岩石学报  2013, Vol. 29 Issue (8): 2695-2708   PDF    
内蒙古贝力克玄武岩地球化学特征及地质意义
陈生生1,2, 樊祺诚3, 赵勇伟3, 史仁灯1     
1. 中国科学院青藏高原研究所,北京 100085;
2. 中国科学院大学,北京 100049;
3. 中国地震局地质研究所活动构造与火山重点实验室,北京 100029
摘要: 内蒙贝力克地区存在一片面积为400km2、以发育三级熔岩台地为特征的新生代玄武岩,台地时代分别为2.31~2.41Ma、1.56~1.61Ma、0.51~0.61Ma。岩性为具有过渡性质的拉斑玄武岩,分为石英拉斑玄武岩与橄榄拉斑玄武岩,它们都起源于具有交代性质的石榴石橄榄岩源区。地球化学特征显示这两种岩性之间没有演化关系,而是源区不同程度、深度部分熔融的结果;并且在上升过程中,都受到下地壳麻粒岩的混染作用,其中石英拉斑玄武岩混染程度最大。大地构造背景上,贝力克与赤峰同处在兴蒙造山带南缘,它们表现出与华北西部北缘(集宁、大同、汉诺坝、繁峙)相似的岩浆源区和岩石圈地幔热状态,但不同的富集岩石圈地幔类型,即兴蒙造山带南源呈现DMM-EMⅡ特点,而华北西部北缘具有DMM-EMⅠ混合趋势。这种差异可能与岩石圈地幔不同的时代及构造背景有关。在软流圈熔体与上覆岩石圈地幔相互反应的拉斑玄武岩成因模式基础上,认为华北岩石圈减薄现象不仅局限于克拉通内部,其处在克拉通西北部,乃至兴蒙造山带南缘也同样经历了岩石圈减薄过程,只是存在不同时间、程度的岩石圈减薄过程。
关键词: 内蒙贝力克     新生代     拉斑玄武岩成因     岩石圈地幔演化    
Geochemical characteristics of basalts in Beilike area and its geological significance, Inner Mongolia
CHEN ShengSheng1,2, FAN QiCheng3, ZHAO YongWei3, SHI RenDeng1     
1. Institute of Tibetan Plateau Research, China Academy of Science, Beijing 100085, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Active Tectonices and Volcano, Institute of Geology, CEA, Beijing 100029, China
Abstract: The Beilike basalt, covering an area of about 400km2, consists of three levels of lava platforms at different elevations, and the age of each lava platform is 2.31~2.41Ma、1.56~1.61Ma、0.51~0.61Ma. The basalt which can be divided into quartz tholeiite and olivine tholeiite has an excessive nature of the characteristics, all being derived from the garnet peridotite source region. Based on the geochemistry characteristics, there does not exist the evolutionary relationship between the olive tholeiite and quartz tholeiite. They are interpreted to be resulted probably from the varying degrees of the garnet peridotite source region and the depth of partial melting. Both olive tholeiite and quartz tholeiite were affected by crustal contamination, but the latter is more obviously. Tectonically, both Beilike and Chifeng lie on the the southern margin of the Xing’an-Mongolia Orogen Belt, compared with the northern margin of North China Craton, they have a similar magma source and the lithospheric mantle thermal state, but different enrichment lithospheric mantle types, namely, the former displays a DMM-EMⅡ array different from the latter, it may be related to different ages and tectonic settings of the lithospheric mantle. Based on the asthenosphere-lithospheric mantle interaction model, lithospheric thinning phenomenon in North China is not confined to the craton, instead in northwest craton, and even the south margins of Xing’an-Mongolia Orogen Belt experienced lithospheric thinning too. They just have different time and degree of the lithospheric thinning process.
Key words: Beilike, Inner Mongolia     Cenozoic     Petrogenesis of the tholeiite     Evolution of the subcontinental lithospheric mantle    

内蒙古锡盟地区存在一大片面积约为10000km2以碱性玄武岩为主的新生代火山区(Ho et al., 2010)。根据火山地质学特征,分为阿巴嘎、贝力克和达里诺尔三个火山区,贝力克火山区主要出露面积大约只有400km2由多级熔岩台地组成的拉斑玄武岩(陈生生等, 2011)。前人对锡盟碱性玄武岩做了较多的工作(张臣等, 2004Ho et al., 2010),而对于本区拉斑玄武岩的研究,却是一片空白。本文在主微量元素和Sr-Nd同位素研究的基础上,结合贝力克玄武岩K-Ar年龄数据,试图准确约束贝力克熔岩台地的形成机制及拉斑玄武岩岩浆源区、上地幔演化等性质。由于拉斑玄武岩不含地幔捕掳体,因此也为评估地壳混染在拉斑玄武岩浆中的作用提供了可能。

研究表明,华北克拉通东、中、西部块体存在不同时间、程度的岩石圈减薄过程(Menzies et al., 1993; Fan et al., 2000; Xu et al., 2001),特别是新生代时期华北西部北缘发生了岩石圈减薄现象(Xu et al., 2004)。大地构造位置上:汉诺坝、集宁和大同等同处于华北克拉通西部块体北缘,锡盟和赤峰位于兴蒙造山带南缘(图 1a),但是处在兴蒙造山带南缘的锡盟地区却具有与华北西部北缘相似的岩石圈地幔热状态等性质(陈生生等, 2012)。因此一个需要解决的问题是兴蒙造山带之下的岩石圈地幔是否也经历了与华北西部北缘相似的减薄时间、强度等过程?现在一般认为拉斑玄武岩是由软流圈地幔-岩石圈地幔相互作用而产生(Hoang and Flower, 1988; Bogaard and Worner, 2003; Xu et al., 2004, 2005; Tang et al., 2006; Ho et al., 2008, 2010),这种机制有助于我们探讨和对比华北西部北缘和兴蒙造山带南缘即不同构造环境下的岩石圈地幔的性质、演化等过程。

图 1 华北地区大地构造简图(a, 据Xu et al., 2004; Ho et al., 2008, 2010; Han et al., 1999)和贝力克新生代玄武岩分布图(b, 据陈生生等, 2011) Fig. 1 Geographical sketch map of the North China depicting the distribution of Cenozoic volcanic rocks (a, after Xu et al., 2004; Ho et al., 2008, 2010; Han et al., 1999) and distribution of Beilike Cenozoic basalts (b, after Chen et al., 2011)
1 火山地质与年代学特征

大兴安岭-太行山重力梯度带跨越的华北克拉通西北缘的汉诺坝、集宁、大同和兴蒙造山带南缘的锡盟、赤峰分布有大面积的新生代玄武岩(图 1a)。其中集宁和汉诺坝为中新世的玄武岩,前者早期岩性主要为拉斑玄武岩,晚期碱性玄武岩占主体,并且在北部乌兰哈达发育有第四纪的火山锥体(Ho et al., 2010),而后者具有碱性玄武岩和拉斑玄武岩互层的特点,并且碱性玄武岩中含有丰富的地幔和地壳捕掳体(Zhi et al., 1990; Song et al., 1990);赤峰地区主要由中新世拉斑玄武岩组成,地质上表现为大面积的熔岩台地(Han et al., 1999);大同东区为拉斑玄武岩,而西区发育十几座第四纪的火山锥体,其岩性为碱性玄武岩(樊祺诚等, 1992a; Xu et al., 2005)。

