碎屑沉积物源区范围广阔, 可以成为大陆上地壳的代表样品, 是研究大陆上地壳化学组成、形成和演化的理想的天然样品(Goldschmidt, 1933; McLennan, 2001; Rudnick and Gao, 2003; Hu and Gao, 2008; Liu et al., 2008; Hawkesworth et al., 2010; Wang et al., 2011a)。现代河流沉积物是一种典型的碎屑沉积物,其组成是对其流经区域的岩石成分、岩石来源以及源区岩石所处的构造环境的可靠地质记录,来自现代河流的碎屑锆石是研究大陆地壳生长演化的理想载体(Goldstein et al., 1997; Rino et al., 2004; Iizuka et al., 2005; Wu et al., 2007)。西拉木伦河流淌于西拉木伦河断裂之上,为华北板块与兴蒙造山带的界限,研究西拉木伦河河漫滩沉积物的物质来源具有重要的地质意义(韩国卿等,2011;李益龙等, 2007, 2009, 2010;孙德有等,2004;黄汲清等,1980)。
目前,已有国内外学者利用现代河流碎屑沉积物中碎屑锆石对大陆地壳平均组成、形成与演化进行研究。如Bodet and Schärer (2000) 利用东南亚的湄公河、伊洛瓦底江、怒江、红河等沙质沉积物中235颗锆石U-Pb年龄与148颗锆石Hf同位素数据解释了东南亚大陆地壳的演化历史,并且指出研究区存在未出露或者已经被剥蚀的地质体。Iizuka et al. (2010) 利用美国密西西比河沙中的416颗碎屑锆石U-Pb年龄和402颗碎屑锆石的Hf同位素数据,解释了地壳的主要形成时期以及主要的增生、重熔事件。Yang et al. (2009) 通过研究黄河下游、栾川和永定河水系沉积物中497颗碎屑锆石的U-Pb年龄以及Hf同位素特征得出了华北板块的地壳幕式增长,并近似计算了大陆地壳的生长速率以及大陆地壳各时期形成的相对体积。
本文通过对西拉木伦河河漫滩沉积物碎屑锆石进行U-Pb定年和Hf同位素组成分析,结合粒度分析等样品特征,限定了西拉木伦河的物质来源。通过Iizuka et al. (2010) 的计算方法,定量模拟了各时期物源区的大陆地壳增生与重熔。
2 地质概况西拉木伦河发源于内蒙古境内的克什克腾旗白岔山,在哲理木盟的苏家铺与老哈河汇合后形成西辽河,全长约380km,河道弯曲,落差较大,西部流经浑善达克沙地,东部流经科尔沁沙地(图 1)。西拉木伦河流淌于西拉木伦河断裂之上,前人(韩国卿等,2011;李益龙等, 2007, 2009, 2010;孙德有等,2004;黄汲清等,1980)将其作为华北板块与兴蒙造山带的分界。王荃(1986) 认为华北板块与兴蒙造山带的界限应该在西拉木伦河以北约60km的林西县八棱山至克什克腾旗的黄粱岗一线,向西可延伸至苏尼特右旗。而Xiao et al. (2003) 认为古亚洲洋在晚古生代末期最终闭合于索伦-林西一带。所以兴蒙造山带与华北板块的最终缝合线位置目前还存在一定争议,本文暂将西拉木伦河断裂作为华北板块与兴蒙造山带的分界。故西拉木伦河北部为兴蒙造山带,流经区域地层出露主要为下元古界宝音图群、下泥盆统西别河组、上石炭统本巴图组、下二叠统大石寨组和额里图组、中二叠统哲斯组和于家北沟组、上二叠统林西组以及侏罗系和白垩系火山岩碎屑岩、泥灰岩;岩体出露主要为石炭纪辉长岩和石英闪长岩、二叠纪花岗岩组合、三叠纪花岗岩组合以及侏罗白垩纪花岗岩。南部支流在华北板块内流经区域地层出露较新,主要以二叠系、侏罗系火山碎屑岩、泥灰岩为主,在翁牛特旗附近分布少量白垩系碎屑岩夹火山岩;岩体出露以中生代为主,主要为花岗岩和花岗斑岩。
|
图 1 西拉木伦河及邻区地层、岩浆分布图(据程裕淇等,2004①改编) Fig. 1 The distribution of stratigraphy and magma in the Xar Moron River and its adjacent areas |
①程裕淇,耿树方,谢良珍,丁孝忠. 2004. 中国地质图
3 样品采集与测试西拉木伦河流域面积广泛,上游和下游可能具有不一样的地质特征,为了更好的控制河流源区情况,本文在其上游采集河漫滩沉积物XL,下游采集河漫滩沉积物XL2。样品XL采集于N43°15.008′,E118°37.518′;样品XL2采集于N43°15.803′,E119°33.622′。将采集的样品依次经过手工破碎、淘洗、电磁选和重液分选分离出锆石,然后在双目镜下挑选出含包裹体少、无明显裂隙且晶形完好的代表性锆石制成样品靶。CL图采集之前,对样品照透射光和反射光图像,以便观察锆石的内部形态。用体积百分比为3%的HNO3清洗样品表面,以除去样品表面的污染。然后进行透射光和反射光照相,并进行阴极发光(CL)照相。
锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所LA-MC-ICP-MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型LA-MC-ICP-MS,激光剥蚀系统为 Newwave UP 213。采样方式为单点剥蚀,数据采集采用所有信号同时静态方式接收。数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标,U,Th含量以锆石M127为外标进行校正。测试过程中在每测定10个样品前后重复测定两个锆石GJ-1对样品进行校正,并测量一个锆石标样Plesovice,观察仪器的状态以保证测试的精确度,单个数据点误差为1σ。实验给出的GJ-01 206Pb/238U年龄为600.3±4.5Ma,与ID-TIMS206Pb/238U年龄(598.5~602.7Ma)(Jackson et al., 2004)一致;实验给出的Plesovice 206Pb/238U年龄为336.4±2.2Ma,与ID-TIMS 206Pb/238U年龄(337.13±0.37Ma)(Sláma et al., 2008)一致。
锆石Hf同位素组成的分析测试在中国地质科学院矿产资源研究所MC-ICP-MS同位素实验室Thermo Finnigan Neptune型多接收电感耦合等离子体质谱计(MC-ICP-MS)上进行,系统配有213nm紫外激光系统(New wave UP213 Laser Ablation System),剥蚀光斑直径在10~150μm可调,输出能量可调,其最大实际功率为35J/cm2。分析时大部分分析点激光束直径约为32μm,所有的激光脉冲速度为8Hz;部分结构简单且颗粒粗大的锆石,激光束直径约为64μm,所用的激光脉冲速度为6Hz。激光剥蚀时间为27s,分析过程中以国际标准锆石GJ1作为外标。
