2. 中国地质调查局天津地质矿产研究所,天津 300170
2. Tianjin Institute of Geology and Mineral Resources, China Geological Survey,Tianjin 300170, China
大陆的起源与演化历来是地球科学研究的热点问题, 华北克拉通是世界上最古老的大陆地壳之一, 有着近38.5亿年的演化历史(Liu et al., 1992;Diwu et al., 2013), 其中保存了大量前寒武纪的岩石和构造记录。因此, 成为研究早前寒武纪地壳生长、增生的热点地区之一。已有的研究表明, 华北克拉通前寒武纪基底是由不同微陆块拼合而成(伍家善等, 1998;翟明国等, 2000;Kusky et al., 2003;Zhao et al., 2005;赵国春, 2009)。以华北中部带(Trans-North China Orogen)为界将华北克拉通划分为东部陆块和西部陆块, 并进一步将西部陆块划分为北部的阴山地块和南部鄂尔多斯地块, 其间为贺兰山构造带或孔兹岩带(Zhao et al., 2005)。近年来, 不同的研究者围绕华北中部带以及Colombia超大陆的形成演化问题, 取得了大量的研究进展(Zhao et al., 2000, 2008, 2010;Condie, 2002;陆松年等, 2002;Wilde et al., 2002;Kröner et al., 2005;Santosh et al., 2006;Santosh, 2010;Kusky et al., 2007;Trap et al., 2009;Rogers and Santosh, 2009)。相对而言, 西部的贺兰山构造带研究相对薄弱, 该带沿集宁-大青山-乌拉山-千里山-贺兰山一线分布, 主要由古元古代孔兹岩系、TTG片麻岩和不同性质花岗岩组成(Dash et al., 1987;Li et al., 2000;赵国春等, 2002;赵国春, 2009)。前人的工作主要集中在贺兰山地区出露的孔兹岩系(贺兰山群)的形成时代、原岩性质、沉积年龄、变质时代及其构造意义的研究(胡能高等, 1994;卢良兆等, 1996;董春艳等, 2007;周喜文和耿元生, 2009;周喜文等, 2010;Wei et al., 2011;校培喜等, 2011;Yin et al., 2011)。相对而言, 贺兰山构造带中的花岗岩研究较为薄弱, 已有的研究仅限于年代学工作(耿元生等, 2009;董春艳等, 2007)。有关这些花岗岩的性质、来源和时代等问题还缺乏综合研究。
本文在野外地质研究基础上, 重点开展贺兰山构造带(赵国春(2009)所指的孔兹岩带的西段)中代表性花岗岩的岩相学、地球化学、锆石U-Pb年代和Hf同位素组成的研究, 探讨其代表的构造热事件性质, 为本区古元古代地壳演化研究提供依据。
2 区域地质背景贺兰山位于华北克拉通西部的鄂尔多斯地块和阴山地块之间, 是孔兹岩带西段的重要组成部分(图 1)。该构造带经历了前寒武纪、显生宙长期的演化过程, 尤其是古元古代构造运动形成了贺兰山的基底和复杂的构造、岩浆、变质作用记录。贺兰山的基底岩系主要由孔兹岩系、少量英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩夹镁铁质麻粒岩组成。其中侵入了大量的花岗岩体(赵国春等, 2002;赵国春, 2009), 对其进行综合研究成为探讨贺兰山构造演化的重要手段之一。
|
图 1 贺兰山地区地质简图(据Zhao et al,2005;耿元生等,2009) Fig. 1 Geological sketch map of study area in Helanshan(modified after Zhao et al,2005; Geng et al,2009) |
研究区位于贺兰山北段, 基底岩系以富铝岩系的贺兰山岩群为代表(图 1)。该岩群主要由富铝片麻岩、石榴黑云变粒岩、石榴黑云斜长变粒岩和大理岩构成(胡能高等, 1994;卢良兆等, 1996)。原岩为碎屑岩、泥质岩、富泥质杂砂岩, 以及少量中酸性火山岩、碳酸盐岩和泥灰质沉积岩(刘建忠等, 1998)。这套岩石经历了强烈的区域变质变形改造, 变质程度普遍达到角闪岩相, 局部达到麻粒岩相(刘建忠等, 1998;胡能高等, 1994;冯鸿儒, 1995)并有高压泥质麻粒岩(周喜文等, 2010)。已有的同位素年龄显示其变质时代为1950±8Ma(周喜文和耿元生, 2009)。
贺兰山基底变质孔兹岩系中侵入有大量的花岗质岩体, 主要包括缺台沟单元、扣笨沟单元、巴音思德勒序列和宗别立序列(李伍平, 1994)。岩性以含黑云母、石榴子石的似斑状花岗岩为主, 并有中细粒花岗岩和白岗岩(卢良兆等, 1996)。沙巴台花岗岩出露于研究区东北部的星光一带(耿元生等, 2009), 相当于扣笨沟单元(胡能高等, 1994;李伍平, 1994)。本文样品主要取自该岩体, 地理位置在沙巴台沟口(北纬39°17′062″, 东经106°39′001″)。
3 样品描述本研究样品为石榴子石二云母花岗岩(12HL-40, 41, 43)和二云母花岗岩(12HL-39, 42, 44~48)。石榴子石二云母花岗岩主要为块状构造, 中粗粒似斑状结构。主要组成矿物为钾长石(40%)、斜长石(5%, An=30~32)、石英(40%)、黑云母(5%)、白云母(5%)、石榴子石(5%)和少量夕线石, 其中大多数斜长石颗粒都发生了强烈蚀变, 钾长石为条纹长石, 未发生蚀变, 黑云母在单偏光下为铁褐色, 而白云母为无色, 石榴子石呈集合体, 直径多为1~2cm(图 2a, b), 主要为铁铝榴石, 夕线石显示特征的竹节状, 常和黑云母交生在一起。
|
图 2 贺兰山古元古代花岗岩野外地质特征(a)和镜下特征(b-e) 矿物代号:Grt-石榴石;Bt-黑云母; Mu-白云母;Kfs-钾长石;Q-石英;Pl-斜长石;Sill-夕线石 Fig. 2 Field photograph(a)and photomicrographs(b-e)of Paleoproterozoic granite in Helanshan Mineral abbreviations: Grt-garnet; Bt-biotite; Mu-muscovite; Kfs-K-feldspar; Q-quartz; Pl-plagioclase; Sill-sillimanite |