锡盟地区新生代火山岩面积为9300km2,长宽分别约750km、50~110km,大致呈北西方向展布(内蒙古自治区地质矿产局, 1991),往西北延入蒙古境内与达里干加相邻,是亚洲东部面积最大的新生代火山区(Wiechert et al., 1997; Kononova et al., 2002; Ho et al., 2008)。根据火山地质特征,从西北往东南方向依次为:阿巴嘎火山区、贝力克火山区和达里诺尔火山区(陈生生等, 2011),其中阿巴嘎火山区和达里诺尔火山区主要由大面积的碱性玄武岩组成,并且二者都发育数量颇多的火山锥体(Ho et al., 2008)。而处在阿巴嘎火山区和达里诺尔火山区之间的贝力克火山区(图 1b),由拉斑玄武岩组成,并且以发育高低错落有致的三级熔岩台地为特征,熔岩台地高程往西南方向逐级增高(图 2a)。为了准确制约熔岩台地的时空演化规律,我们进行了玄武岩K-Ar测年工作。

图 2 贝力克三级熔岩台地野外照片(a)和熔岩台地年龄与高程相关图(b) Fig. 2 Field picture of three levels of lava platforms in Beilike area (a) and relationship between elevation and age of basalts form Beilike area (b)

本文玄武岩K-Ar测试结果(表 1)基本与前人测试一致(罗修泉和陈启桐, 1990),第三级熔岩台地为晚上新世(2.31~2.41Ma),第二级熔岩台地为早更新世(1.56~1.61Ma),第一级熔岩台地为中更新世(0.51~0.61Ma)。因此从第三级熔岩台地到第一级熔岩台地其时代逐渐变新,并且与高程具有较好的相关性(图 2b),暗示着熔岩台地高程越高其年代越老,这种现象可能与火山活动期间地壳不均匀的抬升作用有关(罗修泉和陈启桐, 1990; 陈生生等, 2011),类似的情况也出现在中国鸭绿江及图们江、蒙古国Tariat地区和北美西部盆岭省等地(Kempton, 1987; 刘若新等, 1992; Barry et al., 2003)。新生代时期,锡盟地区地壳升降运动十分活跃(内蒙古自治区地质矿产局, 1991),这可能与大兴安岭地区新生代以来多次地壳不均匀抬升作用(李祥根, 2010; 邵济安等, 2007)在锡盟地区的响应有关。

表 1 贝力克玄武岩K-Ar年龄分析结果 Table 1 K-Ar isotopic data for the basalt form Beilike
2 测试方法

K-Ar年龄测试于中国地震局地质研究所地震动力学国家重点实验室(K-Ar & Ar-Ar年龄实验室)完成。实验选取新鲜斑晶少的致密块状玄武岩粉碎成40~60目,用磁选法除去橄榄石斑晶。测试分为两部分进行即钾的测试和氩的测试。K的测试使用HG-5型火焰光度计,Ar的测试采用同位素稀释法,在MM-1200质谱计和与之连接的金属萃取、纯化系统上完成。采用常数:λ=5.543×10-10/a,λe=0.581×10-10/a,λβ=0.581×10-10/a,40K/K=1.167×10-4mol/mol。

主量元素在中科院地质与地球物理研究所岩矿分析实验室完成,采用玻璃熔片法和X射线荧光光谱法 (XRF) 分析,精度好于5%。微量元素和Sr-Nd同位素分析都在中科院同位素年代学和地球化学重点实验室完成。微量元素元素在仪器PE Elan 6000型电感耦合等离子质谱(ICP-MS)上完成,采用HF+HNO3密封溶样方法,保证样品完全溶解,也具有污染小、分析本底低、检出限低等优点,分析精度大多好于5%。Sr-Nd测试样品采用HF+HNO3混合酸溶解,用专用阳离子交换技术进行分离。87Sr/86Sr值用87Sr/86Sr=0.1194标准化,143Nd/144Nd值用143Nd/144Nd=0.7219标准化,并分别用国际标准NSB987、实验室标准Sr-GIG和国际标准JNdi-1、实验室标准Nd-GIG进行监控。同位素比值用MiceoMass ISOPROBE多型接受电感耦合等离子体质谱(MC-ICPMS)测定,分析精度好于0.002%。

3 岩相学特征

贝力克玄武岩整体上颜色呈深灰色-灰色,以块状构造为主,少数呈气孔、杏仁构造。斑晶为橄榄石,呈现单颗粒斑晶与聚斑晶两种形式,含量少(<8%),聚斑晶现象与集宁、德干等类似(张文慧和韩宝福, 2006; Reddy et al., 2010)。橄榄石斑晶具有环带裂隙、不规则裂纹,沿边缘或裂隙发育不透明边缘或伊丁石化,暗示着低温蚀变作用的发生(Caroff et al., 2000)。部分橄榄石斑晶边缘发育斜方辉石反应边,但是缺失紫苏辉石与易变辉石,这与中国东部拉斑玄武岩相似(邱家骧和曾广策, 1987),并非典型的拉斑玄武岩,而具有过渡性质的特点,可能与SiO2没有达到过饱和有关(Gilbert et al., 2006)。

4 火山岩地球化学特征 4.1 主量元素

表 2为贝力克玄武岩的主微量元素及Sr-Nd同位素分析结果。TAS图上(图 3a),研究区样品落入玄武岩区域,并且处在亚碱性玄武岩范围内。AFM图上(图 3b),亚碱性玄武岩主要表现为拉斑玄武岩的演化趋势,CIPW计算结果表明第一、三级熔岩台地橄榄拉斑玄武岩(标准矿物含有Ol、无Q),第二级熔岩台地为石英拉斑玄武岩(标准矿物含有Q、无Ol)(图 3c)。

表 2 贝力克主量元素(wt%)、微量元素(×10-6)与Sr-Nd同位素分析测试结果 Table 2 Major element (wt%), trace element (×10-6) and Sr-Nd isotopic ratios of basalts form Beilike area

图 3 火山岩TAS图解(a, 据Le Bas et al., 1986;Ir: 碱性与亚碱性玄武岩分界线据Irvine and Baragar, 1971)、AFM图(b, 据Irvine and Baragar, 1971)和标准矿物图(c) Fig. 3 Diagram of total alkalis vs. SiO2 (a, after Le Bas et al., 1986; Ir: the boundary line between alkaline series and the tholeiitic series after Irvine and Baragar, 1971), genetic classification of igneous rock (b, after Irvine and Baragar, 1971) and CIPW-norm diagram (c)
4.2 微量元素

在稀土元素配分图上,橄榄拉斑玄武岩和石英拉斑玄武岩都大致与OIB平行,具有OIB类型特点,而明显不同于MORB(图 4a, c)。与橄榄拉斑玄武岩相比,石英拉斑玄武岩具有较低的REE、LREE含量和(La/Yb)N(7.9~9.4)。虽然橄榄拉斑玄武岩具有比石英拉斑玄武岩高的HREE含量,但它们都具有较小的变化范围。此外,它们都未显示Eu的异常(δEu变化在1.0~1.05之间),暗示着没有斜长石的分离结晶,这与显微镜下没有发现斜长石斑晶是一致的,而缺乏Eu的异常可能是华北地区新生代玄武岩的一个共同特点。

