岩石学报  2013, Vol. 29 Issue (9): 3065-3079   PDF    
西昆仑大同西岩体成因: 矿物学、地球化学和锆石U-Pb年代学制约
高晓峰, 校培喜, 康磊, 奚仁刚, 过磊, 谢从瑞, 杨再朝     
国土资源部岩浆作用成矿与找矿重点实验室,中国地质调查局西安地质调查中心,西安 710054
摘要: 大同西岩体出露于西昆仑造山带西段,主要岩性为高钾钙碱性的石英闪长岩和石英二长岩-二长花岗岩。石英闪长岩中普遍发育椭球形或卵形暗色镁铁质包体,包体岩性主要为闪长岩,石英闪长岩的SiO2的含量为56.6%~65.3%,Mg#为0.45~0.46,包体SiO2的含量为52.9%左右,Mg#为0.48。相对于石英闪长岩,石英二长岩-二长花岗岩具有较高SiO2的含量(SiO2=65.0%~73.3%)和较低Mg# (Mg#=0.36~0.44)。微量元素分析数据表明,石英闪长岩与暗色包体的REE球粒陨石标准化图呈右倾型,Eu负异常不明显,富集大离子亲石元素,亏损高场强元素。石英二长岩-二长花岗岩具有明显的Eu负异常,强烈亏损Nb-Ta、Ti等元素。温压计算显示石英闪长岩为相对低温(638~768℃)的中-深成岩体(平均深度为8.8km),石英二长岩-二长花岗岩具有相对高的结晶温度(752~771℃)。锆石U-Pb年代学研究表明,石英二长岩形成年龄为470±1.2Ma,略晚于前人报道的石英闪长岩侵位年龄。石英二长岩-二长花岗岩与石英闪长岩来源于不同的岩浆,二者之间不存在分异关系。结合区域构造演化历史,早期的石英闪长岩为大洋板片俯冲过程中地幔楔部分熔融岩浆的分异产物,晚期的石英二长岩-花岗岩则来源于碰撞后伸展阶段由于软流圈地幔物质上涌加热导致变泥质岩石熔融的结果。大同西复式岩体的成因指示了西昆仑造山带在早奥陶纪经历了由俯冲向碰撞后伸展的构造体制转换。
关键词: 矿物学     地球化学     岩石成因     大同西岩体     奥陶纪     西昆仑造山带    
Origin of Datongxi pluton in the West Kunlun orogen: Constraints from mineralogy, elemental geochemistry and zircon U-Pb age
GAO XiaoFeng, XIAO PeiXi, KANG Lei, XI RenGang, GUO Lei, XIE CongRui, YANG ZaiChao     
Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi’an Center of Geological Survey, CGS, Xi’an 710054, China
Abstract: The Datongxi pluton outcropping in western part of the West Kunlun orogen, consisted of high-K calc-alkaline quartz diorite, quartz monzonite and granite. The quartz diorites contain abundant mafic microgranular enclaves(MMEs)of different shapes. The quartz diorites span a SiO2 range of 56.5%~65.3% and Mg# range of 0.45~0.46, characterized by moderate LREE/HREE fractionation, strong LILE enrichment and depleted Nb-Ta and weakly Eu depletion. Relatively to the quartz diorites, the quartz monzonites and granites have high content of SiO2(65.0%~73.3%)and low Mg# (0.36~0.44), stronger Nb-Ta, Ti and Eu depletion. The calculated P-T conditions are 638~768℃ and 1.7~ 4.3kbar for the quartz diorites and 752~771℃ for the quartz monzonites and granites, respectively. Zircon U-Pb dating results give an emplacement age of 470±1.2Ma for the quartz monzonites, slightly younger than the emplacement ages of 478~473Ma for the quartz diorites. The younger quartz monzonite-granite suite cannot be formed through differentiation of the older quartz diorite, indicating that both of them were derived from different melting sources. The quartz diorites and MMEs were formed through melting of the metasomatized mantle wedge in a subduction setting, while the younger quartz monzonite-granites were derived from metasedimentary protoliths in response to post-collisional extension and thermal supply from the underplating of the upwelling mantle-derived magmas. The origin of the Datongxi felsic intrusive complex may record the tectonic evolution of western Kunlun orogenic belt from the oceanic slab subduction to the post-collisional extension during Early Ordovician time.
Key words: Mineralogy     Geochemistry     Petrogenesis     Datongxi pluton     Ordovician     West Kunlun orogen    
1 引言

西昆仑造山带是中央造山带重要组成部分,位于塔里木陆块西南缘,从北到南主要可以划分以下几个次级构造单元:北昆仑地体、南昆仑增生楔和喀喇昆仑-甜水海地块,并分别以奥依塔格-库地缝合带和麻扎-康西瓦断裂为界(潘裕生, 1990, 1996; 邓万明等, 1995; Matte et al., 1996; 丁道桂等, 1996; Searle, 1996; Mattern and Schneider, 2000; 袁超等, 2000, 2003; Xiao et al., 2001, 2002, 方爱民等, 2003; 张传林等, 2003; Wang et al., 2004; 于晓飞等, 2011; Ye et al., 2008)。前人对西昆仑造山带构造格架研究取得了一些重要进展,但由于自然地理条件限制,目前关于西昆仑造山带早古生代的构造演化格局还缺乏足够的了解,如(1) 西昆仑显生宙的构造演化模式分为开合模式(姜春发等, 1992; 潘裕生等, 2000; 丁道桂等, 1996)、消减增生模式(Yao and Hsü, 1994; Hsü et al., 1995; Sengör and Natalin, 1996; 李继亮等, 1999; 袁超等, 2003; Xiao et al., 2002)和北方大陆(中华古陆块群)陆缘系统演化模式(李荣社等, 2008);(2) 奥依塔格-库地-其曼于特缝合带作为西昆仑造山带早古生代构造演化边界,其形成构造环境包括大洋盆地环境、弧后盆地、边缘海盆、弧前盆地、岛弧和洋内弧(过渡性质)几乎涵盖所有蛇绿岩形成环境(潘裕生, 1990; 姜春发等, 1992; Wang et al., 2001; 汪玉珍等, 1983; Yang et al., 1996; Yao and Hsü, 1994; 方爱民等, 2003; 丁道桂等, 1996);(3) 由于对库地蛇绿岩形成环境的认识不同,结合库地蛇绿岩两侧分布的早古生代火山弧花岗岩研究进而提出以库地-其曼于特缝合带为代表的洋盆存在向南和向北两种消减增生观点(姜耀辉等, 1999; 丁道桂等, 1996; Mattern and Schneider, 2000; Matte et al., 1996; 袁超等, 2003);(4) 关于奥依塔格地区是否存在蛇绿岩残片目前主要有两种观点:姜耀辉等(2000) 通过对奥依塔格斜长花岗岩的研究认为其为SSZ型蛇绿岩套的组成部分。另外,前人研究结果和地质填图资料显示,奥依塔格地区仅发现枕状玄武岩和相关侵入体,并不具有蛇绿混杂岩带特征(张传林等, 2006; 李广伟等, 2009; 河南省地质调查院,2004)。

