2. Department of Earth Sciences, Durham University, Durham DH1 3LE;
3. 地质过程与矿产资源国家重点实验室, 中国地质大学地球科学学院, 武汉 430074
2. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK;
3. State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
拉萨地块中新世的超钾质岩浆活动广受关注,尤其是这类岩石的成因一直存在多种解释 (Turner et al., 1996; Miller et al., 1999; Ding et al., 2003; Nomade et al., 2004; 赵志丹等, 2006; Zhao et al., 2009; 刘栋等, 2011)。这种幔源富钾岩浆明显富集的同位素组成被认为是俯冲的印度大陆地壳物质对地幔源区交代富集的结果 (赵志丹等, 2006; Zhao et al., 2009),或者代表着陆陆碰撞之前洋壳俯冲过程中沉积物的交代作用 (Gao et al., 2009; Tommasini et al., 2010; Liu et al., 2013b)。然而近年来拉萨地块自身的地壳物质加入到超钾质岩浆中的过程愈发不可忽视,主要表现在:一是最近的研究结果表明拉萨地块的核部存在成熟的古老地壳基底 (Zhu et al., 2011a),并且拉萨地块和印度大陆可能都是东冈瓦纳大陆裂解的产物 (Zhu et al., 2011b, 2013);二是在拉萨地块超钾质岩石中存在地壳物质混染的岩石学和地球化学证据,包括岩石具有低CaO/Al2O3比值,上凸的Sr-O同位素混合趋势,与拉萨地块一致的Pb同位素组成,以及广泛存在的地壳包体等 (Hébert et al., 2013; Liu et al., 2013a, b)。因此在这种碰撞后幔源岩浆的演化过程中存在拉萨地块本身的地壳物质加入导致岩浆发生富集作用的可能。由于拉萨地块本身的地壳物质和俯冲到拉萨地块之下的印度大陆地壳的物质在地球化学性质上具有一定相似性 (Liu et al., 2013b), 尤其是在拉萨地块的中部,从超钾质岩石中识别出上述两者的贡献比例是比较困难的。但是在以新生地壳为主要特征的南部拉萨地块 (Ji et al., 2009; Zhu et al., 2011a),利用超钾质岩石来示踪印度大陆的俯冲显得更为有效。
锆石作为物理性质稳定,并且兼有定年和地球化学示踪功能的重要工具,近年来已经发挥了重要的作用 (Hoskin and Schaltegger, 2003)。先前的研究发现在中部拉萨地块的幔源超钾质火山岩存在大量不同年龄的锆石捕掳晶,为岩石成因与演化过程提供了重要信息 (孙晨光等, 2008; Liu et al., 2013a)。本文对采自于南部拉萨地块学那地区的超钾质脉岩进行了详细的野外观察和采样,也获得了具有从元古代到中新世U-Pb年龄的锆石捕掳晶。其中,具有中-新生代年龄的锆石为反演南部拉萨地块地壳演化提供了新的视角;而古生代-元古代古老锆石的发现则为进一步阐明超钾质岩浆的起源提供了新的制约。
1 地质背景和样品拉萨地块分别以雅鲁藏布缝合带 (IYZS) 和班公湖怒江缝合带 (BNS) 为南北界线,并被狮泉河-纳木错蛇绿混杂岩带 (SNMZ) 和洛巴堆-米拉山断裂 (LMF) 进一步分为北部拉萨地块、中部拉萨地块和南部拉萨地块三个构造单元 (图 1a, Zhu et al., 2011a)。后碰撞超钾质岩浆活动主要产出于中部拉萨地块。大部分超钾质火山岩以呈熔岩形式产出,不整合覆盖于中-新生代的火山-沉积地层之上 (Turner et al., 1996; Miller et al., 1999; Nomade et al., 2004; 刘栋等, 2011; Zhao et al., 2009; Liu et al., 2013b)。仅有少量超钾质岩石以脉岩的形式侵位于南部拉萨地块的沉积底层之中 (Williams et al., 2001; Chan et al., 2009)。本文研究区位于南部拉萨地块中段的学那地区 (图 1a)。在研究区内,超钾质岩脉侵位于日喀则复理石沉积地层中 (图 1b, c)。所采超钾质岩石为灰色-灰黑色的地幔云母岩,斑晶矿物主要为呈片状产出的金云母 (图 2a), 含量在20%左右 (最高可达30%);其次含少量单斜辉石和斜方辉石,呈粒状产出 (图 2b)。
|