二云母花岗岩也呈块状构造, 但为中粗粒等粒或似斑状结构, 主要矿物组合为石英(40%)、斜长石(35%, An=18~20)、钾长石(15%)、黑云母(8%)和白云母(2%)和少量夕线石(图 2c, d, e), 局部见有零星石榴石。两种岩石均呈现为灰白色、块状构造, 未见明显构造变形, 但是, 岩石蚀变明显(图 2 c, d, e), 黑云母多呈黑色-黑绿色。黑云母在单偏光下为铁褐色, 晶体可达2~5mm, 白云母为无色, 夕线石显示特征的竹节状和纤维状(图 2d), 常和黑云母伴生在一起。
4 分析方法本文样品的测试分析均在西北大学大陆动力学国家重点实验室完成。元素、U-Pb年龄和Lu-Hf同位素分析结果分别列于表 1、表 2和表 3。
|
|
表 1 贺兰山古元古代花岗岩主量(wt%)和微量元素(×10-6)分析结果 Table 1 Contents of major(wt%)and trace elements(×10-6)for Paleoproterozoic granites in Helanshan |
|
|
表 2 贺兰山古元古代花岗岩锆石U-Pb定年结果 Table 2 U-Pb dating data of zircons from Paleoproterozoic granite in Helanshan |
|
|
表 3 贺兰山古元古代花岗岩的锆石Lu-Hf同位素组成 Table 3 Lu-Hf isotopic compositions of zircons from Paleoproterozoic granite in Helanshan |
主量元素测定时, 将样品+熔剂制成玻璃熔饼, 采用XRF(Rigaku RIX 2100)进行测定, 分析精度优于2%。微量元素测定时, 将样品和酸加入Teflon高压溶样弹中溶解后制成溶液, 采用ICP-MS(Agilent 7500a)进行测定, 分析精度优于10%。详细实验过程见相关文献(刘晔等, 2007)。
锆石分选依次采用摇床、磁选和重液法进行粗选, 最后在双目镜下选出锆石颗粒用于U-Pb定年。锆石U-Pb年龄测定在LA-ICP-MS仪器上进行, 激光斑束直径为30μm, 频率为8Hz。在测定年龄的同时, 获取锆石的Ti, REE等部分微量元素的含量, 详细分析过程见文献(Liu et al., 2007)。锆石Hf同位素组成在LA-MC-ICP-MS仪器上测定, 激光斑束直径为32μm, 频率为8Hz, 详细分析流程见(Yuan et al., 2008)。εHf(t)的计算采用176Lu衰变常数为1.867×10-11a(Albarède et al., 2006), 球粒陨石现今的176Hf/177Hf=0.282772, 176Lu/177Lu=0.0332(Bouvier et al., 2008);Hf的亏损地幔模式年龄(tDM1)计算采用现今亏损地幔176Hf/177Hf=0.28325和176Lu/177Lu=0.0384(Vervoort et al., 1999)。Hf同位素两阶段模式年龄(tDM2)计算时, 平均地壳的176Lu/177Lu=0.015(Rudnick and Gao, 2003)。
5 分析结果 5.1 主、微量元素地球化学贺兰山的二云母花岗岩具有高SiO2含量特征(71.96%~73.87%)。除12HL-49外, 其余样品TiO2含量变化在0.09%~0.29%之间。所有二云母花岗岩均具有高Al2O3(14.39%~15.10%)和K2O(4.97%~6.06%)含量, 低Na2O(2.77%~3.00%)、MnO(≤0.01%)和CaO(0.52%~0.71%)含量的特征。Fe2O3T含量变化在1.12%~1.59%之间。这些地球化学特征显示, 二云母花岗岩为过铝质碱性系列(图 3a, b)。相对而言, 石榴子石二云母花岗岩同样具有高SiO2(71.99%~72.40%)、Al2O3(14.36%~14.48%)和K2O含量(4.79%~5.75%), 以及低Na2O(2.78%~2.88%)、MnO(0.02%~0.05%)和CaO(0.53%~0.76%)的特征, 并归属于过铝质花岗岩(图 3b);但是, 石榴石二云母花岗岩的Fe2O3T含量(1.94%~3.22%)明显高于二云母花岗岩的Fe2O3T含量(1.12%~1.59%)。
|
图 3 贺兰山古元古代花岗岩的TAS图解(a, 据Middlemost, 1994)和A/CNK-A/NK图解(b, 据Maniar and Piccoli, 1989) A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK=Al2O3/(Na2O+K2O) Fig. 3 TAS diagram(a, after Middlemost, 1994)and plot of A/CNK vs. A/NK for Paleoproterozoic granite in Helanshan(b, after Maniar and Piccoli, 1989) |
贺兰山二云母花岗岩和石榴石二云母花岗岩均具有稀土总量较高(分别为131×10-6~211×10-6和124×10-6~221×10-6), 轻重稀土分异明显(LREE/HREE分别为16.1~24.2和8.65~12.78, (La/Yb)N=75.9~191.2和11.93~31.49)和明显Eu负异常(δEu=0.15~0.32, 计算公式为δEu=2EuN/(SmN+GdN))的特点。在球粒陨石标准化的稀土元素配分图解中明显的REE分异特征(图 4a), 而且两者LREE分异程度一致((La/Sm)N均在2.49~2.76之间)。但是, 二云母花岗岩和石榴石二云母花岗岩的HREE含量和分异程度差异明显(图 4a), 两者的(Gd/Yb)N值分别为15.4~34.9和2.3~6.6。除了两者的HREE差异外, 其它稀土元素和微量元素都具有相同的特征, 均富集Rb、Th、U和Pb, 明显亏损Ba、Nb、Ta、Sr和Ti(图 4b)。
|