①河南省地质调查院.2004. 1∶25万塔什库尔干塔吉克自治县幅

岩浆活动是构造运动过程中的重要产物,也是恢复造山带演化历史的重要依据。大同西岩体(又称大同岩体)作为西昆仑造山带西段规模最大早古生代的岩体对于反演区域构造演化过程具有重要意义,然而前人研究对其成因和形成时代仍然存在认识上的分歧:如(1) 大同西岩体石英二长岩为形成于480Ma左右,形成环境介于火山弧和造山后期的碰撞后隆起期(方锡廉和汪玉珍, 1990; 许荣华等, 1994; 姜耀辉等, 1999; Jiang et al., 2002);(2) Liao et al.(2010) 通过对大同西岩体的石英闪长岩、石英二长岩和石英正长岩年代学、矿物学和地球化学研究认为,大同西岩体为形成于473~447Ma俯冲挤压过程中俯冲沉积物交代地幔楔的产物;(3) 于晓飞等(2011) 通过大同西岩体中石英二长岩、花岗岩细晶岩锆石年代学和辉钼矿Re-Os同位素等时线年龄测定,其形成于449~435Ma之间。上述关于西昆仑西段早古生代构造演化格局和大同西岩体成因的分歧制约了我们对区域上地质事实的认识,通过对大同西岩体开展了矿物学、岩石学、地球化学和锆石U-Pb年代学的系统研究并结合已有的研究成果,进一步探讨西昆仑西段早古生代构造演化过程。

2 地质概况和岩相学特征

大同西岩体位于西昆仑中西段,西北起于塔什库尔干河北侧,向南东经叶尔羌河至克拉达坂,并向东进入叶城县(图 1)。岩体呈北西西向带状大岩基展布,其南部及东部侵入中元古界库浪那古岩群,北部侵入蓟县系桑株塔格群,西部与石炭系、奥陶-志留系多呈断层接触,局部侵入奥陶-志留系,被石炭系不整合覆盖,区域上被华力西晚期岩体侵入(河南省地质调查院,2004)。岩体以石英闪长岩和石英二长岩为主组成的复合岩体,局部具片麻状构造;内部发育有二长花岗岩脉、花岗伟晶脉和花岗细晶岩脉、石英脉及闪长钠长岩脉;内发育较多的闪长质微粒包体(图 2a)。本文研究样品为石英闪长岩和石英二长岩-二长花岗岩,石英闪长岩(10X11、10X12)和石英二长岩-二长花岗岩(10X10)采样点的地理坐标分别为: N37°51′21.7″, E75°47′17.6″和N37°51′17.5″, E75°49′32.9″。

图 1 西昆仑造山带西段大同西岩体分布图 Fig. 1 Distribution of Datongxi pluton in West Kunlun orogen

图 2 大同西岩体野外地质特征 (a)-岩体宏观露头特征;(b)-石英二长岩;(c)-石英闪长岩中花岗岩脉;(d)-石英闪长岩中暗色包体 Fig. 2 Field geological feature of Datongxi pluton in the West Kunlun orogen

石英闪长岩为块状构造,似片麻状结构,岩石斑晶主要由斜长石、角闪石和石英等组成。斜长石晶体与角闪石晶体一部分残留成碎斑,其形态呈眼球状或透镜状,斜长石粒径大小一般在0.5~5.5mm,角闪石粒径最大可达8mm,总体上,碎斑含量小于50%,大多数沿其长轴方向呈定向排列分布。基质由细小长石、石英和次生蚀变矿物如绿帘石、黑云母及绿泥石等矿物组成,这些细小碎屑物围绕碎斑呈定向分布,形成岩石的塑变流动构造,少量石英成丝状、拉长粒状、扁豆状等条带状或团块状集合体,定向分布(图 2b)。

石英二长岩-二长花岗岩为块状构造,不等粒结构,岩石主要由斜长石(43%)、碱性长石(25%)、石英(12%)和角闪石(15%)组成,副矿物主要包括榍石和金属矿物。斜长石呈半自形板状,晶体粒径大小不等(1~5.5mm),具有轻微绢云母化。碱性长石主要为微斜长石,晶体为粒状,粒径大小为0.5~1.5mm之间,角闪石呈粒状或长柱状,粒径大小为0.7~2.6mm之间,具有多色性,斜交节理常见,消光角(Ng∧c)为16°~19°, 为普通角闪石,常被黑云母、绿泥石和绿帘石交代(图 2c)。

石英闪长岩中暗色包体为闪长岩,块状构造,变余斑状结构,斑晶为斜长石与暗色矿物,斜长石斑晶约占20%,矿物晶体形态多被改造成浑圆状,少数呈板状,粒径大小为0.5~1.8mm之间,晶体中裂纹发育,局部被绿帘石和绢云母交代,个别晶体见变余环带结构,斜长石牌号为中长石。暗色矿物斑晶含量约为10%~15%,晶体呈粒状或柱状,粒径大小为1.2~2.5mm之间,次生蚀变明显,常被绿泥石、纤闪石和绿帘石交代。基质主要由长石、角闪石、石英等矿物组成,晶体大小在0.3~0.5mm之间,绿帘石化和黑云母化明显(图 2d)。

3 分析测试方法

主、微量元素在西安地质矿产研究所实验测试中心X荧光光谱(XRF)和等离子光谱质谱法(ICP-MS)测定,主量元素的分析测试误差小于1%,其中FeO含量通过湿化学方法测定,微量元素的分析测试误差在5%左右。

矿物成分的电子探针分析在西安地质矿产研究所实验测试中心JXA-8100电子探针上完成,测试条件温度为25℃,湿度为47%,测试电压为15kV,电流为1×10-8A,束斑为1~5μm,检出角度为40°。

锆石样品是从石英二长岩样品(10X10-1)通过人工重砂、电磁选和双目镜下挑选,锆石的CL图像和LA-ICP-MS法单颗粒锆石微区U-Pb年龄测定是在西北大学大陆动力学国家重点实验室完成,其中CL发光仪为加载于扫描电镜上的英国Gatan公司的Mono CL3+型阴极荧光探头。LA-ICP-MS分析采用Agilent 7500型ICP-MS和德国LambdaPhysik公司的ComPex102 ArF准分子激光器(工作物质ArF,波长193nm)以及MicroLas公司的GeoLas 200 M光学系统联机进行。激光束斑直径为30μm,激光剥蚀样品的深度为20~40μm。实验中采用He作为剥蚀物质的载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,采样方式为单点剥蚀,数据采集选用一个质量峰一点的跳峰方式,每完成4~5个测点的样品测定,加测标样一次。在所测锆石样品分析15~20个点前后各测2次NIST SRM610。锆石年龄采用国际标准锆石91500作为外标标准物质,元素含量采用NIST SRM610作为外标,29Si作为内标。测试结果通过GLITTER(ver4.0, Mac-quaie University)软件计算得出,用LAM-ICP-MS Common Lead Correction(ver3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver3.0)完成(Ludwig, 1991)。详细分析步骤和数据处理方法参见文献(Gao et al., 2002; Yuan et al., 2003)。

4 锆石特征和U-Pb年龄

石英二长岩(10X10-1)的锆石粒度在100μm左右,阴极发光图像(CL)显示大部分锆石具有良好的晶形,呈岩浆结晶的环带或条带结构,具有岩浆锆石的特征(图 3),锆石的Th/U比值在0.10~0.36之间(表 1),位于岩浆锆石的比值范围内。22个点的表面年龄在468~473Ma范围内,因此22个点的谐和年龄为470.0±1.2Ma(n=22, MSWD=0.20)代表了锆石结晶年龄,即大同西岩体形成年龄。个别偏离谐和线的数据点可能为较高的Th/U比值或测试过程中的不确定性所致,但其在误差范围内基本代表了锆石的结晶年龄。

