岩石学报  2013, Vol. 29 Issue (10): 3592-3606   PDF    
二叠纪东吴运动的沉积响应差异:来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究
梁新权1, 周云1,2, 蒋英1,2, 温淑女1,2, 付建刚1,2, 王策1,2     
1. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室,广州 510640;
2. 中国科学院大学, 北京 100049
摘要: 二叠纪所发生的东吴运动是华南非常重要的构造事件之一。但在构造运动方式、动力学机制以及岩浆-沉积-成矿等方面存在明显的地区差异性。在扬子板块,东吴运动主要发生在中、晚二叠世之间,由地幔柱活动引起,表现为地壳的大规模抬升和大火成岩省的形成;而在华夏板块,东吴运动发生时间相对较早,始于早二叠世晚期,可能由古特提斯洋的俯冲、闭合以及陆陆碰撞引起,主要体现造山作用和前陆盆地的形成以及大量二叠纪花岗岩的侵入。对晚二叠世吴家坪组碎屑锆石所进行的LA-ICPMS U-Pb年龄系统研究表明,扬子和华夏碎屑锆石所构成的年龄频谱和所反映的信息亦存在明显的地区差异。来自扬子板块吴家坪组碎屑锆石年龄主要集中在250~272Ma,峰值为259Ma,这与峨眉山玄武岩的喷发时间非常一致,说明碎屑物质主要来自峨眉山大火成岩省;来自华夏板块龙潭组(相当于吴家坪组)碎屑锆石年龄明显与扬子板块吴家坪组碎屑锆石年龄不一样,华夏龙潭组碎屑锆石年龄变化范围宽广,介于250~3652Ma之间,具有258Ma、290Ma、447Ma、988Ma和1880Ma 5个大的峰值以及360Ma、541Ma、823Ma和2500Ma 4个小的峰值。这些锆石年龄,除了2500Ma外,在华夏地块中都有同期岩浆岩出露。这说明华夏吴家坪组碎屑物源复杂,源区经历了复杂的地壳演化历史,包括晋宁、加里东和印支等造山作用。华夏板块晚二叠世早期碎屑物源可能通过造山作用和短距离搬运来自华夏本身。
关键词: LA-ICPMS 锆石U-Pb年龄     碎屑锆石     吴家坪组/龙潭组     东吴运动     二叠纪     扬子与华夏板块    
Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks
LIANG XinQuan1, ZHOU Yun1,2, JIANG Ying1,2, WEN ShuNv1,2, FU JianGang1,2, WANG Ce1,2     
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Dongwu Movement is one of the most important geological events in South China during Permian Period. However, there is a significant regional difference in the aspect of tectonism, magmatism and accompanying mineralization, and their dynamic mechanism. A large-scale crustal uplift and the formation of the large igneous province were response to the activity of the Emeishan mantle plume during Middle-Late Permian in the Yangtze Block, whereas fold orogeny, foreland basin formation and large area granite intrusion took place in the Cathaysian Block during late Early Permian to Late Permian, which caused by the subduction and closure of the Paleo-Tethys Ocean and later continental collision between both the Indosinian and South China blocks. Three samples from the Upper Permian Wujiaping Formation provide identical results, ranging from 250Ma to 272Ma,with a significant peak of 259Ma, and indicate their principal derivation from narrow source rocks of the Emeishan large igneous province in the Yangtze Block. In contrast, The age spectrum from six samples of the Upper Permian Longtan (equivalent Wujiaping) Formation is significantly different with a wide age span, ranging from 250Ma to 3652Ma, with five major age peaks at ca. 258Ma, ca. 290Ma, ca. 447Ma, ca. 988Ma and ca. 1880Ma, and four minor age peaks at ca. 360Ma, ca. 541Ma, ca. 823Ma and ca. 2500Ma. These zircon ages, except for 2500Ma, are coeval with exposed magmatic rocks in the Cathaysia Block of southeastern China. This suggests the provenance of the detrital material of the Longtan Formation in Cathaysian Block was from the Cathaysian Block itself through the short distance transportation, and experienced complex crustal evolution, including Jinning, Caledonian and Indosinian orogenies.
Key words: LA-ICPMS zircon U-Pb age     Detrital zircon     Wujiaping/Longtan Formation     Dongwu Movement     Permian     Yangtze and Cathaysian blocks    
1 引言

东吴运动是李四光于1931年研究南京宁镇山脉二叠纪龙潭组与栖霞组接触关系时提出的,认为是中国东南部古生代后期一次重要的造山运动,与欧洲中部的萨尔运动相当(Li, 1931)。但多年的研究表明,东吴运动具有明显的地区性, 其性质和强度受区域构造、构造部位的控制,造成不同地区翠屏山组与童子岩组、龙潭组与堰桥组或栖霞组、吴家坪组与茅口组之间以假整合、整合或不整合而显现其不平衡性(何斌等, 2005; 李旭兵等, 2011; 胡世忠, 1994a, b ; 梁定益等, 1994; 曾耀昌, 1983; 燕继红和申继山, 2006)。在中国东部,东吴运动以挤压汇聚作用为主,造成二叠纪花岗岩大规模侵入与一些前陆盆地的形成(Liang and Li, 2005; Liang et al., 2004; 曾耀昌, 1983; 燕继红和申继山, 2006; 广西壮族自治区地质矿产局, 1985; 温淑女, 2013; 温淑女等, 2013; 马文璞, 1996);西部以伸展裂陷作用为主, 表现为洋盆扩张、地壳的快速抬升剥蚀和大规模的玄武岩喷发(Shellnutt et al., 2010; Shellnutt and Zhou, 2006; Xu et al., 2004, 2007b; Zhou et al., 2002; 何斌等, 2003, 2005; 徐义刚, 2002)。为了更深入了解和认识东吴运动在华南东、西部表现的差异,作者对来自扬子和华夏晚二叠世早期所形成的碎屑沉积岩中碎屑锆石进行了系统的LA-ICPMS锆石U-Pb年龄测试和物源的对比研究,下面是这一研究成果的报道。

2 地质背景

晚二叠世强烈岩浆活动所形成的玄武岩广泛分布在四川、云南及贵州西南三省,它是我国目前唯一被国际学术界认可的大火成岩省(Courtillot et al., 1999)。该区紧邻三江构造带,复杂的地质历史使该火山岩省遭受强烈的变形和破坏(图 1),从而掩盖了原有的玄武岩分布特征。围绕晚二叠世玄武岩,岩相古地理具有明显的分带,上扬子区自西南到东北依次为剥蚀区(川滇古陆)、冲积平原、三角洲平原和碳酸盐台地(冯增昭等, 1994; 王立亭等, 1994),并产生相应的沉积建造(图 1)。在四川盆地及邻区广元-旺苍、城口-鄂西、开江-梁平等地区,晚二叠世早期发育以下部海陆交互相细碎屑岩(含铝土矿)建造为特征(称王坡段)和上部以深海相碳酸盐-硅质岩建造(称吴家坪段)为特征的吴家坪组(P3w)。吴家坪组与下伏茅口组灰岩呈假整合接触,与上覆深海相碳酸盐岩建造为特征的长兴组(P2c)呈整合接触关系。在扬子西缘盐边、盐源、泸沽湖、木里、西昌(布托、普格、会东)和云南巧家一带,峨眉山玄武岩之下零星出现几十米至一百多米的角砾灰岩、灰岩质角砾岩、巨砾岩或化石混杂堆积的现象,这些是二叠纪东吴伸展运动所产生的震积岩(梁定益等,1994)。盐源平川一带茅口灰岩之上分布以砾岩和砂岩为主的低位水下扇, 地层中产Neoschwagerina sp.和Agathiceras sp.化石,昆明西山地区的灰岩质砾岩中灰岩砾石的磨圆较好, 可能代表古河谷沉积(何斌等,2006)。在远离峨眉山玄武岩的中国东部(华夏)也具有类似的岩相古地理变化,从东往西,出现剥蚀区、冲积平原、三角洲平原和碳酸盐台地相(图 1)。不同的是,华夏板块很少有晚二叠世玄武岩出露,多的是在华夏板块南部即海南岛广泛出现早二叠世-晚二叠世花岗岩(Li et al., 2006; Li and Li, 2007; 温淑女, 2013; 温淑女等, 2013)(图 1)。在广西西南部钦州-防城、广东肇庆-韶关、福建永安等地区,晚二叠世早期形成以海陆交互相的粗碎屑岩-细碎屑岩建造为特征的龙潭组(P3l)或相当层位,龙潭组与下伏地层呈不整合接触(曾耀昌, 1983; 广西壮族自治区地质矿产局, 1985; 广东省地质矿产局, 1988)。广西钦州-防城地区晚二叠世晚期的砾岩直接覆盖在早期的放射虫硅质岩之上, 两者不整合接触。在防城以北,砾岩砾石成分复杂, 除条带状硅质岩和泥岩外, 还包含辉长岩、长英质片麻岩和花岗岩等;向北至石船岭等地, 同一层位砾岩的砾径变小;到灵山佳芝坪一带, 砾岩底部夹有酸性火山岩和煤线(广西壮族自治区地质矿产局,1985马文璞,1996梁新权,2006Liang and Li, 2005),说明蚀源区在西南面。广东韶关上二叠统主要分布于丹霞盆地周边,由海陆交互相的含煤的砂岩、砂页岩和硅质岩组成,与下二叠统呈平行不整合接触;福建永安一带晚二叠世龙潭组亦为海陆交互相含煤沉积,砂岩-粉砂岩-页岩及煤层组成明显的韵律变化,龙潭组下段(P3la)为主要含煤建造段,向东沉积物颗粒变细;其上段(P3lb)颗粒变粗,砂岩成分增多,煤层减少。由西向东,岩石成分由砾岩、含砾砂岩转变成粗砂岩、砂岩,含Lobatannularia sp. 化石,为陆相沉积建造。说明物源并非来自东部(福建省地质矿产局, 1985),可能通过走滑作用来自南部或西南部。