图 4 微量元素原始地幔标准化曲线和球粒陨石标准化曲线(球粒陨石、原始地幔标准值和OIB据Sun and McDonough, 1989) Fig. 4 Primitive-mantle normalized incompatible element diagrams and chondrite-normalized REE patterns for Beilike basalts (OIB and normalization values after Sun and McDonough, 1989)

在微量元素蛛网图上(图 4b, d),橄榄拉斑玄武岩微量元素含量低于OIB,除了Ba、Pb、Sr的正异常和U、Ce的负异常外,总体分布趋势与OIB平行,而显著区别MORB。Ce的异常可能暗示着这些岩石遭受低温蚀变作用的影响(Zou et al., 2000)。石英拉斑玄武岩也具有Ba、Pb、Sr正异常和Ce的负异常,除此,它的一个显著特点是具有Nb-Ta亏损,这与华北地区地区的新生代拉斑玄武岩不同(Song et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010),其分布趋势都不与OIB或MORB平行,而属于非OIB型玄武岩(徐义刚, 1999)。这种非OIB型玄武岩在美国及南非等地也有发现(Wright et al., 1989; Hooper and Hawkesworth, 1993; Lassiter and DePaolo, 1997; Jung, 1999; Okamura et al., 2005),但在华北地区尚属首次报道。

4.3 Sr-Nd同位素

贝力克拉斑玄武岩143Nd/144Nd、87Sr/86Sr比值分别为0.512805~0.512882、0.704252~0.705157,εNd在3.3~4.8之间,落入OIB范围内(Zindler and Hart, 1986),这与集宁、大同、汉诺坝和赤峰拉斑玄武岩相似(Song et al., 1990; Han et al., 1999; Xu et al., 2005; 张文慧等, 2005; Ho et al., 2010)。但在143Nd/144Nd-87Sr/86Sr相关图上(图 5),贝力克拉斑玄武岩位于华北西部北缘(即集宁、汉诺坝、大同)区域之上,并且与同处兴蒙造山带南缘的赤峰一起呈现DMM+EMⅡ混合特点,而华北西部北缘具有DMM+EMⅠ演化趋势。因此,不同构造背景下的拉斑玄武岩具有不同类型的源区混合现象。

图 5 玄武岩143Nd/144Nd-87Sr/86Sr图 数据来源:Zhi et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010 Fig. 5 Diagram of 143Nd/144Nd vs. 87Sr/86Sr for Beilike basalts Data source: Zhi et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010
5 讨论 5.1 地壳混染

华北西部地区新生代玄武质岩浆在上升过程中受地壳混染的程度很低,一般可忽略其对岩浆成分的影响(Zhou and Armstrong, 1982; Peng et al., 1986; Song et al., 1990; Basu et al., 1991; Han et al., 1999; Barry et al., 2003; Xu et al., 2005; Ho et al., 2008)。但也有例外,Ho et al. (2010) 认为集宁碱性橄榄玄武岩是由碧玄岩浆混染下地壳麻粒岩之后所形成。总之,与大洋玄武岩相比,大陆玄武岩浆在上升到地表的过程中必须经过厚厚的地壳,因此受地壳混染作用的可能性是存在的(Campbell, 1985; Glazner et al., 1991; Peng et al., 1994)。

在微量元素蛛网图上(图 4b, d),贝力克玄武岩具有Ba、Pb、Sr的正异常,说明岩浆可能受地壳物质混染作用的影响(Wedepohl, 2000; Talusani, 2010)。石英拉斑玄武岩出现了Nb、Ta的亏损现象,但亏损程度远远低于岛弧型玄武岩,并且没有岛弧玄武岩所特有的富集HFSE特点(Hawkesworth et al., 1991; Tatsumi and Eggins, 1995)。虽然古生代和中生代研究区处于大陆边缘,发育岛弧和弧后盆地(Ruzhenstev and Pospelov, 1992; Wiechert et al., 1997);而新生代时期,主要以板内火山活动为特征(Ho et al., 2008)。因此,石英拉斑玄武岩Nb、Ta的亏损暗示着可能存在以下三种过程:(1) 源区存在富集Nb-Ta元素的矿物,例如金红石、榍石、钛铁矿富集Nb、Ta (Dostal and Chatterjee, 2000; Ying et al., 2007);(2) 经历古板块俯冲改造的岩石圈地幔参与了岩浆的形成(徐义刚, 1999; Jung and Masberg, 1998);(3) 地壳混染作用(Gill, 1981; Dungan et al., 1986)。来自达里干加地区的橄榄岩地幔捕掳体无Nb-Ta亏损特点(Wiechert et al., 1997; Kononova et al., 2002),似乎暗示着岩石圈地幔不能产生Nb-Ta亏损型的玄武岩浆(Arndt and Christensen, 1992; Menzies, 1992)。微量元素图解上没有显示Ti的异常,并且Sr/Nb-Th无相关性(图略),说明源区不存在金红石(Foley et al., 2000; Rudnick et al., 2000),而可能是地壳混染的结果(Kimura et al., 2002)。

在Ce/Pb与Nb图上(图 6a),橄榄拉斑玄武岩Ce/Pb(14~21)值稍低于OIB(25±5)(Hofman et al., 1986),暗示着遭受轻微地壳混染作用的影响;而石英拉斑玄武岩处在下地壳麻粒岩捕掳体和橄榄拉斑玄武岩之间,说明受地壳混染程度较大。此外,Nb在石英拉斑玄武岩中含量最低,并且在Zr/Nb-Nb图上(图 6b),石英拉斑玄武岩位于橄榄拉斑玄武岩与下地壳麻粒岩(低Nb、高Zr/Nb)之间,并且它们大致呈双曲线分布,说明石英拉斑玄武岩受地壳混染程度较大(Jung and Masberg, 1998)。

图 6 玄武岩Nb/U-Ce/Pb图(a)和Nb-Zr/Nb图(b) 数据来自:刘勇胜和高山, 1999; 佘宏全等, 2006; 荆旭等, 2010; Hofman et al., 1986 Fig. 6 Diagrams of Nb/U vs. Ce/Pb (a) and Nb vs. Zr/Nb (b) Data source: Liu et al., 1999; She et al., 2006; Jing et al., 2010; Hofman et al., 1986

这种受地壳混染的岩浆具有Ba、Pb、Sr、Nb、Ta的异常,但它们之间的比值和其他微量元素没有异常,因此可以用来判断其源区性质。

5.2 岩浆演化

由地幔部分熔融形成、没有显著的分离结晶作用并且在岩浆上升过程中也未受到地壳明显混染的中国东部新生代原生玄武岩浆参考值为:MgO=10%~12%、Mg#=60~68、Cr=250×10-6、Ni=90×10-6~670×10-6 (Fan and Hooper, 1991)。贝力克玄武岩MgO、Cr、Ni都低于原生岩浆参考值,暗示着其为一套演化的岩浆。在橄榄拉斑玄武岩中,MgO 与Ni具有较好的线性关系(图略),暗示着橄榄石分离结晶作用的发生。

