岩石学报  2013, Vol. 29 Issue (9): 3131-3141   PDF    
浙江东南印支晚期的构造伸展事件:来自诸暨大爽岩体的证据
徐岩1, 胡艳华2, 顾明光2, 卢成忠2     
1. 浙江省工程地震研究所,杭州 310013;
2. 浙江省地质调查院,杭州 311203
摘要: 出露于浙江省东南部的大爽岩体为黑云母二长花岗岩,LA-ICP-MS锆石U-Pb年代学研究表明该岩体形成于227±2Ma,属印支晚期岩浆作用的产物。地球化学分析显示该岩石低Na2O、富K2O,A/CNK=1.26~1.49(大于1.1),为强过铝质、钾玄质系列花岗岩;岩石稀土总量较高,富Sr(Sr=874.6×10-6~1158×10-6),贫Yb(Yb=3.00×10-6~3.92×10-6),富轻稀土而亏损重稀土,具轻微的负铕异常(δEu=0.68~0.70);相对富集Rb、Th等大离子亲石元素,而亏损Nb、Ta等高场强元素;Sr-Nd同位素分析表明岩石具有较高的初始锶比值(ISr=0.710718~0.711008)和较低εNd(t)值(εNd(t) =-10.9~-11.1),上述地球化学特征指示该岩体岩浆源区为古老的地壳物质。综合分析认为大爽岩体是古老地壳部分减压熔融的产物,受控于印支造山后的伸展应力作用。
关键词: 印支期     锆石LA-ICPMS定年     全岩地球化学     Sr-Nd同位素    
The tectonic extensional event during the Late Indosinian Period in the southeastern Zhejiang Province: Evidence from the Dashuang pluton in Zhuji County
XU Yan1, HU YanHua2, GU MingGuang2, LU ChengZhong2     
1. Engineering Seismology Institute of Zhejiang Province, Hangzhou 310013, China;
2. Geological Survey of Zhejiang Province, Hangzhou 311203, China
Abstract: The Dashuang pluton in the southeast of Zhejiang Province is composed of biotite monzonitic granite. The LA-ICPMS zircon dating is 227±2Ma, which indicates that the pluton was formed during the Late Indosinian period. Most of granite samples exhibit lower Na2O,but higher K2O and A/CNK values ranging from 1.26 to 1.49 (>1.1). These results indicate strongly peraluminous and shoshonitic granite features, with enriched content of Sr but depleted content of Yb (Sr=874.6×10-6~1158×10-6, Yb=3.00×10-6~3.92×10-6). The content of rare earth elements is relatively higher, showing enriched in LREE and display weakly to moderately negative eupopium anomalies (δEu=0.63) in the chondrite- normalized REE distribution patterns. Large-ion lithophile elements Rb and Th are relatively enrichment while high field strength elements Nb, Ta are relatively depleted. The characteristics of Sr-Nd isotopic show high ages of ISr (=0.710718~0.711008) and low value of εNd(t) (=-10.9~-11.1) The geochemistry and Sr-Nd isotopic characteristics suggest that the Dashuang granitic pluton was derived from the ancient crust sources of partial decompression melting which under the post-orogenic (Indosinian) extensional tectonic setting.
Key words: Indosinian Period;Zircon LA-ICPMS dating     Zircon LA-ICPMS dating     Whole rocks geochemistry     Sr-Nd isotopic composition    
1 引言

华南板块自中生代以来先后经历印支运动和燕山运动两大构造运动,由于华南花岗岩分布的局限性等因素,对燕山期花岗岩的报道较多,而印支期花岗质岩石的高精度年龄的报道大多集中在湖南、江西和福建等地,如湖南省境内的沩山岩体(王岳军等,2005丁兴等,2005)、关帝庙岩体(王岳军等,2005)、白马山岩体(罗志高等,2010王岳军等,2005陈卫锋等,2007)、阳明山岩体(陈卫峰等, 2007),广西境内的大容山、旧州、台马、十万大山等岩体(邓希光等,2004赵亮等,2010),江西境内的五里亭岩体(张文兰等,2004)、白面石岩体(陈培荣等,2000)、金滩岩体(罗志高等,2010),江西、广东交界处的鲁溪岩体和下庄岩体(徐夕生等,2003),福建的洋坊岩体等(王强等,2003)。

尽管向华(2008) 陈多福等(1998) 报道过浙江景宁斜长角闪岩中存在印支期变形变质的年龄纪录,但是由于缺乏高精度同位素年代学制约,很多学者对浙江省境内是否存在印支期岩浆活动仍持怀疑态度(郭福祥,1998)。值得注意的是,李万友等(2012) 对浙西南地区印支晚期的靖居正长花岗岩体进行的研究,为浙江省境内印支期岩浆活动的存在提供了直接的证据,但对浙江其它地区印支期岩浆事件还鲜有报道。笔者对浙江东南的大爽花岗岩体不仅完成了LA-ICP-MS定年,证实了该岩体形成时代为印支晚期,而且对其进行了系统的岩石地球化学和Sr-Nd同位素研究,探讨了该岩体的成因和形成构造背景,这为深入认识华南印支期岩浆作用的性质与动力学过程提供重要信息。

2 地质背景和岩体特征

华南陆块由扬子和华夏地块组成,华夏地块出露大量的前寒武纪的变质基底,主要分布于浙西南-闽西北。大江绍断裂西北侧常山-诸暨一带存在一条长约20km、宽约1~5km的混合花岗岩带,总体呈北东向展布,出露规模大,由巨斑状黑云母花岗岩与混合石英正长岩、石英二长岩、二长花岗岩等组成。大爽岩体位于该带的西南部,构造上与陈蔡岩群呈交代接触关系,大爽组地层覆盖其上(王一先等,1997)。