样品的粒度分析在中国地质大学(北京)完成,进行粒度分析测试所选用的仪器是英国马尔文公司生产的mastersizer2000型激光粒度分析仪,该仪器测量范围是0.02~2000μm,优点为操作简单无需培训、测试精度高(误差<1%)、测试所需要的样品量少、间隔划分细并且能够全面分析粒度的细微特征。
4 结果 4.1 CL图像样品XL与XL2的碎屑锆石(图 2)主要呈棱角状、浑圆状,反映它们经历了较长距离的搬运;少部分锆石晶形完好,说明有近源物质的加入。大部分碎屑锆石都具有韵律环带,代表其岩浆成因,部分锆石呈面状、斑杂状,还有部分核边结构,说明有变质锆石的存在。
|
图 2 碎屑锆石CL图像 Fig. 2 Detrital zircons CL images |
对西拉木伦河样品XL中95个碎屑锆石和样品XL2中87个碎屑锆石进行LA-MC-ICP-MS U-Pb 同位素测定,删除了锆石U-Pb年龄谐和度小于90%的数据点,剩余178个谐和锆石年龄数据(表 1)。碎屑锆石Th/U比值(图 3)均大于0.1,说明都为岩浆锆石。碎屑锆石U-Pb年龄小于1000Ma选取206Pb/238U年龄,大于1000Ma选择207Pb/206Pb年龄。
|
|
表 1 西拉木伦河样品XL、XL2碎屑锆石U-Pb同位素测试结果表 Table 1 U-Pb isotope test results of samples XL and XL2 of the Xar Moron River |
|
图 3 西拉木伦河样品XL和XL2碎屑锆石Th/U比值 Fig. 3 Detrital zircons Th/U ratios of sample XL and XL2 in the Xar Moron River |
样品XL中碎屑锆石U-Pb年龄主要集中于4个年龄阶段(图 4):(1) 108~550Ma(主要峰值为130Ma、247Ma、313Ma和402Ma),占总数的68.8%; (2) 699~918Ma(峰值为900Ma),占总数的6.5%;(3) 1789~2109Ma(峰值为1799Ma),占总数的15.0%;(4) 2347~2633Ma(峰值为2387Ma和2569Ma),占总数的9.7%。
|
图 4 西拉木伦河样品XL和XL2中锆石U-Pb年龄分布 Fig. 4 Detrital zircon U-Pb ages distribution of sample XL and XL in the Xar Moron River |
样品XL2中U-Pb年龄也主要分为3个主要阶段(图 4):(1) 122~526Ma(峰值为132Ma、197Ma、263Ma和346Ma),占总数的74.1%;(2) 1791~1969Ma(峰值为1869Ma),占总数的15.3%;(3) 2176~2692Ma(峰值为2544Ma),占总数的10.6%。
4.3 Lu-Hf同位素分别选取样品XL和XL2中具有代表性U-Pb年龄的30颗和27颗碎屑锆石进行Lu-Hf同位素测定(表 2)。结果表明,εHf(t)值从-15.5~15.3变化,主要集中于0附近;tDM2从358~3332Ma变化,主要集中在2700Ma和1300Ma附近。
|
|
表 2 西拉木伦河样品XL和XL2碎屑锆石Lu-Hf同位素组成 Table 2 The Lu-Hf isotopic compositions of samples XL and XL2 of the Xar Moron River |
2.5Ga为华北板块地壳生长的一次快速增生期,有大量的岩浆事件发生(Kusky et al., 2001; 李益龙等, 2007; 沈其韩等,2005;刘敦一等,2007),其中华北陆块东北缘张三沟组SHRIMP年龄为2517~2534Ma(李承东等,2009),华北板块北部鞍山地区大量华北板块古老基底岩石出露(刘敦一等,2007),同时在大石桥-海城地区,分布大量2.5Ga的地质体(沈其韩等,2005),内蒙古境内的固阳地区,存在2556Ma的高镁闪长岩和2520Ma的角闪花岗岩(简平等,2005)等均代表华北板块2.5Ga左右强烈的岩浆事件;1.85Ga为华北板块西部和东部沿着中间地块碰撞拼合的时期(Wan et al., 2008;李怀坤等,2011;钟长汀等,2007),具有代表性的地质体有华北板块西部块体北缘的化德群(郑建民等,2004;李承东等,2005;),河北地区的桑干群(张华锋等,2006);河南庐山地区1.84~1.87Ga的变质岩(Wan et al., 2006)以及阿拉善地区侵入到巴彦乌拉山组斜长角闪岩中的花岗岩中1813~1870Ma的变质年龄(包创等,待刊)。1.85Ga和2.5Ga是华北板块内岩浆活动的两个主要特征峰,在西拉木伦河碎屑锆石年龄分布中均有体现,且此年龄段分布分别占总数的9.7%和10.6%。所以,西拉木伦河1790~ 2692Ma的碎屑锆石有来源于华北板块的物质贡献。
结合锆石Hf同位素(图 5),该年龄段的碎屑锆石Hf模式年龄分布于2.7~3.3Ga之间,主要集中在2.7Ga,这与前人研究华北板块最强增生事件发生在2.7Ga的时间十分吻合(Wu et al., 2005; Yang et al., 2009; Geng et al., 2012),所以西拉木伦河河漫滩沉积物具有华北板块北缘的物质特征。而西拉木伦河流经浑善达克沙地,可能会有大量沙地物质加入,根据谢静等(2007) 对该区域的研究,浑善达克沙地具有大量1790~2692Ma的碎屑锆石,而浑善达克沙地中较老两组锆石,即2.6~2.3Ga和2.2~1.6Ga,可能直接来源于华北克拉通(谢静等,2007)。
|
图 5 西拉木伦河碎屑锆石εHf(t)-年龄关系图 Fig. 5 εHf(t) vs. age of detrital zircons in the Xar Moron River |
样品XL中碎屑锆石U-Pb年龄明显比样品XL2多一个阶段,即 699~918Ma,且占总数的6.5%。华北板块北缘目前还没有发现699~918Ma的岩石出露,而在兴蒙造山带中却有此年龄段岩浆事件(Kuzmichev et al., 2005; Demoux et al., 2009)。所以,样品XL中碎屑锆石可能有兴蒙造山带物质的贡献,但是样品XL2中却没有700~900Ma年龄的碎屑锆石存在。而对西拉木伦河与老哈河汇流后的西辽河河漫滩沉积物中214颗碎屑锆石进行U-Pb定年发现,仅存在3颗碎屑锆石U-Pb年龄分布在700~900Ma之间(包创,另文发表)。根据粒度分析(图 6),西拉木伦河样品XL的体积平均粒径为234μm,样品XL2的体积平均粒径为157 μm。对样品XL和XL2中各250颗碎屑锆石进行长宽比测量,结果显示:样品XL中碎屑锆石长宽比为1.56,XL2中碎屑锆石长宽比为1.50。明显看出,XL中碎屑锆石颗粒比XL2中大,且磨圆程度比XL2低。所以,XL2中缺失700~900Ma的碎屑锆石可能是在河流搬运过程中,大量的粗颗粒锆石被滞留在了上游,致使下游锆石十分细小,不易被检测研究。