假如两套岩浆具有派生关系,那么演化岩浆一般比母岩浆具有低的MgO值和高的不相容元素含量。但从橄榄拉斑玄武岩到石英拉斑玄武岩,MgO含量基本相似,而REE、Zr等不相容元素具有逐渐降低的趋势,并且MgO与Mg#没有相关性,因此这拉斑玄武岩之间不具有分离结晶成因关系(Gilbert et al., 2006)。此外,Nb与La、Zr、Nd和Sr等不相容元素之间具有很好的相关性(图略),暗示着橄榄拉斑玄武岩和石英拉斑玄武岩可能来自相似的源区。因此贝力克橄榄拉斑玄武岩和石英拉斑玄武岩最有可能是相同源区但不同程度、深度部分熔融的结果。

总体上,贝力克拉斑玄武岩重稀土元素含量都较低且变化小(图 4a, c),说明它们可能起源于上地幔含石榴子石相的二辉橄榄岩(McKenzie and O’Nions, 1991; Frey et al., 1991; Wang et al., 2002)。在SiO2与(Tb/Yb)N相关图上(图 7a),拉斑玄武岩玄武岩落入石榴石相范围内,也说明贝力克拉斑玄武岩起源于含石榴石相地幔橄榄岩(Wang et al., 2002)。进一步理论模型计算出橄榄拉斑玄武岩和石英拉斑玄武岩部分熔融程度依次为:12%~14%、14%~16%(Bogaard and Worner, 2003; Gilbert et al., 2006)(图 8b)。由此可知,从橄榄拉斑玄武岩到石英拉斑玄武岩,源区深度逐渐变浅并且熔融程度变大,这也与目前主流观点相吻合(Jung, 1999; Kushiro, 2001; DePaolo and Daley, 2000)。

图 7 玄武岩SiO2-(Tb/Yb)N图(a, 据Wang et al., 2002)和La/Yb-Dy/Yb图(b, 据Bogaard and Worner, 2003; Gilbert et al., 2006) Fig. 7 Diagrams of SiO2 vs. (Tb/Yb)N (a, after Wang and Piant, 2002) and La/Yb vs. Dy/Yb (b, after Bogaard and Worner, 2003; Gilbert et al., 2006)

图 8 玄武岩(K/Ba)N-(K/Nb)N Fig. 8 Diagram of (K/Ba)N vs. (K/Nb)N
5.3 地幔交代特征

锡盟地区具有复杂的上地幔演化过程,并且可能发生多次的地幔熔体/流体交代事件(内蒙古自治区区域地质志, 1991; Kononova et al., 2002; 张臣等, 2006; 陈生生等, 2012)。橄榄拉斑玄武岩轻稀土元素与大离子亲石元素富集的特征,暗示着源区可能受富集轻稀土元素和大离子亲石元素熔体的交代作用(Menzies, 1992)。阿巴嘎和达里诺尔碱性玄武岩中,K相对于Ba、Nb出现亏损现象(Ho et al., 2010)(图 8),说明源区可能有富K矿物的残留(Fitton and Dunlop, 1985),并且从碱性玄武岩到橄榄拉斑玄武岩和石英拉斑玄武岩,随着部分熔融程度增加,K亏损逐渐消失,暗示着熔体中含K矿物也增多(Ho et al., 2003)。进一步研究表明这种含K矿物主要为地幔流体交代成因的角闪石(樊祺诚等, 1992b),判断依据如下:(1) K在角闪石中分配系数最高;(2) 在Rb/K-Rb相关图上,贝力克玄武岩与角闪石大致平行分布,并且Rb/Nb与K/Nb具有正相关性(图略),说明主要是角闪石控制着源区Rb/K的变化(Jung and Masberg, 1998)。

由于εNd与La/Ba之间没有很好的相关性,说明这种交代作用发生在近期,而不足于影响源区的同位素特征,可能与古生代或中生代古亚洲洋的复杂而多期次的俯冲-碰撞等构造演化过程有关(Xiao et al., 2009; 郭锋等, 2009)。

5.4 拉斑玄武岩成因

贝力克玄武岩处在阿巴嘎、达里诺尔玄武岩之间,研究表明阿巴嘎、达里诺尔碱性玄武岩起源于类似MORB的源区(Ho et al., 2008),即较浅的亏软流圈上地幔(McKenzie and Bickle, 1988),而贝力克拉斑玄武岩比阿巴嘎-达里诺尔碱性玄武岩具有更高的Sm/Nd和Lu/Hf比值(图 9a),暗示着存在软流圈熔体-岩石圈地幔反应的现象(Zhang et al., 2009)。这也得到了Sr-Nd同位素的支持,因为在143Nd/144Nd-87Sr/86Sr图上,贝力克拉斑玄武岩处在DMM与EMⅡ之间的混合曲线上即需要两个不同地幔端元组分的贡献(图 5)。此外,在Ba/Nb与Zr/Nb相关图上,拉斑玄武岩处在EM与HIMU之间但更靠近EM区域(图 9b),并且拉斑玄武岩Yb含量较阿巴嘎-达里诺尔碱性玄武岩低,这说明拉斑玄武岩浆源区可能需要更多岩石圈物质的加入(Jung and Masberg, 1998)。

图 9 Sm/Nd-Lu/Hf相关图(a)和Ba/Nb-Zr/Nb相关图(b, 据Jung and Masberg, 1998) Fig. 9 Diagram of Sm/Nd vs. Lu/Hf (a) and diagram of Ba/Nb vs. Zr/Nb (b, after Jung and Masberg, 1998)

研究表明橄榄岩熔体产生时的压力会影响玄武岩浆中硅的饱和程度(Langmuir et al., 1992; Kushiro, 2001),并且Ti2O受岩石圈物质参与程度的控制(Jung and Masberg, 1998; Barry et al., 2003; Ho et al., 2008)。橄榄拉斑玄武岩具有比石英拉斑玄武岩低的SiO2和高的Ti2O,暗示着其源区较石英拉斑玄武岩源区深。(La/Sm)N、(Sm/Yb)N与Yb相关图上(图 10a, b),早期的石英拉斑玄武岩源区到晚期的橄榄拉斑玄武岩源区其岩石圈厚度有增大趋势(Humphreys and Niu, 2009)。

图 10 Yb-(La/Sm)N相关图(a)和Yb-(Sm/Yb)N相关图(b)(据Humphreys and Niu et al., 2009) Fig. 10 Diagram of Yb vs. (La/Sm)N (a) and Yb vs. (Sm/Yb)N (b) (after Humphreys and Niu et al., 2009)
5.5 华北北缘与兴蒙造山带南源岩石圈上地幔特征对比