图 4 贺兰山古元古代花岗岩的球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图(标准化值据Sun and McDough, 1989) 图 3、图 6图例同此图 Fig. 4 Chondrite-normalized REE patterns and primitive mantle-normalized trace element diagrams for Paleoproterozoic granite in Helanshan(normalization values after Sun and McDonough, 1989) Symbols in Fig. 3, Fig. 6 as in this figure |
锆石样品分选自二云母花岗岩代表性样品11HL-01。锆石多为50~100μm, 多数为长宽比2:1的短柱状, 少数为长柱状。阴极发光图像显示锆石具有清晰的震荡环带(图 5a)。锆石球粒陨石标准化稀土元素分配模式显示其具有轻稀土亏损、Ce的正异常和Eu的负异常(图略)。而且绝大多数分析点Th/U比值大于0.10。这些均为岩浆锆石的特点。
|
图 5 贺兰山古元古代花岗岩锆石阴极发光图像(a)和锆石的U-Pb年龄谐和图(b) Fig. 5 CL images(a)and U-Pb concordia plot(b)of zircons from Paleoproterozoic granite in Helanshan |
利用LA-ICP-MS测定锆石核部获得55个测点数据。由于锆石中同时既有Pb的丢失, 又有普通Pb的加入。因此, 根据测得的204Pb估算其中非放射成因207Pb, 采用非放射性成因207Pb小于10%的有27个点(表 2), 获得Pb丢失线上交点年龄为1966±20Ma(MSWD=3.7)。其中13个点的206Pb/238U与207Pb/206Pb的谐和度为95%~105%, 其207Pb/206Pb加权平均年龄为1958±30Ma(图 5b), 与上交点年龄在误差范围内一致, 代表了贺兰山二云母花岗岩侵位年龄。
选择U-Pb年龄谐和的锆石颗粒, 进行Lu-Hf同位素测试(表 3), 结果显示锆石的176Lu/177Hf比值小于0.002, 176Hf/177Hf变化在0.281643~0.281778之间, εHf(t)为+3.02~+6.88。按1958Ma结晶年龄计算, 平均地壳两阶段模式年龄变化在2119~2310Ma之间。
6 讨论 6.1 源区性质与岩石成因贺兰山的二云母花岗岩和石榴子石二云母花岗岩在野外呈渐变关系, 两者为同一岩体, 只是岩体不同部位石榴子石含量有差异。地球化学特征显示, 石榴子石二云母花岗岩具有明显高于二云母花岗岩的Fe2O3T含量以及HREE含量, 而岩相学研究表明石榴子石主要为铁铝榴石。因此, 贺兰山二云母花岗岩和石榴子石二云母花岗岩的地球化学差异仅是由于石榴石引起的, 两者应具有相同的起源和成因特点。
沙巴台花岗岩具有高的SiO2、Al2O3、K2O, 低TiO2、Na2O、MnO和CaO的特征, K2O+Na2O变化范围为7.57%~8.83%, K2O/Na2O≥1.70; CaO/Na2O=0.19~0.27, 铝指数A/CNK=1.19~1.30, 属强过铝质花岗岩(图 3)。并且矿物组合中出现石榴子石和白云母(图 2), 显示该花岗岩为S型花岗岩。CIPW标准矿物中出现Q、Ab、An、Or和C组合, 其中刚玉分子C为2.77%~3.70%, 表明岩石属铝和硅过饱和类型。强过铝质反映在造岩矿物上则表现为出现较多高A1的原生矿物, 如白云母、石榴子石等;具有陆壳重熔型花岗岩的特点;里特曼指数σ=1.97~2.67(σ<3.3, 计算公式为σ=[(K2O+Na2O)2]/[(SiO2)-43]), 属于钙碱性岩;在Si2O-K2O图解中, 样品落在钾玄岩系列和高钾钙碱性系列区域内(图略)。尽管由于石榴石含量高低导致HREE地球化学特征的差异, 但该岩体均表现出强烈的轻、重稀土分异特征和明显的Eu负异常特征(图 4a)。反映源区部分熔融过程中石榴子石和富钙斜长石发生了分离结晶作用, 是典型强过铝质花岗岩的稀土元素特征。在原始地幔标准化的微量元素蛛网图上, 所有花岗岩均富集Rb、Th、U和Pb, 明显亏损Ba、Nb、Ta、Sr和Ti(图 4b)。所有样品的Rb=178.8×10-6~286.5×10-6, 绝对大多数样品高于花岗岩的平均值(200×10-6);Sr(55.01×10-6~75.73×10-6)和Ba(225.9×10-6~334.0×10-6)明显低于花岗岩的平均值(Sr=300×10-6, Ba=830×10-6);Ba、Sr亏损反映岩浆经历了较为完全的分离结晶作用;大离子亲石元素(Rb、Th、U和Pb)富集、Nb和Ta亏损显示陆壳物质为岩浆的源岩。
前已述及, 贺兰山花岗岩矿物特征与地球化学特征表明其属于壳源强过铝质S型花岗岩。一般地, 过铝质S型花岗岩CaO/Na2O主要依赖于斜长石/粘土比值, CaO/Na2O小于0.3为泥质岩石的局部熔融、大于0.3者则为杂砂岩的局部熔融(Patio-Douce and Johnston, 1991;Skjerlie and Johnston, 1996)。同时, Rb/Sr比值大于0.1、Rb/Ba比值大于0.3, 则其原岩为泥质岩(Sylvester, 1998)。贺兰山过铝质S型花岗岩CaO/Na2O比值<0.3, Rb/Sr比值>0.1, Rb/Ba比值>0.3, 显示其为泥质岩石部分熔融的结果。区域地质研究表明, 本研究花岗岩侵入于贺兰山岩群孔兹岩系中, 岩体的围岩是一套富铝的片麻岩, 其原岩为泥质岩或泥质粉砂岩, K2O大于Na2O, CaO含量低, 其稀土元素总量高, 明显Eu负异常(校培喜等, 2011)。贺兰山花岗岩的主量、微量元素特征与富铝副片麻岩相似。从中结晶出的锆石, 其球粒陨石标准化稀土元素分配模式显示也具有Eu的负异常。指示该研究的过铝质S型花岗岩可能是由存在于下地壳的类似于贺兰山群的富铝片麻岩部分熔融的结果。花岗岩中锆石的εHf(t)变化在+3.02~+6.88之间, 平均地壳两阶段模式年龄为2.12~2.31Ga, 与前人报道的孔兹岩系中岩浆成因的碎屑锆石(U-Pb年龄为2.0~2.2Ga)的Hf模式年龄(2.15~2.45Ga)基本一致(Yin et al., 2011)。进一步说明强过铝质S型花岗岩的源岩有可能是贺兰山岩群基底岩系的富铝副片麻岩。