《浙江省区域地质志》中把此带当晋宁期侵入岩处理(浙江省地质矿产局, 1989),而在《1∶5万厦程里幅区域地质调查报告》(浙江省地质矿产局,1987)把它当作混合岩处理。据前人资料暂置于印支期(T3),可能系钾质注入交代作用形成。本次研究的样品采自岩体的西南部(图 1)。

①浙江省地质矿产局.1987. 1∶5万厦程里幅区域地质调查报告

图 1 浙江诸暨大爽岩体地质简图及采样位置图 Fig. 1 Geological sketch map and sampling sites of the Dashuang granite pluton in Zhejiang
3 大爽岩体的年代学与地球化学研究 3.1 岩体采样位置及岩相学特征

大爽岩体采样位置位于诸暨岭头村北东约400m的公路边采坑露头(120°22′31″E,29°25′26″N),岩体为浅肉红色黑云二长花岗岩(图 2a),注入交代结构,块状构造。钾长石晶体含量最高,可达40%~50%,晶形完整而粗大,大小一般为1cm×2cm,最大可达3cm×5cm;其次为斜长石、石英和黑云母,粒度相对较小,一般为0.3~0.8cm。岩石中见深灰-灰黑色包体,形状不规则,成分为斜长角闪石,包体与围岩边界较清晰。本次定年所用样品JS013可见肉红色钾长石大斑晶。镜下观察主要造岩矿物为石英、斜长石、碱性长石、黑云母等(图 2b),副矿物主要有锆石等。

图 2 大爽花岗岩野外照片及镜下特征 Fig. 2 Photograph of field and microscopic characteristics for Dashuang granite
3.2 测试方法

锆石分选在廊坊市科大岩石矿物分选技术服务有限公司完成。北京离子探针中心进行透射、反射光拍照,并利用HITACHI S3000-N型扫描电子显微镜对锆石晶体进行阴极发光(CL) 照相。锆石微量元素含量和U-Pb同位素定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)利用LA-ICP-MS同时分析完成。激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合。在等离子体中心气流(Ar+He)中加入了少量氮气,以提高仪器灵敏度、降低检出限和改善分析精密度(Hu et al., 2008)。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMS Data Cal (Liu et al., 2008, 2010)完成。详细的仪器操作条件和数据处理方法同Liu et al.(2008, 2010)。锆石标准91500的U-Th-Pb同位素比值推荐值据Wiedenbeck et al. (1995) 。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Ex_ver3 (Ludwig, 2001)完成。全岩主、微量元素成分在浙江省地质矿产研究所使用ZSX100e X荧光光谱仪(BR00105)测定,微量元素采用Thermo X SeriesII电感耦合等离子体质谱联用(SN01426C)采用ICP-MS 方法分析。

Sr-Nd同位素分析在中国地质大学地质过程与矿产资源国家重点实验室采用Triton TI表面热电离质谱(TIMS)测定,将样品烘干后称取50mg,完全溶解于HF+HNO3的混合酸中,采用Bio Rad50WX8阳离子交换树脂分离提纯出Sr和Nd。Sr、Nd同位素比值分馏校正,实验过程测定的标样NBS987 87Sr/86Sr=0.710258±8,标样JNdi-1的143Nd/144Nd=0.512116±8。

3.3 锆石U-Pb测年结果

CL图像显示锆石样品大多晶形完好,呈长柱状至段柱状,长宽比为2∶1~4∶1, 锆石的长度为80~140μm,阴极发光照片显示清楚的韵律环带(图 3a),为典型的岩浆锆石。16颗锆石进行了16个点的年龄测定,结果列于表 1。所有分析点的U变化于106×10-6~897×10-6,Th变化于142×10-6~700×10-6之间,Th/U变化于0.51~2.16之间,也显示典型岩浆锆石Th/U特点。在锆石U-Pb谐和图中(图 3b),16个分析点均位于谐和线上或附近,显示较好的谐和性,16个分析点得到206Pb/238U加权平均年龄为227±2Ma,此年龄代表大爽花岗岩体的侵位年龄。

图 3 锆石阴极发光图像(CL)及锆石U-Pb谐和图 Fig. 3 CL imagines of zircons and zircon U-Pb concordant diagram

表 1 大爽岩体LA-ICP-MS锆石U-Pb同位素定年结果 Table 1 SHRIMP U-Pb dating results of zircons from the Dashuang granite
3.4 岩石地球化学与同位素分析结果 3.4.1 主量元素

大爽岩体黑云母二长花岗岩的SiO2=61.20%~63.75%(表 2),平均62.33%,属于中酸性二长岩-石英二长岩;TiO2=0.72%~0.96%,Al2O3=14.05%~15.82%,平均值为14.93%,CaO=3.29%~4.07%,此外,K2O=3.6%~6.33%,K2O含量大于Na2O含量,Na2O/K2O =0.36~0.81(Na2O/K2O <1),平均值为0.57,表现了相对低钠特征。MgO含量1.84%~2.36%,小于3%,A/CNK=1.26~1.49,大于1.1,为强过铝质-钾玄质系列花岗岩(图 4),具有S型花岗岩特征,与华南印支期花岗岩特征一致(郭令智等, 1983; Hsü et al., 1990; 邓晋福等, 1995; Carter et al., 2001)。

表 2 大爽岩体花岗岩主量元素(wt%)微量元素和稀土元素(×10-6)丰度表 Table 2 Major (wt%), trace and rare earth (×10-6) element compositions of granite from Dashuang pluton