古亚洲洋往南俯冲-碰撞的具体时间和准确位置还存在着争论(郭锋等, 2009),但毫无疑问,它对华北北缘岩石圈地幔性质产生了重要影响(Zhang et al., 2003);碰撞之后,华北西部北缘与兴蒙造山带南缘可能经历共同的上地幔演化,即在锡盟、赤峰、汉诺坝、集宁、大同、繁峙等地先后发生大面积强烈的新生代火山活动,并且岩石圈地幔具有相似的热状态等性质(陈生生等, 2012)。

由于Zr有较大的变化范围,受蚀变作用最弱,在部分熔融或分离结晶中不相容性最强(Talusani, 2010),并且Zr与Sm、Nb相似的分配系数(Sun and McDonough, 1989),因此Nb/Zr和Sm/Zr比值对鉴定不同源区的岩浆系统具有重要的意义。有意思的是,贝力克、赤峰、集宁、汉诺坝、大同和繁峙拉斑玄武岩都具有相似的Nb/Zr、Sm/Zr比值(图略),说明华北西部北缘和兴蒙造山带南缘的火山区具有类似的岩浆源区。

但是在玄武岩Sr-Nd同位素上:集宁、汉诺坝、大同主要显示DM+EMⅠ特征(Song et al., 1990; Xu et al., 2005; Ho et al., 2010),而贝力克、赤峰具有DM+EMⅡ演化趋势(图 5)。因此,华北西部北缘和兴蒙造山带南缘虽然具有类似的岩浆源区,但却表现为不同的富集岩石圈地幔类型。由于分离结晶、部分熔融等过程不足于影响同位素的变化,因此Sr-Nd组分的差异有助于理解不同构造背景下的岩浆源区特征(Zhang et al., 2009)。

目前普遍接受的观点是富集地幔(EM)来自交代的岩石圈地幔(刘丛强等, 1995),而关于EMⅠ、EMⅡ的富集机制目前还有不同的观点,例如:分别形成两次不同的交代事件(Tatsumoto et al., 1992)或处在岩石圈地幔不同的深度(Chung et al., 1995)。虽然辉石岩部分熔融可以产生EMⅡ类型的熔体(Tatsumoto et al., 1992; Ho et al., 2003),但锡盟新生代碱性玄武岩所携带的捕掳体中80%以上为地幔橄榄岩,而辉石岩较少(张臣等, 2006)。最新研究表明锡盟地区具有年轻的大洋岩石圈地幔特点,并且不存在地幔分层(陈生生等, 2012);华北西部北缘岩石圈地幔虽然在新生代时期开始减薄,并且逐渐被新生的岩石圈地幔所取代(Xu et al., 2004),局部地区(如:阳原、汉诺坝、鹤壁等)依然存在古老的岩石圈地幔(Zheng et al., 2001; Gao et al., 2002; 马金龙和徐义刚, 2006),这种古老岩石圈地幔通常表现为EMⅠ型同位素特点(Song et al., 1990; Basu et al., 1991; Tatsumoto et al., 1992)。因此,认为不同时代、构造背景的岩石圈地幔是造成华北西部北缘和兴蒙造山带南缘拉斑玄武岩分别呈现DM+EMⅠ和DM+EMⅡ的主要原因。

软流圈地幔-岩石圈地幔相互反应的模式可以很好解释拉斑玄武岩浆的成因,但拉斑玄武岩有限的主微量元素及同位素变化范围,并且都处在OIB范围内,似乎暗示着这种反应的程度非常有限。尽管如此,相比起源于软流圈地幔的碱性玄武岩而言,拉斑玄武岩由于带有岩石圈地幔的“地球化学痕迹”,在探讨软流圈-岩石圈反应程度即岩石圈减薄性质中具有重要的意义。我们知道,华北克拉通在晚古生代-新生代期间经历了广泛的热活化即老、厚、冷、亏损的岩石圈地幔被新、热、薄、富集的岩石圈地幔所取代(Menzies et al., 1993)。最近的研究表明,华北西部北缘在新生代时期发生了岩石圈减薄现象(Xu et al., 2004),并且存在时空及减薄强度的不均一性(张文慧和韩宝福, 2006)。以下根据不同构造背景下的拉斑玄武岩的时代及地球化学特征,进一步探讨和对比华北西部北缘与兴蒙造山带南缘的岩石圈减薄特征。

一般来说,当岩石圈地幔对岩浆贡献变大时,即岩浆源区上升到较浅部位置,可产生低Ti组分的岩浆(Barry et al., 2003; Ho et al., 2008),同时源区的上升也意味着岩浆从石榴石地幔岩逐渐向尖晶石地幔岩过渡,考虑到Yb在石榴石和尖晶石中不同的分配系数(Ellam, 1992),这将使得岩浆中Yb的含量发生重要变化。总体上,贝力克含有最少的Yb和最高的Ti2O、εNd,而集宁玄武岩具有最低的εNd、Ti2O(图 11图 12)。由于华北西部北缘拉斑玄武岩具有相似的源区性质,因此不同地区拉斑玄武岩Yb、Ti2O含量的差异可以准确反应其岩石圈厚度的变化:贝力克地区岩石圈最厚,集宁地区岩石圈最薄,其余大致处在二者之间。贝力克这种较少岩石圈地幔参与岩浆形成的特点也与岩性相吻合,因为锡盟地区分布着面积大约有10000m2的新生代玄武岩,而拉斑玄武岩只有400m2(陈生生等, 2011)。

图 11 TiO2与Yb相关图 数据来源:Zhi et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010 Fig. 11 Diagram of TiO2 vs. Yb Data source: Zhi et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010

图 12 华北地区新生代拉斑玄武岩εNd特征 数据来源:Song et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010 Fig. 12 The charactertistics of εNd form Cenozoic tholeiite in North China Data source: Song et al., 1990; Han et al., 1999; Xu et al., 2005; Ho et al., 2010

图 12,集宁和汉诺坝地区在渐新世-中新世期间最早开始拉斑玄武岩浆活动,并且集宁拉斑玄武岩具有最低的εNd和较高的Yb,暗示着具有比汉诺坝更强烈的减薄程度。之后,拉斑玄武岩浆活动逐渐向东北方向的赤峰地区转移,并且具有与汉诺坝相似的εNd值,说明赤峰地区软流圈地幔-岩石圈地幔反应程度与汉诺坝相当。第四纪前后,大同东部率先开始火山活动,并且岩石圈减薄的程度较随后发生的贝力克地区强。由此可见,华北西部北缘与兴蒙造山带南缘地区的岩石圈减薄活动此起彼伏,总体上集宁地区最早发生岩石圈的减薄,并且减薄程度最强;而贝力克地区最晚,并且减薄程度最弱。

6 结论

贝力克地区发育三级高低错落有致的熔岩台地,并且台地高程与年龄呈现反常的接触关系,这可能与研究区地壳不均匀的抬升运动有关。台地岩性为具有过渡性质的拉斑玄武岩(石英拉斑玄武岩、橄榄拉斑玄武岩),它们都起源于具有交代性质的石榴石橄榄岩源区,并且它们之间没有演化关系,而是源区不同程度、深度部分熔融的结果。在岩浆上升过程中,二者都受到下地壳物质的混染作用,而石英拉斑玄武岩混染程度最大。