|
图 6 西拉木伦河河漫滩沉积物粒度分析 Fig. 6 Grain size analysis of the floodplain sediments in the Xar Moron River |
分析700~900Ma碎屑锆石的Lu-Hf同位素发现,该年龄段碎屑锆石εHf(t)值均为负值,且模式年龄分布于1.8 ~2.5Ga,而兴蒙造山带模式年龄主体集中在1.3Ga以后,说明该年龄段物质可能来自南蒙微大陆古老地壳的重熔(Rojas-Agramonte et al., 2011; Gladkochub et al., 2006)或者是兴蒙造山带中一些古老地块的重熔,如额尔古纳地块(表尚虎等,2012)。
显生宙以来华北板块受到古亚洲洋的俯冲、碰撞,华北板块北缘的岩浆、变质事件与兴蒙造山带具有一定的相似性,所以利用U-Pb年龄区分物源具有一定的局限性。但是兴蒙造山带和华北板块北缘在Hf模式年龄上具有一定的区分度。根据图 5,样品XL和XL2中大量碎屑锆石二阶段模式年龄都小于1.0Ga,并且大部分碎屑锆石εHf(t)值大于0,明显具有兴蒙造山带的组成特征。
根据西拉木伦河汇流前后U-Pb年龄以及Hf同位素特征,结合粒度分析结果,表明物质具有华北板块和兴蒙造山带的混合特征。
5.2 物源贡献比例西拉木伦河河漫滩沉积物样品XL和XL2均具有兴蒙造山带和华北板块物质的共同加入,且年龄分布特征类似,故将二者合并后分析西拉木伦河物源特征。所以,可以通过西拉木伦河河漫滩沉积物中碎屑锆石的U-Pb年龄混合与Hf同位素二阶段模式年龄混合方式大致估算华北板块与兴蒙造山带对西拉木伦河河漫滩沉积物物源的贡献比例。
如图 7所示,当华北板块北缘与兴蒙造山带U-Pb年龄混合比例为1∶1,且华北板块北缘与兴蒙造山带二阶段Hf模式年龄的概率累积曲线混合比例也为1∶1时,西拉木伦河河漫滩沉积物的U-Pb年龄与二阶段Hf模式年龄分布型式与之具有一定相似性。所以,西拉木伦河河漫滩沉积物可能是华北板块北缘与兴蒙造山带物质以1∶1的比例进行混合贡献。但西拉木伦河河漫滩沉积物U-Pb年龄在1.8~2.5Ga的分布比例明显低于华北板块北缘与兴蒙造山带物质比例为1∶1时的分布比例,且二阶段模式年龄在1300Ma以前明显低于华北板块北缘与兴蒙造山带物质比例为1∶1时的拟合曲线,而1300Ma以来却正好相反。这正好与西拉木伦河流经区域古老基地出露较少,而年轻地质体覆盖面积较大的地质现象相符合。
|
图 7 西拉木伦河河漫滩沉积物物源比例对比图 (a)-华北板块年龄分布;(b)-兴蒙造山带年龄分布;(c)-西拉木伦河河漫滩沉积物U-Pb年龄分布;(d、e、f)-分别代表兴蒙造山带与华北板块北缘物质贡献比例为2、1、0.5的年龄分布;(g)-二阶段Hf模式年龄累积曲线对比图.华北板块北缘据包创等,2012;Su et al., 2011; Zhang et al., 2011;李怀坤等,2011;钟长汀,2007; Wu et al., 2007;Yang et al., 2009;Xia et al., 2006; Wan et al., . 2008; Shi et al., 2010; Wang et al., 2011b; Zhang et al., 2007等数据拟合;兴蒙造山带据Liu et al., 2009; Chen et al., 2009; Zhang et al., 2009a, b ; Liu et al., 2005; Buchan, 2002; Zhang et al., 2008; Kuzmichev et al., 2005; Guo et al., 2009; 李益龙等, 2008, 2009;Demoux et al., 2009; Liu et al., 2011;陈斌等,2009数据拟合 Fig. 7 Comparing the ratio of the provenance in the Xar Moron River floodplain sediments |
根据Lu-Hf同位素特征(图 5),西拉木伦河河漫滩沉积物碎屑锆石εHf(t)和tDM2值分别为-15.5~15.3和358~3300Ma。2176~2692Ma的碎屑锆石的εHf(t)值大多为正值,tDM2主要集中在2.7Ga附近,表明该期存在大量新生地壳,但仍有部分古老地壳的重熔;1789~2109Ma的碎屑锆石εHf(t)值均为负,但均位于0附近,tDM2也主要位于2.7~2.8Ga之间,表明该期地壳主要是古老地壳的重熔产生;700~900Ma的碎屑锆石εHf(t)值均为负,tDM2在1.8~2.5Ga之间,属于古老基底岩石的重熔再造;显生宙以来的锆石εHf(t)值和tDM2变化幅度较大,但大部分都集中在CHUR与DM演化线之间,表明显示宙以地壳增生为主。
图 5只能定性的说明存在古老地壳的重熔和新生地壳,不能定量描述。而近年对大陆地壳增生与重熔再造的定量研究开始起步(Iizuka et al., 2010; Dhuime et al., 2012)。Iizuka et al. (2010) 的计算公式可以定量的计算出古老地壳重熔与新生地壳产生的比例:
|
(5.3.1) |
|
(5.3.2) |
|
(5.3.3) |
|
(5.3.4) |
GC、RC、DM分别代表花岗质地壳、重熔地壳、亏损地幔;αn代表重熔率;x代表花岗质地壳对重熔地壳的贡献比例,αi代表先存地壳的重熔比例,本文假设各先存地壳贡献率均等;mgranitoid和mmafic分别表示花岗质地壳和镁铁质地壳的质量,本文假设二者相等;CmaficHf与CgranitoidHf分别表示镁铁质和花岗质岩石的Hf含量,并且花岗质岩石的Hf含量取9×10-6 (Vervoort and Patchett, 1996),镁铁质岩石取1.9×10-6 (Rudnick and Fountain, 1995)
根据上述公式,以本文中最老碎屑锆石模式年龄3.3Ga为起点,每200Ma为一次计算步长,分别计算西拉木伦河河漫滩沉积物源区地壳各时段新生地壳与重熔地壳的比例(图 8)。2.5Ga时西拉木伦河河漫滩沉积物源区地壳的形成新生地壳与重熔地壳的贡献相当,新生地壳占57%,重熔地壳占43%;1.9Ga时主要以地壳物质的重熔为主,重熔率达到了68%,新生地壳仅占32%;700~900Ma源区地壳重熔与新生几乎相当,重熔率为44%;500Ma以来,西拉木伦河河漫滩沉积物所反映的物源区地壳主要以增生为主,再循环的古老地壳非常少,但有随着年龄减小壳内再循环增强的趋势。中元古代以前的碎屑锆石几乎都由华北板块北缘提供,所以,西拉木伦河河漫滩沉积物中元古代以前的碎屑锆石可以很好的记录华北板块北缘中元古代以前的演化信息。而根据该模式计算得出,华北板块北缘的地壳在中元古代主要以重熔为主,这也与前人认识(Wu et al., 2005; Yang et al., 2009; Geng et al., 2012; 耿显雷等,2011)相吻合。