图 1 峨眉山玄武岩分布范围及其邻区岩相古地理图(据冯增昭等,1994王立亭等,1994温淑女等,2013) Fig. 1 Spatial distribution map of the Emeishan large igneous province and neighboring lithofacies palaeogeography (after Feng et al., 1994; Wang et al., 1994; Wen et al., 2013)
3 样品与测试方法

研究样品主要来自扬子和华夏板块的5个区域。样品10YZSC03-1、10YZSC20-2和10YZSC28-6均为灰色-深灰色细粒石英砂岩,分别采自扬子板块城口-巫溪地区尖山-朝阳镇地表探槽(TC03)和浅部钻孔(ZK20和ZK28)吴家坪组王坡段(P3w1)(图 2a-c);样品02CAGX05和10CAGX14为灰色粗粒石英砂岩,来自华夏板块广西十万大山盆地晚二叠世a组(P3a) (相当于龙潭组下部地层)(图 2d);样品11CAGD27和11CAGD28为灰色中粗粒石英砂岩,采自广东肇庆春湾和韶关董塘龙潭组(P3l)(图 2e,f);样品10CAFJ01-1和10CAFJ07,为中细粒石英砂岩,采自福建永安洪田(图 2g)。

图 2 研究样品所在位置及局部地质简图(区域位置见图 1) P3d(大隆组)黑色炭质页岩夹透镜状灰岩;P3c(长兴组)灰色中-厚层状灰岩;P3w2(吴家坪组吴家坪段)灰色中-厚层状燧石条带或团块灰岩;P3w1(吴家坪组王坡段)砂岩、炭质页岩夹粘土岩、煤、铝土岩;P3la、P3lb、P3ld和P3ln分别代表龙潭组下段、上段、当冲段和蜡石坝段,龙潭组主要由砂岩、粉砂岩、泥岩及含煤建造组成;P2m(茅口组)灰色厚层灰岩,中部或下部夹燧石团块或条带;P3a(上二叠统a段,相当于龙潭组下部层位),灰色砾岩、含砾砂岩、细砂岩;P3b(上二叠统b段)灰绿色、黄绿色粉砂岩、泥岩;P3c+d(上二叠统c+d段)灰色薄-中层粉砂岩、泥岩、细砂岩,下部含砾砂岩 Fig. 2 Sampling locations and local geological map of study area (locations see Fig. 1)

锆石分选在廊坊市诚信地质服务有限公司完成。锆石分选过程见李建锋等(2010) ,分选出的锆石颜色多样,红、黄、橙、褐或无色,一般都透明。每个样品挑选的锆石一般多于1000颗,随机从中挑选>200颗制成环氧树脂靶,固结后打磨、抛光至靶上锆石的中心部位暴露出来。对样品靶上的锆石进行透射光、反射光和阴极发光照相以及锆石年龄测试。阴极发光图像(CL)在北京锆年领航科技有限公司完成,激光剥蚀电感耦合等离子质谱仪锆石年龄原位微区测试(LA-ICP-MS)在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。使用的ICP-MS型号为Agilent 7500a,激光剥蚀系统为美国Resonetics公司的Resolution M50 深紫外(DUV)193 nm ArF 准分子激光剥蚀仪。分析中采用的激光斑束直径为31μm,频率为8Hz。采用澳大利亚标准锆石TEMORA作为外标校正,同位素比值数据处理采用ICPMSDatacal 8.7软件(Liu et al., 2010b)平滑方法进行,年龄计算采用ISOPLOT (3.00版)软件(Ludwig, 2003)进行,具体分析方法和步骤及普通Pb校正见参考文献(Andersen, 2002; Yuan et al., 2003, 2004),Th/U比值采用NIST610作为外标,Si作为内标进行计算得到。

4 测试结果

研究测试的569颗锆石中,大部分锆石具有岩浆的生长环带(图 3)。所测锆石Th/U比值介于0.11~ 4.05之间(表 1;详细数据见电子版附表),说明大部分锆石为岩浆起源。

图 3 代表性测试锆石的CL图像(斑束直径约31μm) Fig. 3 CL Photomicrographs of representative detrital zircons analyzed for LA-ICPMS U-Pb ages (spots are 31 microns in length for scale)

表 1 吴家坪组和龙潭组样品纸屑锆石U-Pb同位素测试结果 Table 1 Zircon U-Pb isotopic of the detrital zircons from Wujiaping Formation and Longtan Formation
4.1 样品10YZSC03-1

样品10YZSC03-1,测得31粒锆石,获得30个谐和数据,除一个古老的1833Ma数据,其它年龄数据小,变化范围很窄,介于258~264Ma之间,其峰值为260Ma(图 4a,b),29颗谐和锆石206Pb/238U表面年龄权重平均值为260.2±1.9Ma。

图 4 来自扬子板块四川盆地吴家坪组王坡段碎屑锆石年龄谐和图(a、c、e)和年龄频谱图(b、d、f、g) Fig. 4 LA-ICPMS U-Pb concordia age plots (a, c and e) and frequency spectrograms (b, d, f and g) for detrital zircons from sandstones of Upper Permian Wujiaping Formation from Sichuan Basin of the Yangtze Block
4.2 样品10YZSC20-2

样品10YSC20-2,测试了74粒锆石,获得68个谐和数据,年龄变化范围很窄,介于255~265Ma之间,其峰值为259Ma(图 4c,d),68颗谐和锆石加权平均值为258.9±2.1Ma。

4.3 样品10YZSC28-6

样品10YSC28-6,测试了52粒锆石,获得48个谐和数据,除一个较老的834Ma年龄外,其它年龄变化范围很窄,介于245~272Ma之间,其峰值为259Ma(图 4e,f),47颗谐和锆石年龄加权平均值为258.3±1.6Ma。

上述3个样品共获得146个谐和锆石年龄数据,其中144个数据均介于246~ 272Ma之间,峰值为259Ma(图 4g)。

4.4 样品02CAGX05

对02CAGX05样品中79粒锆石进行了分析,共得到79个有效谐和数据。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为258~3237Ma,具有多个峰值:261Ma、452Ma、535Ma、988Ma和2490~2655Ma(图 5a)。

