, b ; Fan et al., 2010),反映哀牢山洋盆自早二叠世已经发生西向俯冲作用。此外,哀牢山构造带内出露大量零星分布的、非蛇绿岩成因的中酸性与中基性岩体,其形成时代主要包括晚元古代(李宝龙等,2012王冬兵等,2013)、晚古生代-中生代(李宝龙等,2008)以及新生代(Wang et al., 2001Flower et al., 2012)等(图 1b)。其中,晚二叠世过铝质花岗岩类分布最为广泛、出露面积最大,如元阳地区新安寨二长花岗岩体(云南省地矿局,1990刘汇川等,2013)、娘宗流纹斑岩体(赵德军等,2013)以及大坪地区二长花岗岩体(王治华,2012)等。渐新世-早中新世(32~20Ma),印支地块沿金沙江-红河断裂发生了大规模的南东向逃逸活动(Leloup et al., 1995; Liu et al., 2012),哀牢山构造带内地层、蛇绿岩套及岩浆岩体,遭受了强烈改造而发生错断与肢解(图 1b)。

本文研究的花岗质岩体出露于哀牢山构造带北部镇沅县老王寨金矿区(图 1c),呈透镜状、不规则岩脉及岩枝状(图 2a, b)侵位于晚古生界(泥盆系-石炭系)砂板岩、绢云母硅质板岩、变质杂砂岩与大理岩中,部分经构造作用呈断块、碎块及构造角砾岩产于破碎带中。岩脉宽0.5~20m,长5~300m,产状与区域断裂带基本一致。岩性包括花岗斑岩、花岗闪长斑岩、石英斑岩和石英二长斑岩等(云南省地矿局第三地质大队,1993)。老王寨矿床成矿过程业已被广泛研究,并被认为是一个大型(Au>50t)造山型金矿床(杨立强等,2010)。矿区主要包括冬瓜林与老王寨两个矿段,本文在冬瓜林矿段采集花岗斑岩样品2件(编号D12-1,D13-1),老王寨矿段采集石英斑岩样品1件(编号L12-8)。冬瓜林花岗斑岩斑晶主要由长石(斜长石及碱性长石)10%~40%,黑云母2%~4%,石英3%~5%组成。石英多被熔蚀成浑圆状,长石多已绢云母化,部分碳酸盐化和绿泥石化,黑云母褪变为白云母与绿泥石,部分具碳酸盐化(图 2d, e)。斑晶常被压碎,部分显示压扁-拉长特征(图 2f)。基质由石英、绢云母及水云母化长石组成,以石英为主,含量25%~40%。样品D13-1较D12-1的粒度大,结晶程度高。老王寨石英斑岩(L12-8)斑晶以石英为主(约15%),次为长石(约5%)(图 2c),其结构、蚀变类型与基质组成均与冬瓜林花岗斑岩相似,但石英含量相对偏高。

图 2 老王寨地区石英斑岩与花岗斑岩野外与显微照片 (a)-老王寨矿段石英斑岩岩墙;(b)-冬瓜林矿段花岗斑岩岩脉侵入石炭系砂板岩中;(c)-石英斑岩斑晶以石英为主,长石次之,石英斑晶具溶蚀现象,长石斑晶发生绢云母化;(d)-花岗斑岩(D12-1)中黑云母斑晶褪变为绿泥石;(e)-花岗斑岩(D13-1)斑晶粒度较大,以长石为主,次为石英和云母,长石发生绢云母化,石英溶蚀现象明显;(f)-花岗斑岩中长石斑晶显示压扁-拉长特征.Bt-黑云母;Qz-石英;Fsp-长石 Fig. 2 Field photographs and microphotographs of the granitic porphyry and quartz porphyry in the Laowangzhai area
3 分析方法

全岩微量元素(包括稀土元素)地球化学分析在中国地质科学院地球物理地球化学勘查研究所廊坊地质与勘探实验室完成,利用感应耦合等离子质谱法(ICP-MS)测定,测试精度优于2×10-6。具体分析测试过程见Gao et al. (2002)

锆石的分选在廊坊地科勘探技术服务有限公司完成,先依次进行常规的样品粉碎、淘洗、电磁与重液分选,再在双目镜下挑选出粒度大、晶型完好、裂隙与包体少见的锆石。将优选的锆石置于环氧树脂内,对其进行抛光清洗,露出锆石表面,制成靶样。锆石阴极发光(CL)图像的采集在北京锆年领航科技服务公司电镜室完成。参照锆石CL图像,进行U-Pb年龄点位选择,而Hf同位素点位选择则基于前两者而进行。锆石U-Pb年龄与Hf同位素分析主要在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。样品D13-1锆石发育大量的继承核(图 3),考虑部分继承核的直径较小,同一样品(编号D13-1B)重复在西北大学大陆动力学国家重点实验室进行小斑分析(激光斑束直径20μm)。

图 3 老王寨地区石英斑岩(L12-8)与花岗斑岩(D12-1和D13-1)锆石阴极发光照片(D13-1阴极发光照片据Wang et al., 2013) Fig. 3 Cathodoluminescence (CL) images of zircons from the granitic porphyry and quartz porphyry in the Laowangzhai area (CL images of sample D13-1 are from Wang et al., 2013)

锆石LA-ICP-MS分析测试仪器为Agilent 7500a,激光剥蚀系统为Geolas 2005,分析利用激光斑束直径32μm,剥蚀深度为20~40μm。采用标准锆石91500(≈1064Ma)作为校正外标,GJ-1(≈599Ma)作为监控样,以合成硅酸岩玻璃NIST610标示仪器的运行状态,以29Si为内标校正锆石微量元素含量,分析流程参照Yuan et al. (2004) 。对分析数据的离线处理(样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb 同位素比值和年龄计算等)采用ICPMSDataCal 9.0软件完成,详细的仪器操作条件与数据处理方法见Liu et al.(2008, 2010a, b)。年龄结果处理(包括协和图的绘制与加权平均年龄计算等)利用Isoplot 3.0软件完成(Ludwig, 2003)。西北大学大陆动力学国家重点实验室分析仪器为Agilent 7500a 型ICP-MS,激光剥蚀系统为 ComPex 102 Excimer 激光器,激光束斑直径采用20μm,剥蚀深度为20~40μm(Liu et al., 2007)。锆石年龄计算采用国际标准锆石91500作为外标,元素含量采用NIST 610 作为外标,29Si 作为内标(Diwu et al., 2008)。测试结果通过Macquarie University研发的GLITTER (ver410) 软件计算得出,并参考Andersen(2002) 的方法,对数据进行了普通铅校正。