|
图 8 西拉木伦河河漫滩沉积物源区地壳各时段重熔率 Fig. 8 Remelting rate of each period in the provenance of the Xar Moron River floodplain sediments |
(1) 西拉木伦河河漫滩沉积物样品XL中碎屑锆石U-Pb年龄主要分为108~550Ma、699~918Ma、1789~2109Ma和2347~2633Ma四个年龄段。
(2) 西拉木伦河汇河漫滩沉积物样品XL2中碎屑锆石U-Pb年龄主要集中于122~526Ma、1791~1969Ma和2176~2692Ma三个年龄段。
(3) 西拉木伦河河漫滩沉积物样品XL2与XL相比缺少700~900Ma的年龄数据,主要是由于碎屑锆石随着水迁移距离的增加,粒度逐渐变小,甚至滞留在上游,不易被检测。
(4) 西拉木伦河河漫滩沉积物主要有兴蒙造山带和华北板块北缘物质的混合贡献,且混合比例为1∶1。
(5) 西拉木伦河河漫滩沉积物物源区平均大陆地壳各时期均有新生地壳的产生和古老地壳的重熔,且二者比例具有一定的变化规律。自太古宙至古元古代,地壳重熔率有所增加,但是仍以地壳增生为主;自中元古代到新元古代,地壳重熔率逐渐降低,新生地壳组分的比例逐渐增加;显生宙以来地壳重熔率逐渐升高,但是新生地壳的比例仍占绝对优势。
| [] | Bao C, Chen YL, Li DP. 2012. Discovery of the Late Permian volcanics in the Zhulazhagamaodao, northern margin of the Alxa Block. Earth Science Frontiers, 19(5): 156–163. |
| [] | Biao SX, Zheng WZ, Zhou XF. 2012. Zircon U-Pb age of the North Da Hinggan Mts. NE China and its constraint to attribute of the Ergun block. Acta Geologica Sinica, 86(8): 1262–1272. |
| [] | Bodet F, Schärer U. 2000. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta, 64(12): 2067–2091. DOI:10.1016/S0016-7037(00)00352-5 |
| [] | Buchan C, Pfänder J, Kröner A, Brewer TS, Tomurtogoo O, Tomurhuu D, Cunningham D, Windley BF. 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: Implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology, 192(1-2): 23–45. DOI:10.1016/S0009-2541(02)00138-9 |
| [] | Chen B, Jahn BM, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245–257. DOI:10.1016/j.jseaes.2008.05.007 |
| [] | Chen B, Ma XH, Liu AK, Muhetaer ZR. 2009. Zircon U-Pb ages of the Xilinhot metamorphic complex and blueschist, and implications for tectonic evolution of the Solonker suture. Acta Petrologica Sinica, 25(12): 3123–3129. |
| [] | Demoux A, Kröner A, Liu DY, Badarch G. 2009. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating. Int. J. Earth Sci., 98(6): 1365–1380. DOI:10.1007/s00531-008-0321-4 |
| [] | Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 355(6074): 1334–1336. |
| [] | Geng XL, Gao S, Chen C. 2011. Crustal growth of the Eastern North China Craton and Sulu Orogen as revealed by U-Pb dating and Hf isotopes of Detrital zircons from modern rivers. Earth Science, 36(3): 483–499. |
| [] | Geng YS, Du LL, Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517–529. DOI:10.1016/j.gr.2011.07.006 |
| [] | Gladkochub DP, Wingate MTD, Pisarevsky SA, Donskaya TV, Mazukabzov AM, Ponomarchuk VA, Stanevich AM. 2006. Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia. Precambrian Research, 147(3-4): 260–278. DOI:10.1016/j.precamres.2006.01.018 |
| [] | Goldschmidt VM. 1933. Grundlagen der quantitativen geochemie. Fortschritte der Mineralogie, Kirstallographie und Petrographie, 17: 112. |
| [] | Goldstein SL, Arndt NT, Stallard RF. 1997. The history of a continent from U-Pb ages of zircons from Orinoco River sand and Sm-Nd isotopes in Orinoco basin river. Chemical Geology, 139(1-4): 271–286. DOI:10.1016/S0009-2541(97)00039-9 |