阴极发光图像显示, 锆石不存在核-幔-边结构。U-Pb定年也未发现其它残留或捕获锆石年龄的存在。因此, 我们利用全岩锆石饱和温度计(Watson and Harrison, 1983)计算获得锆石结晶时的温度为753~795℃, 指示了花岗岩浆的最低形成温度。这一结果与孔兹岩系富铝片岩高温高压熔融实验所获得的黑云母脱水熔融温度800~850℃接近。该花岗岩浆形成的热力学条件部分与泥质岩石进入麻粒岩相的条件相似(Wei et al., 2004), 并且与前人通过传统矿物温度计计算的贺兰山群主期变质温度大体相当(杨家喜等, 1992)。结合前人资料(胡能高等, 1994;Yin et al., 2011), 我们认为贺兰山过铝质S型花岗岩应该是贺兰山基底孔兹岩系的富铝片麻岩于古元古代发生脱水部分熔融的产物。
6.2 形成环境Barbarin(1999)将A/CNK≥1的过铝质花岗岩分为含白云母过铝花岗岩类(MPG)和含堇青石过铝花岗岩类(CPG)。MPG主要来源于地壳, 形成于大型地壳剪切或逆掩构造所影响的造山带, 有主要由“湿”的地壳岩石深熔作用和岩浆结晶作用形成, 具有接近花岗质最低熔体成分的特点。研究区过铝质S型花岗岩含有石榴石和白云母, 它们的A/CNK=1.19~1.30, 岩浆形成温度753~795℃, 属于典型的含白云母过铝质花岗岩(MPG), 表明主要来源于地壳物质。低Y、Nb、Yb特点显示其类似于火山弧和同碰撞花岗岩特征, 而排除了板内花岗岩和洋脊花岗岩的可能性(图 6a, b)。Maniar and Piccoli(1989)指出, 同碰撞花岗岩A/CNK>1.15, 而火山弧花岗岩A/CNK<1.05。研究区花岗岩A/CNK>1.15, 显示为同碰撞花岗岩, 这一结论也得到高Rb特征的支持(图 6c, d)。
|
图 6 贺兰山古元古代花岗岩的微量元素环境判别图解(据Pearce et al., 1984) (a)-Y-Nb ;(b)-Yb-Ta ;(c)-(Y+Nb)-Rb ;(d)-(Y+Ta)-Rb.ORG-洋中脊花岗岩;VAG-火山弧花岗岩;WPG-板内花岗岩;syn-COLG-同碰撞花岗岩 Fig. 6 Tectonic discrimination diagrams of Paleoproterozoic granite in Helanshan(after Pearce et al., 1984) ORG-oceanic ridge granites; VAG-volcanic arc granites; WPG-within-plate granites; syn-COLG-syn-collision granites |
华北西部陆块形成于阴山地块与鄂尔多斯地块1.95Ga的陆陆碰撞作用, 并形成了贺兰山基底变质岩系——孔兹岩带(赵国春, 2009)。孔兹岩系的变质时代为1950±8Ma(周喜文和耿元生, 2009), 贺兰山古元古代1.95Ga这期构造热事件普遍存在于华北克拉通北缘的孔兹岩带(王惠初等, 2005;Wan et al., 2006)。例如, 乌拉山地区1.89~1.95Ga变质热事件(刘建辉等, 2013)、大青山地区1.95Ga的镁铁质岩浆事件及其伴随的变质作用(Wan et al., 2013)和普遍的变质锆石年龄(1.83~1.96Ga, 董春艳等, 2012)。同时, 千里山孔兹岩系区域变质作用也发生于1.95Ga(Yin et al., 2009)。另外, 阿拉善变质基底中普遍存在2.0~1.9Ga的构造热事件(耿元生等, 2010)。Santosh et al., (2007a, b)对含有假蓝宝石的变质岩石进行同位素定年研究, 提出1.92Ga为超高温变质作用时代。本研究证明贺兰山S型花岗岩于同碰撞构造环境, 时代为1958±30Ma, 与上述研究成果相吻合。综合分析本文及前人研究成果, 表明1.95Ga左右, 阴山陆块与鄂尔多斯陆块确实曾与1.95Ga左右发生陆-陆碰撞形成普遍的变质作用和表壳岩系的深熔作用, 形成本文所研究的S型花岗岩。
7 结论(1) 贺兰山花岗岩主要为二云母花岗岩和石榴子石二云母花岗岩, 具有高Al2O3和K2O、低Na2O、MnO和CaO, 以及亏损Ba、Nb、Ta、Sr、Ti, 富集Rb、Th、U和Pb特征, 是典型的过铝质S型花岗岩。可能源于贺兰山基底富铝质片麻岩的部分熔融。
(2) LA-ICP-MS获得花岗岩锆石U-Pb同位素年龄为1958±30Ma, 代表了花岗岩侵位年龄, 并与区域主变质时间一致, 为限定华北西部陆块拼合形成时代提供了新的依据。
致谢 在薄片鉴定中得到苟龙龙老师的帮助;在研究工作中得到了张成立老师、魏君奇老师、张瑞英博士的帮助;审稿人包志伟博士、张华锋博士、耿元生研究员提出了建设性意见!在此一并表示感谢!| [] | Albarède F, Scherer EE, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-ray irradiation in the early solar system and the conundrum of the 176Lu decay constant. Geochimica et Cosmochimica Acta, 70(5): 1261–1270. DOI:10.1016/j.gca.2005.09.027 |
| [] | Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605–626. DOI:10.1016/S0024-4937(98)00085-1 |
| [] | Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48–57. DOI:10.1016/j.epsl.2008.06.010 |
| [] | Condie KC. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41–43. DOI:10.1016/S1342-937X(05)70886-8 |
| [] | Dash B, Sahu KN, Bowes DR. 1987. Geochemistry and original nature of Precambrian khondalites in the Eastern Ghats, Orissa, India. Trans.Transactions of the Royal Society of Edinburgh: Earth Sciences, 78(2): 115–127. DOI:10.1017/S0263593300011020 |