图 4 大爽花岗岩的TAS图解(a)、A/CNK-A/NK图解(b)及K2O-SiO2图解(c) Fig. 4 Diagrams of TAS(a), A/CNK-A/NK(b) and K2O-SiO2 (c) for the Dashuang granite
3.4.2 微量元素

本文花岗岩的Yb=3.00×10-6~3.92×10-6,Sr含量在874.6×10-6~1158×10-6δEu=0.68~0.70,具轻微的负铕异常,表明斜长石结晶程度较低。负Nb异常表现了大陆地壳的特征,暗示了大陆地壳参加了岩浆活动过程,大离子亲石元素Rb、Th相对富集,高场强元素Nb、Ta、Sr和Yb相对亏损(图 5a),已经有同位素证据证明这种模式的成因与地壳物质的参与有关(Harris et al., 1983),与 Pearce et al. (1984) 所述的板内花岗岩的微量元素化学特征相似。

图 5 大爽花岗岩微量元素蛛网图(a)和稀土元素配分型式图(b)(原始地幔标准化值和球粒陨石标准化值据Sun and McDonough, 1989;平均上地壳的分布特征据Taylor and Mclennan, 1981) Fig. 5 Trace element spider diagram (a) and chondrite-normalized REE patterns (b) for the Dashuang granite (primitive mantle data and chondrite data after Sun and McDonough, 1989)
3.4.3 稀土元素

大爽岩体黑云母二长花岗岩的稀土元素总量∑REE为382.0×10-6~569.5×10-6,(La/Yb)N=23.65~34.48,(La/Sm)N=4.78~6.42,具有Eu的轻微负异常,具有典型的平均上地壳的分布特征(Taylor and Mclennan, 1981)(图 5b),轻稀土和重稀土元素分异比较明显,稀土元素配分模式总体呈右倾平滑曲线,属轻稀土富集型,表明源区具有石榴石和斜长石结晶分异作用,可能是地壳岩石高压下部分熔融形成。

3.4.4 Sr-Nd同位素特征

表 3列出了大爽岩体样品的Sr-Nd同位素组成及根据年龄计算的有关参数。由表中数据可以看出,该岩体的Sr-Nd同位素组成较均一,ISr=0.710718~0.711008,εNd(t) =-10.9~-11.1,岩体Nd模式年龄为1.45~1.52Ga,二阶段模式年龄t2DM为1.97~1.99 Ga。

表 3 大爽岩体Sr、Nd同位素分析结果 Table 3 The Sr, Nd isotopic analysis results of the Dashuang granite
4 讨论 4.1 岩体的侵位时代

从“新编华南花岗岩分布图”看(孙涛,2006),华南花岗岩主要分布于湖南、广东、广西、江西、福建及两广交界、广西与湖南交界、湖南与江西交界处,近年来,华南地区有大量的高质量的印支期年龄数据的报道(王岳军等,2002孙涛等,2003徐夕生等,2003王强等,2003谢才富等,2005舒斌等,2004邓希光等,2004邱检生等,2004续海金等,2004Peng et al., 2004; 丁兴等,2005; Wang et al., 2005b, 2007a, b, c, 2012; Li et al., 2007; Li and Li, 2007; 周新民等, 2007, Xiang et al., 2008, b ; Xu et al., 2011; Wan et al., 2010; 于津海等, 2006, 2007a; Yu et al., 2009; Zhao et al., 2010; Zhang et al., 2011)。近年来华南地区相继发现的一系列印支期逆冲断层、塑性剪切带、高级变质作用、花岗岩侵入以及构造沉积证据等使得印支期造山带成为目前华南研究中的热点(Wang et al., 2005a梁新权等,2005; Xu et al., 2011; 向华等,2008),但是在浙江境内的印支运动的研究却相对薄弱,在《浙江省区域地质志》中承认江山-绍兴断裂带的西北侧仅存在少量印支期侵入岩(浙江省地质矿产局, 1989),代表性岩体有栅溪、山后、庙后等岩体,却未给出明确的地层学和年代学证据。栅溪岩石根据最新的同位素定年结果被确认为燕山期产物(顾明光等,2011)。李万友等(2012) 对浙西南靖居正长花岗岩体进行的研究:其定年结果为215Ma,为华夏古老的变质基底在伸展构造背景下部分熔融的产物,这为浙西南印支期岩浆事件提供了证据。

本文研究区位于浙东南,前人曾利用U-Pb法对大爽岩体进行过年代学研究,并认为该岩体形成年代为239±1Ma(王一先等,1997),本文利用高精度LA-ICP-MS锆石年代学方法测定大爽岩体形成于227±2Ma,该年龄的厘定进一步确定了大爽岩体应是印支期后的产物,不仅暗示了浙江境内江-绍断裂带中晚三叠世存在一次岩浆事件,而且与浙西南晚二叠-三叠纪印支期变形变质作用、岩浆作用相印证(陈多福等,1998向华等,2008李万友等,2012),为认识浙江境内的印支运动提供了年代学证据。

4.2 岩体成因的指示意义

地壳岩石的Nd模式年龄被认为可以反映地壳岩石从地幔储库中提取以来所经历的时间,即壳-幔分异时间,而二阶段模式年龄能更好的用于估计花岗岩源区物质的平均存留时间,校正因来源物质混合使Sm/Nd值变化而引起的花岗岩Nd模式年龄的计算误差(Liew and Hofmann, 1988)。