图 1 藏南后碰撞钾质-超钾质岩浆时空分布图 (a, 据Liu et al., 2013a修改)、学那地区超钾质脉岩露头野外照片 (b) 和超钾质脉岩与围岩接触关系野外照片 (c) BNS=班公湖-怒江缝合带; SNMZ=狮泉河-纳木错蛇绿混杂岩带; LMF=洛巴堆-米拉山断裂; IYZS=印度-雅鲁藏布缝合带; STDS=藏南拆离系; MCT=主中央断层; MBT=主边界断层 Fig. 1 Geological map for the spatial distribution of post-collisional potassic-ultrapotassic magmatism in southern Tibet (a, modified after Liu et al., 2013a), the field photograph for the outcrop of ultrapotassic veins in Xuena area (b) and the contact relathionship between ultrapotassic vein and wallrock (c) BNS=Bangong-Nujiang Suture zone; SNMZ=Shiquan River-Nam Tso Ophiolitic Melange Zone; LMF=Luobadui-Mila Mountain Fault; IYZS=Indus-Yarlung Zangbo Suture zone; STDS=Southern Tibetan Detachment System; MCT=Main Central Thrust; MBT=Main Boundary Thrust |
|
图 2 藏南学那地区幔源超钾质云母岩矿物显微照相 Cpx-单斜辉石; Opx-斜方辉石; Phl-金云母 Fig. 2 Microphotographs for mantle-derived ultrapotassic glimmerite in the Xuena area, southern Tibet Cpx-clinopyroxene; Opx-orthopyroxene; Phl-phlogopite |
选取新鲜的云母岩样品破碎至80目,经过磁选、重液分选和双目镜下手工挑选等方法挑选出锆石,并将挑选出的锆石粘贴制成环氧树脂样品靶,打磨使其露出内部。之后对其进行透射光、反射光和阴极发光 (CL) 显微照相。锆石U-Pb同位素定年在中国地质大学 (武汉) 地质过程与矿产资源国家重点实验室利用LA-ICPMS分析完成的。激光剥蚀系统为GeoLas 2005,电感耦合等离子质谱 (ICP-MS) 为Agilent 7700x。在等离子体中心气流 (Ar+He) 中加入少量氮气以提高仪器灵敏度、降低检出限和改善分析精密度 (Hu et al., 2008)。激光斑束直径为32μm。详细的仪器操作条件和数据处理方法见Liu et al. (2008; 2010)。定年过程中采用91500作为内标矫正同位素分馏,每隔6个数据点分别用两个91500标样校正。锆石微量元素含量利用多个USGS参考玻璃 (BCR-2G, BIR-1G) 作为多外标、Si29作为内标进行定量校正。对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算均采用软件ICPMSDataCal9.0进行离线处理 (Liu et al., 2008, 2010)。采用Andersen (2002)进行普通铅校正,锆石U-Pb年龄谐和图的绘制和MSWD的计算则采用Isoplot/Ex_ver3 (Ludwig, 2003)。锆石定年和微量元素分析结果见图 3和表 1、表 2、表 3。
|
图 3 藏南学那地区超钾质脉岩锆石CL图像 其中实线圆圈和虚线圆圈分别代表U-Pb激光束斑位置 (直径32μm) 和Hf同位素激光剥蚀位置 (直径44μm) Fig. 3 CL images for zircons from ultrapotassic veins outcropped in the Xuena area, southern Tibet The solid and dashed circles refer to the locations of the laser ablation for zircon U-Pb analyses (diameter=32μm) and zircon Hf isotopes analyses (diameter=44μm), respectively |
|
|
表 1 藏南后碰撞超钾质脉岩定年结果 Table 1 Dating results for post-collisional ultapotassic veins in southern Tibet |
|
|
表 2 藏南学那地区超钾质岩石锆石U-Pb年龄数据 Table 2 U-Pb age data of zircons from ultrapotassic rocks in Xuena area, southern Tibet |
|
|
表 3 藏南学那地区超钾质岩石锆石微量元素数据 Table 3 Trace element element composition of zircons from ultrapotassic rocks in Xuena area, southen Tibet |
锆石Hf同位素分析是在中国地质大学 (武汉) 地质过程与矿产资源国家重点实验室采用LA-MC-ICPMS (Neptune Plus) 完成的。激光剥蚀系统为GeoLas 2005 (Lambda Physik, Göttingen, Germany)。激光斑束直径为44μm。采用91500锆石标样进行仪器状态监测。详细的仪器操作条件和数据处理方法见Hu et al. (2012)。离线数据处理和质量漂移矫正采用ICPMSDataCal9.0 (Liu et al., 2010).