| [] | Diwu CR, Sun Y, Wilde SA, Wang HL, Dong ZC, Zhang H, Wang Q. 2013. New evidence for ~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research, 23(4): 1484–1490. DOI:10.1016/j.gr.2013.01.001 |
| [] | Dong CY, Liu DY, Li JJ, Wan YS, Zhou HY, Li CD, Yang YH, Xie LW. 2007. Palaeoproterozoic khondalie belt in the North China Craton: New evidence from SHRIMP dating and Hf isotopic composition of zircons from metamorphic rocks in the Bayan UL-Halan Mountains area. Chinese Science Bulletin, 52(16): 1913–1922. |
| [] | Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ, Ling WQ. 2012. Late Palaeoproterozoic khondalie belt in the Daqing Mountain of the North China Craton: Zircon SHRIMP U-Pb dating. Scientia Sinica (Terrae), 44(12): 1851–1862. |
| [] | Feng HR. 1995. The discussion on stratigraphic sequence and fold structure during the main deformation period of Helanshan Group. Journal of Xi’an College of Geology, 17(1): 10–14. |
| [] | Geng YS, Zhou XW, Wang XS, Ren LD. 2009. Late-Paleoproterozoic granite events and their geological significance in Helanshan area, Inner Mongolia: Evidence from geochronology. Acta Petrologica Sinica, 25(8): 1830–1842. |
| [] | Geng YS, Wang XS, Wu CM, Zhou XW. 2010. Late-Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area: Evidence from geochronology. Acta Petrologica Sinica, 26(4): 1159–1170. |
| [] | Hu NG, Yang JX, Wang ZB, et al. 1994. Composition and Evolution of the Helanshan Complex. Xi’an: Xi’an Map Publishing House: 1-121. |
| [] | Kröner A, Wilde SA, Li JH, Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577–595. DOI:10.1016/j.jseaes.2004.01.001 |
| [] | Kusky TM, Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. DOI:10.1016/S1367-9120(03)00071-3 |
| [] | Kusky T, Li JH, Santosh M. 2007. The Paleoproterozoic North Hebei Orogen: North China Craton’s collisional suture with the Columbia supercontinent. Gondwana Research, 12(1-2): 4–28. DOI:10.1016/j.gr.2006.11.012 |
| [] | Li JH, Qian XL, Liu SW. 2000. Geochemistry of khondalites from the central portion of North China Craton (NCC): Implications for the continental cratonization in the Neoarchean. Science in China (Series D), 43(3): 263–265. DOI:10.1007/BF02916830 |
| [] | Li WP. 1994. Geologic features and lithodimic unit system for granites in the Helanshan Group Early Proterozoic. Journal of Xi’an College of Geology, 16(3): 46–53. |
| [] | Liu DY, Nutman AP, Compston W, Wu JS, Shen QH. 1992. Remnants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 |
| [] | Liu JH, Liu FL, Ding ZJ, Chen JQ, Liu PH, Shi JR, Cai J, Wang F. 2013. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton. Acta Petrologica Sinica, 29(2): 485–500. |