本文样品的Sr-Nd同位素特征表明(表 3):大爽岩体的Sr-Nd同位素组成较均一,ISr=0.710718~0.711008,εNd(t)=-10.9~-11.1,岩体Nd模式年龄=1.45~1.52Ga, 二阶段模式年龄t2DM=1.97~1.99Ga。大爽岩体构造位置上处于华夏地块东部,变质基底地层主要为八都群和陈蔡群,它们可能为区内侵入岩的主要物源区,较之华夏地块基底变质岩的Nd模式年龄(=1.8~2.2Ga,陈江峰等,1999)相吻合。在t-εNd(t)关系图上,样品点均落于华南元古地壳演化域内,反映它们主要衍生于古老的地壳物质(图 6)。这些特征符合华南内陆大部分地区的花岗岩均有较低εNd(t)值和较高的tDM值的特征,反映了地壳来源的特点(洪大卫等,1999),也与(王德滋和沈渭洲,2003)提出的海西-印支期花岗岩具有相对一致的Sr-Nd同位素特征(εNd(t) =-12.4~7.2;ISr=0.7084~0.7318;Nd模式年龄=2.02~1.60Ga)。以上这些特征充分说明大爽岩体的成岩过程主要源自地壳物质,可能是华夏地块古老地壳在伸展构造背景下减压部分熔融的产物(王德滋和沈渭洲,2003孙涛等,2003)。

图 6 大爽岩体t-εNd(t)关系图(据沈渭洲等, 1993) Fig. 6 Diagrams of t-εNd(t) relationship for the Dashuang granite (after Shen et al., 1993)
4.3 大地构造意义

近年来,大量的高质量的年代学数据表明: 华南印支运动开始于267~262Ma (Li, 2006),华南板块与印支板块拼合的峰期发生在258~243Ma(Xu et al., 2011; Carter et al., 2001; Lepvrier et al., 1997; Nam, 1998Nam et al., 2001; Lan et al., 2000; Maluski et al., 2001)。对于浙江印支期变质事件也有过年龄的报道,如胡世玲等(1991) 对浙江遂昌地区斜长角闪岩的角闪石和龙泉下际地区中糜棱岩中白云母进行了Ar-Ar同位素定年,获得的年龄分别为239Ma和215Ma,陈多福等(1998) 对浙江景宁地区斜长角闪岩中的锆石进行了SHRIMP定年,获得了252±5Ma的年龄,向华等(2008) 对浙西南变质基底基性-超基性变质锆石进行了U-Pb定年,结果为260~230Ma,此外,在浙西北还发现了一系列晚二叠-早三叠世逆冲推覆构造(Xiao and He, 2005),上述证据都反映了在华夏地块浙江境内印支期经历过一次重要的变形变质作用。

前人结合区域上花岗岩的时空分布特征认为:华南花岗岩岩体分散、量少,不应与碰撞或消减作用直接相关(周新民, 2003),华南印支期花岗岩形成于变形加厚陆壳的部分熔融(王岳军等,2002),应该分为前后两期,分别为同碰撞型花岗岩和碰撞后花岗岩,早期形成于挤压环境(250~238Ma),晚期形成于伸展环境(229~215Ma)(李万友等,2012), 但对环境转换的时间域还存在分歧(孙涛等,2003Zhou et al., 2006Wang et al., 2007b;于津海等,2007b)。本文厘定的大爽岩体成岩时间为晚三叠世227Ma,此时印支运动峰期已经结束,华南已由挤压环境进入碰撞后应力松弛阶段。此外,在花岗岩的构造环境微量元素判别图解(图 7a)上,本文样品主要落于VAG顶部,与后碰撞花岗岩区重合,也显示了与后碰撞有关的花岗岩的有关特征。

图 7 大爽花岗岩的构造判别图解(据Pearce et al., 1984; Pearce, 1996) Syn-COLG:同碰撞花岗岩;VAG:火山弧花岗岩;WPG:板内花岗岩;ORG:洋脊花岗岩;Post-COLG:后碰撞花岗岩 Fig. 7 Diagrams of discrimination for the Dashuang granite (after Pearce et al., 1984; Pearce, 1996)

碰撞后阶段形成的花岗岩通常较为复杂和多变,不能用单一的地幔或者地壳来源来解释。它们既可以由于碰撞后的热松弛导致下地壳熔融作用而形成,也可以由于后碰撞上升侵蚀作用导致的绝热减压而使上地幔熔融而形成(Harris et al., 1986Pearce et al., 1984)。本文报道的大爽岩体具有S型花岗岩的岩石学,矿物学及地球化学特征,有地幔物质参与的可能性较小,可能为碰撞后古老的下地壳减压熔融形成。综合考虑到上述因素,本文认为大爽花岗岩体是印支运动后期变形加厚后,应力松弛垮塌导致陆壳的部分熔融,属于后造山作用的产物(图 7b)。

关于华南印支期的大地构造演化及形成机制长期以来一直存在多种讨论: Hsü et al. (1988, 1990)认为华南为印支期陆内碰撞造山带, 但后来的研究显示华南内陆并不存在早中生代的洋盆或洋陆俯冲事件(Rowley et al., 1997; Gilder et al., 1996);王岳军等(2002) 认为华南印支期花岗岩形成于变形加厚陆壳的部分熔融; 周新民(2003) 则认为华南印支期花岗岩应以早、晚期区分开来, 其中印支早期的为同碰撞型花岗岩, 而印支晚期的则属于后碰撞型花岗岩。Li and Li (2007) 则认为华南印支期花岗岩显示了由南东向北西方向成岩年龄的变轻的趋势,可能是受古太平洋板块向华南板块俯冲的影响,但也有学者认为这种模型并不能很好的解释武夷山晚二叠世正长岩和湖南南部三叠世辉长岩的起源,并且因为缺少中生代俯冲时同碰撞岛弧岩浆和壳源岩浆的证据而受到质疑(Wang et al., 2012)。大爽花岗岩在构造位置上处于华南板块中扬子与华夏板块结合部位,华夏地块与扬子地块之间至少经历了3次大的碰撞拼贴(晋宁期、加里东期和海西-印支期),相应形成了三期的碰撞花岗岩(王德滋和沈渭洲,2003),因此构造背景较为复杂。对于本文印支期花岗岩形成的构造背景的判别还应考虑区域地质发展和时空框架因素的约束,因此,本文对华南印支期岩浆活动的成因仍持谨慎的态度。