图 3 西昆仑大同西岩体中石英二长岩(样品10X10-1)锆石CL图像和U-Pb年龄谐和图 Fig. 3 CL images of zircons and U-Pb concordia diagram of quartz monzonite(sample 10X10-1)from Datongxi pluton in the West Kunlun orogen

表 1 西昆仑大同西岩体中石英二长岩(样品10X10-1)锆石U-Pb年龄数据表 Table 1 LA-ICP-MS UP-b zircons dating results of quartz monzonite(sample 10X10-1)from Datongxi pluton in West Kunlun orogen
5 矿物成分特征

选取了石英闪长岩(样品10X11-2)开展了电子探针数据的分析,样品的电子探针的分析数据见表 2表 3

表 2 大同西岩体不同岩石类型角闪石矿物组成(wt%) Table 2 Representative compositions of amphiboles from different rocks in Datongxi pluton(wt%)

表 3 大同西岩体石英闪长岩中长石矿物组成(wt%) Table 3 Representative compositions of feldspar from quartz diorites in the Datongxi pluton(wt%)

石英闪长岩中角闪石自行程度较好,以斑晶和基质等两种产状产出,斑晶的长宽比为(3~4)∶1,基质中的角闪石的长宽比约为1∶1(图 4)。化学成分分析显示(表 2),石英闪长岩中的角闪石为均为钙质角闪石,根据角闪石分类(Leake et al., 1997),全部为镁普通闪石。它们均贫Ti(离子数小于0.5),高Mg/(Mg+Fe)(>0.5),属于富镁角闪石。

图 4 西昆仑大同西石英闪长岩显微岩相学特征 Pl-斜长石; Kfs-钾长石; Hbl-角闪石; Qtz-石英; Ap-磷灰石; Spn-榍石; Bt-黑云母; Chl-绿泥石 Fig. 4 Microphotographs showing representative texture of the Datongxi quartz diorites in the West Kunlun orogen

石英闪长岩中斜长石同样也以斑晶和基质等两种产状产出,主要为自形-半自形板状,与角闪石相互包裹共生(图 4)。斜长石的牌号有较大的变化范围(An=18~39)(表 3),属于奥长石到中长石。在测试的样品中,除其中一个样品不含TiO2外,所有的样品均含TiO2和Cr2O3

钾长石具斑晶和基质两种产状(图 4)。斑晶为半自形板状,常见卡式双晶。斑晶内可见大量矿物包裹体,以斜长石、石英、角闪石为主,少量副矿物,均显示出自形晶的特征。钾长石成分较为均一,其中Or=95~97,Ab=2~4(表 3)。

6 岩石形成的温压条件

在钙碱性岩浆中,在一定条件下角闪石的Al含量与压力和温度具有良好的相关关系,因此角闪石是估算岩浆侵位时温压条件的最常用的矿物之一(Blundy and Holland, 1990; 陆丽娜等, 2011)。前人基于不同模拟条件提出了全铝角闪石压力计算方案(Hammarstrom and Zen, 1986; Hollister et al., 1987; Johnson and Rutherford, 1989; Schmidt, 1992; Anderson and Smith, 1995),其中Johnson and Rutherford(1989) 提出压力计算方案[P(kbar)=4.23(AlT-3.46]是在C2O-H2O流体在近固相条件下通过实验模拟得出的,因此对于同样存在C2O-H2O流体的钙碱性岩石来说其结果可能相对更接近岩石形成的压力条件,本文通过该方法对大同西岩体中石英闪长岩计算所得的压力范围1.7~4.3kbar(表 2),平均为2.7kbar(n=6)。

同样在钙碱性岩石中,角闪石和斜长石通常共生出现,在某些情况下可以应用于地质温度计(Blundy and Holland, 1990; Holland and Blundy, 1994; Stein and Dietl, 2001; Ernst, 2002)。基于角闪石固溶体模式以及精细的野外和实验研究, Holland and Blundy(1994) 提出了2个地质温度计(温度计A和B)。Anderson(1996) 分析指出, 相对于其他岩浆岩温度计, B型温度计更加可靠准确, 故本文采用B型温度计进行岩浆形成温度的估算。该温度计算基于浅闪石-钠透闪石的反应,适用于含石英或不含石英的岩浆岩(Holland and Blundy, 1994; Stein and Dietl, 2001)。结果显示大同西岩体结晶温度为638~768℃(表 2),平均为686℃(n=4)。

锆石饱和温度计用于岩浆温度的计算也是一个有效的方法(Watson and Harrison, 1983, 2005; Miller et al., 2003; Hanchar et al., 2003; Gao et al., 2004; Zhong et al., 2007)。根据Watson and Harrison(1983) 提供的锆石饱和温度计计算公式, 大同西石英闪长岩和包体的结晶温度为667~ 752℃(表 4),虽然其具有较大的M值(M>2.1)导致温度计算不准确,但其于角闪石-斜长石温度计的结果(638~768℃)具有相似结晶温度范围, 说明大同西岩体中石英闪长岩的结晶温度为638~768℃是可信的(角闪石-斜长石温度计计算结果)。石英二长岩相对石英闪长岩具有相对较高结晶温度(752~770℃),平均为764℃(n=5)。说明二者很为不同批次的岩浆作用产物。

表 4 西昆仑大同西岩体主量元素(wt%)和微量元素(×10-6)分析结果 Table 4 Major(wt%) and trace elements(×10-6)concentrations of Datongxi pluton in the West Kunlun orogen
7 元素地球化学特征

主、微量元素的分析结果见表 4。在主量元素经100%无水化处理后,石英闪长岩的SiO2的含量为56.6%~65.3%, Al2O3=14.6%~17.8%, MgO=2.3%~4.3%, FeOT=4.7%~7.5%, Na2O=3.0%~4.8%, K2O=2.1%~4.4%,Mg#为0.45~0.46,铝饱和指数A/CNK值介于0.83~0.85之间。石英闪长岩中的包体SiO2的含量为52.9%,并具有较高的MgO和FeOT含量(MgO=2.3%, FeOT=8.3%),Mg#为0.48,富钠低钾的特征(Na2O=3.5%, K2O=1.6%),A/CNK=0.76。石英二长岩-二长花岗岩SiO2的含量为65.0%~73.3%,Al2O3=14.6%~19.1%,MgO=0.5%~0.7%,FeOT=1.3%~1.7%,Na2O=4.4%~7.0%,K2O=3.6%~4.5%,Mg#为0.36~0.44,铝饱和指数A/CNK值介于0.97~1.03之间。在K2O-SiO2和A/NK-A/CNK图上(图 5),石英闪长岩和暗色包体为准铝质高钾钙碱性系列,石英二长岩-二长花岗岩为准铝质-弱过铝质高钾钙碱性系列。

图 5 西昆仑大同西岩体K2O-SiO2和A/NK-A/CNK图解(底图据Morrison, 1980; Middlemost, 1994) Fig. 5 K2O vs. SiO2 and A/NK vs. A/CNK diagrams of Datongxi pluton in the West Kunlun orogen(base figure after Morrison, 1980; Middlemost, 1994)

随着SiO2含量的增加(图 6),石英闪长岩和暗色包体表现出连续演化的趋势,如Al2O3、MgO含量降低,Rb、Th和La等元素含量的增加,说明它们为同一岩浆演化系列。相对于石英闪长岩,石英二长岩-二长花岗岩表现出完全不同元素地球化学特征,暗示着二者具有不同岩浆源区和(或)岩浆演化过程。