锆石Hf同位素分析利用LA-MC-ICP-MS完成,激光剥蚀系统为Geolas 2005,德国Thermo Fishier Scientifics公司的Neptune Plus MC-ICP-MS用于分辨时间信号,激光斑束直径为44μm,脉冲频率设定为6Hz。分析时采用X截取锥和Jet样品锥,同时加上4mL/min的N2,以提高Hf同位素测试精度,详细仪器参数见Hu et al. (2012) 。测试中锆石标样91500(176Hf/177Hf=0.282308±12(2σ))用于同位素分馏校正,GJ-1作为监控样,数据计算与校正过程同Liu et al. (2010a)。对实验数据的离线处理采用ICPMSDataCal 9.0软件完成(Liu et al., 2008, 2010a, b )。

4 实验结果 4.1 锆石U-Pb年代学

样品L12-8锆石为半自形-自形晶体,多呈短柱状,长50~100μm,长宽比1.5:1~2:1。D12-1和D13-1锆石自形程度均较高,呈长柱或棱柱状形态。D13-1锆石颗粒较大,长100~200μm,长宽比2:1~4:1;D12-1锆石颗粒较小,长50~100μm,长宽比2:1~3:1。锆石阴极发光(CL)图像均表现明显的震荡环带,部分锆石中可见继承核(L12-8较D12-1和D13-1少)(图 3)。结晶锆石的Th与U含量分别为196×10-6~649×10-6和63×10-6~357×10-6,Th/U比值为0.23~0.64(表 1),表明它们均属于典型的岩浆锆石(Hoskin and Black, 2000)。

表 1 老王寨地区石英斑岩与花岗斑岩锆石LA-ICP-MS分析结果 Table 1 LA-ICP-MS zircon U-Pb analytical data of the granitic porphyry and quartz porphyry in the Laowangzhai area

样品L12-8中,24个分析点均落在一致曲线上或附近,除4个明显较老的继承年龄(2518Ma 、333Ma 、292Ma和291Ma)外,20个分析点206Pb/238U年龄变化于273~244Ma (表 1)。其中,13个年龄集中于264~248Ma,加权平均255.1±3.4Ma (MSWD=2.9) (图 4a)。样品D12-1中,26个分析点年龄变化于262~231Ma,其中20个年龄集中于254~241Ma,加权平均247.7±1.8Ma (MSWD=1.2) (图 4b)。样品D13-1A中19个分析点 206Pb/238U年龄加权平均251.7±2.1Ma (MSWD=1.4) (图 4c),D13-1B中18分析点加权平均255.0±2.0Ma (MSWD=1.1) (图 4d),其中包括大量的继承锆石,年龄广泛分布在2478~282Ma(Wang et al., 2013)。同一件样品(D13-1),在两个实验室测试的结果在误差范围内一致。

图 4 老王寨地区石英斑岩与花岗斑岩LA-ICP-MS锆石U-Pb年龄协和图(D13-1A和D13-1B数据据Wang et al., 2013) Fig. 4 LA-ICP-MS zircon U-Pb concordia diagram of the granitic porphyry and quartz porphyry in the Laowangzhai area (the data of the sample D13-1A and D13-1B are from Wang et al., 2013)
4.2 全岩地球化学

三件斑岩样品微量元素分析结果列于表 2。显微岩相学特征(图 2b, c, d)反映样品已经发生过蚀变作用。考虑蚀变过程中多数主量元素(Si、Na、K和Al等)和低场强元素可能发生了迁移,本文未对三件斑岩样品主量元素进行分析与探讨,而主要依据高场强元素和稀土元素等不活泼元素对样品进行岩石学分析 (Winchester and Floyd, 1977; Hastie et al., 2007)。在稀土组成上,花岗斑岩D12-1与D13-1表现出明显的一致性,稀土总量与轻重稀土比值(LREE/HREE)依次为145.8×10-6、124.0×10-6与7.2、8.3,石英斑岩L12-8稀土总量与轻重稀土比值为199.7×10-6和18.2。稀土元素球粒陨石标准化(Sun and McDonough, 1989)图上,L12-8明显表现出较D12-1和D13-1右倾斜率大的特征(图 5a),三件样品均显示一致的负Eu异常(δEu依次为0.78,0.74与0.74)。在微量元素原始地幔标准化(McDonough and Sun, 1995)蛛网图上(图 5b),Pb及其左侧不相容性更强的元素强烈富集,为原始地幔丰度的几十至几百倍。K、Rb、U、Th等大离子亲石元素和Pb显示清晰的正异常(L12-8的Pb富集度较D12-1和D13-1略弱),而Nb、Ta、Ti等高场强元素显示负异常。此外,三件样品Ba和Sr均表现出明显的负异常,结合Eu的负异常特征,反映花岗岩岩浆部分熔融或结晶分异过程中具有斜长石与角闪石的分离。

表 2 老王寨地区石英斑岩与花岗斑岩全岩微量(×10-6)元素分析结果 Table 2 Whole rock trace elements (×10-6) data of the granitic porphyry and quartz porphyry in the Laowangzhai area

图 5 老王寨地区石英斑岩与花岗斑岩稀土元素球粒陨石标准化配分曲线图(a, 标准化值据Sun and McDonough, 1989)及微量元素原始地幔标准化蛛网图(b, 标准化值据McDonough and Sun, 1995) Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Sun and McDonough, 1989) and primitive mantle-normalized trace element patterns (b, normalization values after McDonough and Sun, 1995) for granitic porphyry and quartz porphyry in the Laowangzhai area
4.3 锆石微量元素与Ti温度计

将参入锆石206Pb/238U加权平均年龄计算的74个锆石分析点微量元素数据提取出,并剔除掉20组数据(包括7组异常数据和13组轻稀土元素未检测出的数据)(Wang et al., 2012),剩余54组数据(表 3)。在锆石稀土元素球粒陨石标准化配分图上(图 6),L12-8,D12-1和D13-1(A, B)均显示明显正Ce异常和负Eu异常,δCe分别为5.0~8.6、6.5~86.6和3.9~104.4,δEu分别为0.20~0.28、0.19~0.34和0.14~0.36,表现出明显的岩浆锆石特征(Hoskin and Schaltergger, 2003)。L12-8较之D12-1和D13-1,重稀土元素配分曲线显得较为平坦,Gd/Yb为0.079~0.196,明显高于D12-1(0.028~0.045)和D13-1(0.021~0.056)。