兴蒙造山带南缘岩石圈经历了复杂和多期次的的地幔交代等过程,与华北西部北缘相比,他们具有类似的岩浆源区和岩石圈地幔热状态,但不同的富集岩石圈地幔类型。总体上,兴蒙造山带呈现DMM-EMⅡ特点,而华北西部北缘具有DMM-EMⅠ混合趋势。这种差异可能与岩石圈地幔不同的时代及构造背景有关。在软流圈地幔-岩石圈地幔相互反应的模式基础上,认为华北地区岩石圈减薄现象不仅局限于克拉通内部,其处在克拉通北部的兴蒙造山带南缘也经历了岩石圈减薄过程。

致谢 感谢张招崇、郭正府两位审稿人对本文提出的宝贵修改意见。
参考文献
[] Arndt NT, Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Geophys. Res., 97(B7): 10967–10981. DOI:10.1029/92JB00564
[] Barry TL, Saunders AD, Kempton PD, Windley BF, Pringle MS, Dorjnamjaa D, Saandar S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44(1): 55–91. DOI:10.1093/petrology/44.1.55
[] Basu AR, Wang JW, Huang WK, Xie GH, Tatsumoto M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic type mantle reservoirs. Earth and Planetary Science Letters, 105(1-3): 149–169. DOI:10.1016/0012-821X(91)90127-4
[] Bogaard PJF, Worner G. 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. Journal of Petrology, 44(3): 569–602. DOI:10.1093/petrology/44.3.569
[] Bureau of Geology and Mineral Resouces of Inner Mongolia Autonomous Region. 1991. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publish House: 331-350.
[] Campbell IH. 1985. The difference between oceanic and continental tholeiites: A fluid dynamic explanation. Contributions to Mineralogy and Petrology, 91(1): 37–43. DOI:10.1007/BF00429425
[] Caroff M, Maury RC, Cotton J, Clément JP. 2000. Segregation structures in vapor differentiated basaltic flows. Bulletin of Volcanology, 62(3): 171–187. DOI:10.1007/s004450000077
[] Chen SS, Fan QC, Zhao YW, Sui JL. 2011. Geological characteristics and genesis of basalt platform in beilike, Inner Mongolia. Seismology and Geology, 33(2): 430–439.
[] Chen SS, Fan QC, Zhao YW, Sui JL, Du XX. 2012. Mantle peridotite xenoliths and the nature of lithospheric mantle in Abaga, Inner Mongolia. Acta Petrologica Sinica, 28(4): 1108–1118.
[] Chung SL, Jahn BM, Chen SJ, Lee T, Chen CH. 1995. Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59(3): 549–555. DOI:10.1016/0016-7037(94)00360-X
[] DePaolo DJ, Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157–185. DOI:10.1016/S0009-2541(00)00261-8
[] Dostal J, Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207–218. DOI:10.1016/S0009-2541(99)00113-8
[] Dungan MA, Lindstrom MM, McMillan NJ, Moorbath S, Hoefs J, Haskin LA. 1986. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: 1. The petrology and geochemistry of the Servilleta Basalt. J. Geophys. Res., 91(B6): 5999–6028.
[] Ellam RM, Carlson RW, Shirey SB. 1992. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature, 359(6397): 718–721. DOI:10.1038/359718a0
[] Fan QC, Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32(4): 765–810. DOI:10.1093/petrology/32.4.765
[] Fan QC, Chen WJ, Hurford AJ, Hunziker JG. 1992a. The major and trace element chemistry of Quaterary basalt in Datong. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press: 93-100.
[] Fan QC, Liu RX, Ma BL. 1992b. Upper-mantle amphiboles from china and their genetic implications. Acta Mineralogica Sinica, 12(4): 352–358.
[] Fan WM, Zhang HF, Baker J, Mason PRD, Menzies MA. 2000. On and off the North China craton: Where is the Archaean keel. Journal of Petrology, 41(7): 933–950. DOI:10.1093/petrology/41.7.933
[] Fitton JG, Dunlop HM. 1985. The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth and Planetary Science Letters, 72(1): 23–38. DOI:10.1016/0012-821X(85)90114-1
[] Foley SF, Barth MG, Jenner GA. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5): 933–938. DOI:10.1016/S0016-7037(99)00355-5
[] Frey FA, Garcia MO, Wise WS, Kennedy A, Gurriet P, Albarede F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkalic basalts. Journal of Geophysical Research, 96(B9): 14347–14375. DOI:10.1029/91JB00940
[] Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307–322. DOI:10.1016/S0012-821X(02)00489-2
[] Gilbert H, Beck S, Zandt G. 2006. Lithospheric and upper mantle structure of central Chile and Argentina. Geophysical Journal International, 165(1): 383–398. DOI:10.1111/gji.2006.165.issue-1
[] Gi ll. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag: 1-390.
[] Glazner AF, Fanner GL, Hughes WT, Wooden JL, Pickthorn W. 1991. Contamination of basaltic magma by mafic crust at Amboy and Pisgah craters, Mojave Desert, California. Journal of Geophysical Research, 96(13): 13673–13691.
[] Guo F, Fan WM, Miao LC, Zhao L. 2009. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D), 52(7): 940–951. DOI:10.1007/s11430-009-0083-2
[] Han BF, Wang SG, Kagami H. 1999. Trace element and Nd-Sr isotope constraints on origin of the Chifeng flood basalts, North China. Chemical Geology, 155(3): 187–199.
[] Hawkesworth CJ, Hergt JM, Ellam RM, McDermott F. 1991. Element fluxes associated with subduction related magmatism. Philosophical Transactions of the Royal Society of London, Series A, 355(1638): 393–405.
[] Ho KS, Chen JC, Lo CH, Zhao HL. 2003. 40Ar-39Ar dating and geochemical characters of late Cenozoic basaltic rocks form the Zhejiang-Fujian region, SE China: Eruption ages, magmatic migration and petrogenesis. Chemical Geology, 197(1-4): 287–318. DOI:10.1016/S0009-2541(02)00399-6
[] Ho KS, Liu Y, Chen JC, Yang HJ. 2008. Elemental and Sr-Nd-Pb isotopic compositions of Late Cenozoic Abaga basalts, Inner Mongolia: Implications for petrogenesis and mantle process. Geochem. J, 42(4): 339–357. DOI:10.2343/geochemj.42.339
[] Ho KS, Liu Y, Chen JC, Yon CF, Yang HJ. 2010. Geochemical characteristics of Cenozoic Jining basalts of the Western North China Craton: Evidence for the role of the lower crust, lithosphere, and asthenosphere in petrogenesis. Terr. Atmos. Ocean. Sci., 22(1): 15–40.
[] Hoang N, Flower MFJ. 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a diffuse igneous province. Journal of Petrology, 39(3): 369–395. DOI:10.1093/petroj/39.3.369
[] Hofman AW, Jochum KP, Seufert M, White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33–45. DOI:10.1016/0012-821X(86)90038-5
[] Hooper PR, Hawkesworth CJ. 1993. Isotopic and geochemical constraints on the origin and evolution of the Columbia River Basalt. Journal of Petrology, 34(6): 1203–1246. DOI:10.1093/petrology/34.6.1203