图 6 西昆仑大同西岩体SiO2对主量、微量元素变化图 Fig. 6 SiO2 vs. major element and trace element plots of Datongxi pluton in the West Kunlun orogen

在稀土元素配分模式图上(图 7a, c),无论石英闪长岩和石英二长岩-二长花岗岩均表现出LREE略富集右倾配分模式,其中石英闪长岩的∑REE=123.4×10-6~240.4×10-6,(La/Yb)N=7.8~13.3,(La/Sm)N=3.4~4.5,(Dy/Yb)N=1.0~1.2,HREE内部基本不分馏,并具有中等Eu负异常(Eu/Eu*=0.76~0.95)。其中暗色包体具有与石英闪长岩相似的稀土元素配分模式,弱或无Eu负异常(Eu/Eu*=0.92)。石英二长岩的∑REE=79.9×10-6~105.5×10-6,(La/Yb)N=6.6~7.0,(La/Sm)N=4.1~4.6,(Dy/Yb)N=0.8~0.9,HREE内部基本不分馏,较为明显的Eu负异常(Eu/Eu*=0.66~0.70)。

图 7 西昆仑大同西岩体的球粒陨石标准化REE配分模式(a、c)和原始地幔标准化不相容元素蛛网图(b、d)(球粒陨石和原始地幔标准化值分别据Taylor and McLennan(1985) Sun and McDonough(1989) ) Fig. 7 Chondrite-normalized REE patterns(a, c) and primitive mantle-normalized spidergrams(b, d)of Datongxi pluton in the West Kunlun orogen(normalization values of chondrite are after Taylor and McLennan(1985) and of PM after Sun and McDonough(1989) respectively)

在微量元素蛛网图上(图 7b, d),石英闪长岩(包括包体)和石英二长岩-二长花岗岩具有相似的微量元素分布型式,均同样表现出富集大离子亲石元素(如Ba、Rb),亏损Nb-Ta、Ti等元素特征,其中石英二长岩-二长花岗岩相对于石英闪长岩具有强烈亏损Ti和P等元素。石英闪长岩的不形容元素比值如Zr/Nb=10.1~14.4,Nb/Ta=11.3~13.7,Zr/Hf=37.1~41.3。其中暗色包体Zr/Nb=15.1,Nb/Ta=11.3,Zr/Hf=41.5,而石英二长岩-二长花岗岩Zr/Nb=11.2~15.6,Nb/Ta=14.1~14.2,Zr/Hf=34.8~36.2,其中一个样品(10X10-3)的具有异常高的Nb/Ta比值(18.5)。

8 岩石成因及构造意义

大型花岗岩体的岩浆侵位历史及形成过程的研究对于了解岩浆的成因机制、大型花岗岩体内不同相带岩石的地球化学演化机制及地壳的形成机制等重要问题具有重要意义(Coleman et al., 2006; Gao et al., 2011)。传统观点认为大型花岗岩体是由单一的花岗质岩浆房经过缓慢的冷却、岩浆结晶分异作用形成的(Wyborn et al., 2001)。但是地球物理研究表明,即使在活动型大陆边缘的岛弧地壳之下也不存在大规模的熔融区域(Iyer et al., 1990; Schilling and Partzsch, 2001),同时热动力学研究表明,一个大的花岗质岩浆房在数十万年内,其温度就可以降至锆石U-Pb体系和角闪石K-Ar体系的封闭温度之下(Harrison and Clarke, 1979),因此一般的花岗质岩浆房在数十万年内其温度就可以降至其液相线温度以下(Coleman et al., 2006)。越来越多的证据表明一些大的花岗岩体并不是由单一的岩浆房经过缓慢的冷却和结晶分异作用形成的,而是由不同批次、不同来源的花岗质岩浆在一定地质阶段内经过复杂的汇聚作用形成的。前人研究表明西昆仑大同西岩体石英闪长岩形成年龄约为478~473Ma(方锡廉和汪玉珍, 1990; 许荣华等, 1994; Liao et al., 2010),本文对其中的石英二长岩进行LA-ICP-MS测试锆石U-Pb年龄为470Ma。结合前文关于两种岩性的形成的温压条件的计算,二者形成于温压条件是有差别的,同时大同西岩体为西昆仑地区早古生代规模最大的岩体,出露面积超过2000km2。因此,大同西岩体可能不是单一的岩浆房形成的。

8.1 石英闪长岩和暗色包体的成因

针对花岗质岩石中暗色镁铁质微粒包体的成因,前人提出了多种认识:源区残留体或围岩捕掳体(Chappell et al., 1987; Chappell, 1996; Chen et al., 1989);岩浆早期结晶分异堆晶体(Clemens and Wall, 1988; Dodge and Kistler, 1990);岩浆液态熔离(Watson, 1976);岩浆混合(Yang et al., 2004; Kaygusuz and Aydinakir, 2009)。

首先,石英闪长岩中的暗色包体未发现富铝的特征变质矿物,如红柱石、夕线石、堇青石和石榴石等,缺乏含水矿物的脱水残留相,且石英闪长岩与包体均具有Rb、Th正异常,均属于准铝质岩石(A/CNK<1.0),表明其并非基底变质岩的难熔残留物。已有研究表明,液态熔离常见于硅酸盐熔体与硫化物矿浆(黄智龙等, 1999; Guzmics et al., 2012)、富Li、F挥发分熔体(王联魁等, 1983, 1997)、碳酸岩岩浆(Rankin and Lebas, 1974; Brooker and Kjarsgaard, 2011; Solovova and Girnis, 2012; Guzmics et al., 2012)之间,或者基性岩浆与酸性岩浆之间(Roedder and Weiblen, 1970; Philpott, 1971; Charlier et al., 2011)。但至今尚无实验或地质现象证明熔体结构如此相近的闪长质岩浆之间可以发生液态熔离。前人研究表明,岩浆混合可以较好地解释花岗质岩石中的镁铁质包体(Langmuir et al., 1978; Lesher, 1990, 1994; Guo et al., 2007; Zhao et al., 2012),虽然大同西石英闪长岩中发育暗色镁铁质包体(闪长质),并且包体和石英闪长岩具有主要元素与SiO2线性相关和相似的微量元素配分模式,但是其不发育淬冷结构的针状矿物和矿物不平衡现象的显微结构。因此,其中暗色包体并不是岩浆混合作用的结果。

前人对大同西岩体Sr-Nd-Hf同位素研究结果显示(Liao et al., 2010),石英闪长岩具有类似于岛弧岩浆岩同位素组成(87Sr/86Sr(i)=0.7072~0.7094, εNd(t)=-3.4~-3.3, εHf(t)=-2.5~+4.8,计算年龄447.7Ma),结合石英闪长岩的镁角闪石和奥长石到中长石矿物组成成分以及在Sr/Y-Y图中落入典型岛弧岩浆岩范围(图 8a),说明其来源于类似岛弧岩浆熔融源区。同时石英闪长岩矿物组成和温压条件的计算显示其为相对低温低压岩浆(T=686℃,P=2.7kbar),按照1GPa=33km换算(Zhang, 2009),石英闪长岩的形成深度约为8.8km。上述温压条件进一步证实了石英闪长岩具有类似于岛弧岩浆形成条件。

图 8 西昆仑大同西岩体Sr/Y-Y和Al2O3/TiO2-CaO/Na2O图解(底图据Sylvester, 1998) Fig. 8 Sr/Y vs.Y and Al2O3/TiO2 vs. CaO/Na2O diagrams of Datongxi pluton in the West Kunlun orogen(base figure after Sylvester, 1998)