3 分析结果 3.1 锆石U-Pb定年和微量元素对超钾质云母岩 (XN1207) 锆石的定年结果表明,其年龄显示出从2690Ma到17Ma的大范围变化 (图 4a),形成了<100Ma, 300~400Ma, 450~500Ma以及700~850Ma四个明显的年龄峰值 (图 4b)。在剔除不谐和的年龄之后,获得最年轻的中新世锆石的206Pb/238U加权平均年龄值为18.0±0.7Ma (2σ, n=4, MSWD=2.29, 图 4a),该结果在区域上与南部拉萨地块超钾质脉岩的早中新世的Ar-Ar定年结果相近 (表 1,Williams et al., 2001; Chan et al., 2009)。在阴极发光 (CL) 图像上 (图 3),地幔云母岩的新生代锆石颗粒粒径较小 (≤100μm),大多被熔蚀成圆状-次圆状,具有弱或无同心震荡环带;而古生代-中生代的锆石捕掳晶大多呈长条状 (长宽比为2:1~3:1),具有比较明显的生长环带;元古代-太古代的古老锆石通常具有较大的粒径并且呈现出复杂的内部结构,发育核边结构。尽管在形态和内部结构上有差异,云母岩中的锆石大都呈现出高的Th、U含量和Th/U比值 (表 2)、Ce正异常、Eu负异常以及HREE相对富集的稀土配分模式 (图 4c),表明这些锆石仍具有典型岩浆锆石特征 (Hoskin and Schaltegger, 2003)。此外,少量石炭纪和新生代的锆石捕掳晶的Th/U比值低于0.07 (图 5a),表明这部分锆石可能形成于变质过程中。
|
图 4 藏南学那地区超钾质脉岩锆石U-Pb协和图 (a)、年龄直方图 (b)、REE球粒陨石标准化图解 (c, 标准化值据Boynton, 1984) 和Hf同位素 (d) Fig. 4 U-Pb ages (a, b), REE distributin (c, normalization values after Boynton, 1984) and Hf isotopic composition (d) for zircons from ultrapotassic veins outcropped in the Xuena area, southern Tibet |
|
图 5 藏南学那地区超钾质脉岩锆石图解 (a)-Th vs. U; (b)-U/Yb vs. Y (据Grimes et al., 2007); (c)-εHf(t) vs. U-Pb age; (d)-(Dy/Yb)N vs. U-Pb age Fig. 5 Diagrams of Th vs. U (a), U/Yb vs. Y (b, after Grimes et al., 2007), εHf(t) vs. U-Pb age (c) and (Dy/Yb)N vs. U-Pb age (d) for zircons from ultrapotassic veins outcropped in the Xuena area, southern Tibet |
对样品中65颗具有谐和年龄的锆石进行了Hf同位素分析,其176Yb/177Hf和176Lu/177Hf变化范围分别为0.002007~0.149811和0.000058~0.004277 (表 4),表明锆石形成之后积累的放射性成因Hf同位素很少,176Hf/177Hf (t) 可以代表锆石形成时的Hf同位素比值。锆石εHf(t) 值的变化范围为-45.8~+14.9,相应的Hf同位素亏损地幔模式年龄和地壳模式年龄分别为tDM=3094~308Ma和tDMC=4159~443Ma (图 4d、表 4)。
|
|
表 4 藏南学那地区超钾质岩石锆石Hf同位素数据 Table 4 Hafnium isotopic compositions of zircons from ultrapotassic rocks in Xuena area |
尽管学那中新世超钾质脉岩出露于日喀则复理石沉积中 (图 1b, c),但是与日喀则弧前沉积的碎屑锆石主要以~55Ma和~180Ma为特征年龄峰值的分布趋势不同 (Wu et al., 2010),超钾质脉岩的锆石记录完全缺少~180Ma的年龄记录 (图 4b)。加上锆石颗粒较差的磨圆度 (图 3),暗示这些锆石可能并非超钾质岩浆从沉积围岩中捕获,而是来自南部拉萨地块的深部地壳。学那超钾质脉岩中的锆石具有高的U/Yb比值和相对低的Y含量,完全落入大陆地壳锆石的成分范围内 (图 5b),这表明这些锆石起源于大陆地壳。因此南部拉萨地块的新生地壳和俯冲的印度大陆地壳都可能作为这些锆石的源区。
与中部拉萨地块的超钾质火山岩中的锆石捕掳晶的年龄分布不同 (孙晨光等, 2008; 刘栋等, 2011; Liu et al., 2013a),学那超钾质脉岩具有更多的元古代-古生代古老锆石记录,且锆石U-Pb年龄集中在四个主要的年龄范围内 (<100Ma、300~400Ma、450~500Ma以及700~850Ma; 图 4b)。
从前两个年龄范围看,南部拉萨地块上晚白垩纪-古近纪 (100~23Ma) 的岩浆活动广泛分布 (Chung et al., 2005; Mo et al., 2008; Wen et al., 2008; Ji et al., 2009; Lee et al., 2009; Zhu et al., 2011b)。此外泥盆纪-石炭纪 (400~300Ma) 的岩浆活动在冈底斯岩基中也被识别出来 (董昕等, 2010; Ji et al., 2012)。相比之下,除了特提斯喜马拉雅上的措美~132Ma的辉绿岩岩墙群,作为印度大陆北缘的喜马拉雅造山带却缺乏上述的同期岩浆活动记录 (Zhu et al., 2013)。这表明超钾质脉岩中晚古生代-新生代 (<400Ma) 的锆石记录主要来自南部拉萨地块的地壳本身。