图 5 来自华夏板块样品龙潭组及相当层位碎屑锆石年龄谐和图(a-f)与年龄频谱图(g和a-f的插图) Fig. 5 LA-ICPMS U-Pb concordia age plots (a-f) and frequency spectrograms (g and inset of a to f) for detrital zircons from sandstones of Upper Periman Longtan (equivalent Wujiaping) Formation from the Cathaysian Block
4.5 样品10CAGX14

对10CAGX14样品中63粒锆石进行分析,舍弃谐和度>110%和<90%的U-Pb年龄后(10CAGX14.32、36、49),共得到60个有效数据。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为453~3652Ma,具有3个明显的峰值:470Ma、920~1000Ma和2494Ma(图 5b)。

4.6 样品11CAGD27

本样品共分析测试了60个点,除了3个分析点(11CAGD27.29、38、57)(谐和度小于95%)外,其余所有点均落入谐和曲线上。所有分析点的Th/U在0.14~1.64,均大于0.1,结合锆石CL图像显示,表明锆石均为岩浆成因。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为271~3065Ma,三个主要峰值年龄为288Ma、447Ma和994Ma(图 5c)。

4.7 样品11CAGD28

本样品共分析了80个点,其中有5个分析点(11CAGD28-31、38、40、47、65)(谐和度小于95%)落入谐和曲线外,其余锆石测试点均落在谐和曲线上。Th/U变化范围在0.11~1.74,均大于0.1,结合锆石CL图像,显示均为岩浆成因的锆石特征。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为257~2631Ma,主要峰值年龄为258Ma和298Ma(图 5d)。

4.8 样品10CAFJ01-1

样品10CAFJ01-1得到70颗锆石分析点。除3个(10CAFJ01-1.02、21、40)测试点外,其余所有分析点均在谐和线上。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为254~2971Ma,具有284Ma和360Ma 2个明显的峰值以及426Ma和1838Ma 2个小的峰值(图 5e)。

4.9 样品10CAFJ07

样品10CAFJ07得到60颗锆石分析点。除3个(10CAFJ07.11、41、58)稍微偏离谐和线外,其余测试点均在谐和线上。获得的206Pb/238U(<1000Ma)和207Pb/206Pb(>1000Ma)年龄范围为 276Ma和3498Ma之间,12个锆石分析点的年龄为439~450Ma,形成一个重要的年龄峰值447Ma。另外四个次要年龄峰值为282Ma,388Ma,882Ma和952Ma(图 5f)。

上述来自华夏板块的6个样品共获得394个锆石年龄谐和数据,年龄变化范围在250~3652Ma之间,具有258Ma、290Ma、360Ma、447Ma、988Ma、1880Ma和2500Ma等多个大小不同的峰值(图 5g)。

5 讨论 5.1 碎屑物质来源 5.1.1 扬子板块四川盆地碎屑物质来源

图 4g可以看出,来自四川盆地城口-巫溪地区晚二叠世吴家坪组王坡段上部3个碎屑沉积岩样品(10YZSC03-1、10YZSC20-2和10YZSC28-6)主要碎屑锆石年龄具有很窄的年龄变化范围(245~272 Ma)和年龄峰值(259Ma),这说明物质来源比较单一。所测试的锆石大都呈自形,具有很好的岩浆生长环带(图 3),且其Th/U比值大于0.1 (变化范围0.15~1.84,表 1),说明碎屑锆石为岩浆成因,来自就近的物源区。所测样品年龄范围(255~265Ma)与峨眉山大火成岩省的形成年龄一致(He et al., 2007; Shellnutt et al., 2012; Xu et al., 2008; Zhong et al., 2007)。考虑到从峨眉山玄武岩到四川盆地东北,岩相古地理从剥蚀区、冲积平原到三角洲平原、碳酸盐台地相变化(冯增昭等, 1994; 刘宝君等, 1993),城口-巫溪地区吴家坪组王坡段碎屑物质应该来自西南的峨眉山大火成岩省的风化剥蚀。但是,一般来说,玄武岩中含锆石非常少而且粒度很小,玄武岩的风化剥蚀难以提供这么多且质量比较好的碎屑锆石,这些碎屑锆石有可能来自玄武岩顶部酸性火山岩的风化剥蚀。实际上,在峨眉山大火成岩省,零星出露岩浆活动晚期而形成的酸性火山岩(Xu et al., 2010)。一些学者曾指出,云南吴家坪阶宣威组的形成与峨眉山玄武岩的剥蚀产物的沉积有关,而其底部地层中锆石主要来自于峨眉山大火成岩省顶部的酸性组分(He et al., 2007; Zhong et al., 2011)。位于扬子板块四川盆地巫溪的吴家坪组王坡段的细碎屑岩可能就是这种情况。

5.1.2 华夏板块碎屑物质来源

所有6个样品碎屑锆石年龄频谱见图 5g。从图 5g可以看出,华夏晚二叠世龙潭组所有样品碎屑锆石年龄范围为250~3652Ma,具有258Ma、290Ma、447Ma、988Ma和1880Ma 5个大的峰值以及360Ma、541Ma、823Ma和2500Ma 4个小的峰值。由于晚二叠世时扬子板块和华夏板块之间为广阔的湘-桂浅海或次深海沉积环境(冯增昭等, 1994; 刘宝君等, 1993)(图 1),这表明华夏板块晚二叠世沉积物的碎屑物源不可能来自其北部的扬子板块。

二叠纪碎屑(250~300Ma)锆石,自形-半自形(图 3)。除了广西十万大山沉积盆地样品10CAGX14外,其它样品均有二叠纪碎屑锆石的存在,具有258Ma和290Ma 2个峰值。在394粒锆石中二叠纪碎屑锆石62颗,占了约16%。目前为止,二叠纪岩浆岩还没有在华东南地区发现,但二叠纪岩浆岩在华夏板块的西南部(海南岛)和印支板块(如越南)以及三江造山带广泛出露(Fan et al., 2010; Hennig et al., 2009; Jian et al., 2008; Li et al., 2006; Li and Li, 2007; Xie et al., 2006; 温淑女等, 2013)。Knittel et al. (2010) 报道了菲律宾Mindoro 存在二叠纪花岗岩(250~270Ma)。

泥盆纪-石炭纪(300~416Ma)碎屑锆石,30粒,峰值360Ma,占了395颗锆石的8%,不同程度在所有样品中存在,尤其福建永定-永安地区这类碎屑锆石很多,呈自形-半自形(图 3),显示短距离搬运。Li et al. (2012) 报道了福建永定地区中二叠世砂岩具有370Ma峰值的碎屑锆石。同二叠纪碎屑锆石一样,泥盆纪-石炭纪岩浆岩出露在华夏的西南海南岛(陈新跃等, 2013; 梁新权等,未发表数据),而在华东南武夷-云开一带没有出露。陈新跃等(2013) 获得海南屯昌晨星变质安山质火山-沉积岩形成年龄为345Ma;梁新权等(2013,未发表数据)获得了屯昌变质火山岩或火山-沉积岩中的锆石LA-ICPMS U-Pb年龄为368Ma和388Ma。最近,Chen et al. (2012) 在云开高州麻粒岩中获得了370Ma独居石U-Pb年龄。另外,在印支板块,Da Rang河获得300~400Ma独居石年龄,可能来自该流域海西期造山形成的花岗岩或片麻岩(Yokoyama et al., 2010)。

寒武纪-志留纪(416~542Ma)碎屑锆石,55颗,占395颗所测锆石14%,具有447Ma和541Ma 2个峰值。在所有样品中存在,大多呈自形-半自形(图 3),显示从源区搬运不远。加里东期花岗岩和加里东期变质形成的麻粒岩在华夏板块的武夷-云开造山带广泛分布 (Chen et al., 2012; Li et al., 2010; Liu et al., 2010a; Wan et al., 2010; Wang et al., 2010, 2011, 2013; Yang et al., 2010)。目前,在海南西部莺歌海盆地HK30-3-1A钻孔、昌江邦溪一带变火山岩和一些泥盆纪砂岩中获得一系列420~540Ma LA-ICPMS 锆石U-Pb年龄(梁新权等,未发表数据);在印支板块的越南北部,出露ca. 430Ma Song Chay花岗质岩体,而在中部Kontum地体,获得430~470Ma的变质年龄(Carter et al., 2001; Roger et al., 2000, 2007; Usuki et al., 2009)。