表 3 老王寨地区石英斑岩与花岗斑岩锆石微量元素(×10-6)数据 Table 3 Zircon trace elements (×10-6) data of the granitic porphyry and quartz porphyry in the Laowangzhai area

图 6 老王寨地区石英斑岩与花岗斑岩锆石稀土元素球粒陨石标准化配分曲线图(球粒陨石标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns of zircons from granitic porphyry and quartz porphyry in the Laowangzhai area (normalization values after Sun and McDonough, 1989)

样品L12-8中12个分析点Ti含量(0.93×10-6~6.24×10-6,平均3.62×10-6)相对较低,而D12-1和D13-1中Ti含量较高,分别为3.01×10-6~14.98×10-6(平均7.95×10-6)和2.08×10-6~23.37×10-6(平均6.41×10-6)。根据锆石Ti温度计公式:log(Ti×10-6)=(5.711±0.072)-(4800±86)/T(K)-logαSiO2+logαTiO2 (假设αSiO2TiO2=1;Ferry and Watson, 2007),计算出L12-8、D12-1和D13-1温度分别为568~701℃,645~778℃和619~821℃,L12-8较D12-1和D13-1温度偏低(图 7)。

图 7 老王寨地区石英斑岩与花岗斑岩锆石Ti温度计结果直方图 Fig. 7 Histogram of the Ti-in-zircon temperature of the granitic porphyry and quartz porphyry in the Laowangzhai area
4.4 锆石Hf同位素

锆石Hf同位素结果见表 4。样品L12-1共分析了10个点,其中9个年龄较集中(206Pb/238U 年龄276~244Ma)的分析点(176Hf/177Hf)i为0.282445~0.282555,εHf(t)值分布较窄,为-5.5~-2.3 (集中于-2.6~-4.1),二阶段模式年龄tDM2为1472~1270Ma(集中于1301~1388Ma);1个继承锆石(206Pb/238U 年龄291Ma)分析点(176Hf/177Hf)i为0.282510,εHf(t)值为-2.9,tDM2为1338Ma(图 8a, b)。样品D13-1共分析了14个点,其中13个年龄集中(206Pb/238U 年龄265~240Ma)的分析点中,有10个点较为近似,(176Hf/177Hf)i为0.282640~0.282709,εHf(t)值为0.8~3.3,tDM2为1100~965Ma;1个分析点(176Hf/177Hf)i较大(0.282640),εHf(t)值为7.2,tDM2为755Ma;另外2个分析点(176Hf/177Hf)i较小(分别为0.282472和0.282528),εHf(t)值分别为-5.1和-2.9,tDM2为1430Ma和1317Ma;1个继承锆石(206Pb/238U 年龄352Ma)分析点的(176Hf/177Hf)iεHf(t)值和tDM2依次为0.282668、4.0和1003Ma(图 8a, b)。

表 4 老王寨地区石英斑岩与花岗斑岩锆石Hf同位素数据 Table 4 Zircon Hf isotopic data of the granitic porphyry and quartz porphyry in the Laowangzhai area

图 8 老王寨地区石英斑岩与花岗斑岩锆石εHf(t)值与二阶段模式年龄(tDM2)直方图 Fig. 8 Histogram of initial Hf isotopic ratio and Hf two-stage model ages for zircons of the granitic porphyry and quartz porphyry in the Laowangzhai area
5 讨论 5.1 岩浆源区与岩石成因

新鲜花岗岩类主量元素结果(何平等,2003)显示出高钾钙碱性(图 9a)与过铝质(图 9b)特征,在A/NK-A/CNK判别图中,同时投入I-S型花岗岩分界的S型一侧。结合本文花岗岩类微量元素原始地幔标准化配分图(图 5b)中类似于地壳平均值(Rudnick and Gao, 2003)的特征,即清晰的K、Rb、U、Th、Pb正异常和Ba、Sr、Ti、Nb负异常,以及强烈的轻重稀土分异(LREE/HREE=7.2~18.2)与负Eu异常(0.74~0.78)(图 5a),表明老王寨地区花岗质岩类属于S型花岗岩类,其源区可能主体为富铝的沉积岩区(Sylvester, 1998)。

图 9 老王寨地区花岗岩类K2O-SiO2判别图(据Peccerillo and Taylor, 1976; Middlemost, 1985)和A/CNK-A/NK判别图(据Maniar and Piccoli, 1989)(数据自何平等,2002) Fig. 9 K2O-SiO2 diagram (after Peccerillo and Taylor, 1976; Middlemost, 1985) and A/CNK-A/NK diagram (after Maniar and Piccoli, 1989) of the granitic rocks in the Laowangzhai area (data from He et al., 2002)

花岗斑岩样品D13-1中,结晶锆石εHf(t) 主要显示微弱的正值(10个分析点集中于0.8~3.3)特征,在εHf(t)-U-Pb年龄图上(图 10),投点介于亏损地幔(DM)演化线和地壳演化线之间。造成这种特征的原因可能有两种,一是花岗岩岩浆起源于轻度富集的地幔物质部分熔融,二是来源于亏损地幔的岩浆在上侵过程中(或岩浆房中)受到了地壳物质的混染。本文测试结果显示,结晶锆石εHf(t) 除了主要为微弱的正值外,还表现出一个较明显的正值(7.2),可能反映了亏损地幔的加入作用。此外,2个分析点锆石εHf(t)存在负值(-5.1和-2.9),以及锆石中大量继承锆石的出现(年龄广布于2478~282Ma)(Wang et al., 2013),反映了地壳物质(沉积源区特征较明显)的混染作用。因此,花岗斑岩源区较为合理的解释是亏损地幔岩浆源(也可能有轻度的富集)与地壳物源(沉积源区特征明显)的混合。石英斑岩样品L12-8,结晶锆石εHf(t)值分布很窄,9个分析点结果均为负值(-5.5~-2.3,集中于-2.6~-4.1),未超出分析方法本身的误差影响范围(4εWu et al., 2006)。假设岩浆源区为混合成因,如亏损或轻度富集地幔与地壳物质的混合,一般会表现出εHf(t) 较宽泛的值域或正负变化的特征(Hawkesworth and Kemp, 2006)。富集地幔单源区,也不能合理的解释该现象,因为少量锆石中可见继承锆石核,年龄结果也显示出333Ma、2518Ma等继承年龄(图 3),反映了地壳物源的参入。因此,本文认为石英斑岩可能系纯粹的地壳物源区熔融作用的结果。有意思的现象是,样品中见有1个2518Ma 的锆石核,该年龄比样品结晶锆石Hf同位素tDM2还老,而结晶锆石却未显示出明显负的εHf(t)值,其似乎与岩浆源区的均一性相悖。这个老锆石核的寄主锆石,是一个溶蚀现象显著的残存锆石(图 3),反映其寄主锆石即属于继承锆石。因此,我们提出了另外一种可能的解释,岩浆源区为地壳中早先存在的弧岩浆岩的重熔产物,锆石εHf(t)集中的弱负值特征为弧岩浆岩部分熔融作用的平均效果。该解释亦符合样品中锆石核较少以及其Pb含量不如D12-1和D13-1(源区有古老沉积物质涉入)高的特点。

