岩石学报  2013, Vol. 29 Issue (7): 2329-2339   PDF    
阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示
马旭东1, 范宏瑞1, 郭敬辉2     
1. 中国科学院地质与地球物理研究所 矿产资源研究重点实验室,北京 100029;
2. 中国科学院地质与地球物理研究所 岩石圈演化国家重点实验室,北京 100029
摘要: 阴山地块是华北克拉通西部太古代基底出露最大最完整的地区。固阳地区是阴山地块最具代表性的地区,主要由中西部低级别变质的晚太古代花岗-绿岩地体和东部的高级变质杂岩地体组成。统计结果表明,无论是绿岩带,花岗岩类侵入体,还是高级别变质杂岩的原岩都形成于晚太古代末期(2562~2510Ma),形成时间上相互重叠,在~2500Ma,~2480Ma分别经历了两期变质事件,第一期为逆时针的P-T轨迹,与洋脊俯冲有关;第二期则表现顺时针的P-T轨迹,与晚期碰撞造山有关。科马提岩-科马提质玄武岩、高镁安山岩-富Nb火山岩、TTG和Sanukitoid多种具有特殊构造意义的岩石同时发育。综合已有资料获得如下启示,阴山地块在晚太古代受板块体制控制,并先后经历了洋脊俯冲和碰撞造山过程。将区域内的BIF与相关岩石联系起来考虑,得出BIF的形成与洋脊俯冲有关,BIF中的Si来源于绿岩带底部的玄武岩,Fe来源于同层位的科马提岩。
关键词: 岩浆作用     变质作用     阴山地块     BIF成因     地壳演化    
Neoarchean magmatism, metamorphism in the Yinshan Block: Implication for the genesis of BIF and crustal evolution
MA XuDong1, FAN HongRui1, GUO JingHui2     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: The Yinshan Block is a coherent Neoarchean basement of the Western Block in the North China Craton. The representative is at Guyang area, which composed of granite-greenstone rocks at western and high-grade metamorphic complexes at eastern. The result of statistics of zircon U-Pb age statistics show either the granite-greenstone or the protoliths of the high-grade metamorphic complexes formed at the late Neoarchean (2562~2510Ma), and experienced two stage metamorphic event at ~2500Ma, ~2480Ma respectively. The P-T path of the ~2.50Ga metamorphism is an anti-clockwise type, which is related with the mid-oceanic ridge subduction. There are a variety of special rocks which indicating the certain tectonic background in this area, such as: komatiite, komatiitic basalt, Nb-rich basalt, high-Mg andesite, TTGs and Sanukitoid. In conclusion, the Yinshan block is controlled by the plate tectonics, and experienced the mid-oceanic ridge subducted and collision orogeny successively. The BIFs in this are related with the mid-oceanic ridge subduction. The Si and Fe of BIFs are derived from the basalt at the bottom of greenstone belt and the komatiite, respectively.
Key words: Magmatism     Metamorphism     Yinshan Block     Genesis of BIF     Crustal evolution    
1 引言

华北克拉通是世界上最为古老的克拉通之一,由不同的古老微陆块拼合而成,此后又经历了多期构造和岩浆作用、变质作用的改造(Zhao et al., 1998,2005,2012李江海等,2000翟明国等,2000Kusky and Li, 2003赵国春,2009Zhai and Santosh, 2011)。赵国春等学者通过对华北克拉通基底的岩石组合、构造样式、变质演化和同位素年龄等方面综合分析, 提出华北克拉通基底可沿~1.85Ga中部构造带(陆陆碰撞带)划分为东部陆块、西部地块(Zhao et al., 1998,2005,2012赵国春,2009)。随后,在此基础上提出西部陆块可以沿~1.95Ga孔兹岩带(碰撞型造山带)进一步划分为鄂尔多斯地块和阴山地块(Zhao et al., 1999,2010),东部陆块可以沿胶辽吉带进一步划分(贺高品和叶慧文,1998李三忠等,2004Li et al., 2004,2005,2006; Li and Zhao, 2007)(图 1)。

图 1 华北克拉通早前寒武纪地质与构造模式图(据Zhao et al., 2005) Fig. 1 Geological sketch map of the North China Craton(modified after Zhao et al., 2005)

东部陆块晚太古代岩石主要由2.8~2.6Ga绿岩带岩石组合和2.6~2.5Ga TTG片麻岩、镁铁质-超镁铁质层状侵人岩和少量表壳组成(Zhao et al., 1998)。其中,绿岩带岩石组合中的超镁铁质岩石含有大量科马提质岩石(程裕祺和徐惠芬,1991Polat et al., 2006b);TTG片麻岩约占整个基底出露面积的80%以上;表壳岩包括绿片岩相至麻粒岩相变质的沉积岩和双峰式火山岩(伍家善等,1998 ; Zhao et al., 1998)。这些岩石共同了经历~2.5Ga绿片岩相至麻粒岩相区域变质作用和透入性变形作用(Kröner et al., 1998; Geng et al., 2006; Grant et al., 2009),同时形成大量同构造钾质花岗岩和少量紫苏花岗岩(Yang et al., 2008),其变质作用演化均以逆时针P-T轨迹为特征,并且多具有等压冷却(IBC)演化过程。一般认为,这类变质作用与岩浆弧,大陆裂谷或地慢柱(热点)环境中大量幔源岩浆底侵有关(Zhao et al., 1998,2001; Yang et al., 2008赵国春,2009)。同时东部陆块的岩浆作用和变质作用的时间间隔很短,小于50Myr。所有这些事实说明华北克拉通东部陆块晚太古宙基底变质作用和形成TTG和铁镁质岩石的岩浆作用是同一热构造事件产物,同时在东部陆块出现具有鬣刺结构的科马提质岩石(地幔高程度部分熔融的产物),因此,赵国春(2009)提出用地幔柱模式来解释东部陆块的生长。