新元古代-中元古代锆石(540~1600Ma),152颗,占395颗锆石约38%。自形-半自形,经历了短距离搬运。具有1个宽广的880~1140Ma峰值和1个823Ma小的峰值,前者是华夏与扬子板块之间一次重要的拼合事件,而后者则是拼合之后的一次裂解事件。新元古代岩浆岩广泛出露在扬子板块(Li, 1999; Li et al., 2003a, b ),而在华夏板块只零星出露(Li et al., 2010; Wan et al., 2007; Yu et al., 2010; 舒良树等, 2008)。但在华夏板块震旦系和早古生代变质砂岩以及印支期花岗岩麻粒岩包体中,新元古代早期(1.0~0.9Ga) 碎屑锆石很丰富,并混有新元古代晚期(0.8~0.6Ga)碎屑锆石(Wang et al., 2010; 王丽娟等, 2008; 赵亮等, 2010),华夏板块的南缘很可能曾经存在或者极其靠近一个Grenville 期的造山带(王丽娟等, 2008)。Li et al. (2012) 通过锆石Hf-O同位素研究表明,晚二叠世地层中的新元古代早期的碎屑锆石不可能来自扬子板块的东南缘岩浆岩(Li et al., 2005; Ye et al., 2007)。

中元古代碎屑锆石(1600~2500Ma)有99粒,占了395粒测试锆石约25%,其峰值为1880Ma,半自形-他形,经历了长距离搬运。与华夏武夷山地区1.86~1.89Ga花岗质岩石相匹配(Yu et al., 2010; 甘晓春等, 1995, 1996)。

太古代(2500~3652Ma)碎屑锆石为31粒,占了大约8%。其峰值2500Ma,大都呈他形,磨圆度比较高,说明经历了长距离的搬运。在华夏板块,尚没有发现太古代岩石,太古代花岗质岩石(2.9~3.2Ga)只在扬子板块的崆岭杂岩中发现和报道(Gao et al., 2001; Jiao et al., 2009; Qiu et al., 2000)。但太古代碎屑锆石在新元古代-二叠纪砂岩或变质砂岩和一些河流体系中广泛存在 (Chen et al., 2012; Li et al., 2012; Wang et al., 2010, 2013; Xu et al., 2007a; Yu et al., 2010)。

综合上述,华夏板块晚二叠世沉积物的物源不可能来自其北部的扬子板块。结合广西钦州-防城和福建永安地区上二叠统碎屑建造粒度的变化趋势(西(南)往(北)东方向粒度变细),晚二叠世沉积物碎屑物质最有可能的来源是其华夏板块本身或华夏板块的西南部,或经历了长距离搬运的不知名的太古代源区和(或)经历了多旋回改造的沉积物(Li et al., 2012)。

5.2 二叠纪构造运动在华南的差异

华南二叠纪发生的构造变动, 它不仅造成华南茅口阶与吴家坪阶之间的非连续沉积,同时造成两者之间的一次全球性的海退事件。这次海退造成了茅口期筳类和四射珊瑚基本绝灭, 茅口期菊石、腕足类和苔鲜虫的优势属种也基本消失, 牙形刺Mesogondolella属为Clarkina属所取代(梅仕龙等, 1994)。然而,二叠纪的构造运动在华南的扬子板块和华夏板块存在明显的差异。

在扬子板块,中、晚二叠世的构造运动主要由地幔柱活动引起(Chung and Jahn, 1995; Hanski et al., 2010; He et al., 2003; Xu et al., 2007b; Zhang et al., 2009)。在浅表主要表现在以下几个方面:(1) 峨眉山大火成岩省的形成,包括峨眉山玄武岩、与峨眉山玄武岩相关的酸性火山岩和酸性侵入岩以及放射状排列的大型基性岩墙(Ali et al., 2005; Shellnutt et al., 2008, 2011; Xu et al., 2004, 2008, 2010; 李宏博等, 2010; 徐义刚和钟孙霖, 2001)。锆石U-Pb年龄研究表明,大规模玄武岩的喷发发生在258~259Ma(He et al., 2007; 徐义刚等, 2013),稍晚期254~251Ma有中酸性岩浆岩的侵入(Xu et al., 2008; Zhong et al., 2009)。(2) 造成峨眉山地区岩石圈大规模的抬升(He et al., 2003, 2007; Xu et al., 2004)。目前的研究表明,峨眉山玄武岩喷发前,扬子西缘有过一次快速的公里级的穹状隆起。峨眉山玄武岩下伏地层中二叠世茅口组灰岩存在差异剥蚀,从内带到外带出现深度剥蚀、部分剥蚀、古风化壳或沉积间断到连续沉积(He et al., 2003)。(3) 造成扬子西缘岩相古地理出现规律性的变化。峨嵋山大火成岩省形成前,上扬子区的岩相古地理呈现南北分带, 自南到北依次为滇黔开阔台地、川鄂局限台地和南秦岭盆地;在大火成岩省形成以后,岩相古地理由南北分带变为东西分带, 上扬子区自西南到东北依次为剥蚀区(川滇古陆) 、冲积平原、碎屑岩台地和碳酸盐台地 (王立亭等, 1994; 何斌等, 2006; 冯增昭等, 1994; 张廷山等, 2011)。碎屑锆石研究显示,峨眉山地幔柱活动所造成的峨眉山地壳大规模隆升剥蚀和峨眉山大火成岩省为晚二叠世吴家坪组下部碎屑岩沉积提供了充分的物质来源,因而碎屑物质成分单一。

在华夏板块,二叠纪构造运动常作为华南海西-印支运动的一部分看待,但它是否需要从强大的印支期造山运动中识别出来,是一个很重要而有意义的问题(马文璞, 1996)。二叠纪构造活动在华夏板块主要体现在以下几个方面:(1) 海南发育一系列从钾玄质-钙碱性的二叠纪(272~254Ma)花岗岩(Li et al., 2006; 温淑女等, 2013; 谢才富等, 2006),其形成时代可与三江构造带中所发育的二叠纪岩浆岩(Fan et al., 2010; Hennig et al., 2009; Jian et al., 2008) 相对比,说明海南岛在早二叠世晚期就已经开始岩浆活动;(2) 从海南-广东-福建-江西-广西,出现类似前陆盆地沉积建造与层序。海南岛东方、王下等地早二叠世晚期出露泥岩、粉砂岩、细砂岩等下细上粗的细碎屑岩建造,而晚二叠世早期,普遍出现砾岩、粗砂岩、砂岩等下粗上细巨厚的类磨拉石建造不整合覆盖在早二叠世地层上。晚二叠世早期的古地理和沉积环境与早二叠世相比有巨大的变化(曾耀昌, 1983; 福建省地质矿产局, 1985; 广西壮族自治区地质矿产局, 1985; 广东省地质矿产局, 1988; 马文璞, 1996)。早二叠世晚期所发育的下细上粗沉积序列代表最初的递进或持续冲断造山及临近山前的挠曲凹陷,它导致盆地变宽、变深,并在上部形成以巨砾级副砾岩为特征的过补偿的沉积序列(梁新权, 2006)。现有的资料表明, 这个层位碎屑岩的粒度总的是向西南方向加大的, 桂西南钦防、闽西永安和江西龙南等地自西南往北东出现的砾岩和含砾砂岩到砂岩、粉砂岩变化趋势, 表明了新的蚀源区方位在西南部。这说明华南陆域在中、晚二叠世之间曾发生过一次来自南方一侧的造山作用(马文璞, 1996)。对来自广西、广东和福建晚二叠世龙潭组底部砂岩中大量碎屑锆石年龄测试研究表明,碎屑锆石年龄变化范围250~3650Ma,具有258Ma、290Ma、447Ma、988Ma和1880Ma 5个大的峰值以及360Ma、541Ma、823Ma和2500Ma 4个小的峰值。这些年龄大多在华夏武夷-云开造山带以及南部的海南岛找到,这也说明中、晚二叠世曾发生过来自(西)南面的造山作用。