5 结论

本文通过对大爽岩体中黑云二长花岗岩的LA-ICP-MS锆石U-Pb年代学、地球化学及Sr-Nd同位素特征的研究,可以得出以下结论:

(1) 黑云母二长花岗岩的锆石LA-ICP-MS定年结果表明,锆石结晶年龄为227±2Ma,说明该岩体的侵位时代为印支晚期;

(2) Sr-Nd同位素成分特征表明大爽花岗岩体岩浆源区主要为古老的地壳物质;

(3) 大爽岩体花岗岩受控印支造山后的伸展应力作用,形成于变形加厚陆壳的部分熔融。

致谢 衷心感谢审稿专家对本文提出宝贵的修改意见以及浙江大学地球科学系章凤奇和林秀斌在本文写作过程中给予的指导和帮助。
参考文献
[] Bureau of Geology, Mineral Resources of Zhejiang Province. 1989. Regional Geology of Zhejiang Province. Beijing: Geological Publishing House: 1-668.
[] Carter A, Roques D, Bristow C. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211–214. DOI:10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
[] Chen DF, Li XH, Pan JM, et al. 1998. Metamorphic newly produced zircons, SHRIMP ion microprobe U-Pb age of amphibolite of Hexi Group, Zhejiang and its implications. Acta Mineralogica Sinica, 18(4): 396–400.
[] Chen JF, Guo XS, Tang JF, Zhou TX. 1999. Nd isotopic model ages: Implications of the growth of the continental crust of southeastern China. Journal of Nanjing University (Natural Sciences), 35(6): 649–668.
[] Chen PR, Fan CF, Kong XG, et al. 2000. Characteristics of igneous rocks in uranium district No. 6710 and their tectonic and geochemical metallogenic significance. Uranium Geology, 16(6): 334–342.
[] Chen WF, Chen PR, Huang HY, Ding X, Sun T. 2007. Chronological and geochemical studies of granite and evclave in Baimashan pluton, Hunan, south China. Science in China (Series D), 37(7): 873–893.
[] Deng JF, Zhao HL, Mo XX, Liu HX, Luo ZH. 1995. Intracontinental subduction of the Yangtze continent and continent reducing-inferred from muscovite (two mica) granites. Geological Journal of Universities, 1(1): 50–57.
[] Deng XG, Chen ZG, Li XH, et al. 2004. SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan granitoid belt in southeastern Guangxi, China. Geological Review, 50(4): 426–432.
[] Ding X, Chen PR, Chen WF, Huang HY, Zhou XM. 2005. Single zircon LA-ICP-MS U-Pb dating of Weishan granite, Hunan, South China and its petrogenetic significance. Science in China (Series D), 35(7): 606–616.
[] Gilder SA, Gill J, Coe RS, Zhao XX, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD, Wu HR. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J. Geophys. Res., 107(B7): 16137–16154.
[] Gu MG, Feng LX, Hu YH, et al. 2011. LA-ICP-MS U-Pb dating of zircons from Guangshan and Zhaxi plutons in Shaoxing area, Zhejiang Province: Constraint on the ore-forming epoch of the Lizhu iron ore deposit. Geological Bulletin of China, 30(8): 1212–1219.
[] Guo FX. 1998. Meso-Cenozoic Nanhua (South China) orogenic belt-subaerial tridirectional orogen. Acta Geologica Sinica, 72(1): 22–33.
[] Guo LZ, Shi YS, Ma RS. 1983. On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the Western Pacific Ocean. Acta Geologica Sinica, 57(1): 11–21.
[] Harris NB, Massey J. 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537–1546. DOI:10.1029/94TC01611
[] Harris NBW, Pearce JA, Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67–81. DOI:10.1144/GSL.SP.1986.019.01.04
[] Hong DW, Xie XL, Zhang JS. 1999. An exploration on the composition, nature and evolution of mid-lower crust in South China based of the Sm-Nd isotopic data of granites. Geological Journal of China Universities, 5(4): 361–371.
[] Hsü KJ, Sun S, Li JL. 1987. Huanan alps, not South China platform. Science in China (Series B), 12(2): 1107–1115.
[] Hsü KJ, Sun S, Li JL, Chen HH, Pen HP, Şengör AMC. 1988. Mesozoic over thrust tectonics in South China. Geology, 16(5): 418–421. DOI:10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
[] Hsü KJ, Li JL, Chen HH, Wang QC, Sun S, Şengör AMC. 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 183(1-4): 9–39. DOI:10.1016/0040-1951(90)90186-C
[] Hu SL, Cheng H, Zhong ZH. 1991. The Ar-Ar dating for metamorphic deformation mineral in south of Zhejiang Province and its tectonic significance. In: Abstracts of the 4th National Symposium on Mineralogy, Petrology and Geochemistry. Beijing: Seismology Press: 304-305.
[] Hu ZC, Gao S, Liu YS, et al. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel ga. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. DOI:10.1039/b804760j
[] Lan CY, Chung SL, Shen JS, et al. 2000. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. J. Asian Earth Sci, 18(3): 267–280. DOI:10.1016/S1367-9120(99)00063-2