| [] | Liu JZ, Li TS, Lu LZ. 1998. The evolution of metamorphism-deformation and its dynamics of Early Precambrian khondalite series in the northern segment of Helan Mountain. Acta Mineralogica Sinica, 18(4): 431–440. |
| [] | Liu XM, Gao S, Diwu CR, Yuan HL, Hu ZC. 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size. Chinese Science Bulletin, 52(9): 1257–1264. DOI:10.1007/s11434-007-0160-x |
| [] | Liu Y, Liu XM, Hu ZC, Diwu CR, Yuan HL, Gao S. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203–1210. |
| [] | Lu LZ, Xu XC, Liu FL. 1996. Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House: 1-59. |
| [] | Lu SN, Yang CL, Li HK, Chen ZH. 2002. North China Continent and Columbia Supercontinent. Earth Science Frontiers, 9(4): 225–233. |
| [] | Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geol.Soc.Am.Bull., 101(5): 635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
| [] | Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Review, 37(3-4): 215–224. DOI:10.1016/0012-8252(94)90029-9 |
| [] | Patiño-Douce AE, Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib.Mineral.Petrol., 107(2): 202–218. DOI:10.1007/BF00310707 |
| [] | Pearce JA, Harris BW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petroleum Geology, 25(4): 956–983. |
| [] | Rogers JJW, Santosh M. 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research, 15(3-4): 373–380. DOI:10.1016/j.gr.2008.06.008 |
| [] | Rudnick RL, Gao S. 2003. Composition of the continental crust. In: Heinrich DH and Karl KT (eds.).Treatise on Geochemistry, Volume 3.Oxford: Elsevier Pergamon: 164. |
| [] | Santosh M, Sajeev K, Li JH. 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. Gondwana Research, 10(3-4): 256–266. DOI:10.1016/j.gr.2006.06.005 |
| [] | Santosh M, Tsunogae T, Li JH, Liu SJ. 2007a. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research, 11(3): 263–285. DOI:10.1016/j.gr.2006.10.009 |
| [] | Santosh M, Wilde SA, Li JH. 2007b. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178–196. DOI:10.1016/j.precamres.2007.06.006 |
| [] | Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149–167. DOI:10.1016/j.precamres.2010.02.003 |
| [] | Skjerlie KP, Johnston AD. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phase: Implications for anatexis in the deep to very deep continental crust and active continental margins. Journal of Petrology, 37(3): 661–691. DOI:10.1093/petrology/37.3.661 |
| [] | Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication. 42(1): 313-345 |
| [] | Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29–44. DOI:10.1016/S0024-4937(98)00024-3 |
| [] | Trap P, Faure M, Lin W, Monié P, Meffre S, Melleton J. 2009. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1-2): 80–98. DOI:10.1016/j.precamres.2009.03.011 |