从上述的后两个年龄范围看 (450~500Ma以及700~850Ma),中部拉萨地块的碎屑锆石和S型花岗岩的继承锆石年龄记录表明,拉萨地块具有1100~1200Ma的年龄峰值,且缺少800Ma左右的年龄峰值 (朱弟成等, 2011; Zhu et al., 2011b),而喜马拉雅造山带的研究则显示出明显存在450~500Ma和700~850Ma的岩浆-变质事件 (Singh et al., 2002; Singh and Jain, 2003; Zhu et al., 2012)。同时,大量研究表明南部拉萨地块从晚中生代到早新生代的各类岩浆岩长期显示了新生地壳的同位素组成且没有显示出存在古老地壳基底 (Wen et al., 2008; Chung et al., 2009; Lee et al., 2009; Zhu et al., 2011a)。此外,Hf同位素随时间的变化还揭示了一个重要的信息,即从~55Ma开始,超钾质脉岩中的锆石εHf(t) 值从+10~+5迅速下降至-10~-25 (图 5c),进一步支持古老印度陆壳物质的加入。因此,本文样品中的早古生代至前寒武纪的继承锆石的年龄记录,暗示这些超钾质脉岩中存在俯冲的印度大陆地壳的物质加入。
综合以上的分析,南部拉萨地块超钾质脉岩的锆石记录可能同时反映了南部拉萨地块与印度大陆北缘地壳这两种地壳物质的加入。无论如何,本文在南部拉萨地块学那超钾质岩石中获得的锆石年代学和Hf同位素结果进一步支持印度大陆北缘成熟的地壳物质至少已经俯冲到了南部拉萨地块之下,且参与到了碰撞后岩浆作用中。
4.2 超钾质脉岩锆石示踪地壳加厚对超钾质岩石成因的研究结果表明,加厚下地壳物质对于拉萨地块超钾质岩石的形成与演化具有重要作用 (Liu et al., 2013a, b)。相比于应用石榴子石相地幔橄榄岩来解释重稀土亏损的地球化学特征,榴辉岩相下地壳物质的加入则能更好地解释上述超钾质岩石的“石榴子石”特征以及其他相关的地球化学性质 (Liu et al., 2013b)。对中部拉萨地块的超钾质火山岩中的锆石捕掳晶的研究表明,这些锆石记录了拉萨地块地壳主要的壳-幔相互作用所引发的岩浆热事件以及印度-欧亚大陆碰撞造成的地壳显著加厚 (Liu et al., 2013a)。在岩浆源区存在大量石榴子石的情况下,岩浆中重稀土 (HREE) 的含量相对缺乏,导致结晶出的锆石具有平坦的HREE配分模式,即具有高的 (Dy/Yb)N比值。而本文超钾质脉岩中的锆石从大约55Ma以来展现出逐渐升高的 (Dy/Yb)N比值 (图 5d),暗示着陆陆碰撞造成的地壳加厚过程被南部拉萨地块上的超钾质脉岩新生代锆石所记录下来。
5 结论本文通过对南部拉萨地块学那地区超钾质脉岩中的锆石U-Pb年代学、微量元素和Hf同位素分析,获得如下结论:
(1) 从超钾质岩石中识别出大量具有喷发前年龄的锆石颗粒,年龄范围从2690Ma到17Ma。锆石高U/Yb比值、低Y含量的特征表明这些锆石起源于大陆地壳而非俯冲洋壳。
(2) 通过对比南部拉萨地块和喜马拉雅造山带岩浆活动的定年结果发现,晚古生代-新生代 (<400Ma) 的锆石捕掳晶可能起源于拉萨地块,而450~500Ma以及700~850Ma的古老锆石颗粒则可能来源于俯冲的印度大陆古老地壳。加上锆石εHf(t) 值从~55Ma开始迅速下降,这些证据表明在南部拉萨地块的超钾质岩浆演化过程中同时存在拉萨地块地壳物质和俯冲的印度大陆地壳物质的加入。
(3) 从~55Ma以来,超钾质脉岩中的锆石颗粒的 (Dy/Yb)N展现出逐渐升高,暗示着南部拉萨地块的地壳加厚过程。
| [] | Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X |
| [] | Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48–57. DOI:10.1016/j.epsl.2008.06.010 |
| [] | Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry (Developments in Geochemistry). Amsterdam: Elsevier: 63–114. |
| [] | Chan GHN, Waters DJ, Searle MP, Aitchison JC, Horstwood MSA, Crowley Q, Lo CH, Chan JSL. 2009. Probing the basement of southern Tibet: Evidence from crustal xenoliths entrained in a Miocene ultrapotassic dyke. Journal of the Geological Society, 166(1): 45–52. DOI:10.1144/0016-76492007-145 |
| [] | Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196. |
| [] | Ding L, Kapp P, Zhong DL, Deng WM. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833–1865. DOI:10.1093/petrology/egg061 |
| [] | Gao YF, Wei RH, Ma PX, Hou ZQ, Yang ZS. 2009. Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: Constraints from geochemistry and Sr-Nd-Pb isotope. Lithos, 110(1-4): 129–139. DOI:10.1016/j.lithos.2008.12.005 |
| [] | Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. DOI:10.1016/S0016-7037(99)00343-9 |
| [] | Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269. DOI:10.1016/S0024-4937(02)00082-8 |
| [] | Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hangh?j K, Schwartz JJ. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643–646. DOI:10.1130/G23603A.1 |