5.3 二叠纪构造运动动力学机制的差异

二叠纪在华南发生了强烈的构造运动,但在岩浆活动、沉积响应以及造山或造陆作用等诸方面存在明显的区域不平衡和差异性。造成这些差异的原因可能与由其形成的动力学机制不同有关。

扬子板块中、晚二叠世发生的构造运动造成了大规模的地壳抬升与剥蚀以及相应的沉积,同时形成大火成岩省。同时,上扬子中、晚二叠世岩相古地理也发生明显的变化,在剖面上由台地碳酸盐岩突变为陆相、滨浅海碎屑岩;在空间上由南北分带突变为东西分带。通常人们认为这是东吴运动的结果。这些特征可以解释为是峨眉山地幔柱上升的浅表地质响应(何斌等,2004)。目前的研究表明,扬子地区中、晚二叠世所发生的构造运动及其岩浆-沉积-成矿响应是由于地幔柱引起的(Chung and Jahn, 1995; He et al., 2003; Xu et al., 2004, 2007b; Zhang et al., 2009)。地幔柱活动引发扬子地区二叠纪东吴运动以及相应的岩浆-沉积-成矿响应已经得到地质学家的广泛认同。

华夏板块中,常将二叠纪开始发生的造山作用作为印支造山作用的一部分(Li et al., 2006, 2012; Li and Li, 2007)。对华南印支造山作用的动力学机制尚存在很大争议,主要有两种观点,一种观点认为是碰撞引起,包括印支板块与华南板块之间的碰撞(Cai and Zhang, 2009; Lepvrier et al., 2004; Shu et al., 2008a, b ; Zhang and Cai, 2009; Zhou et al., 2006),印支板块、华南板块与华北板块的碰撞(Wang et al., 2007),或者陆内扬子与华夏板块的碰撞(Wang et al., 2005);另一种观点认为印支期造山作用开始于二叠纪的一个活动大陆边缘(Li et al., 2006, 2012),随后受到大洋板块向西北华南大陆内部的平板俯冲(Li and Li, 2007)。但是,中生代时中国东部不属于环太平洋构造带, 不处于安第斯活动陆缘环境, 没有岛弧玄武岩和岛弧花岗岩。在中生代早期, 太平洋板块基本上是向北俯冲的, 至早白垩世中期(125Ma 左右) 才转向西俯冲。 因此, 中国东部中生代大规模岩浆活动与太平洋板块的向西俯冲无关(张旗, 2013)。对海南出现的二叠纪花岗岩、广西十万大山盆地以及华南构造等研究表明,在晚古生代晚期,古特提斯的向北俯冲可能是造成海南花岗岩以及相应沉积建造的根本原因(Cai and Zhang, 2009; Liang and Li, 2005; Liang et al., 2004; Zhang and Cai, 2009)。其基本理由是:(1) 在越南马江流域和中国广西右江-十万大山-钦州以及海南到等地存在晚二叠世-早三叠世的磨拉石碎屑建造,它们可能是Truong Son海西-印支期造山带前陆盆地沉积组成。马江流域出露晚二叠世-早三叠世砾岩、凝灰质砾岩、砂岩、杂砂岩、细砂岩、粉砂岩和泥质岩等,广西右江-十万大山和广东韶关-肇庆等地发育了类似沉积建造,古水流指向从南-北或西南-北东。海南岛在东方县南龙村和江边乡零星出露早二叠世深水相沉积和晚二叠世海陆交互相中-细碎屑沉积建造,反映了前陆盆地前渊沉积特点(Cai and Zhang, 2009; Liang et al., 2004; Liang and Li, 2005; 温淑女等,2013);(2) 海南岛所发育的海西-印支期花岗岩,不论岩石类型或地球化学特征,还是形成时代跨度等诸方面,与三江构造带可以进行对比,而与华南造山带明显的不同(Hennig et al., 2009; Jian et al., 2008; Fan et al., 2010; Lan et al., 2000)。古太平洋板块的西向俯冲很难解释这些岩浆作用的时空特征(温淑女等,2013);(3) 海南岛一些古老的前寒武纪-早古生代岩石中普遍发育与三江构造带走向一致的海西-印支期NW向右行韧性剪切带,其变形年龄为242~245Ma(陈新跃等,2006Zhang et al., 2010)。这与三江造山带和越南Truong Son 造山带所发育258~240Ma形成NW向右行剪切带在变形时序及构造样式上都非常相似(Lepvrier et al., 1997, 2004Nam et al., 1998Carter et al., 2001),暗示它们之间的内在联系。海南岛所存在的NW向韧性构造变形带可能是印支板块与华南板块之间NW向构造体系的南延部分,是古特提斯洋闭合、板块碰撞演化过程中所留下的痕迹;(4) 华南于海西-印支期褶皱轴方向是近EW向或NWW向,而非NE向,NE向断层往往呈左行走滑逆冲性质(王清晨,2009Wang et al., 2005, 2011),这说明海西-印支期早期的应力作用来自西南。显然,古特提斯洋的俯冲、消亡,由此导致的印支板块和华南板块的碰撞可以很好地解释在华东南所出现的构造-沉积-岩浆作用等现象。

6 结论

(1) 来自扬子板块晚二叠世吴家坪组下部碎屑锆石年龄主要集中在255~265Ma,峰值在259Ma,这与峨眉山玄武岩的喷发时间非常一致,说明碎屑物质主要来自峨眉山大火成岩省;来自华夏板块晚二叠世吴家坪组下部碎屑锆石年龄变化范围宽广,介于250~3652Ma之间,具有258Ma、290Ma、447Ma、988Ma和1880Ma 5个大的峰值以及360Ma、541Ma、823Ma和2500Ma 4个小的峰值,这些都与华夏板块所经历的地质增生事件一致。太古宙后的碎屑锆石呈自形-半自形,说明华夏板块晚二叠世早期碎屑物源距离不远,可能来自华夏本身。

(2) 二叠纪构造运动华南存在明显的地区性差异与响应,扬子板块主要体现为区域性的地壳快速抬升和大规模玄武岩喷发以及相应的沉积岩相古地理的改变,它们主要是峨眉山地幔柱引起;而在华夏板块,体现出海南二叠纪花岗岩的大量侵入,和强烈的褶皱造山及走滑前陆盆地的形成,这一构造事件可能与古特提斯板块的俯冲、消亡以及印支板块与华南板块的碰撞有关。