[] Lepvrier C, Maluski H, van Vuong N, et al. 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam): 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283(1-4): 105–127. DOI:10.1016/S0040-1951(97)00151-0
[] Li WY, Ma CQ, Liu YY, Robinson PT. 2012. Discovery of the Indosinian aluminum A-type granite in Zhejiang Province and its geological significance. Science China (Earth Sciences), 55(1): 13–25. DOI:10.1007/s11430-011-4351-6
[] Li XH, Li ZX, Li WX, et al. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan island. J. Geol, 114(3): 341–353. DOI:10.1086/501222
[] Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ, Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab. Lithos, 96(1-2): 186–204. DOI:10.1016/j.lithos.2006.09.018
[] Li ZX, Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179–182. DOI:10.1130/G23193A.1
[] Liang XQ, Li XH, Qiu YX, et al. 2005. Indosinian collisional orogeny: Evidence from structural and sedimentary geology in Shiwandashan basin, South China. Geotectonica et Metallogenia, 29(1): 99–112.
[] Liew TC, Hofmann AW. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe: Indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol., 98(2): 129–138. DOI:10.1007/BF00402106
[] Liu YS, Zong KQ, Kelemen PB, et al. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem. Geol, 247: 133–153. DOI:10.1016/j.chemgeo.2007.10.016
[] Liu YS, Gao S, Hu ZC, et al. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol, 51: 537–571. DOI:10.1093/petrology/egp082
[] Ludwig KR. 2001. Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication: 1–58.
[] Luo ZG, Wang YJ, Zhang FF, et al. 2010. LA-ICPMS zircon U-Pb dating for Baimashan and Jintan Indosinian granitic plutons and its petrogenetic implications. Geotectonica et Metallogenia, 34(2): 282–290.
[] Maluski H, Lepvrier C, Jolivet L, et al. 2001. Ar-Ar and fission-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. J. Asian Earth Sci, 19(1-2): 233–248. DOI:10.1016/S1367-9120(00)00038-9
[] Nam TN. 1998. Thermotectonic events from Early Proterozoic to Miocene in the Indochina craton: Implication of K-Ar ages in Vietnam. J. Asian Earth Sci., 16(5-6): 475–484. DOI:10.1016/S0743-9547(98)00027-0
[] Nam TN, Sano Y, Terada K, et al. 2001. First SHRIMP U-Pb zircon datingof granulites from the Kontum massif (Vietnam) and tectonothermal implications. J. Asian Earth Sci, 19(1-2): 77–84. DOI:10.1016/S1367-9120(00)00015-8
[] Pearce JA, Harris NB W, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956
[] Pearce LA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120–125.
[] Peng SB, Fu JM, Liu YH. 2004. The discovery and significance of A-type charnokite in Southeast Guangxi Province, China. Science Technology and Engineering, 4(10): 832–843.
[] Qiu JS, McInnes BIA, Xu XS, et al. 2004. Zircon LA-ICP-MS dating for Wuliting pluton at Dajishan, southern Jiangxi and new recognition about its relation to Tungsten mineralization. Geological Review, 50(2): 125–133.
[] Rowley DB, Ziegler AM, Nie G. 1997. Comment on “Mesozoic over thrust tectonics in South China”. Geology, 17: 384–386.
[] Shen WZ, Zhu JC, Liu SC. Sm-Nd isotopic study of basement metamorphic rocks in South China and its constraint on material sources of granitoids. Acta Petrologica Sinica.
[] Shu B, Wang PA, Li ZJ . Research on mineralizing age of Baolun gold deposit in Hainan Province and its significance. Geoscience.
[] SunT , Zhou XM, ChenPR. Strongly peraluminous granites of Mesozoic in eastern Nanling Region, southern China: Petrogenesis and implications for tectonics. Science in China.
[] Sun T. 2006. A new map showing the distribution of granites in South China and its explanatory notes. Geological Bulletin of China .
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society of London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Taylor SR, Mclennan SM. 1981. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Phil. Trans. R. Soc. London, Series A, 301(1461): 381–398. DOI:10.1098/rsta.1981.0119
[] Wan YS, Liu DY, Wilde SM, Cao JJ, Chen B, Dong CY, Song B, Du LL. 2010. Evolution of the Yunkai terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37(2): 140–153. DOI:10.1016/j.jseaes.2009.08.002