| [] | Hébert R. Guilmette C, Dostal J, Bezard R, Lesage G, Bédard é and Wang CS. 2013. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: Geodynamic implications. Gondwana Research, doi: 10.1016/j.gr.2013.05.013 |
| [] | Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy & Geochemistry, 53(1): 27–62. |
| [] | Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HL. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. DOI:10.1039/b804760j |
| [] | Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. DOI:10.1039/c2ja30078h |
| [] | Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229–245. DOI:10.1016/j.chemgeo.2009.01.020 |
| [] | Ji WQ, Wu FY, Chung SL, Liu CZ. 2012. Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-Tethyan evolution. The Journal of Geology, 120(5): 531–541. DOI:10.1086/666742 |
| [] | Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q, Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20–35. DOI:10.1016/j.tecto.2009.02.031 |
| [] | Liu D, Zhao ZD, Zhu DC, Wang Q, Sui QL, Liu YS, Hu ZC, Mo XX. 2011. The petrogenesis of post-collisional potassic-ultrapotassic rocks in Xungba basin, western Lhasa terrane: Constraints from zircon U-Pb geochronology and geochemistry. Acta Petrologica Sinica, 27(7): 2045–2059. |
| [] | Liu D, Zhao Z, Zhu DC, Niu YL and Harrison TM. 2013a. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology, doi: 10.1130/G34902.1 |
| [] | Liu D, Zhao Z, Zhu DC, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun C, Zhang Z and Liu J. 2013b. Post-collisional potassic and ultrapotassic rocks in southern Tibet: Deciphering influences of mantle metasomatism and crustal contamination. Submitted to Geochimica et Cosmochimica Acta |
| [] | Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34–43. DOI:10.1016/j.chemgeo.2008.08.004 |
| [] | Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082 |
| [] | Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California |
| [] | Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399–1424. DOI:10.1093/petroj/40.9.1399 |
| [] | Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49–67. DOI:10.1016/j.chemgeo.2008.02.003 |
| [] | Nomade S, Renne PR, Mo XX, Zhao ZD, Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth and Planetary Science Letters, 221(1-4): 227–243. DOI:10.1016/S0012-821X(04)00072-X |
| [] | Singh S, Barley ME, Brown SJ, Jain AK, Manickavasagam RM. 2002. SHRIMP U-Pb in zircon geochronology of the Chor granitoid: Evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Research, 118(3-4): 285–292. DOI:10.1016/S0301-9268(02)00107-9 |
| [] | Singh S, Jain AK. 2003. Himalayan granitoids. In: Singh S (ed.). Granitoids of the Himalayan Collisional Belt. Journal of the Virtual Explorer, 11: 1–20. |