[] Humphreys ER, Niu YL. 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112(1-2): 118–136. DOI:10.1016/j.lithos.2009.04.038
[] Irvine TN, Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. DOI:10.1139/e71-055
[] Jing X, Wu TR, He YK. 2010. The geological environment of the xenolith-bearing Miocene basalt form Siziwang County, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis(2): 215–223.
[] Jung S, Masberg P. 1998. Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany): Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. Journal of Volcanology and Geothermal Research, 86(1-4): 151–177. DOI:10.1016/S0377-0273(98)00087-0
[] Jung S. 1999. The role of crustal contamination during the evolution of continental rift-related basalts: A case study from the Vogelsberg area (Central Germany). Geolines, 9: 48–58.
[] Kempton PD. 1987. Mineralogic and geochemical evidence for differing stiles of metasomatism in spinel lherzolite xenoliths: Enriched mantle source regions of basalts. In: Menzies MA and Hawkesworth CJ (eds.). Mantle Metasomatism. London: Academic Press: 45-89.
[] Kimura JI, Yoshida T, Iizumi S. 2002. Origin of low-K intermediate lavas at Nekoma volcano, NE Honshu arc, Japan: Geochemical constraints for lower-crustal melts. Journal of Petrology, 43(4): 631–661. DOI:10.1093/petrology/43.4.631
[] Kononova VA, Kurat G, Embey-Isztin A, Pervov VA, Koeberl C, Brandstatter F. 2002. Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau, south-eastern Mongolia. Mineralogy and Petrology, 75(1-2): 1–21. DOI:10.1007/s007100200012
[] Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth and Planetary Sciences, 29(1): 71–107. DOI:10.1146/annurev.earth.29.1.71
[] Langmuir CH, Klein EM, Plank T. 1992. In mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, 71: 183–280.
[] Lassiter JC and DePaolo DJ. 1997. Plume/lithosphere interaction in the generation if continental and oceanic flood basalts: Chemical and isotopic constraints. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, American Geophysical Union, 100: 335-355
[] Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750. DOI:10.1093/petrology/27.3.745
[] Li XG. 2010. China Earthquake Tectonic Movement. Beijing: Seismological Press: 1-35.
[] Liu CQ, Xie GH, Masuda A. 1995. Geochemistry of Cenozoic basalts from eastern China (Ⅰ) Major element, trace element compositions: Petrogenesis, characteristics of mantle source. Geochimica, 24(1): 1–19.
[] Liu RX, Chen WJ, Sun JZ, Li DM. 1992. The K-Ar age and tectonic enverionment of Cenozoic volcanic rock in China. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press: 320-329.
[] Liu YS, Gao S. 1999. Geochemistry of granulites in north china craton: Implications for the composition of Archean lower crust. Geology-Geochemistry, 27(3): 40–46.
[] Luo XQ, Chen QT. 1990. Preliminary study on geochronology for Cenozoic basalts from Inner Mongolia. Acta Petrologica et Mineralogica, 9(1): 37–46.
[] Ma JL, Xu YG. 2006. Old EMI-type enriched mantle under the middle North China craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province. Chinese Science Bulletin, 51(11): 1343–1349. DOI:10.1007/s11434-006-1343-6
[] Mckenzie DP, Bickl EMJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625–679. DOI:10.1093/petrology/29.3.625
[] McKenzie DP, O’Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021–1091. DOI:10.1093/petrology/32.5.1021
[] Menzies MA. 1992. The lower lithosphere as a major source for continent flood basalts: A re-appraisal. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and Causes of Continental Break-Up. Geological Society, London, Special Publications, 68(1): 293–304. DOI:10.1144/GSL.SP.1992.068.01.18
[] Menzies MA, Fan WM, Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NB and Neary CR (eds.). Magmatic Processes and Plate Tectonics. Geol. Soc. Lond. Spec. Publ., 76(1): 71–78. DOI:10.1144/GSL.SP.1993.076.01.04
[] Okamura S, Arculus RJ, Martynov YA. 2005. Cenozoic magmatism of the north-eastern Eurasian margin: The role of lithosphere versus asthenosphere. Journal of Petrology, 46(2): 221–253.
[] Peng ZC, Zartman RE, Futa K, Chen DG. 1986. Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology: Isotope Geoscience Section, 59: 3–33. DOI:10.1016/0168-9622(86)90054-0
[] Peng ZX, Mahoney JJ, Hooper PR, Harris C, Beane J. 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1): 267–288. DOI:10.1016/0016-7037(94)90464-2
[] Qiu JX, Zeng GC. 1987. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China. Acta Petrologica Sinica, 3(4): 1–9.
[] Reddy DV, Nagabhushanam P, Sukhija BS, Reddy GR. 2010. Continuous radon monitoring in soil gas towards earthquake precursory studies in basaltic region. Radiation Measurements, 45(8): 935–942. DOI:10.1016/j.radmeas.2010.05.010
[] Rudnick RL, Barth M, Horn I, McDonough WF. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278–281. DOI:10.1126/science.287.5451.278
[] Ruzhentsev SV, Pospelov II. 1992. The South Mongolian Variscan fold system. Geotectonics, 30(5): 383–395.
[] Shao JA, Zhang LQ, Mou BL, Han QJ. 2007. The Surge of the Great Xingan Range and Geochemical Background. Beijing: Geological Publishing House: 1-25.
[] She HQ, Wang YW, Li QH, Feng CY, Li DX. 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolian, China. Acta Geologica Sinica, 80(6): 863–875.
[] Song Y, Frey FA, Zhi X. 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology, 85(1-2): 35–62. DOI:10.1016/0009-2541(90)90122-N
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Talusani RVR. 2010. Bimodal tholeiitic and mildly alkalic basalts from Bhir area, central Deccan Volcanic Province, India: Geochemistry and petrogenesis. Journal of Volcanology and Geothermal Research, 189(3-4): 278–290. DOI:10.1016/j.jvolgeores.2009.11.019
[] Tang YJ, Zhang HF, Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3-4): 309–327. DOI:10.1016/j.chemgeo.2006.03.013
[] Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Boston: Blackwell Science: 211.