| [] | Guo F, Fan WM, Li CW, Gao XF, Miao LC. 2009. Early Cretaceous highly positive εNd felsic volcanic rocks from the Hinggan Mountains, NE China: Origin and implications for Phanerozoic crustal growth. Int. J. Earth Sci., 98(6): 1395–1411. DOI:10.1007/s00531-008-0362-8 |
| [] | Han GQ, Liu YJ, Wen QB, Li W, Wu LN, Zhao YL, Ding L, Zhao LM, Liang CY. 2011. LA-ICP-MS U-Pb dating of detrital zircons from the Permian sandstones in north side of Xar Moron River Suture Belt and its tectonic implications. Earth Science, 36(4): 687–702. |
| [] | Hawkesworth CJ, Dhuime B, Pieranik AB, Cawood PA, Kemp AIS, Story CD. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229–248. DOI:10.1144/0016-76492009-072 |
| [] | Hu ZC, Gao S. 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3-4): 205–221. DOI:10.1016/j.chemgeo.2008.05.010 |
| [] | Huang JQ, Ren JS, Jiang CF, Zhang ZK, Qin DY. 1980. Geotectonic Evolution of China. Beijing: Science Press: 1-124. |
| [] | Iizuka T, Hirata T, Komiya T, Rino S, Kalayama L, Motoki A, Maruyama S. 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology, 33(6): 485–488. DOI:10.1130/G21427.1 |
| [] | Iizuka T, Komiya T, Rino S, Maruyama S, Hirata T. 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta, 74(8): 2450–2472. DOI:10.1016/j.gca.2010.01.023 |
| [] | Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47–69. DOI:10.1016/j.chemgeo.2004.06.017 |
| [] | Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ, Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151–157. |
| [] | Kuzmichev A, Kröner A, Henger E, Liu DY, Wan YS. 2005. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Research, 138(1-2): 125–150. DOI:10.1016/j.precamres.2005.04.002 |
| [] | Kusky TM, Li JH, Tucker RD. 2001. The Archean Dongwanzi ophiolite complex, North China craton: 2. 505-billion-year-old oceanic crust and mantle. Science, 292(5519): 1142–1145. |
| [] | Li CD, Zheng JM, Zhang YL, Zhang K, Hua YQ. 2005. Redefinition of the Huade Group and its tectonic significance. Geology in China, 32(3): 353–362. |
| [] | Li CD, Zhang FQ, Miao LC, Du YL, Hua YQ, Xu YW, Kang SM. 2009. Zircon SHRIMP U-Pb geochronology of the Zhangsangou Formation complex in the northeastern margin of North China Block, and its geological significance. Acta Geologica Sinica, 83(5): 642–650. |
| [] | Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC, Lu S N. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108–120. |
| [] | Li YL, Zhou HW, Ge MC, Liao QA, Zhao WX, Wu L, Zhong ZQ. 2007. Characteristics and genesis of migmatites within the northern Shuangjing micro-plate in the west Lamulun fault zone, Inner-Mongolia Province. Journal of Mineralogy and Petrology, 27(4): 22–29. |
| [] | Li YL, Zhou HW, Ge MC, Liao QA, Zhang XH, Zhong ZQ. 2008. LA-ICP-MS zircon U-Pb dating of migmatite from north Shuangjing schist in Linxi, Inner Mongolia. Journal of Mineralogy and Petrology, 28(2): 10–16. |