图 10 老王寨地区石英斑岩与花岗斑岩锆石εHf(t)值-U-Pb年龄图解 Fig. 10 Zircon εHf(t) values vs. U-Pb ages plot of the granitic porphyry and quartz porphyry in the Laowangzhai area

在锆石稀土元素球粒陨石标准化图中,样品L12-8相对于样品D12-1和D13-1,具有更平缓的重稀土元素配分形式,其Gd/Yb(0.079~0.196),明显高于D12-1(0.028~0.045)和D13-1(0.021~0.056)。这种差异可能与岩浆源区含石榴石、辉石等富集重稀土矿物的量有关(Hoskin and Ireland, 2000)。一般认为,地幔源区部分熔融的岩浆,辉石等基性组分的加入量较大,从而导致岩浆与锆石体系中重稀土分馏更加明显(Hoskin and Ireland, 2000Belousova et al., 2002)。样品D12-1和D13-1相对陡倾的重稀土元素配分形式,可能与源区涉入了地幔物质有关,而样品L12-8平坦的配分形式则可能主要受控于壳源物质熔融。锆石Ti温度计结果显示,样品D12-1(645~778℃)和D13-1(619~821℃)明显较L12-8(568~701℃)的温度高,可能与花岗斑岩样品D12-1和D13-1中高温地幔源区物质的加入作用有关。此外,花岗斑岩样品D12-1和D13-1相对于石英斑岩样品L12-8具有较低的轻重稀土比值(LREE/HREE依次为7.2、8.3与18.2),也表现与部分地幔物质的涉入相关。

从老王寨花岗岩类主体表现为地壳沉积岩源区熔融成因的S型花岗岩的特征上看,岩浆活动应发生于加厚地壳的构造背景下(Sylvester, 1998)。这类过铝质酸性岩浆岩,广泛地分布于哀牢山缝合带及其附近,如元阳地区新安寨二长花岗岩体(云南省地矿局,1990)、大皮甲二云二长花岗岩体(刘继顺等,2012)和娘宗流纹斑岩体(赵德军等,2013),以及大坪地区二长花岗岩体(王治华,2012)等。前述表明,哀牢山洋开启于中泥盆世,消减伊始于早二叠世(Feng and Ye, 1996Jian et al., 2009a, b ; Fan et al., 2010)。晚二叠世S型花岗岩成生所需求的加厚地壳条件,可能为哀牢山洋闭合造山作用的结果。

老王寨花岗斑岩中有幔源物质的涉入,反映其形成于后碰撞伸展转换作用背景下。这种特征类似于金沙江缝合带岩浆活动,崔依比组双峰式火山岩的基性岩端元系地幔部分熔融的产物,即形成于洋盆闭合造山后的伸展背景(Zi et al., 2012c)。由挤压作用向伸展作用转换的背景,有利于壳幔相互作用与岩浆活动(Deng et al., 2004, 2011; 邓军等,2013)。初步建立了如下岩浆岩成因模型:后碰撞减压作用引发地幔物质部分熔融,由此产生的岩浆底侵至下地壳底部(壳幔转换带),加热导致地壳物质(可能为先存弧岩浆岩)发生部分熔融作用,形成石英斑岩母岩浆;底侵至壳幔转换带的幔源岩浆同时与下地壳物质(沉积物源区)不断发生作用,形成混合岩浆,即花岗斑岩的母岩浆。两类岩浆上升侵位至地壳浅部,分别发生结晶分异作用,最终形成了花岗斑岩和石英斑岩。石英斑岩样品L12-8 206Pb/238U加权平均年龄为255.1Ma,略早于花岗斑岩样品D13-1(255.0~251.7Ma)和D12-8(247.7Ma),反映石英斑岩的侵位时间稍早,而花岗斑岩侵位略晚且可能存在着多期次活动。

5.2 岩浆事件与构造缝合时限

哀牢山洋盆闭合的时限,即由洋陆俯冲转换为陆陆碰撞的时限,由于缺乏精确的岩浆岩年代学数据,一直未能予以准确的制约。早期的学者们(刘增乾等,1993钟大赉,1998),根据上三叠统一碗水组磨拉石呈角度不整合覆于哀牢山蛇绿混杂岩之上,认为碰撞造山发生于中三叠世。近年来,随着锆石U-Pb年龄成果的不断涌现,为综合而精细的研究提供了条件。Jian et al.(2009a, b) 对大龙凯地区斜长辉石岩进行元素地球化学与SHRIMP锆石U-Pb年代学研究,认为斜长辉石岩系后造山伸展背景产物,形成年龄为245.6±1.4Ma,反映哀牢山洋早三叠世已经消亡。绿春地区流纹岩SHRIMP锆石U-Pb年代学结果为247.3±1.8Ma,元素地化特征显示成熟岛弧向陆陆碰撞的过渡环境(刘翠等,2011)。因此, 早三叠世在局部地段(如绿春地区),已经伊始陆陆碰撞。刘汇川等(2013) 对新安寨高钾过铝质二长花岗岩体进行了LA-ICP-MS锆石U-Pb年代学与Hf同位素地球化学研究,得到两件样品206Pb/238U加权平均年龄为251.9±1.4Ma和251.2±1.4Ma,结合明显负εHf(t)值(-11.1~-3.1),认为该花岗岩体形成于岛弧向陆陆碰撞转换或者同碰撞的构造环境下,系古老地壳沉积源区(哀牢山群)深熔作用成因,从而反映哀牢山洋在晚二叠世-早三叠世已经闭合。娘宗过铝质流纹斑岩体LA-ICP-MS锆石U-Pb年龄为263.1±2.3Ma,侵入其中的脉岩年龄为260.0±1.7Ma(赵德军等,2013),反映哀牢山洋闭合造山作用在部分地段,可能于晚二叠世就已经发生。此外,Jian et al.(2009a, b)与Fan et al. (2010) 对雅轩桥玄武岩和玄武质安山岩进行了SHRIMP锆石U-Pb定年,分别得到了266.2±2.2Ma和265±7Ma的年龄,地球化学特征均显示了岛弧成因的特征。该年龄略大于娘宗过铝质岩体形成时代,可能代表哀牢山洋盆壳晚期(残留洋)的俯冲消减作用。综合分析,认为哀牢山洋的闭合时限伊始于晚二叠世(~260Ma),而随后的造山作用可能一直持续至中三叠世(图 11)。