随着SiO2含量的变化,包体和石英闪长岩主、微量元素呈一致的线性演化关系,如Al2O3、MgO含量降低,Rb、Th和La等元素含量的增加,说明二者为同一岩浆演化系列不同阶段演化产物。从图 6的变化趋势和早期分离的暗示包体,其主要分离结晶相为角闪石,这些岩石在配分模式仅表现出弱Eu负异常则暗示一定程度的斜长石分离结晶作用。总体上,石英闪长岩和暗色包体具有富集LREE、LILE和亏损Nb-Ta、Ti和P等元素特征以及相对富集Sr-Nd-Hf同位素组成,并具有低温低压岩浆特点,说明其来源俯冲过程中岛弧型幔源岩浆分异结晶的产物,结晶分离相为角闪石+斜长石。尽管如此, 其高Ba/Y、Rb/Y 比值(图 8b), 也显示出一定的地壳混染或者同化混染作用的影响。

结合西昆仑造山带在奥陶纪处于洋-陆转换阶段的区域地质背景,这些低温低压岩石共同代表了480Ma左右的西昆仑地区俯冲消减过程中岛弧型幔源岩浆分异结晶的产物。

8.2 石英二长岩-二长花岗岩成因

石英二长岩-二长花岗岩相对于石英闪长岩具有相对高Sr、低Nd和Hf 同位素组成(87Sr/86Sr(i)=0.7102~0.7105, εNd(t)=-4.0~-3.9, εHf(t)=-3.2~+2.5,计算年龄453.6~473.4Ma)(Liao et al., 2010),结合两者具有不同的元素地球化学特征(表 2图 6图 7)和形成的温压条件,说明它们来源于不同的熔融源区。CaO/Na2O比值是判断源区成分的一个极其重要的指标,Sylvester(1998) 对泥质岩和砂屑岩部分熔融产生的过铝质花岗岩的熔融实验表明, 控制CaO/Na2O比值的主要因素是源区长石/黏土的比率。其中贫长石、富粘土的泥岩熔融生成的过铝质花岗岩所含的CaO/Na2O比值一般<0.3, 而富长石、贫黏土的砂屑岩生成的过铝质花岗岩的CaO/Na2O 比值一般>0.3。石英二长岩-二长花岗岩的CaO/Na2O比值范围0.19~0.43之间,平均为0.29,说明其源岩主要为贫长石的泥质岩石(图 8b),同时石英二长岩-二长花岗岩这些比值(Zr/Nb=11.2~15.6,Nb/Ta=14.1~14.2,Zr/Hf=34.8~36.2)接近大陆地壳平均组成也说明其地壳物质对其熔融源区具有重要贡献(Barth et al., 2000; Gao et al., 1998)。然而,姜耀辉等(1999) 研究表明石英二长岩具有地幔来源的O同位素特征(δ18O=4.36‰)。因此,综合石英二长岩-二长花岗岩源区成分和Sr-Nd-Hf-O同位素组成特征,我们认为其来源于软流圈地幔物质上涌加热导致变泥质岩石熔融源区。

随着SiO2含量的变化,石英二长岩-二长花岗岩并不具有连续演化的特征(图 6),因此其表现出的富集LREE,LILE(如Ba、Rb),亏损Nb-Ta、Ti和P等元素特征主要反映了其熔融源区特征。实验岩石学资料显示,来源于变泥质岩花岗质岩石高Al2O3的含量主要是由于其中白云母、黑云母和夕线石的分解脱水熔融造成的(Masberg et al., 2005),石英二长岩-二长花岗岩明显的Eu负异常和平坦的HREE配分模式,说明其源区存在斜长石+角闪石矿物残留,而其明显低∑REE和Ti、P负异常,说明在岩浆演化过程中存在一定程度的磷灰石和钛铁矿等副矿物分离结晶。

区域构造地质资料显示,大同西北部坎地里克附近的奥陶系地层与其下伏的寒武系地层,及其上覆的志留系地层均为平行不整合接触关系(潘裕生等, 2000),同时已有研究显示挤压环境不能形成大同西这样规模如此大的岩体(Iyer et al., 1990; Schilling and Partzsch, 2001)。因此,我们认为石英二长岩-二长花岗岩明显不同于石英闪长岩形成温压条件和元素-同位素地球化学特征,说明经历了俯冲消减阶段后,西昆仑造山带在470Ma左右整体进入到碰撞后伸展阶段,石英二长岩-花岗岩则来源于碰撞后伸展阶段由于软流圈地幔物质上涌加热导致变泥质岩石熔融的结果

8.3 构造意义

前以述及西昆仑早古生代构造演化格局一直存在认识的争议,尤其是库地-其曼于特蛇绿构造混杂岩带形成时代和如何向西延伸问题一直是如何识别区域构造演化的关键。关于库地超镁铁岩形成时代前人已获得651±53Ma等多个前寒武纪数据(丁道桂等, 1996),近期肖序常等(2003) 在该岩体的石英辉长岩中测得精确锆石SHRIMP年龄510±4Ma证实其形成于早古生代早期,库地的方辉橄榄岩获锆石U-Pb年龄502Ma(计文化等,未发表数据)。因此,库地-其曼于特蛇绿构造混杂岩为代表的洋盆发育于早古生代早期为已经基本达成共识。上述对大同西岩体的研究结果表明,其代表了库地-其曼于特在奥陶纪俯冲消减-碰撞过程中的产物,为北方大陆陆缘系统早古生代沟弧盆体系的组成部分(李荣社等, 2008)。关于库地-其曼于特蛇绿混杂岩带向西北延伸的问题一直是困扰西昆仑西段构造演化过程的关键,张传林等(2006) 对奥依塔格地区斜长花岗岩的研究表明其形成于330Ma,为石炭纪裂谷的产物,并且新近地质填图结果(河南省地质调查院,2004)显示奥依塔格地区虽然发育枕状玄武岩,但是并不具有混杂岩带的特征。因此,我们认为库地-其曼于特混杂岩带并不是向西北延伸至奥依塔格地区,我们推测其很可能向西北延伸至大同西岩体的东南侧,当然需要进一步的研究证实。

结合前人研究结果,我们认为以库地-其曼于特蛇绿混杂岩带为代表洋盆震旦纪-中寒武世为大洋演化阶段,随后晚寒武世(约500Ma左右)开始至早奥陶世早期(约480Ma)期间完成了俯冲消减-碰撞造山过程。通过对西昆仑大同西岩体的研究表明,准铝质高钾钙碱性石英闪长岩(478~473Ma)为俯冲过程中形成岛弧型幔源岩浆并经过不同程度分异结晶的产物,标志着至少在480Ma之前库地-其曼于特蛇绿混杂岩带已经完成消减-碰撞造山过程。而形成于约470Ma的弱过铝质石英二长岩-二长花岗岩主要为地壳持续减薄和地幔物质上涌加热导致变质泥岩部分熔融形成的,说明西昆仑造山带已经整体进入到碰撞后伸展阶段。

9 结论

(1) 石英闪长岩和暗色包体为准铝质高钾钙碱性系列,石英闪长岩为俯冲过程中形成岛弧型幔源岩浆并经过不同程度分异结晶形成的。石英二长岩-二长花岗岩为准铝质-弱过铝质高钾钙碱性系列,来源于碰撞后伸展阶段地壳减薄和地幔物质上涌加热导致变质泥质岩熔融形成的。