| [] | Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168(1-2): 79–99. DOI:10.1016/S0012-821X(99)00047-3 |
| [] | Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY, Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249–271. DOI:10.1016/j.precamres.2006.06.006 |
| [] | Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC, Cu H. 2013. Episodic Paleoproterozoic (~2.45Ga, ~1.95Ga and ~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock Ge. Precambrian Research, 224: 71–93. DOI:10.1016/j.precamres.2012.09.014 |
| [] | Wang HC, Lu SN, Zhao FQ, Zhong CT. 2005. The paleoproterozoic geological records in North China Craton and their tectonic significance. Geological Survey and Research, 28(3): 129–143. |
| [] | Watson EB, Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. DOI:10.1016/0012-821X(83)90211-X |
| [] | Wei CJ, Powell R, Clarke GL. 2004. Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. J.Metamorphic Geol., 22(5): 495–508. DOI:10.1111/jmg.2004.22.issue-5 |
| [] | Wei D, Li XH, Guo JH, Yu L, Wang XC. 2011. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-223: 1–16. |
| [] | Wilde SA, Zhao GC, Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85–94. DOI:10.1016/S1342-937X(05)70892-3 |
| [] | Wu JS, Geng YS, Shen QH, Wan YS, Liu DY, Song B. 1998. Archean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-continent. Beijing: Geological Publishing House: 1-212. |
| [] | Xiao PX, You WF, Xie CR, Li P, Bai SM. 2011. La-ICP-MS U-Pb detrital zircon geochronology of alumina-rich gneiss of the Helanshan complex-group in the northern segment of Helanshan Mountains and regional comparison. Geological Bulletin of China, 30(1): 26–36. |
| [] | Yang JX, Hu NG, Dai SE, Li RX. 1992. A study on P-T condition of main metamorphism of the metamorphic complex of Helanshan Group. Mineralogy and Petrology, 12(4): 12–20. |
| [] | Yin CQ, Zhao GC, Sun M, et al. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78–94. DOI:10.1016/j.precamres.2009.06.008 |
| [] | Yin CQ, Zhao GC, Guo HH, Sun M, Xia XP, Zhou XW, Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25–38. DOI:10.1016/j.lithos.2010.11.010 |
| [] | Yuan HL, Gao S, Dai MN, et al. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100–118. DOI:10.1016/j.chemgeo.2007.10.003 |
| [] | Zhai MG, Bian AG, Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean, and its break-up during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(S1): 219–232. DOI:10.1007/BF02911947 |
| [] | Zhao GC, Wilde SA, Cawood PA, Lu LZ. 2000. Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375–391. |
| [] | Zhao GC, Sun M, Wilde SA. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23–38. DOI:10.1360/03yd9003 |