[] Wang DZ, Shen WZ. 2003. Genesis of granitoids and crustal evolution in southeast China. Earth Science Frontiers, 10(3): 209–220.
[] Wang Q, Zhao ZH, Jian P, et al. 2003. SHRIMP U-Pb zircon geochronology of Yangfang aegirite-augite syenite in Wuyi Mountains of South China and its tectonic implications. Chinese Sci. Bull, 48(20): 2241–2247. DOI:10.1007/BF03182860
[] Wang Q, Li JW, Jian P, et al. 2005a. Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic transtension. Earth Planet. Sci. Lett, 230(3-4): 339–354. DOI:10.1016/j.epsl.2004.11.023
[] Wang YJ, Zhang Y H, Fan WM, et al. 2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening. Science in China (Series D), 45(11): 1042–1056. DOI:10.1007/BF02911241
[] Wang YJ, Fan WM, Liang XQ, Peng TP, et al. 2005. SHRIMP U-Pb zircon dating of Indosinian granites in Hunan Province and its petrogenetic implications. Chinese Sci. Bull, 50(12): 1259–1266.
[] Wang YJ, Zhang YH, Fan WM, et al. 2005b. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. J. Struct. Geol, 27(6): 985–998. DOI:10.1016/j.jsg.2005.04.004
[] Wang YJ, Fan WM, Cawood PA, Ji SC, Peng TP, Chen XY. 2007a. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, South China: Kinematics and 40Ar/39Ar geochronological constraints. Tectonics, 26(6). DOI:10.1029/2007TC002099
[] Wang YJ, Fan WM, Zhao GC, Ji SC, Peng TP. 2007b. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research, 12(4): 404–416. DOI:10.1016/j.gr.2006.10.003
[] Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH, Peng TP. 2007c. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos, 96(3-4): 475–502. DOI:10.1016/j.lithos.2006.11.010
[] Wang YJ, Fan WM, Zhang GW, Zhang YH. 2012. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273–1305.
[] Wang YX, Zhao ZH, Bao ZH, Li XH. 1997. Geochemistry of granitoids from Zhejinag Province and crustal evolution I. Phanerozoic granitoids. Geochimica, 26(5): 1–15.
[] Wiedenbeck M, Alle P, Corfu F, et al. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. DOI:10.1111/ggr.1995.19.issue-1
[] Xie CF, Zhu JC, Zhao ZJ, et al. 2005. Zircon SHRIMP U-Pb age dating of garnet-acmite syenite: Constraints on the Hercynian-Indosinian tectonic evolution of Hainan Island. Geological Journal of China Universities, 11(1): 47–57.
[] Xiang H, Zhang L, Zhou HW, Zhong ZQ, Zeng W, Liu R, Jin S. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event. Science in China (Series D), 51(6): 788–800. DOI:10.1007/s11430-008-0053-0
[] Xiao WJ, He HQ. 2005. Early Mesozoic thrust tectonics of the Northwest Zhejiang region (Southeast China). GSA Bulletin, 117(7-8): 945–961.
[] Xu HJ, Ma CQ, Zhong YF, et al. 2004. Zircon SHRIMP U-Pb dating of Taojiang and Dashenshan granites in Hunan Province: The lower time limit of collision between Yangtze block and Cathysia block. Haikou: Abstracts of the National Seminar on Petrology and Geodynamics in 2004: 312–314.
[] Xu XB, Zhang YQ, Shu LS. 2011. La-ICPMS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: Constraints on the timing of Early Paleozoic and Early Mesozoic tectono-thermal events in SE China. Tectonophysics, 501(1-4): 71–86. DOI:10.1016/j.tecto.2011.01.014
[] Xu XS, Deng P, O’Reilly SY, et al. 2003. Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chinese Science Bulletin, 48(17): 1892–1899. DOI:10.1007/BF03184074
[] Yu JH, Wang LJ, Zhou XM, et al. 2006. Compositions and formation history of the basement metamorphic rocks in northeastern Guangdong Province. Earth Science, 31(1): 38–48.
[] Yu JH, Wang LJ, Wei ZY, Sun T, Shu LS. 2007a. Phanerozoic metamorphic episodes and characteristics of Cathaysia Block. Geological Journal of China Universities, 13(3): 474–483.
[] Yu JH, O’Reilly YS, Wang LJ, et al. 2007b. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crus. Chinese Science Bulletin, 52(1): 13–22. DOI:10.1007/s11434-007-0008-4
[] Yu JH, Wang LJ, O’Reilly SY, Griffin WL, Zhang M, Li CZ, Shu LS. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347–363. DOI:10.1016/j.precamres.2009.08.009
[] Zhao L, Guo F, Fan WM, Li CW, Qin XL, Li HX. 2010. Crustal evolution of the Shiwandashan area in South China: Zircon U-Pb-Hf isotopic records from granulite enclaves in Indo-Sinian granites. Chinese Science Bulletin, 55(19): 2028–2038. DOI:10.1007/s11434-010-3225-1