| [] | Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311–324. DOI:10.1016/S0012-821X(04)00012-3 |
| [] | Sun CG, Zhao ZD, Mo XX, Zhu DC, Dong GC, Zhou S, Chen HH, Xie LW, Yang YH, Sun JF, Yu F. 2008. Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southwestern Tibetan Plateau: Constraints from zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 24(2): 249–264. |
| [] | Tommasini S, Avanzinelli R, Conticelli S. 2010. The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth and Planetary Science Letters, 301(3-4): 469–478. |
| [] | Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45–71. DOI:10.1093/petrology/37.1.45 |
| [] | Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191–201. DOI:10.1016/j.chemgeo.2008.03.003 |
| [] | Williams HM, Turner SP, Kelley SP, Harris NBW. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339–342. DOI:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 |
| [] | Wu FY, Ji WQ, Liu CZ, Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13–25. DOI:10.1016/j.chemgeo.2009.12.007 |
| [] | Zhao ZD, Mo XX, Nomade S, Renne PR, Zhou S, Dong GC, Wang LL, Zhu DC, Liao ZL. 2006. Post-collisional ultrapotassic rocks in the Lhasa Block, Tibetan Plateau: Special and temporal distribution and its' implications. Acta Petrologica Sinica, 22(4): 787–794. |
| [] | Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH, Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190–212. DOI:10.1016/j.lithos.2009.02.004 |
| [] | Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011a. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241–255. DOI:10.1016/j.epsl.2010.11.005 |
| [] | Zhu DC, Zhao ZD, Niu YL, Dilek Y, Mo XX. 2011b. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727–730. DOI:10.1130/G31895.1 |
| [] | Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL, Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290–308. DOI:10.1016/j.chemgeo.2011.12.024 |
| [] | Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. DOI:10.1016/j.gr.2012.02.002 |
| [] | 董昕, 张泽明, 耿官升, 刘峰, 王伟, 于飞. 2010. 青藏高原拉萨地体南部的泥盆纪花岗岩. 岩石学报, 26(7): 2226–2232. |
| [] | 刘栋, 赵志丹, 朱弟成, 王青, 隋清霖, 刘勇胜, 胡兆初, 莫宣学. 2011. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学. 岩石学报, 27(7): 2045–2059. |
| [] | 孙晨光, 赵志丹, 莫宣学, 朱弟成, 董国臣, 周肃, 陈海红, 谢烈文, 杨岳衡, 孙金凤, 于枫. 2008. 青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同位素制约. 岩石学报, 24(2): 249–264. |
| [] | 赵志丹, 莫宣学, NomadeS, RennePR, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787–794. |
| [] | 朱弟成, 赵志丹, 牛耀龄, 王青, DilekY, 管琪, 刘勇胜, 莫宣学. 2011. 西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义. 岩石学报, 27(7): 1917–1930. |
2013, Vol. 29











λ=1.867×10-11yr-1 (