附表1 吴家坪组和龙潭组碎屑锆石U-Pb同位素测试详细结果 Appendix Table 1 Zircon U-Pb isotopic analyses of the detrital zircons from Wujiaping Formation and Longtan Formation
致谢 感谢两位匿名审稿专家所提出的宝贵意见!
参考文献
[] Ali JR, Thompson GM, Zhou MF, Song XY. 2005. Emeishan large igneous province, SW China. Lithos, 79(3-4): 475–489. DOI:10.1016/j.lithos.2004.09.013
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Bureau of Geology and Mineral Resources of Fujian Province. 1985. Regional Geology of Fujian Province. Beijing: Geological Publishing House: 1-671.
[] Bureau of Geology and Mineral Resources of Guangdong Province. 1988. Regional Geology of Guangdong Province. Beijing: Geological Publishing House: 1-941.
[] Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Beijing: Geological Publishing House: 1-853.
[] Cai JX, Zhang KJ. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35–43. DOI:10.1016/j.tecto.2008.12.003
[] Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogen) in Vietnam. Geology, 29(3): 211–214. DOI:10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
[] Chen CH, Liu YH, Lee CY, Xiang H, Zhou HW. 2012. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: Emphasis on the in-situ EMP monazite dating. Lithos, 144.
[] Chen XY, Wang YJ, Wei M, Fan WM, Peng TP. 2006. Microstructural characteristics of the NW-trending shear zones of Gong’ai region in Hainan Island and its 40Ar/39Ar geochronological constraints. Geotectonica et Metallogenia, 30(3): 312–319.
[] Chen XY, Wang YJ, Zhang YZ, Zhang FF, Wen SN. 2013. Geochemical and Geochronological characteristics and its tectonic significance of andesitic volcanic rocks in Chenxing area, Hainan. Geotectonica et Metallogenia, 37(1): 99–108.
[] Chung SL, Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889–892. DOI:10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
[] Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166(3-4): 177–195. DOI:10.1016/S0012-821X(98)00282-9
[] Fan WM, Wang YJ, Zhang AM, Zhang FF, Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119(3-4): 553–568. DOI:10.1016/j.lithos.2010.08.010
[] Feng ZS, Wang ZJ, Yang YQ, et al. 1994. Lithofacies Palaeogeography of the Permian in the Regions of East Yunnan, Southwest Guizhou and West Guangxi. Beijing: Geological Publishing House: 1-146.
[] Gan XC, Li HM, Sun DZ, Zhuang JM, Zhao FQ. 1995. A geochronological study on Early Proterozoic granitic rocks, southwestern Zhejiang. Acta Petrologica et Mineralogica, 14(1): 1–18.
[] Gan XC, Zhao FQ, Jin WS, Sun DZ. 1996. The U-Pb ages of Early Proterozoic-Archean zircons captured by igneous rocks in southern China. Geochimica, 25(2): 112–120.
[] Gao S, Qiu YM, Ling WL, McNaughton NJ, Groves DI. 2001. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for >3.2Ga old continental crust in the Yangtze craton. Science in China (Series D), 44(4): 326–335.
[] Hanski E, Kamenetsky VS, Luo ZY, Xu YG, Kuzmin DV. 2010. Primitive magmas in the Emeishan Large Igneous Province, southwestern China and northern Vietnam. Lithos, 119(1-2): 75–90. DOI:10.1016/j.lithos.2010.04.008
[] He B, Xu YG, Chung SL, Xiao L, Wang YM. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391–405. DOI:10.1016/S0012-821X(03)00323-6
[] He B, Xu YG, Xiao L, Wang KM, Sha SL. 2003. Generation and spatial distribution of the Emeishan Large Igneous Province: New evidence from stratigraphic records. Acta Geologica Sinica, 77(2): 194–202.
[] He B, Xu YG, Wang YM, Xiao L. 2005. Nature of the Dongwu Movement and its temporal and spatial evolution. Earth Science, 30(1): 89–96.
[] He B, Xu YG, Xiao L, Wang YM, Wang KM, Sha SL. 2006. Sedimentary responses to uplift of Emeishan mantle plume and its implications. Geological Review, 52(1): 30–37.
[] He B, Xu YG, Huang XL, Luo ZY, Shi YR, Yang QJ, Yu SY. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255(3-4): 306–323. DOI:10.1016/j.epsl.2006.12.021
[] Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF, Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113(3-4): 408–422. DOI:10.1016/j.lithos.2009.04.031
[] Hu SZ. 1994a. The event of Dongwu Movement should be the ideal boundary of the Upper and Lower Permain. Coalfield Geologica in Southeast China, 1(11): 16–20.
[] Hu SZ. 1994b. On the event of Dongwu Movement and its relation with Permian subdivision. Journal of Stratigraphy, 18(4): 309–315.
[] Jian P, Liu DY, Sun XM. 2008. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China: Geochronological constraints for the evolution of Paleo-Tethy. Journal of Asian Earth Sciences, 32(5-6): 371–384. DOI:10.1016/j.jseaes.2007.11.006
[] Jiao WF, Wu YB, Yang SH, Peng M, Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China (Series D), 52(9): 1393–1399. DOI:10.1007/s11430-009-0135-7
[] Knittel U, Hung CH, Yang TF, Iizuka Y. 2010. Permian arc magmatism in Mindoro, the Philippines: An early Indosinian event in the Palawan Continental Terrane. Tectonophysics, 493(1-2): 113–117. DOI:10.1016/j.tecto.2010.07.007
[] Lan CY, Chung SL, Shen JJS, Lo CH, Wang PL, Hoa TT, Thanh HH, Mertzman SA. 2000. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences, 18(3): 267–280. DOI:10.1016/S1367-9120(99)00063-2
[] Lepvrier C, Maluski H, Van Vuong N, Roques D, Axente V, Rangin C. 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283(1-4): 105–127. DOI:10.1016/S0040-1951(97)00151-0
[] Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Thi TP, Van Vuong N. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1-4): 87–118. DOI:10.1016/j.tecto.2004.07.030
[] Li HB, Zhang ZC, Lü LS. 2010. Geometry of the mafic dyke swarms in Emeishan large igneous province: Implications for mantle plume. Acta Petrologica Sinica, 26(10): 3143–3152.
[] Li JF, Zhang ZC, Han BF. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications. Acta Petrologica Sinica, 26(8): 2431–2444.
[] Li SG. 1931. Variscan orogeny of the southeast of China. Bulletin Geological Society China, 11(2): 200–217.
[] Li WX, Li XH, Li ZX. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1): 51–66. DOI:10.1016/j.precamres.2004.09.008
[] Li XB, Zeng XW, Wang CS, Liu A, Bai YS. 2011. Sedimentary response to the Dongwu Movement: A case of the unconformity on top of the Permian Maokou Formation in the western Hubei-Hunan and neighboring areas. Journal of Stratigraphy(3): 299–304.
[] Li XH. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia assembly. Precambrian Research, 97: 43–57. DOI:10.1016/S0301-9268(99)00020-0
[] Li XH, Li ZX, Ge WC, Li WX, Liu Y, Wingate MTD. 2003a. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma. Precambrian Research, 122(1-4): 45–83. DOI:10.1016/S0301-9268(02)00207-3
[] Li XH, Li ZX, Li WX, Wang YJ. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. Journal of Geology, 114(3): 341–353. DOI:10.1086/501222
[] Li XH, Li ZX, He B, Li WX, Li QL, Gao YY, Wang XC. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195–207. DOI:10.1016/j.chemgeo.2011.10.027
[] Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85–109. DOI:10.1016/S0301-9268(02)00208-5
[] Li ZX, Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179–182. DOI:10.1130/G23193A.1
[] Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, Bao CM. 2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772–793. DOI:10.1130/B30021.1