[] Tatsumoto M, Basu AR, Huang WK, Wang JW, Xie GH. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: Enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters, 113(1-2): 107–128. DOI:10.1016/0012-821X(92)90214-G
[] Wang K, Plank T, Walker JD, Smith EI. 2002. A mantle melting profile across the basin and range, SW USA. J. Geophys. Res., 107(B1): ECV5-1–ECV5-21. DOI:10.1029/2001JB000209
[] Wedepohl KH. 2000. The composition and formation of Miocene tholeiites in the Central European Cenozoic plume volcanism (CECV). Contributions to Mineralogy and Petrology, 140(2): 180–189. DOI:10.1007/s004100000184
[] Wiechert U, Ionov DA, Wedephol KH. 1997. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: A record of partial melting and cryptic metasomatism in the upper mantle. Contrib. Mineral. Petrol., 126(4): 345–364. DOI:10.1007/s004100050255
[] Wright TL, Mangan M, Swanson DA. 1989. Chemical data for flows and feeder dikes of the Yakima Basalt subgroup, Columbia River Basalt Group, Washington, Oregon and Idaho, and their bearing on a petrogenetic model. US Geological Survey, Bulletin, 1821: 1–71.
[] Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL, Sun S. 2009. Paleozoic multiple subduction-accretion processes of the Southern Altaids. American Journal of Science, 309(3): 221–270. DOI:10.2475/03.2009.02
[] Xu WL, Yang DB, Pei FP, Wang F, Wang W. 2009. Mesozoic lithospheric mantle modified by delaminated lower continental crust in the North China Craton: Constraints from compositions of amphiboles from peridotite xenoliths. Journal of Jilin University (Earth Science Edition), 39(4): 606–617.
[] Xu YG. 1999. Roles of thermo mechanic and chemical erosion in continental lithospheric thinning. Bulletin of Mineralogy Petrology and Geochemistry, 18(1): 1–5.
[] Xu YG. 2001. Thermotectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing, and mechanism. Phys. Chem. Earth A., 26(9): 747–757. DOI:10.1016/S1464-1909(01)00080-6
[] Xu YG, Chung SL, Ma JM, Shi LB. 2004. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. Journal of Geology, 112(5): 593–605. DOI:10.1086/422668
[] Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247–271. DOI:10.1016/j.chemgeo.2005.08.004
[] Ying JF, Zhang HF, Sun M, Tang YJ, Zhou XH, Liu XM. 2007. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: Implication for magma mixing of different sources in an extensional regime. Lithos, 98(1-4): 45–66. DOI:10.1016/j.lithos.2007.02.001
[] Zhang C, Han BF, Tong Y, Li GC. 2004. General characteristics and origin of Cenozoic basalt from Abagaqi region, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 31(4): 21–26.
[] Zhang C, Liu SW, Han BF, Li GC. 2006. Characteristies of ultramafic xenoliths form Cenozoic basalts in Abagaqi area, Inner Mongolia. Acta Petrologica Sinica, 22(11): 2801–2807.
[] Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM, Zheng JP. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 67(22): 4373–4387. DOI:10.1016/S0016-7037(03)00377-6
[] Zhang JJ, Zheng YF, Zhao ZF. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110(1-4): 305–326. DOI:10.1016/j.lithos.2009.01.006
[] Zhang WH, Han BF, Du W, Liu ZQ. 2005. Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia: Evidence form element and Sr-Nd-Pb isotopic geochemistry. Acta Petrologica Sinica, 21(6): 1569–1582.
[] Zhang WH, Han BF. 2006. K-Ar chronology and geochemistry of Jining Cenozoic basalts, Inner Mongolia, and geodynamic implications. Acta Petrologica Sinica, 22(6): 1597–1607.
[] Zheng JP, O’Reilly SY, Giffin WL, Lu FX, Zhang M, Pearson NJ. 2001. Relict refractory mantle beneath the eastern North China Block: Signification for lithospheric evolution. Lithos, 57(1): 43–66. DOI:10.1016/S0024-4937(00)00073-6
[] Zhi X, Song Y, Frey FA, Feng JL, Zhai MZ. 1990. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88(1-2): 1–33. DOI:10.1016/0009-2541(90)90101-C
[] Zhou XH, Armstrong RL. 1982. Cenozoic volcanic rocks of eastern China: Secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 59(3): 301–329.
[] Zindler A, Hart SR. 1986. Chemical geodynamics. Ann. Rev. Earth and Planetary Science Letters, 14: 493–571. DOI:10.1146/annurev.ea.14.050186.002425
[] Zou H, Zindler A, Xu XS, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2): 33–47. DOI:10.1016/S0009-2541(00)00243-6
[] 陈生生, 樊祺诚, 赵勇伟, 隋建立. 2011. 内蒙古贝力克玄武岩台地火山地质及成因探讨. 地震地质, 33(2): 430–439.
[] 陈生生, 樊祺诚, 赵勇伟, 隋建立, 杜星星. 2012. 内蒙古阿巴嘎地幔岩捕掳体与岩石圈地幔性质探讨. 岩石学报, 28(4): 1108–1118.
[] 樊祺诚, 陈文寄, Hurford AJ, Hunziker JG. 1992a. 大同玄武岩主要元素和微量元素化学. 见: 刘若新主编. 中国新生代玄武岩年代学与地球化学. 北京: 地震出版社: 93-100.
[] 樊祺诚, 刘若新, 马宝林. 1992b. 中国上地幔角闪石及其成因意义. 矿物学报, 12(4): 352–358.
[] 郭锋, 范蔚茗, 李超文, 苗来成, 赵亮. 2009. 早古生代古亚洲洋俯冲作用: 来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑), 39(5): 569–579.
[] 荆旭, 吴泰然, 贺元凯. 2010. 内蒙古四子王旗中新世含包体玄武岩的深部地质环境分析. 北京大学学报(自然科学版)(2): 215–223.
[] 李祥根. 2010. 中国地震构造运动. 北京: 地震出版社: 1-35.
[] 刘丛强, 解广轰, 增田彰正. 1995. 中国东部新生代玄武岩的地球化学—(Ⅰ)主元素和微量元素组成: 岩石成因及源区特征. 地球化学, 24(1): 1–19.
[] 刘若新, 陈文寄, 孙建中, 李大明. 1992. 中国新生代火山岩的K-Ar年代与构造环境. 见: 刘若新主编. 中国新生代火山岩年代学与地球化学. 北京: 地震出版社: 320-329.
[] 刘勇胜, 高山. 1999. 华北克拉通麻粒岩的地球化学特征及其对太古宙下地壳组成的指示意义. 地质地球化学, 27(3): 40–46.
[] 罗修泉, 陈启桐. 1990. 内蒙古新生代玄武岩年代学初步研究. 岩石矿物学杂志, 9(1): 37–46.
[] 马金龙, 徐义刚. 2006. 河北阳原幔源包体的Sr-Nd同位素特征指示华北克拉通中部存在EMI型古老富集地幔. 科学通报, 51(10): 1190–1196.
[] 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社: 331-350.
[] 邱家骧, 曾广策. 1987. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义. 岩石学报, 3(4): 1–9.
[] 邵济安, 张履桥, 牟保磊, 韩庆军. 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社: 1-251.
[] 佘宏全, 王义文, 李庆环, 张德全, 丰成友, 李大新. 2006. 内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义. 地质学报, 80(6): 863–875.
[] 徐义刚. 1999. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄. 矿物岩石地球化学通报, 18(1): 1–5.
[] 张臣, 韩宝福, 童英, 李德春. 2004. 内蒙古阿巴嘎地区新生代玄武岩基本特征及成因. 吉林大学学报(地球科学版), 31(4): 21–26.
[] 张臣, 刘树文, 韩宝福, 李德春. 2006. 内蒙古阿巴嘎旗新生代玄武岩中超镁铁岩包体的特征. 岩石学报, 22(11): 2801–2807.
[] 张文慧, 韩宝福, 杜蔚, 刘志强. 2005. 内蒙古集宁新生代玄武岩的地幔源区特征: 元素及Sr-Nd-Pb同位素地球化学证据. 岩石学报, 21(6): 1569–1582.
[] 张文慧, 韩宝福. 2006. 内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6): 1597–1607.