图 11 哀牢山缝合带闭合时限的岩浆岩年代学证据(时间标度据Gradstein et al., 2004) 哀牢山缝合带岩浆岩年龄数据自本文及Jian et al.(2009a, b),Fan et al. (2010) 刘翠等(2011) 刘汇川等(2013) 赵德军等(2013) ;金沙江缝合带造山运动时限据Zi et al. (2012c);昌宁-孟连缝合带据Deng et al. (2013) Schematic evolution diagram showing the collision time for the Ailaoshan orogenic belt base on the magmatic ages (the time scales are those of Gradstein et al., 2004)

从区域上看,代表古特提斯洋主支的昌宁-孟连洋(Sone and Metcalfe, 2008)闭合时间较晚,近来大量的关于后碰撞岩浆岩精确的锆石U-Pb年龄数据相继被报导,包括侵入岩(临沧岩基;如Hennig et al., 2009; Dong et al., 2013; Peng et al., 2013)和火山岩(如Peng et al., 2006; Wang et al., 2010)年龄,将昌宁-孟连洋闭合的时间限定在中三叠世(~235Ma)。Zi et al. (2012c) 基于岩浆岩年代学与地层不整合接触关系,将北段金沙江洋闭合的时代限定在早三叠世初(~245Ma),而随之的造山作用可能一直持续至晚三叠世(图 11)。综上所述,古特提斯洋主体于晚二叠世-中三叠世顺次闭合(不包括甘孜-理塘洋)。在总体一致的时间域中,不同洋之间存在着区别。哀牢山缝合带闭合时限在晚二叠世(~260Ma),其早于西侧昌宁-孟连洋与北段金沙江洋闭合的时限(分别为中三叠世~235Ma和早三叠世~245Ma),反映不仅不同的洋盆闭合时限之间具有差异性,同一洋盆不同地段闭合时限也表现出非同步性。

6 结论

(1) 老王寨地区过铝质花岗岩类LA-ICP-MS锆石U-Pb定年结果显示:冬瓜林矿段两件花岗斑岩206Pb/238U加权平均年龄为247.7±1.8Ma与255.0~251.7Ma,老王寨矿段一件石英斑岩206Pb/238U加权平均年龄为255.1±3.4Ma,记录了一次与哀牢山洋缝合有关的晚二叠世岩浆事件;

(2) 花岗斑岩较石英斑岩具有全岩轻重稀土分异程度低、锆石重稀土分异程度高以及锆石Ti温度计结果偏高的特征。花岗斑岩εHf(t) 总体表现为微弱的正值(0.8~3.3),但也具有少量明显的正值(7.2)和负值(-5.1和-2.9);石英斑岩εHf(t)值分布很窄,结果均为负值(-5.5~-2.3,集中于-2.6~-4.1)。全岩微量元素组成、锆石稀土元素组成、Ti温度计以及εHf(t)的特征综合解释为:花岗斑岩源区为亏损地幔与地壳(沉积物源区特征明显)的混合,石英斑岩可能系下地壳先存弧岩浆岩区部分熔融的产物;

(3) 老王寨地区晚二叠世花岗岩类形成于哀牢山缝合带后碰撞伸展构造背景下。哀牢山缝合带闭合时限为晚二叠世(~260Ma),早于西侧昌宁-孟连洋与北段金沙江洋的缝合时限(中三叠世~235Ma与早三叠世~245Ma)。