[] Liang DY, Nie ZT, Song ZM. 1994. Extensional Dongwu Movement in western margin of Yangtze Region. Scientific Journal of Earth Science, 19(4): 443–453.
[] Liang XQ, Li XH, Qiu YX. 2004. Intracontinental collisional orogeny during Late Permian-Middle Triassic in South China: Sedimentary records of the Shiwandashan Basin. Acta Geologica Sinica, 78(3): 756–762.
[] Liang XQ, Li XH. 2005. Late Permian to Middle Triassic sedimentary records in Shiwandashan Basin: Implication for the Indosinian Yunkai Orogenic Belt, South China. Sedimentary Geology, 177(3-4): 297–320. DOI:10.1016/j.sedgeo.2005.03.009
[] Liang XQ. 2006. Sedimentary responses of Indosinian orogenesis in South China to Shiwandashan basin. Post-Doctor Research Report. Beijing: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou: 1-112.
[] Liu BJ, Xu XS, Pan XN, Huang HQ, Xu Q. 1993. Sedimentary Crustal Evolution and Mineral Resources of South China Palaeocontinents. Beijing: Science Publishing House: 9-49.
[] Liu R, Zhou HW, Zhang L, Zhong ZQ, Zeng W, Xiang H, Jin S, Lu XQ, Li CZ. 2010a. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos, 119(3-4): 163–180. DOI:10.1016/j.lithos.2010.06.004
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen: U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Ludwig KR. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4a, Berkeley, California
[] Ma WP. 1996. Paleotethys in South China, Permian orogeny and eastwards extension of interchange domain. Chinese Journal of Geology, 31(2): 105–113.
[] Mei SL, Jin YX, Wardlaw BR. 1994. Succession of conodont zones from the Permian “Kuhfeng” Formation, Xuanhan, Sichuan and its implication in global correlation. Acta Palaeontologica Sinica, 33(1): 1–23.
[] Nam TN, Toriumi M, Itaya T. 1998. P-T-t paths and post-metamorphic exhumation of the Day Nui Con Voi shear zone in Vietnam. Tectonophysics, 290(3-4): 299–318. DOI:10.1016/S0040-1951(98)00054-7
[] Qiu YM, Gao S, McNaughton NJ, Giroves DI, Ling WL. 2000. First evidence of >3. 2Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11–14.
[] Roger F, Leloup PH, Jolivet M, Lacassin R, Trinh PT, Brunel M, Seward D. 2000. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics, 321(4): 449–466. DOI:10.1016/S0040-1951(00)00085-8
[] Roger F, Maluski H, Leyreloup A, Lepvrier C, Thi PT. 2007. U-Pb dating of high temperature metamorphic episodes in the Kon Tum Massif (Vietnam). Journal of Asian Earth Sciences, 30(3-4): 565–572. DOI:10.1016/j.jseaes.2007.01.005
[] Shellnutt JG, Zhou MF. 2006. Rifting-related, Permian ferrosyenites in the Panxi region of the Emeishan large Igneous province, SW China. Geochimica et Cosmochimica Acta, 70(18, Suppl.): A579.
[] Shellnutt JG, Zhou MF, Yan DP, Wang YB. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1Ma, 8Ma and 18Ma. Geological Magazine, 145(3): 373–388.
[] Shellnutt JG, Zhou MF, Chung SL. 2010. The Emeishan large igneous province: Advances in the stratigraphic correlations and petrogenetic and metallogenic models. Lithos, 119(1-2): 34–46. DOI:10.1016/j.lithos.2010.07.011
[] Shellnutt JG, Jahn BM, Zhou MF. 2011. Crustally-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan large igneous province. Lithos, 123(1-4): 145–157. DOI:10.1016/j.lithos.2010.10.016
[] Shellnutt JG, Denyszyn SW, Mundil R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research, 22(1): 118–126. DOI:10.1016/j.gr.2011.10.009
[] Shu LS, Deng P, Yu JH, Wang YB, Jiang SY. 2008a. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China. Science in China (Series D), 51(8): 1053–1063. DOI:10.1007/s11430-008-0078-4
[] Shu LS, Faure M, Wang B, Zhou XL, Song B. 2008b. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151–165. DOI:10.1016/j.crte.2007.10.010
[] Shu LS, Deng P, Yu JH, Wang YB, Jiang SY. 2008. The formation age and geochemical characteristics of the rhyolite of western margins of Wuyi Mountain. Science in China (Series D), 38(8): 950–959.
[] Usuki T, Lan CY, Yui TF, Iizuka Y, Vu VT, Tran TA, Okamoto K, Wooden JL, Liou JG. 2009. Early Paleozoic medium-pressure metamorphism in central Vietnam: Evidence from SHRIMP U-Pb zircon ages. Geosciences Journal, 13(3): 245–256. DOI:10.1007/s12303-009-0024-2
[] Wan YS, Liu DY, Xu MH, Zhuang JM, Song B, Shi YR, Du LL. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1-2): 166–183. DOI:10.1016/j.gr.2006.10.016
[] Wan YS, Liu DY, Wilde SA, Cao JJ, Chen B, Dong CY, Song B, Du LL. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37(2): 140–153. DOI:10.1016/j.jseaes.2009.08.002
[] Wang D, Zheng JP, Ma Q, Griffin WL, Zhao H, Wong J. 2013. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China. Lithos, 175-176: 124–145. DOI:10.1016/j.lithos.2013.04.024
[] Wang LJ, Yu JH, O’Reilly SY, Griffin WL, Sun T, Wei ZY, Shu LS, Jiang SY. 2008. Grenvillian orogeny in the southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement. Chinese Science Bulletin, 53(19): 3037–3050.
[] Wang LT, Lu YB, Zhao SJ, Luo JH. 1994. Permian lithofacies paleogeography and mineralization in south China. Beijing: Geological Publishing House: 1-147.
[] Wang QC. 2009. Preliminary discussion on sedimentary tectonics of the clustered continents of South China. Acta Sedimentologica Sinica, 27(5): 811–817.
[] Wang YJ, Zhang YH, Fan WM, Peng TP. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27(6): 985–998. DOI:10.1016/j.jsg.2005.04.004
[] Wang YJ, Fan WM, Cawood PA, Peng TP, Chen XY. 2007. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: Kinematics and 40Ar/39Ar geochronological constraints. Tectonics, 26(6): TC6008.
[] Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA, Zhang AM. 2010. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb. Tectonics, 29(6): TC6020.
[] Wang YJ, Zhang AM, Fan WM, Zhao GC, Zhang GW, Zhang YZ, Zhang FF, Li SZ. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissic granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239–260. DOI:10.1016/j.lithos.2011.07.027
[] Wen SN. 2013. Geochronologic and geochemical studies of Permian-Trissic magmatism in Hainan Island, South China. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Science, 1-142 (in Chinese)
[] Wen SN, Liang XQ, Fan WM, Wang YJ, Chi GX, Liang XR, Zhou Y, Jiang Y. 2013. Zircon U-Pb ages, Hf isotopic composition of Zhizhong granitic intrusion in Ledong area of Hainan Island and their tectonic implications. Geotectonica et Metallogenia, 37(2): 294–307.
[] Xie CF, Zhu JC, Ding SJ, Zhang YM, Fu TA, Li ZH. 2006. Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications. Chinese Science Bulletin, 51(20): 2507–2519. DOI:10.1007/s11434-006-2122-0
[] Xie CF, Zhu JC, Ding SJ, Zhang YM, Fu TA, Li ZH. 2006. Stipulation and tectonic significance of Hercynian shoshonitic intrusive rocks in central Hainan. Chinese Sciences Bulletin, 51(16): 1944–1954.
[] Xu XS, O’Reilly SY, Griffin WL, Wang XL, Pearson NJ, He ZY. 2007a. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1-2): 51–78. DOI:10.1016/j.precamres.2007.04.010
[] Xu YG, Zhong SL. 2001. The Emeishan Large Igneous Province: Evidence for mantle plume activity and melting conditions. Geochimica, 30(1): 1–9.