| [] | Zhao GC, Sun M, Wilde SA, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002 |
| [] | Zhao GC, Wilde SA, Sun M, et al. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213–226. DOI:10.1016/j.precamres.2007.07.004 |
| [] | Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772–1792. |
| [] | Zhao GC, Wilde SA, Guo JH, et al. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266–276. DOI:10.1016/j.precamres.2009.12.007 |
| [] | Zhou XW, Geng YS. 2009. Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western bolck in the North China Craton. Acta Petrologica Sinica, 25(8): 1843–1852. |
| [] | Zhou XW, Zhao GC, Geng YS. 2010. Helashan high pressure pelitic granulite Petrologic evidence for collision event in the western bolck of the North China Craton. Acta Petrologica Sinica, 26(7): 2113–2121. |
| [] | 董春艳, 刘敦一, 李俊建, 万渝生, 周红英, 李承东, 杨岳衡, 谢烈文. 2007. 华北克拉通西部孔兹岩带形成时代新证据: 巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成. 科学通报, 52(16): 1913–1922. |
| [] | 董春艳, 万渝生, 徐仲元, 刘敦一, 杨振升, 马铭株, 领顽强. 2012. 华北克拉通大青山地区古元古代晚期孔兹岩系: 锆石SHRIMP U-Pb定年. 中国科学(地球科学), 44(12): 1851–1862. |
| [] | 冯鸿儒. 1995. 贺兰山群层序及主变形期褶皱构造探讨. 西安地质学院学报, 17(1): 10–14. |
| [] | 耿元生, 周喜文, 王新社, 任留东. 2009. 内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义: 同位素年代学的证据. 岩石学报, 25(8): 1830–1842. |
| [] | 耿元生, 王新社, 吴春明, 周喜文. 2010. 阿拉善变质基底古元古代晚期的构造热事件. 岩石学报, 26(4): 1159–1170. |
| [] | 胡能高, 杨家喜, 王志博, 等. 1994. 贺兰山变质杂岩的组成及演化. 西安: 西安地图出版社: 1-121. |
| [] | 李伍平. 1994. 贺兰山群早元古代花岗岩的地质特征和岩石谱系单位划分. 西安地质学院学报, 16(3): 46–53. |
| [] | 刘建辉, 刘福来, 丁正江, 陈军强, 刘平华, 施建荣, 蔡佳, 王舫. 2013. 乌拉山地区早古元古代花岗质片麻岩的锆石U-Pb年代学、地球化学及成因. 岩石学报, 29(2): 485–500. |
| [] | 刘建忠, 李铁胜, 卢良兆. 1998. 贺兰山北段早前寒武纪孔兹岩系的变质变形演化及动力学. 矿物学报, 18(4): 431–440. |
| [] | 刘晔, 柳小明, 胡兆初, 第五春荣, 袁洪林, 高山. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23(5): 1203–1210. |
| [] | 卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社: 1-59. |
| [] | 陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(4): 225–233. |
| [] | 王惠初, 陆松年, 赵风清, 钟长汀. 2005. 华北克拉通古元古代地质记录及其构造意义. 地质调查与研究, 28(3): 129–143. |
| [] | 伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社: 1-212. |
| [] | 校培喜, 由伟丰, 谢从瑞, 李平, 白生明. 2011. 贺兰山北段贺兰山岩群富铝片麻岩碎屑锆石LA-ICP-MS U-Pb定年及区域对比. 地质通报, 30(1): 26–36. |
| [] | 杨家喜, 胡能高, 戴双儿, 李荣西. 1992. 贺兰山群变质杂岩主期变质作用的温压环境研究. 矿物岩石, 12(4): 12–20. |
| [] | 翟明国, 卞爱国, 赵太平. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增刊): 129–137. |
| [] | 赵国春, 孙敏, WildeSA. 2002. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学(D辑), 32(7): 538–549. |
| [] | 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772–1792. |
| [] | 周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843–1852. |
| [] | 周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113–2121. |
2013, Vol. 29