| [] | Li YL, Zhou HW, Zhong ZQ, Zhang XH, Liao QA, Ge MC. 2009. Collision processes of North China and Siberian plates: Evidence from LA-ICP-MS zircon U-Pb age on deformed granite in Xar Moron suture zone. Earth Science, 34(6): 931–938. |
| [] | Li YL, Zhou HW, Zhong ZQ, Yin SP, Li FL. 2010. Extension of suture zone between North China and Siberia Craton in Early Cretaceous: Insights from geochronology and geochemistry of intermediate dykes from Xar Moron fault belt in Inner Mongolia. Earth Science, 35(6): 921–932. |
| [] | Liu DY, Wan YS, Wu JS, Wilde SA, Dong CY, Zhou HY, Yin XY. 2007. Archean crustal evolution and the oldest rocks in the North China craton. Geological Bulletin of China, 26(9): 1131–1138. |
| [] | Liu JL, Bai XD, Zhao SJ, Tran M, Zhang ZC, Zhao ZD, Zhao HB, Lu J. 2011. Geology of the Sandaowanzi telluride gold deposit of the northern Great Xing’an Range, NE China: Geochronology and tectonic controls. Journal of Asian Earth Sciences, 41(2): 107–118. DOI:10.1016/j.jseaes.2010.12.011 |
| [] | Liu W, Siebel W, Li XJ, Pan XF. 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: Constraints on basaltic underplating. Chemical Geology, 219(1-4): 5–35. DOI:10.1016/j.chemgeo.2005.01.013 |
| [] | Liu W, Pan XF, Liu DY, Chen ZY. 2009. Three-step continental-crust growth from subduction accretion and underplating, through intermediary differentiation, to granitoid production. Int. J. Earth Sci., 98(6): 1413–1439. DOI:10.1007/s00531-008-0299-y |
| [] | Liu XM, Gao S, Diwu CR, Ling WL. 2008. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421–468. DOI:10.2475/04.2008.02 |
| [] | McLennan SM. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021–1044. |
| [] | Rino S, Komiya T, Windley BF, Katayama I, Motoki A, Hirata T. 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands: Implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146(1-2): 369–394. DOI:10.1016/j.pepi.2003.09.024 |
| [] | Rojas-Agramonte Y, Kroner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3): 751–763. DOI:10.1016/j.gr.2010.10.004 |
| [] | Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267–309. DOI:10.1029/95RG01302 |
| [] | Rudnick RL, Gao S. 2003. Composition of the Continental Crust. London: Elsevier, 3: 1–64. |
| [] | Shen QH, Geng YS, Song B, Wan YS. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks, and Qinling-Dabie Orogenic Belt. Acta Geologica Sinica, 79(5): 616–627. |
| [] | Shi YR, Liu DY, Miao LC, Zhang FQ, Jian P, Zhang W, Hou KJ, Xu JY. 2010. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb Zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632–641. DOI:10.1016/j.gr.2009.11.011 |
| [] | Sláma J, Kosˇler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ. 2008. Plezovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1–35. DOI:10.1016/j.chemgeo.2007.11.005 |