[] Xu YG. 2002. Mantle Plumes, large igneous provinces and their geologic consequences. Earth Science Frontiers, 9(4): 341–353.
[] Xu YG, He B, Chung SL, Menzies MA, Frey FA. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt Province. Geology, 32(10): 917–920. DOI:10.1130/G20602.1
[] Xu YG, He B, Huang XL, Luo ZY, Chung SL, Xiao L, Zhu D, Shao H, Xu JF, Fan WM, Wang YJ. 2007b. Testing plume hypothesis in the Emeishan large igneous province. Episode, 27(30): 32–42.
[] Xu YG, Luo ZY, Huang XL, He B, Xiao L, Xie LW, Shi YR. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta, 72(13): 3084–3104. DOI:10.1016/j.gca.2008.04.019
[] Xu YG, Chung SL, Shao H, He B. 2010. Silicic magmas from the Emeishan large igneous province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119(1-2): 47–60. DOI:10.1016/j.lithos.2010.04.013
[] Xu YG, He B, Luo ZY, Liu HQ. 2013. Study on mantle plume and large igneous provinces in China: An overview and perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25–39.
[] Yan JX, Shen JS. 2006. The characteristic of Dongwu Movement in South China. Land & Resources Herald(S1): 3–5.
[] Yang DS, Li XH, Li WX, Liang XQ, Long WG, Xiong XL. 2010. U-Pb and 40Ar-39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): Constraints on the timing of Early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen. Geological Magazine, 147(4): 481–496. DOI:10.1017/S0016756809990811
[] Ye MF, Li XH, Li WX, Liu Y, Li ZX. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2): 144–156. DOI:10.1016/j.gr.2006.09.001
[] Yokoyama K, Tsutsumi Y, Nhung NT, Quynh PV. 2010. Age distribution of monazites from the nine rivers of Vietnam. Memoirs of the National Museum of Nature and Science(46): 97–108.
[] Yu JH, O’Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M, Shu LS. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1-4): 97–114. DOI:10.1016/j.precamres.2010.05.016
[] Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421.
[] Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3
[] Zeng YC. 1983. The representation and geological significance of Dongwu Movement in Guangdong. Journal of Jiaozuo Mining Institute(z1): 115–123.
[] Zhang FF, Wang YJ, Chen XY, Fan WM, Zhang YH, Zhang GW, Zhang AM. 2010. Triassic high-strain shear zones in Hainan Island (South China) and their implications on the amalgamation of the Indochina and South China Blocks: Kinematic and 40Ar/39Ar geochronological constraints. Gondwana Research, 19(4): 910–925.
[] Zhang KJ, Cai JX. 2009. NE-SW-trending Hepu-Hetai dextral shear zone in southern China: Penetration of the Yunkai promontory of South China into Indochina. Journal of Structure Geology, 31(7): 737–748. DOI:10.1016/j.jsg.2009.04.012
[] Zhang Q. 2013. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate. Acta Petrologica et Mineralogica, 32(1): 113–128.
[] Zhang TS, Chen XH, Liu ZC, Wei GQ, Yang W, Ming HJ, Zhang Q, Zhang Y. 2011. Effect of Emeishan mantle plume over the sedimentary pattern of Mid-Permian Xixia Period in Sichuan Basin. Acta Geologica Sinica, 85(8): 1251–1264.
[] Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y, Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369–392. DOI:10.1016/j.lithos.2009.04.023
[] Zhao L, Guo F, Fan WM, Li CW, Qin XF, Li HX. 2010. Crustal evolution of the Shiwandashan area in South China: Zircon U-Pb-Hf isotopic records from granulite enclaves in Indo-Sinian granites. Chinese Science Bulletin, 55(19): 2028–2038. DOI:10.1007/s11434-010-3225-1
[] Zhong H, Zhu WG, Chu ZY, He DF, Song XY. 2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Hr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2): 112–133. DOI:10.1016/j.chemgeo.2006.09.004
[] Zhong H, Zhu WG, Hu RZ, Xie LW, He DF, Liu F, Chu ZY. 2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, Southwest China and implications for growth of juvenile crust. Lithos, 110(1-4): 109–128. DOI:10.1016/j.lithos.2008.12.006
[] Zhong H, Campbell IH, Zhu WG, Allen CM, Hu RZ, Xie LW, He DF. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta, 75(5): 1374–1395. DOI:10.1016/j.gca.2010.12.016
[] Zhou MF, Malpas J, Song XY, Robinson PT, Sun M, Kennedy AK, Lesher CM, Keays RR. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113–122. DOI:10.1016/S0012-821X(01)00608-2
[] Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26–33.
[] 李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431–2444.
[] 陈新跃, 王岳军, 韦牧, 范蔚茗, 彭头平. 2006. 海南公爱NW向韧性剪切带构造特征及其39Ar-40Ar年代学约束. 大地构造与成矿学, 30(3): 312–319.
[] 陈新跃, 王岳军, 张玉芝, 张菲菲, 温淑女. 2013. 海南晨星安山质火山岩地球化学、年代学特征及其构造意义. 大地构造与成矿学, 37(1): 99–108.
[] 冯增昭, 金俊奎, 杨玉卿, 等. 1994. 滇黔桂地区二叠纪岩相古地理. 北京: 地质出版社: 1-146.
[] 福建省地质矿产局. 1985. 福建省区域地质志. 北京: 地质出版社: 1-671.
[] 甘晓春, 李惠民, 孙大中, 庄建民, 赵凤清. 1995. 浙西南早元古代花岗质岩石的年代. 岩石矿物学杂志, 14(1): 1–18.
[] 甘晓春, 赵风清, 金文山, 孙大中. 1996. 华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息. 地球化学, 25(2): 112–120.
[] 广东省地质矿产局. 1988. 广东省区域地质志. 北京: 地质出版社: 1-941.
[] 广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社: 1-853.
[] 何斌, 徐义刚, 肖龙, 王康明, 沙绍礼. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据. 地质学报, 77(2): 194–202.
[] 何斌, 徐义刚, 王雅玫, 肖龙. 2005. 东吴运动性质的厘定及其时空演变规律. 地球科学, 30(1): 89–96.
[] 何斌, 徐义刚, 肖龙, 王雅玫, 王康明, 沙绍礼. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30–37.
[] 胡世忠. 1994a. 东吴运动构造事件应是上下二叠统的理想界线. 中国东南煤田地质, 1(11): 16–20.
[] 胡世忠. 1994b. 论东吴运动构造事件与二叠系分统界线问题. 地层学杂志, 18(4): 309–315.
[] 李宏博, 张招崇, 吕林素. 2010. 峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义. 岩石学报, 26(10): 3143–3152.
[] 李旭兵, 曾雄伟, 王传尚, 刘安, 白云山. 2011. 东吴运动的沉积学响应——以湘鄂西及邻区二叠系茅口组顶部不整合面为例. 地层学杂志(3): 299–304.
[] 梁定益, 聂泽同, 宋志敏. 1994. 扬子西缘东吴伸展运动. 地球科学, 19(4): 443–453.
[] 梁新权. 2006. 华南印支期造山作用在十万大山盆地中的沉积响应.博士后研究报告.广州: 中国科学院广州地球化学研究所, 1-112
[] 刘宝君, 许效松, 潘杏南, 黄慧琼, 徐强. 1993. 中国南方古大陆沉积地壳演化与成矿. 北京: 科学出版社: 9-49.
[] 马文璞. 1996. 华南陆域内古特提斯形迹、二叠纪造山作用和互换构造域的东延. 地质科学, 31(2): 105–113.
[] 梅仕龙, 金玉玕, WardlawBR. 1994. 四川宣汉渡口二叠纪“孤峰组”牙形石序列及其全球对比意义. 古生物学报, 33(1): 1–23.
[] 舒良树, 邓平, 于津海, 王彦斌, 蒋少涌. 2008. 武夷山西缘流纹岩的形成时代及其地球化学特征. 中国科学(D辑), 38(8): 950–959.
[] 王丽娟, 于津海, O’ReillySY, GriffinWL, 孙涛, 魏震洋, 舒良树, 蒋少涌. 2008. 华夏南部可能存在Grenville 期造山作用: 来自基底变质岩中锆石U-Pb 定年及Lu-Hf 同位素信息. 科学通报, 53(14): 1680–1692.
[] 王立亭, 陆彦邦, 赵时久, 罗晋辉. 1994. 中国南方二叠纪岩相古地理与成矿作用. 北京: 地质出版社: 1-147.
[] 王清晨. 2009. 浅议华南陆块群的沉积大地构造学问题. 沉积学报, 27(5): 811–817.
[] 温淑女. 2013. 海南岛二叠纪-三叠纪岩浆作用的年代学与地球化学研究. 博士学位论文.广州:中国科学院广州地球化学研究所, 1-142
[] 温淑女, 梁新权, 范蔚茗, 王岳军, 池国祥, 梁细荣, 周云, 蒋英. 2013. 海南岛乐东地区志仲岩体锆石U-Pb年代学、Hf同位素研究及其构造意义. 大地构造与成矿学, 37(2): 294–307.
[] 谢才富, 朱金初, 丁式江, 张业明, 付太安, 李志宏. 2006. 琼中海西期钾玄质侵入岩的厘定及其构造意义. 科学通报, 51(16): 1944–1954.
[] 徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1–9.
[] 徐义刚. 2002. 地幔柱构造、大火成岩省及其地质效应. 地学前缘, 9(4): 341–353.
[] 徐义刚, 何斌, 罗震宇, 刘海泉. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25–39.
[] 燕继红, 申继山. 2006. 中国南方东吴运动的特征. 国土资源导刊(S1): 3–5.
[] 曾耀昌. 1983. 东吴运动在广东的表现及其地质意义. 焦作矿业学院学报(z1): 115–123.
[] 张旗. 2013. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗. 岩石矿物学杂志, 32(1): 113–128.
[] 张廷山, 陈晓慧, 刘治成, 魏国齐, 杨巍, 闵华军, 张奇, 杨雨. 2011. 峨眉地幔柱构造对四川盆地栖霞期沉积格局的影响. 地质学报, 85(8): 1251–1264.
[] 赵亮, 郭锋, 范蔚茗, 李超文, 覃小锋, 李红霞. 2010. 广西十万大山地壳演化: 来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及Hf同位素记录. 科学通报, 55(15): 1489–1498.