(2) 大同西岩体中石英闪长岩形成年龄为478~473Ma, 石英二长岩形成年龄约为470Ma,形成于俯冲-碰撞后阶段的大同岩体标志着以库地-其曼于特蛇绿构造混杂岩为代表的洋盆在奥陶纪完成了俯冲消减-碰撞造山过程,早奥陶世为西昆仑造山带在挤压向伸展构造体制转换期。

参考文献
[] Anderson JL, Smith DR. 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist, 80(5-6): 549–559. DOI:10.2138/am-1995-5-614
[] Anderson JL. 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 125–138. DOI:10.1017/S0263593300006544
[] Barth MG, McDonough WF, Rndnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3-4): 197–213. DOI:10.1016/S0009-2541(99)00173-4
[] Blundy JD, Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208–224. DOI:10.1007/BF00306444
[] Brooker RA, Kjarsgaard BA. 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0. 12~2.5GPa with applications to carbonatite genesis. Journal of Petrology, 52(7-8): 1281–1305.
[] Chappell BW, White AJR, Wyborn D. 1987. The importance of residual source material(restite)in granite petrogenesis. Journal of Petrology, 28(6): 1111–1138. DOI:10.1093/petrology/28.6.1111
[] Chappell BW. 1996. Magma mixing and the production of compositional variation within granite suites: Evidence from the granites of southeastern Australia. Journal of Petrology, 37(3): 449–470. DOI:10.1093/petrology/37.3.449
[] Charlier B, Namur O, Toplis MJ, Schiano P, Cluzel N, Higgins MD, Vander Auwera J. 2011. Large-scale silicate Liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907–910. DOI:10.1130/G32091.1
[] Chen YD, Price RC, White AJR. 1989. Inclusions in three S-type granites from southeastern Australia. Journal of Petrology, 30(5): 1181–1218. DOI:10.1093/petrology/30.5.1181
[] Clemens JD, Wall VJ. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21(1): 53–66. DOI:10.1016/0024-4937(88)90005-9
[] Coleman RA, Underwood AJ, Benedetti-Cecchi L, Åberg P, Arenas F, Arrontes J, Castro J, Hartnoll RG, Jenkins SR, PaulaJ, Santina PD, Hawkins SJ. 2006. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia, 147(3): 556–564. DOI:10.1007/s00442-005-0296-9
[] Deng WM. 1995. Geological features of ophiolite and tectonic significance in the Karakorum-west Kunlun Mts. Acta Petrologica Sinica, 11(Suppl): 98–111.
[] Ding DG, Wang DX, Liu WX, Sun SQ. 1996. The West Kunlun Orogenic Belts and Basins. Beijing: Geological Publishing House: 125-143.
[] Dodge FCW, Kistler RW. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research, 95(B11): 17841–17848. DOI:10.1029/JB095iB11p17841
[] Ernst WG. 2002. Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California. American Mineralogist, 87(4): 478–490. DOI:10.2138/am-2002-0411
[] Fang AM, Li JL, Liu XH, Hou QL, Lee IJ, Xiao WJ, Yu LJ, Zhou H. 2003. Tectonic settings of the basic igneous rocks in the Kudi ophiolite zone of West Kunlun Mountains, Xingjiang Province. Acta Petrologica Sinica, 19(3): 409–417.
[] Fang XL, Wang YZ. 1990. Preliminary discussion on Caledonian granites in western Kunlun Mountains. Xinjiang Geology, 8(2): 153–158.
[] Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975. DOI:10.1016/S0016-7037(98)00121-5
[] Gao S, Liu XM, Yuan HL Hattendorf B, Günther D, Chen L, Hu SH. 2002. Analysis of forty-two major and trace elements of USGS and NISTSRM glasses by LA-ICP-MS. Geostandards Newsletter, 26: 181–195. DOI:10.1111/ggr.2002.26.issue-2
[] Gao S, Rudnick L, Yuan L, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang C, Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892–897. DOI:10.1038/nature03162
[] Gao XF, Xiao PX, Guo L, Dong ZC, Xi RG. 2011. Opening of an Early Paleozoic limited oceanic basin in the northern Altyn area: Constraints from plagiogranites in the Hongliugou-Lapeiquan ophiolitic mélange. Science China(Earth Sciences), 54(12): 1871–1879. DOI:10.1007/s11430-011-4332-9
[] Guo F, Nakamuru E, Fan WM, Kobayoshi K, Li CW. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661–692. DOI:10.1093/petrology/egl077
[] Guzmics T, Mithchell RH, Szabó C, Berkesi M, Milke R, Ratter K. 2012. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano(Tanzania): Evolution of carbonated nephelinitic magma. Contributions to Mineralogy and Petrology, 164(1): 101–122. DOI:10.1007/s00410-012-0728-6
[] Hammarstrom JM, Zen E. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11-12): 1297–1313.
[] Hanchar JM, Watson EB. 2003. Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry, 53(1): 89–112. DOI:10.2113/0530089
[] Harrison TM, Clarke GKC. 1979. A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton. British Columbia: Canadian Journal of Earth Sciences, 16(3): 411–420. DOI:10.1139/e79-039
[] Holland T, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. DOI:10.1007/BF00310910
[] Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4): 231–239.
[] Hsü KJ, Pan GT, Sengör AMC. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis. International Geology Review, 37(6): 473–508. DOI:10.1080/00206819509465414
[] Huang ZL, Zhu CM, Xiao HY, Liu CQ. 1999. An experimental study of liquid immiscibility of lamprophyre-sulfide melt at high temperature and high pressure. Geological Review, 45(7): 113–118.
[] Iyer HM, Evans JR, Dawson PB, Stauber DA and Achauer U. 1990. Differences in magma storage in different volcanic environments as revealed by seismic tomography: Silicic volcanic centers and subduction-related volcanoes. In: Ryan MP(ed.). Magma Transport and Storage. Chichester, United Kingdom: John Wiley and Sons, 293-316
[] Jiang CF. 1992. Opening-Closing Tectonic of Kunlun Mountains. Beijing: Geological Publishing House: 183-217.
[] Jiang YH, Rui XJ, He JR, Guo KY, Yang WZ. 1999. Geological settings and tectonic implications of the Caledonian granitoids of western Kunlun, Xinjiang. Acta Petrologica Sinica, 15(1): 105–115.
[] Jiang YH, Rui XJ, Guo KY, He JR. 2000. Geochemistry of Oytag granite and its tectonic significance in Qinghai-Xizang Plateau. Geochimica, 29(3): 259–262.
[] Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ, Yang WZ. 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos, 63(3-4): 165–187. DOI:10.1016/S0024-4937(02)00140-8