致谢 野外工作受到了中国黄金集团镇沅金矿公司的支持;研究工作得到了王长明副教授、孙祥副教授和刘学飞讲师的指导,刘欢博士和赵岩博士也提出了宝贵的建议;实验室工作得到中国地质大学(武汉)宗克清副教授、童喜润博士、张文博士和林琳博士的帮助,以及西北大学柳晓明教授、第五春荣副教授和弓化栋讲师的帮助;在此一并表示感谢!
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Belousova E, Griffin W, O’Reilly SY, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622. DOI:10.1007/s00410-002-0364-7
[] Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243–258. DOI:10.1016/S0012-821X(97)00040-X
[] Bureau of Geology and Mineral Resources of Yunnan Province (BGMRY). 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House: 1-658.
[] Deng J, Wang QF, Wei YG, Wang JP, Sun ZS, Yang LQ. 2004. Metallogenic effect of transition of tectonic dynamic system. Journal of China University of Geosciences, 15(1): 23–28.
[] Deng J, Wang QF, Xiao CH, Yang LQ, Liu H, Gong QJ, Zhang J. 2011. Tectonic-magmatic-metallogenic system, Tongling ore cluster region, Anhui Province, China. International Geology Review, 53(5-6): 449–476. DOI:10.1080/00206814.2010.501538
[] Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501–2509.
[] Deng J, Wang CM, Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349–1361.
[] Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2013. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, doi.org/10.1016/j.gr.2013.08.002
[] Deng J, Ge LS, Yang LQ. 2013. Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099–1114.
[] Diwu CR, Sun Y, Yuan HL, Wang HL, Zhong XP, Liu XM. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin, 53(18): 2828–2839.
[] Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL, Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282–294. DOI:10.1016/j.jseaes.2012.10.003
[] Fan WM, Wang YJ, Zhang AM, Zhang FF, Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks. Southwest China. Lithos, 119(3-4): 553–568.
[] Fang WX, Hu RZ, Xie GQ, Su WC. 2002. Tectonolithostratigraphic units of the ailaoshan area in Yunnan, China and their implications of tectonic evolution. Geotectonica et Metallogenia, 26(1): 28–36.
[] Feng QL, Ye M. 1996. Radiolarian stratigraphy of Devonian through Middle Triassic in southwestern Yunnan. In: Long X (ed.). Devonian to Triassic Tethys in Western Yunnan, China. Wuhan: China University of Geosciences Press: 15-22.
[] Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. DOI:10.1007/s00410-007-0201-0
[] Flower MFJ, Hoàng N, Lo CH, Chi CT, Cuòng NQ, Liu FT, Deng JF, Mo XX. 2012. Potassic magma genesis and the Ailao Shan-Red River fault. Journal of Geodynamics, 69: 84–105.
[] Gao R, Xiao L, He Q, Yuan J, Ni PZ, Du JX. 2010. Geochronology, geochemistry and petrogenesis of granites in Weixi-Deqin, West Yunnan. Earth Science, 35(2): 186–200.
[] Gao S, Liu XM, Yuan HL. 2002. Analysis of forty-two major and trace elements in USGS and NIST SRM Glasses by LA-ICPMS. Geostandard Newsletters, 22: 181–195.
[] Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ. 2004. A new geological time scale, with special reference to Precambrian and Neogene. Episodes, 27(2): 83–99.
[] Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O' Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. DOI:10.1016/S0016-7037(99)00343-9
[] Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Hastie AR, Kerr AC, Pearce JA, Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341–2357. DOI:10.1093/petrology/egm062
[] Hawkesworth CJ, Kemp AIS. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3-4): 144–162. DOI:10.1016/j.chemgeo.2005.09.018
[] He P, He MY, Liu F, Mao SD, Wang F. 2003. The elemental geochemistry features of the Laowanghzhai gold field, Yunnan Province. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3): 224–227.
[] Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113(3-4): 408–422. DOI:10.1016/j.lithos.2009.04.031
[] Hoskin PWO, Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423–439.
[] Hoskin PWO, Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627–630. DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
[] Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. DOI:10.2113/0530027
[] Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. DOI:10.1039/c2ja30078h
[] Jian P, Liu D, Sun XM. 2008. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China: Geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences, 32(5-6): 371–384. DOI:10.1016/j.jseaes.2007.11.006
[] Jian P, Liu DY, Kroner A, Zhang Q, Wang YZ, Sun XM, Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748–766. DOI:10.1016/j.lithos.2009.04.004
[] Jian P, Liu DY, Kroner A, Zhang Q, Wang YC, Sun XM, Zhang W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767–784. DOI:10.1016/j.lithos.2009.04.006
[] Leloup PH, Lacassin R, Tapponnier P, Scharer U, Zhong DL, Liu XH, Zhang LC, Ji SC, Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3–10. DOI:10.1016/0040-1951(95)00070-4
[] Li BL, Ji JQ, Fu XY, Gong JF, Song B, Qing JC, Zhang C. 2008. Zircon SHRIMP dating and its geological implications of the metamorphic rocks in Ailao Shan-Diancang mountain ranges, West Yunnan. Acta Petrologica Sinica, 24(10): 2322–2330.
[] Li BL, Ji JQ, Wang DD, Ma ZJ. 2012. Neoproterozoic magmatism in South Yunnan: Evidence from SHRIMP zircon U-Pb geochrological results of high-grade metamorphic rocks in the Yaoshan Group. Acta Geologica Sinica, 86(10): 1584–1591.
[] Li XL. 1994. Classification and nomenclature of ductile shear metamorphic belt and rocks of Ailao Mountains. Yunnan Geology, 13(4): 371–378.
[] Liu C, Deng JF, Liu JL, Shi YL. 2011. Characteristics of volcanic rocks from Late Permian to Early Triassic in Ailaoshan tectono-magmatic belt and implications for tectonic settings. Acta Petrologica Sinica, 27(12): 3590–3602.
[] Liu HC, Wang YJ, Cai YF, Ma LY, Xin XW, Fan WM. 2013. Zircon U-Pb Geochronology and Hf isotopic composition of the Xin’anzhai granite along the Ailaoshan tectonic zone in West Yunnan Province. Geotectonica et Metallogenia, 37(1): 87–98.
[] Liu JL, Tang Y, Song ZJ, Dung TM, Zhai YF, Wu WB, Chen W. 2011. The Ailaoshan belt in western Yunnan: Tectonic framework and tectonic evolution. Journal of Jilin University (Earth Science Edition), 41(5): 1285–1303.