[] Zhang FF, Wang YJ, Chen XY, Fan WM, Zhang YH, Zhang AM. 2011. Triassic high-strain shear zones in Hainan Island (South China) and their implications on the amalgamation of the Indochina and South China blocks: Kinematic and 40Ar/39Ar geochronological constraints. Gondwana Research, 19(4): 910–925. DOI:10.1016/j.gr.2010.11.002
[] Zhang WL, Hua RM, Wang RC, et al. 2004. Single zircon U-Pb isotopic age of the Wulitiong granite in Dajishan area of Jiangxi and its geological implication. Acta Geologica Sinica, 78(3): 352–358.
[] Zhou XM. 2003. My thinking about granite geneses of South China. Geological Journal of China Universities, 9(4): 556–565.
[] Zhou XM, Sun T, Shen WZ, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 28(1): 26–33.
[] Zhou XM, Chen PR, Xu XS. 2007. Petrogenesis of Late Mesozoic Granite and Dynamic Evolution of Lithosphere in Nanling Region. Beijing: Science Press: 1-691.
[] 陈多福, 李献华, 潘晶铭, 等. 1998. 浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP)U-Pb年龄及地质意义. 矿物学报, 18(4): 396–400.
[] 陈江峰, 郭新生, 汤加富, 周泰禧. 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学版), 35(6): 649–668.
[] 陈培荣, 范春方, 孔兴功, 等. 2000. 6710铀矿区火成岩的地球化学特征及其构造和成矿意义. 铀矿地质, 16(6): 334–342.
[] 陈卫锋, 陈培荣, 黄宏业, 丁兴, 孙涛. 2007. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究. 中国科学(D辑), 37(7): 873–893.
[] 邓晋福, 赵海玲, 莫宣学, 刘厚祥, 罗照华. 1995. 扬子大陆的陆内俯冲与大陆的缩小——由白云母(二云母) 花岗岩推导. 高校地质学报, 1(1): 50–57.
[] 邓希光, 陈志刚, 李献华, 等. 2004. 桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年. 地质论评, 50(4): 426–432.
[] 丁兴, 陈培荣, 陈卫锋, 黄宏业, 周新民. 2005. 湖南沩山花岗岩中锆石LA-ICPMS U-Pb 定年:成岩启示和意义. 中国科学(D辑), 35(7): 606–616.
[] 顾明光, 冯立新, 胡艳华, 等. 2011. 浙江绍兴广山-栅溪岩体锆石LA-ICP-MS定年: 对漓渚铁矿成矿时代的限定. 地质通报, 30(08): 1212–1219.
[] 郭福祥. 1998. 中国南方中新生代大地构造属性和南华造山带褶皱过程. 地质学报, 72(1): 22–33.
[] 郭令智, 施央申, 马瑞士. 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化. 地质学报, 57(1): 11–21.
[] 洪大卫, 谢锡林, 张季生. 1999. 从花岗岩的Sm-Nd 同位素探讨华南中下地壳的组成、性质和演化. 高校地质学报, 5(4): 361–371.
[] 胡世玲, 程海, 钟志华. 1991. 浙南地区变质变形矿物40Ar/39Ar年代测定及其构造意义. 见:全国第四届矿物岩石地球化学学术讨论会论文摘要. 北京: 地震地版社: 304-305.
[] 李万友, 马昌前, 刘园园, RobinsonPT. 2012. 浙江印支期铝质A型花岗岩的发现及其地质意义. 中国科学(地球科学), 42(2): 164–177.
[] 梁新权, 李献华, 丘元禧, 等. 2005. 华南印支期碰撞造山——十万大山盆地构造和沉积学证据. 大地构造与成矿学, 29(1): 99–112.
[] 罗志高, 王岳军, 张菲菲, 等. 2010. 金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示. 大地构造与成矿学, 34(2): 282–290.
[] 邱检生, McInnesBIA, 徐夕生, 等. 2004. 赣南大吉山五里亭岩体的锆石LA-ICPMS-MS定年及其与钨成矿关系的新认识. 地质论评, 50(2): 125–133.
[] 沈渭洲, 朱金初, 刘昌实, 等. 1993. 华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约. 岩石学报, 9(2): 115–124.
[] 舒斌, 王平安, 李中坚, 等. 2004. 海南抱伦金矿的成矿时代研究及其意义. 现代地质, 18(3): 316–320.
[] 孙涛, 周新民, 陈培荣, 等. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义. 中国科学(D辑), 33(12): 1209–1218.
[] 孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332–342.
[] 王德滋, 沈渭洲. 2003. 中国东南部花岗岩成因与地壳演化. 地学前缘, 10(3): 209–220.
[] 王强, 赵振华, 简平, 等. 2003. 武夷山洋坊霓辉石正长岩的锆石SHRIMP U-Pb年龄及其构造意义. 科学通报, 48(14): 1582–1588.
[] 王岳军, ZhangYH, 范蔚茗, 等. 2002. 湖南印支期过铝质花岗岩的形成: 岩浆底侵与地壳加厚热效应的数值模拟. 中国科学(D 辑), 32(6): 491–499.
[] 王岳军, 范蔚茗, 梁新权, 彭头平, 等. 2005. 湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示. 科学通报, 50(12): 1259–1266.
[] 王一先, 赵振华, 包志伟, 李献华. 1997. 浙江花岗岩类地球化学与地壳演化——I. 显生宙花岗岩类. 地球化学, 26(5): 1–15.
[] 向华, 张利, 周汉文, 等. 2008. 浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应. 中国科学(D辑), 38(4): 401–413.
[] 谢才富, 朱金初, 赵子杰, 等. 2005. 三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄: 对海南岛海西-印支期构造演化的制约. 高校地质学报, 11(1): 47–57.
[] 续海金, 马昌前, 钟玉芳, 等. 2004. 湖南桃江、大神山花岗岩的锆石SHRIMP定年: 扬子与华夏拼合的时间下限. 海口: 2004年全国岩石学与地球动力学研讨会摘要: 312–314.
[] 许靖华, 孙枢, 李继亮. 1987. 是华南造山带而不是华南地台. 中国科学(B辑), 12(2): 1107–1115.
[] 徐夕生, 邓平, O’ReillySY, 等. 2003. 华南贵东杂岩体单颗粒锆石激光探针LCPMS U-Pb定年及其成岩意义. 科学通报, 48(12): 1328–1334.
[] 于津海, 王丽娟, 周新民, 等. 2006. 粤东北基底变质岩的组成和形成时代. 地球科学, 31(1): 38–48.
[] 于津海, 王丽娟, 魏震洋, 孙涛, 舒良树. 2007a. 华夏地块显生宙的变质作用期次和特征. 高校地质学报, 13(3): 474–483.
[] 于津海, O’Reilly SY, 王丽娟, 等. 2007b. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11–18.
[] 浙江省地质矿产局. 1989. 浙江省区域地质志. 北京: 地质出版社: 1-668.
[] 赵亮, 郭锋, 范蔚茗, 等. 2010. 广西十万大山地壳演化:来自印支期花岗岩中麻粒岩包体锆石U-Pb年代学及Hf同位素记录. 科学通报(15): 1489–1498.
[] 张文兰, 华仁民, 王汝成, 等. 2004. 江西大吉山五里亭花岗岩单颗粒锆石U-Pb同位素年龄及其地质意义探讨. 地质学报, 78(3): 352–358.
[] 周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556–565.
[] 周新民, 陈培荣, 徐夕生, 等. 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社: 1-691.