[] Johnson MC, Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera(California)volcanic rocks. Geology, 17(9): 837–841. DOI:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
[] Kaygusuz A , Aydinçakir E. 2009. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey: Evidence of magma mixing, mingling and chemicak equilibration. Chemie Der Erde-Geochemistry, 69(3): 247–277. DOI:10.1016/j.chemer.2008.08.002
[] Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380–392. DOI:10.1016/0012-821X(78)90053-5
[] Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandaring JA, Maresch WV, Nichel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Ninerals and Nineral Names. American Mineralogist, 82(9-10): 1019–1037.
[] Lesher CE. 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344(6263): 235–237. DOI:10.1038/344235a0
[] Lesher CE. 1994. Kinetics of Sr and Nd exchange in silicate liquids: Theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. Journal of Geophysical Research, 99(B5): 9585–9604. DOI:10.1029/94JB00469
[] Li GW, Fang AM, Wu FY, Liu XH, Pan YS, Wang SG. 2009. Studies on the U-Pb ages and Hf isotopes of zircons in the Aoyitake plagioclase granite, West Tarim. Acta Petrologica Sinica, 25(1): 166–172.
[] Li JL, Sun S, Hao J, Chen HH, Hou QL, Xiao WJ. 1999. On the classification of collision orogenic belts. Scientia Geologica Sinica, 34(2): 129–138.
[] Li RS, Xu XY and Ji WH. 2008. Some problems of geological study in the western China orogenic belt. Geological Bulletin of China, 27(12): 2020-2025(in Chinese with English abstract)
[] Liao SY, Jiang YH, Jiang SY, Yang WZ, Zhou Q, Jin GD, Zhao P. 2010. Subducting sediment-derived arc granitoids: Evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, Northwest China. Mineralogy and Petrology, 100(1-2): 55–74. DOI:10.1007/s00710-010-0122-x
[] Lu LN, Fan HR, Hu FF, Yang KF, Lan TG. 2011. Emplacement depth of the Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China: Evidences from hornblende thermobarometry and fluid inclusions. Acta Petrologica Sinica, 27(5): 1521–1532.
[] Ludwig KR. 1991. Isoplot: A plotting and regression program for radiogenic-isotope data. US Geological Survey Open-File Report, 39: 91–445.
[] Masberg P, Mihm D, Jung S. 2005. Major and trace element and isotopic(Sr, Nd, O)constraints for Pan-African crustally contaminated grey granite gneisses from the southern Kaoko belt, Namibia. Lithos, 84(1-2): 25–50. DOI:10.1016/j.lithos.2005.02.001
[] Matte P, Tapponnier P, Arnaud N, Bourjot L, Avouac JP, Vidal P, Liu Q, Pan YS, Wang Y. 1996. Tectonics of western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letter, 142(3-4): 311–330. DOI:10.1016/0012-821X(96)00086-6
[] Mattern F, Schneider W. 2000. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun(Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637–650. DOI:10.1016/S1367-9120(00)00011-0
[] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215–224. DOI:10.1016/0012-8252(94)90029-9
[] Miller CF, McDowell SM, Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529–532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[] Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97–108. DOI:10.1016/0024-4937(80)90067-5
[] Pan YS. 1990. Tectonic features and evolution of the western Kunlun Mountain region. Scientia Geologica Sinica(3): 224–232.
[] Pan YS. 1996. Geological Evolution of the Karakorum and Kunlun Mountains. Beijing: Seismological Press: 263-288.
[] Pan YS, Wen SX, Sun DL, et al. 2000. Geolosical Evolution of the Karakornm-Knnlnn Monntains. Beijing: Science Press: 525.
[] Philpotts AR. 1971. Immiscibility between feldspathic and gabbroic magmas. Nature Physical Science, 229(4): 107–109. DOI:10.1038/physci229107a0
[] Rankin AH, Lebas MJ. 1974. Liquid immiscibility between silicate and carbonate melts in naturally occuring ijolite magma. Nature, 250(5463): 206–209. DOI:10.1038/250206a0
[] Roedder E, Weiblen PW. 1970. Silicate liquid immiscibility in Lunar magmas, evidenced by melt inclusions in lunar rocks. Science, 167(3918): 641–644. DOI:10.1126/science.167.3918.641
[] Schilling FR, Partzsch GM. 2001. Quantifying partial melt fraction in the crust beneath the Central Andes and the Tibetan Plateau. Physics and Chemistry of the Earth, 26(4-5): 239–246. DOI:10.1016/S1464-1895(01)00051-5
[] Schmidt MW. 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304–310. DOI:10.1007/BF00310745
[] Searle MP. 1996. Cooling history, erosion, exhumation, and kinematics of the Himalaya-Karakoram-Tibet orogenic belt. In: Yin A and Harrison TM(eds.). The Tectonic Evolution of Asia. New York: Cambridge University Press: 110-137.
[] Sengör AMC, Natalin BA. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A and Harrison TM(eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press: 486-640.
[] Solovova IP, Girnis AV. 2012. Silicate-carbonate liquid immiscibility and Crystallization of carbonate and K-rich basaltic magma: Insights from melt and fluid inclusions. Mineralogical Magazine, 76(2): 411–439. DOI:10.1180/minmag.2012.076.2.09
[] Stein E, Dietl C. 2001. Hornblende thermobarometry of granitoids from the Central Odenwald(Germany)and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1-3): 185–207. DOI:10.1007/s007100170033
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Sauders AD and Norry MJ(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29–44. DOI:10.1016/S0024-4937(98)00024-3
[] Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press: 312.
[] Wang LK, Zhu WF, Zhang SL. 1983. Liquid segregation-one of the main modes of differentiation of the Nanling granite. Geological Review, 29(4): 365–373.
[] Wang LK, Wang HF, Huang ZL. 1997. Discovery on the three end-members’ components of Li-F granite rock and its liquid-state separation origin. Geology and Prospecting, 33(3): 11–20.
[] Wang YZ. 1983. The age of the Yisak Group of West Kunlun, and tectonic significance. Xinjiang Geology, 1(1): 1–8.
[] Wang ZH, Sun S, Hou QL, Li JL. 2001. Effect of melt-rock interaction on geochemistry in the Kudi ophiolite(western Kunlun Mountains, northwestern China): Implication for ophiolite origin. Earth and Planetary Science Letters, 191(1-2): 33–48. DOI:10.1016/S0012-821X(01)00400-9