[] Liu JL, Tang Y, Tran MD, Cao SY, Zhao L, Zhang ZC, Zhao ZD, Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailaoshan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231–251. DOI:10.1016/j.jseaes.2011.10.020
[] Liu JS, Wu ZC, Dong X, Liu WH. 2012. Geological, geochemical characteristics and tectonic setting of Dapijia rockbody in Ailaoshan zone. The Chinese Journal of Nonferrous Metals, 22(3): 660–668.
[] Liu XM, Gao S, Diwu CR, Yuan HL, Hu ZC. 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20mm spot size. Chinese Science Bulletin, 52(9): 1257–1264. DOI:10.1007/s11434-007-0160-x
[] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34–43. DOI:10.1016/j.chemgeo.2008.08.004
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. DOI:10.1007/s11434-010-3052-4
[] Liu ZQ, Li XZ, Ye QT, Luo JN, Shen GF. 1993. Division of Tectono-Magmatic Zones and the Distribution of Deposits in the Sanjiang Area. Beijing: Geological Publishing House: 1-246.
[] Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley, Berkeley Geochronology Center
[] Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[] McDonough WF, Sun SS. 1995. Composition of the Earth. Chemical Geology, 120(3): 223–253.
[] Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566. DOI:10.1016/S1367-9120(02)00022-6
[] Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1-2): 24–46. DOI:10.1016/j.gr.2005.04.002
[] Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3–21. DOI:10.1016/j.gr.2010.02.016
[] Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. DOI:10.1016/j.jseaes.2012.12.020
[] Middlemost EAK. 1985. Magmas and Magmatic Rocks. London: Longman: 1-266.
[] Mo XX, Lu FX, Shen SY, Zhu QW, Hou ZQ, Yang KH. 1993. Sanjiang Tethyan Volcanism and Related Mineralization. Beijing: Geological Publishing House: 1-267.
[] Mo XX, Deng JF, Lu FX. 1994. Volcanism and the evolution of Tethys in Sanjiang area, southwestern China. Journal of Southeast Asian Earth Sciences, 9(4): 325–333. DOI:10.1016/0743-9547(94)90043-4
[] Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53(7): 3–14.
[] Peccerillo R, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. DOI:10.1007/BF00384745
[] Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR, Miao LC. 2006. SHRIMP ziron U-Pb geochronology of Early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science in China (Series D), 49(10): 1032–1042. DOI:10.1007/s11430-006-1032-y
[] Peng TP, Wilde SA, Wang YJ, Fan WM and Peng BX. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 168-169: 15-32
[] Reid A, Wilson CJL, Lui S, Pearson N, Belousova E. 2007. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature. Ore Geology Reviews, 31(1-4): 88–106. DOI:10.1016/j.oregeorev.2004.11.003
[] Roger F, Tapponnier P, Arnaud N, Schrer U, Maurice B, Xu ZQ, Yang JS. 2000. An Eocene magmatic belt across central Tibet: Mantle subduction triggered by the Indian collision. : 102-108.
[] Rudnick RL, Gao S. 2003. he composition of the continental crust. In: Rudnick RL (ed.). The Crust Vol. 3 Treatise on Geochemistry (Holland HD and Turekian KK (eds.)). Oxford: Elsevier-Pergamon: 1-64.
[] Shen SY, Wei QR, Chen HL, Mo XX. 1998. Characteristics of ophiolites in Ailaoshan belt, “Sanjiang” region. Acta Petrologica et Mineralogica, 17(1): 1–8.
[] Shen SY, Wei QR, Chen HL, Mo XX. 2001. Characteristics and geotectonic implications of two sorts of silicalites in Ailao Mountain Belt, “Three River” Area. Acta Petrologica et Mineralogica, 20(1): 42–46.
[] Sone M, Metcalfe I. 2008. Parallel Tethyan Sutures in mainland SE Asia: New insights for Palaeo-Tethys closure and implications for the indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166–179. DOI:10.1016/j.crte.2007.09.008
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Sun XM, Nie ZT, Liang DY. 1995. Determination of sedimentary environments and tectonic significance of silicolites in Jinsha River belt, NW Yunnan. Geological Review, 41(2): 174–178.
[] Sun XM, Zhang BM, Nie ZT, Liang DY. 1997. Formation age and environment of ophiolite and ophiolitic mélange in the Jinshajiang belt, northwestern Yunnan. Geological Review, 43(2): 113–120.
[] Sylvester PL. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29–44. DOI:10.1016/S0024-4937(98)00024-3
[] Ueno K, Wang YJ, Wang XD. 2003. Fusulinoidean faunal sucession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian belt, West Yunnan, Southwest China: An overview. The Island, 12(2): 145–161. DOI:10.1046/j.1440-1738.2003.00387.x
[] Wang BD, Wang LQ, Wang DB, Zhang WP. 2011. Zircons U-Pb dating of volcanic rocks from Renzhixueshan Formation in Shangdie rift basin of Sanjiang area and its geological implications. Acta Petrologica et Mineralogica, 30(1): 25–33.
[] Wang DB, Wang LQ, Yin FG, Sun ZM, Wang BD, Zhang WP. 2012. Timing and nature of the Jinshajiang Paleo-Tethys: Constraints from ziron U-Pb and Hf isotope of the Dongzhulin layered gabbro from Jinshajiang ophiolite belt, northwestern Yunnan. Acta Petrologica Sinica, 28(5): 1542–1550.
[] Wang DB, Tang Y, Liao SY, Yin FG, Sun ZM, Wang LQ, Wang BD. 2013. Zircon U-Pb dating and its geological implications of the metamorphic rock series in Ailao Shan ranges, western Yunnan. Acta Petrologica Sinaca, 29(4): 1261–1278.
[] Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ, Xie GH. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(3-4): 123–133.
[] Wang Q, Zhu DC, Zhao ZD, Guan Q, Zhang XQ, Sui QL, Hu ZC, Mo XX. 2012. Magmatic zircons from I-, S-and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59–66. DOI:10.1016/j.jseaes.2011.07.027
[] Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2013. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondwana Research, doi.org/10.1016/j.gr.2013.10.002
[] Wang XF, Metcalfe I, Jian P, He LQ, Wang CS. 2000. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18(6): 675–690. DOI:10.1016/S1367-9120(00)00039-0
[] Wang YB, Han J, Zeng PS, Wang DH, Hou KJ, Yin GH, Li WC. 2010. U-Pb dating and Hf isotopic characteristics of zircons from granodiorite in Yangla copper deposit Deqin County, Yunnan, Southwest China. Acta Petrologica Sinica, 26(6): 1833–1844.
[] Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH, Bi XW. 2010. Petrogenesis of Late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, Southwest China, and tectonic implications for the evolution of the eastern Paleo-Tethys: Geochronological and geochemical constraints. Lithos, 120(3-4): 529–546. DOI:10.1016/j.lithos.2010.09.012
[] Wang ZH, Guo XD, Ge LS, Wang L, Chang CJ, Cong RX, Zhang HY. 2012. Geochemical characteristics of monzonite granite from the Daping gold mining area, Yunnan Province and geologic significance. Geology and Prospecting, 48(3): 618–628.
[] Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(1-2): 325–343.
[] Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-4): 105–126.
[] Wu HR. 1993. The discovery of Early Carboniferous deep sea sediments in Jinsha river belt, NW Yunnan. Scientia Geologica Sinica, 28(4): 166–182.
[] Yan QR, Wang ZQ, Liu SW, Li QG, Zhang HY, Wang T, Liu DY, Shi YR, Jian P, Wang JG, Zhang DH, Zhao J. 2005. Opening of the Tethys in Southwest China and its significance to the breakup of East Gondwana Land in Late Paleozoic: Evidence from SHRIMP U-Pb zircon analyses for the Garzê ophiolite block. Chinese Science Bulletin, 50(3): 256–264. DOI:10.1007/BF02897536
[] Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J, Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723–1739.
[] Yang XA, Liu JJ, Han SY, Zhang HY, Luo C, Wang H, Chen SY. 2011. U-Pb dating of zircon from the Linong granodiorite, Re-Os dating of molybdenite from the orebody and their geological significances in Yangla copper deposit, Yunnan. Acta Petrologica Sinica, 27(9): 2567–2576.
[] Yang XA, Liu JJ, Han SY, Chen SY, Zhang HY, Li J, Zhai DG. 2013. Zircon U-Pb dating and geochemistry of the Luchun volcanic rocks, and its geological implications in the Luchun Cu-Pb-Zn deposit, Yunnan, China. Acta Petrologica Sinica, 29(4): 1236–1246.
[] Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3
[] Yumul GP Jr, Zhou MF, Wang CY, Zhao TP, Dimalanta CB. 2008. Geology and geochemistry of the Shuanggou ophiolite (Ailao Shan ophiolitic belt), Yunnan Province, SW China: Evidence for a slow-spreading oceanic basin origin. Journal of Asian Earth Sciences, 32(5-6): 385–395. DOI:10.1016/j.jseaes.2007.11.007
[] Zhan MG, Lu YF, Chen SF, Dong FL, Chen KX, Wei JQ, He LQ, Huo XS, Liu GQ, Gan JM, Yu FM. 1999. Formation and enrichment of the Yangla copper deposit and its implications for the evolution of the Jinshajiang suture in the northern margin of Gondwana Land. Gondwana Research, 2(4): 592–595. DOI:10.1016/S1342-937X(05)70209-4
[] Zhao DJ, Chen HD, Wang DY, Wang GZ, Li N. 2013. Disintegration of Niangzhong rock mass in the later period of the Middle Permian Epoch in the south part of Ailaoshan orogen. Geological Science and Technology Information, 32(3): 19–25.
[] Zhong DL. 1998. The Paleo-Tethys Orogenic Belt in West of Sichuan and Yunnan. Beijing: Science Publishing House: 1-230.
[] Zhu JJ, Hu RZ, Bi XW, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248–264. DOI:10.1016/j.lithos.2011.07.003
[] Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E. 2012a. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleo-Tethys. Tectonics, 31: TC2012. DOI:10.1029/2011TC002937
[] Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E, McCuaig TC. 2012b. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140-141: 166–182. DOI:10.1016/j.lithos.2012.02.006
[] Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E, McCuaig TC, Peng TP. 2012c. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144-145: 145–160. DOI:10.1016/j.lithos.2012.04.020
[] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501–2509.
[] 邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349–1361.
[] 邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用——兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099–1114.
[] 方维萱, 胡瑞忠, 谢桂青, 苏文超. 2002. 云南哀牢山地区构造岩石地层单元及其构造演化. 大地构造与成矿学, 26(1): 28–36.
[] 高睿, 肖龙, 何琦, 袁静, 倪平泽, 杜景霞. 2010. 滇西维西-德钦一带花岗岩年代学、地球化学和岩石成因. 地球科学, 35(2): 186–200.
[] 何平, 何明友, 刘峰, 毛世德, 王峰. 2003. 云南老王寨金矿田元素地球化学特征. 矿物岩石地球化学通报, 23(3): 224–227.
[] 李宝龙, 季建清, 付孝悦, 龚俊峰, 宋彪, 庆建春, 张臣. 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24(10): 2322–2330.
[] 李宝龙, 季建清, 王丹丹, 马宗晋. 2012. 滇南新元古代的岩浆作用: 来自瑶山群深变质岩SHRIMP锆石U-Pb年代学证据. 地质学报, 86(10): 1584–1591.
[] 李兴林. 1994. 哀牢山韧性剪切变质带类型划分及岩石分类命名. 云南地质, 13(4): 371–378.
[] 刘翠, 邓晋福, 刘俊来, 石耀霖. 2011. 哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境. 岩石学报, 27(12): 3590–3602.
[] 刘汇川, 王岳军, 蔡永丰, 马莉燕, 邢晓婉, 范蔚茗. 2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 37(1): 87–98.
[] 刘俊来, 唐渊, 宋志杰, DungTM, 翟云峰, 吴文彬, 陈文. 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285–1303.
[] 刘继顺, 吴自成, 董新, 刘文恒. 2012. 哀牢山带大皮甲岩体的地质地球化学特征及形成构造环境. 中国有色金属学报, 22(3): 660–668.
[] 刘增乾, 李兴振, 叶庆同, 罗建宁, 沈敢富. 1993. 三江地区构造岩浆带的划分与矿产分布规律. 北京: 地质出版社: 1-246.
[] 莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社: 1–267.
[] 沈上越, 魏启荣, 程惠兰, 莫宣学. 1998. “三江”哀牢山带蛇绿岩特征研究. 岩石矿物学杂志, 17(1): 1–8.
[] 沈上越, 魏启荣, 程惠兰, 莫宣学. 2001. “三江”地区哀牢山带两类硅质岩特征及大地构造意义. 岩石矿物学杂志, 20(1): 42–46.
[] 孙晓猛, 聂泽同, 梁定益. 1995. 滇西北金沙江带硅质岩沉积环境的确定及大地构造意义. 地质论评, 41(2): 174–178.
[] 孙晓猛, 张保民, 聂泽同, 梁定益. 1997. 滇西北金沙江带蛇绿岩、蛇绿混杂岩形成环境及时代. 地质论评, 43(2): 113–120.
[] 王保弟, 王立全, 王冬兵, 张万平. 2011. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义. 岩石矿物学杂志, 30(1): 25–33.
[] 王冬兵, 王立全, 尹福光, 孙志明, 王保弟, 张万平. 2012. 滇西北金沙江古特提斯洋早期演化时限及其性质: 东竹林层状辉长岩锆石U-Pb年龄及Hf同位素约束. 岩石学报, 28(5): 1542–1550.
[] 王冬兵, 唐渊, 廖世勇, 尹福光, 孙志明, 王立全, 王保弟. 2013. 滇西哀牢山变质岩系锆石U-Pb定年及其地质意义. 岩石学报, 29(4): 1261–1278.
[] 王彦斌, 韩娟, 曾普胜, 王登红, 侯可军, 尹光侯, 李文昌. 2010. 云南德钦羊拉大型铜矿区花岗闪长岩的锆石U-Pb年龄、Hf同位素特征及其地质意义. 岩石学报, 26(6): 1833–1844.
[] 王治华, 郭晓东, 葛良胜, 王梁, 常春郊, 从润祥, 张慧玉. 2012. 云南省大坪金矿区二长花岗岩的地球化学特征及地质意义. 地质与勘探, 48(3): 618–628.
[] 吴浩若. 1993. 滇西北金沙江带早石炭世深海沉积的发现. 地质科学, 28(4): 166–182.
[] 杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723–1739.
[] 杨喜安, 刘家军, 韩思宇, 张红雨, 罗诚, 汪欢, 陈思尧. 2011. 云南羊拉铜矿床里农花岗闪长岩体锆石U-Pb年龄、矿体辉钼矿Re-Os年龄及其地质意义. 岩石学报, 27(9): 2567–2576.
[] 杨喜安, 刘家军, 韩思宇, 陈思尧, 张红雨, 李娇, 翟德高. 2013. 云南鲁春铜铅锌矿床鲁春火山岩锆石U-Pb年龄、地球化学及其地质意义. 岩石学报, 29(4): 1236–1246.
[] 云南省地矿局. 1990. 云南省区域地质志. 北京: 地质出版社: 1-658.
[] 赵德军, 陈洪德, 王道永, 王国芝, 李娜. 2013. 哀牢山造山带南段中二叠世晚期娘宗岩体厘定. 地质科技情报, 32(3): 19–25.
[] 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社: 1-230.