| [] | Su BX, Qin KZ, Sakyi PA, Liu PP, Tang DM, Malaviarachchi SPK, Xiao QH, Sun H, Dai YC, Yan H. 2011. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 41(1): 31–43. DOI:10.1016/j.jseaes.2010.12.002 |
| [] | Sun DY, Wu FY, Zhang YB, Gao S. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jiling University (Earth Science Edition), 34(2): 174–181. |
| [] | Vervoort JD, Patchett PJ. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733. DOI:10.1016/0016-7037(96)00201-3 |
| [] | Wan YS, Simon AW, Liu DY, Yang CX, Song B, Ying XY. 2006. Further evidence for ~1. 85Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research, 9(1-2): 189–197. |
| [] | Wan YS, Liu DY, Xu ZY, Dong CY, Wang ZJ, Zhou HY, Yang ZS, Liu ZH, Wu JS. 2008. Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, north China craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. American Journal of Science, 308(3): 351–378. DOI:10.2475/03.2008.07 |
| [] | Wang CY, Campnell IH, Stepanow AS, Allen CM, Burtsev IN. 2011a. Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75(5): 1308–1345. |
| [] | Wang Q. 1986. Recognition of the suture between the Sino-Korean and Siberian paleoplates in the middle part of Inner Mongolia. Acta Geologica Sinica(1): 31–43. |
| [] | Wang W, Liu SW, Bai X, Yang PT, Li QG, Zhang LF. 2011b. Geochemistry and zircon U-Pb-Hf isotopic systematic of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Research, 20(1): 64–81. DOI:10.1016/j.gr.2011.02.012 |
| [] | Wu FY, Zhao GC, Wilde SA, Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. J. Asian Earth Sci., 24(5): 523–545. DOI:10.1016/j.jseaes.2003.10.011 |
| [] | Wu FY, Yang JH., Wilde SA, Liu XM, Guo JH, Zhai MG. 2007. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159(3-4): 155–177. DOI:10.1016/j.precamres.2007.06.007 |
| [] | Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH, Luo Y. 2006. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581–593. DOI:10.1016/j.epsl.2005.11.024 |
| [] | Xiao WJ, Windley BF, Hao J, Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069–1089. |
| [] | Xie J, Wu FY, Ding ZL. 2007. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance. Acta Petrologica Sinica, 23(2): 523–528. |
| [] | Yang J, Gao S, Chen C, Tang YY, Yuan HL, Gong HJ, Xie SW, Wang JQ. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660–2673. DOI:10.1016/j.gca.2009.02.007 |
| [] | Zhang HF, Zhai MG, Peng P. 2006. Zircon SHRIMP U-Pb age of the Paleoproterozoic high-pressure granulites from the Sanggan area, the North China Craton and its geologic implications. Earth Science Frontiers, 13(3): 190–199. |
| [] | Zhang LC, Wu HY, Wan B, Chen ZG. 2009a. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton. Gondwana Research, 16(2): 243–254. DOI:10.1016/j.gr.2009.04.005 |
| [] | Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM. 2007. The 1. 75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3): 287–312. |