[] Wang ZQ, Jiang CF, Yan QR, Yan Z. 2004. Accretion and collision orogeneses in the West Kunlun Mountains, China. Gondwana Research, 4(4): 843–844.
[] Watson EB. 1976. Two-liquid partition coefficients: Experimental data and geochemical implications. Contributions to Mineralogy and Petrology, 56(1): 119–134. DOI:10.1007/BF00375424
[] Watson EB, Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. DOI:10.1016/0012-821X(83)90211-X
[] Watson EB, Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841–844. DOI:10.1126/science.1110873
[] Wyborn D, Chappell BW, James M. 2001. Examples of convective fractionation in high-temperature granites from the Lachlan Fold Belt. Australian Journal of Earth Science, 48(4): 531–541. DOI:10.1046/j.1440-0952.2001.00877.x
[] Xiao WJ, Windley BF, Fang AM, Zhou H, Yuan C, Wang ZH, Hao J, Hou QL, Li JL. 2001. Palaeozoic-Early Mesozoic accretionary tectonics of the Western Kunlun Range, NW China. Gondwana Research, 4(4): 826–827. DOI:10.1016/S1342-937X(05)70611-0
[] Xiao WJ, Windley BF, Hao J, Li JL. 2002. Arc-ophiolite obduction in the western Kunlun range(China): Implications for the Palaeozoic evolution of central Asia. J. Geol. Soc. London, 159: 517–528. DOI:10.1144/0016-764901-135
[] Xiao XC, Wang J, Su L, Song SG. 2003. A further discussion of the Küda ophiolite, West Kunlun, and its tectonic significance. Geological Bulletin of China, 22(10): 745–750.
[] Xu RH, Zhang YQ, Xie YW, Chen FK, Vidal Ph, Arnaud N, Zhang QD, Zhao DM. 1994. A discovery of an Early Paleozoic tectonomagmatic belt in the northern part of West Kunlun Mountains. Scientia Geologica Sinica, 29(4): 313–328.
[] Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF. 2004. Multiple sources for the origin of granites: Geochemical and Nb/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, Northeast China. Geochimica et Cosmochimica Acta, 68(21): 4469–4483. DOI:10.1016/j.gca.2004.04.015
[] Yang JS, Robinson PT, Jiang CF, Xu ZQ. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258(1-4): 215–231. DOI:10.1016/0040-1951(95)00199-9
[] Yao YG, Hsü KJ. 1994. Origin of the Kunlun mountains by arc-arc and arc-continent collisions. The Island Arc, 3(2): 75–89. DOI:10.1111/iar.1994.3.issue-2
[] Ye HM, Li XH, Li ZX, Zhang CL. 2008. Age and origin of high Ba-Sr appinite -granites at the northwestern margin of the Tibet Plateau: Implications for Early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research, 13(1): 126–138. DOI:10.1016/j.gr.2007.08.005
[] Yu XF, Sun FY, Li BL, Ding QF, Chen GJ, Ding ZJ, Chen J, Huo L. 2011. Caledonian diagenetic and metallogenic events in Datong district in the western Kunlun: Evidences from LA-ICP-MS zircon U-Pb dating and molybdenite Re-Os dating. Acta Petrologica Sinica, 27(6): 1770–1778.
[] Yuan C, Zhou H, Sun M, Li JL, Hou QL. 2000. Geochemical characteristics and tectonic implications of north Kuda pluton, West Kunlun Mountains. Geochimica, 29(2): 101–107.
[] Yuan C, Sun M, Xiao WJ, Zhou H, Hou QL, Li JL. 2003. Subduction polarity of the prototethys: Insights from the Yirba pluton of the western Kunlun range, NW China. Acta Petrologica Sinica, 19(3): 399–408.
[] Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421.
[] Zhang CL, Wang ZG, Shen JL, Bi H, Guo KY, Wang AG. 2003. Zircon SHRIMP dating and geochemistry characteristics of Akazi rock mass of Western Kunlun. Acta Petrologica Sinica, 19(3): 523–529.
[] Zhang CL, Yu HF, Ye HM, Zhao Y, Zhang DS. 2006. The West Tarim Oytag granite aplite: Age, geochemical characteristics, diagenesis and its tectonic significance. Science in China(Series D)(10): 881–893.
[] Zhang HF. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle. Chinese Science Bulletin, 54(19): 3417–3437.
[] Zhao KD, Jiang SY, Yang SY, Dai BZ, Lu JJ. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22(1): 310–324. DOI:10.1016/j.gr.2011.09.010
[] Zhong H, Zhu WG, Chu ZY, He DF, Song XY. 2007. SHRIMP U-Pb zircon geochronology, geochemistry and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2): 112–133. DOI:10.1016/j.chemgeo.2006.09.004
[] 邓万明. 1995. 喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义. 岩石学报, 11(增刊): 98–111.
[] 丁道桂, 王道轩, 刘伟新, 孙世群. 1996. 西昆仑造山带与盆地. 北京: 地质出版社: 125-143.
[] 方爱民, 李继亮, 刘小汉, 侯泉林, LeeIJ, 肖文交, 俞良军, 周辉. 2003. 新疆西昆仑库地混杂带中基性火山岩构造环境分析. 岩石学报, 19(3): 409–417.
[] 方锡廉, 汪玉珍. 1990. 西昆仑山加里东期花岗岩类浅识. 新疆地质, 8(2): 153–158.
[] 黄智龙, 朱成明, 肖化云, 刘丛强. 1999. 煌斑岩-硫化物熔体液态不混溶作用的高温高压实验研究. 地质论评, 45(7): 113–118.
[] 姜春发. 1992. 昆仑开合构造. 北京: 地质出版社: 183-217.
[] 姜耀辉, 芮行健, 贺菊瑞, 郭坤一, 杨万志. 1999. 西昆仑山加里东期花岗岩类构造的类型及其大地构造意义. 岩石学报, 15(1): 105–115.
[] 姜耀辉, 芮行健, 郭坤一, 贺菊瑞. 2000. 青藏高原乌依塔克花岗岩体地球化学及其大地构造意义. 地球化学, 29(3): 259–262.
[] 李广伟, 方爱民, 吴福元, 刘小汉, 潘裕生, 王世刚. 2009. 塔里木西部奥依塔克斜长花岗岩锆石U-Pb年龄和Hf同位素研究. 岩石学报, 25(1): 166–172.
[] 李继亮, 孙枢, 郝杰, 陈海泓, 侯泉林, 肖文交. 1999. 论碰撞造山带的分类. 地质科学, 34(2): 129–138.
[] 李荣社, 徐学义, 计文化. 2008. 对中国西部造山带地质研究若干问题的思考. 地质通报, 27(12): 2020–2025.
[] 陆丽娜, 范宏瑞, 胡芳芳, 杨奎锋, 蓝廷广. 2011. 胶西北郭家岭花岗闪长岩侵位深度: 来自角闪石温压计和流体包裹体的证据. 岩石学报, 27(5): 1521–1532.
[] 潘裕生. 1990. 西昆仑山构造特征与演化. 地球科学(3): 224–232.
[] 潘裕生. 1996. 喀喇昆仑山-昆仑山区地质演化. 北京: 地震出版社: 263-288.
[] 潘裕生, 文世宣, 孙东立, 等. 2000. 喀喇昆仑山-昆仑山地区地质演化. 北京: 科学出版社: 525.
[] 王联魁, 朱为方, 张绍立. 1983. 液态分离-南岭花岗岩分异方式之一. 地质论评, 29(4): 365–373.
[] 王联魁, 王慧芬, 黄智龙. 1997. 锂氟花岗质岩石三端元组分的发现及其液态分离成因. 地质与勘探, 33(3): 11–20.
[] 汪玉珍. 1983. 西昆仑山依莎克群的时代及其构造意义. 新疆地质, 1(1): 1–8.
[] 肖序常, 王军, 苏犁, 宋述光. 2003. 再论西昆仑库地蛇绿岩及其构造意义. 地质通报, 22(10): 745–750.
[] 许荣华, 张玉泉, 谢应雯, 陈福坤, VidalPh, ArnaudN, 张巧大, 赵敦敏. 1994. 西昆仑山北部早古生代构造-岩浆岩带的发现. 地质科学, 29(4): 313–328.
[] 于晓飞, 孙丰月, 李碧乐, 丁清峰, 陈广俊, 丁正江, 陈静, 霍亮. 2011. 西昆仑大同地区加里东期成岩、成矿事件: 来自LA-ICP-MS锆石U-Pb定年和辉钼矿Re-Os定年的证据. 岩石学报, 27(6): 1770–1778.
[] 袁超, 孙敏, 肖文交, 周辉, 候泉林, 李继亮. 2000. 西昆仑山库地北岩体的地球化学特征及构造意义. 地球化学, 29(2): 101–107.
[] 袁超, 周辉, 孙敏, 李继亮, 侯泉林. 2003. 原特提斯的消减极性: 西昆仑128公里岩体的启示. 岩石学报, 19(3): 399–408.
[] 张传林, 王中刚, 沈加林, 毕华, 郭坤一, 王爱国. 2003. 西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征. 岩石学报(3): 523–529.
[] 张传林, 于海峰, 叶海敏, 赵宇, 张东生. 2006. 塔里木西部奥依塔克斜长花岗岩: 年龄、地球化学特征、成岩作用及其构造意义. 中国科学(D辑)(10): 881–893.