| [] | Zhang SH, Zhao Y, Kröner A, Liu XM, Xie LW, Chen FK. 2009b. Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. Int. J. Earth Sci., 98(6): 1441–1467. DOI:10.1007/s00531-008-0368-2 |
| [] | Zhang XH, Zhang HF, Tang YJ, Wilde SA, Hu ZC. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology, 249(3-4): 262–281. DOI:10.1016/j.chemgeo.2008.01.005 |
| [] | Zhang YY, Dostal J, Zhao ZH, Liu C, Guo ZJ. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction. Gondwana Research, 20(4): 816–830. DOI:10.1016/j.gr.2011.03.008 |
| [] | Zheng JM, Liu YS, Chen YF, Gao X. 2004. Zircon U-Pb ages of Paleoproterozoic granite and the age of the Huade Group in Kangbao area, North Hebei Province. Geological Survey and Research, 27(1): 13–17. |
| [] | Zhong CT, Deng JF, Wan YS, Mao DB, Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585–600. |
| [] | 包创, 陈岳龙, 李大鹏. 2012. 阿拉善地块北缘朱拉扎嘎毛道晚二叠世火山岩的发现. 地学前缘, 19(5): 156–163. |
| [] | 表尚虎, 郑卫政, 周兴福. 2012. 大兴安岭北部锆石U-Pb年龄对额尔古纳地块构造归属的制约. 地质学报, 86(8): 1262–1272. |
| [] | 陈斌, 马星华, 刘安坤, 木合塔尔.扎日. 2009. 锡林浩特杂岩和蓝片岩的锆石U-Pb年代学及其对索仑缝合带演化的意义. 岩石学报, 25(12): 3123–3129. |
| [] | 耿显雷, 高山, 陈晨. 2011. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据. 地球科学, 36(3): 483–499. |
| [] | 韩国卿, 刘永江, 温泉波, 李伟, 吴琳娜, 赵英利, 丁凌, 赵立敏, 梁琛岳. 2011. 西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义. 地球科学, 36(4): 687–702. |
| [] | 黄汲清, 任纪舜, 姜春发, 张正坤, 秦德余. 1980. 中国大地构造及其演化. 北京: 科学出版社: 1-124. |
| [] | 简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151–157. |
| [] | 李承东, 郑建民, 张英利, 张凯, 花艳秋. 2005. 化德群的重新厘定及其大地构造意义. 中国地质, 32(3): 353–362. |
| [] | 李承东, 张福勤, 苗来成, 杜玉林, 花艳秋, 许雅雯, 康淑梅. 2009. 华北陆块北缘张三沟组SHRIMP锆石U-Pb年代学研究及其地质意义. 地质学报, 83(5): 642–650. |
| [] | 李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108–120. |
| [] | 李益龙, 周汉文, 葛梦春, 廖群安, 赵温霞, 武力, 钟增球. 2007. 西拉木伦断裂带双井微地块北缘混合岩的基本特征及其成因机制讨论. 矿物岩石, 27(4): 22–29. |
| [] | 李益龙, 周汉文, 葛梦春, 廖群安, 张雄华, 钟增球. 2008. 内蒙古林西县双井片岩北缘混合岩LA-ICP-MS锆石U-Pb年龄. 矿物岩石, 28(2): 10–16. |
| [] | 李益龙, 周汉文, 钟增球, 张雄华, 廖群安, 钟增球, 葛梦春. 2009. 华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石LA-ICP-MS U-Pb年龄证据. 地球科学, 34(6): 931–938. |
| [] | 李益龙, 周汉文, 钟增球, 尹淑苹, 李福林. 2010. 华北-西伯利亚板块对接带早白垩纪的裂解: 来自西拉木伦断裂带中性岩墙群的锆石U-Pb年龄及地球化学证据. 地球科学, 35(6): 921–932. |
| [] | 刘敦一, 万渝生, 伍家善, WildeSA, 董春艳, 周红英, 殷小艳. 2007. 华北克拉通太古宙地壳演化和最古老的岩石. 地质通报, 26(9): 1131–1138. |
| [] | 沈其韩, 耿元生, 宋彪, 万瑜生. 2005. 华北和扬子陆块及秦岭——大别造山带地表和深部太古宙基底的新信息. 地质学报, 79(5): 616–627. |
| [] | 孙德有, 吴福元, 张艳斌, 高山. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(自然科学版), 34(2): 174–181. |
| [] | 王荃. 1986. 内蒙古中部中朝与西伯利亚古板块间缝合线的确定. 地质学报(1): 31–43. |
| [] | 谢静, 吴福元, 丁仲礼. 2007. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义. 岩石学报, 23(2): 523–528. |
| [] | 张华锋, 翟明国, 彭澎. 2006. 华北克拉通桑干地区高压麻粒岩的锆石SHRIMP U-Pb年龄及其地质含义. 地学前缘, 13(3): 190–199. |
| [] | 郑建民, 刘永顺, 陈英富, 高雄. 2004. 冀北康保花岗岩锆石U-Pb年龄及化德群时代探讨. 地质调查与研究, 27(1): 13–17. |
| [] | 钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S 型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585–600. |
2013, Vol. 29