与东部地区相比,西部陆块由于开展研究的条件相对较差,至今有关基底的组成、形成时代等还未得到明确的限定。目前的研究工作已经积累了部分资料,特别是前寒武纪岩石出露较好的阴山地块固阳地区:如陈亮(2007)报道了科马提质岩石的存在,并对固阳绿岩带进行了详细的年代学及地球化学研究;Jian et al.(2012)对绿岩带及周边的花岗岩类侵入体进行了SHIRMP定年,同时该地区的高级变质杂岩的也有深入的研究(金巍,1991金巍和李树勋;1996蒙炳儒,2007董晓杰,2012)。本文将已有的研究成果进行了总结,详细讨论阴山地块晚太古代岩浆作用、变质作用,及其对地壳演化与BIF成因的启示。

2 地质概况

阴山地块是华北克拉通西部陆块太古宙基底出露最大最完整的地区,固阳地区是最具代表性的地区,也是研究相对成熟的地区。在固阳地区,前寒武纪基底主要由中西部低级变质的晚太古代花岗-绿岩地体和东部高级的变质杂岩地体组成(图 2)。

图 2 固阳地区阴山地块早前寒武纪地质简图(据Ma et al., 2013a) Fig. 2 Simplified Precambrian geological map in the Yinshan Block in Guyang area(after Ma et al., 2013a)

固阳绿岩带是阴山地块绿岩带中序列保存最完整,最具代表性的一个,总体上为一套经历绿片岩相变质的火山-沉积岩系,以残留向形盆地的形式大致沿东西方向展布,并与固阳东部和北部地区的晚太古代TTG和Sanukitoid片麻岩构成完整的花岗-绿岩地体。根据野外岩石学及年代学工作,固阳绿岩带至下而上可划分为三个岩组,岩组之间以韧性剪切带为界(内蒙古地质矿产局,1986):第一岩组以斜长角闪岩为主,科马提质岩石与BIF以夹层和透镜体产出,局部可见残余的岩枕构造;第二岩组以变质安山岩、英安岩和流纹岩的互层为主,夹少量基性火山岩,构成从基性到中酸性的火山岩旋回;第三岩组为石英岩和不纯大理岩的互层的沉积岩系。关于固阳绿岩带的形成背景,目前有两种绝然不同的观点,(1)根据绿岩带底部的斜长角闪岩具有类似于板内拉斑玄武岩的特征,认为固阳绿岩带形成于大陆裂谷环境(刘建忠等,2001);(2)根据固阳绿岩带产出的科马提岩和各种典型的岛弧火山岩(富Nb玄武岩,高镁安山岩等)的属性,提出岛弧叠加地幔柱的模式(陈亮,2007)。晚太古代花岗岩类岩石主要由钙碱性的TTG和sanukitoid构成,常呈带状、舌状侵入到绿岩带下部层位中,主要沿绿岩带北缘的固阳-武川断裂带以北地区分布,而南缘只是零星出露(张维杰等,2000刘建忠,2001陶继雄,2003张永清等,2006)。主要岩性包括英云闪长岩、奥长花岗岩、花岗闪长岩、石英闪长岩及闪长岩等。岩体中常见有定向排列的角闪石岩,斜长角闪岩等捕虏体出露,捕虏体与绿岩带底部第一岩组的岩石类型一致。所有岩体都经历了绿片岩-低角闪岩相变质,发育片麻理。钙碱性的TTG具有从英云闪长岩-奥长花岗岩演化的趋势,而sanukitoid表现为从英云闪长岩-石英闪长岩演化的趋势(简平等,2005)。此外,可见有少量的辉长质-闪长质侵入体及早元古代花岗岩席侵入到上述岩体中。

① 内蒙古地质矿产局. 1986. 内蒙古中部东五分子-朱拉沟地区太古宙地质特征及含矿性. 1-85

麻粒岩-紫苏花岗岩高级变质岩组合以穹窿构造形式产出,分布于酒馆-下湿濠近东西向断裂带以北,与西边的固阳花岗-绿岩地体以断层接触。具有从基性-中性-酸性麻粒岩连续变化的特征,原岩恢复确定为一套基性-中性-酸性火山岩并夹有碎屑沉积岩组成的火山-沉积建造(蒙炳儒,2007;董晓杰,2009),形成于活动大陆边缘(王惠初等,2001)。但是,对于该地区麻粒岩相变质作用的研究还存在争议,不管是变质期次还是构造背景都有不同的认识。蒙炳儒(2007)认识固阳地区的麻粒岩相可以分为两期,第一期以逆时针的P-T轨迹为特征的变质;第二期顺时针的P-T演化轨迹为特征。然而,其它学者(董晓杰,2009金巍等, 1991,1996)认为只发生了一期麻粒岩相变质作用。对于麻粒岩相变质作用发生的背景,董晓杰(2009)根据顺时针P-T轨迹认识是碰撞造山作用, 而金巍等(1991,1996)认为这一区域具有等压冷却(IBC)逆时针P-T轨迹。

对于固阳地区的岩浆活动及变质作用年代学研究成果较多,本文对近十年来应用LA-ICP MS和SIMS锆石U-Pb定年获得的高精度年龄数据进行统计。统计结果显示(表 1图 3),无论是绿岩带,花岗岩类侵入体,还是高级别变质杂岩的原岩都形成于晚太古代末期,形成时间上相互重叠,表明这一时期的岩浆作用是这一地区最重要的岩浆事件。同时统计的结果还显示了该区域还经历了两期变质事件,分别是~2500Ma和~2480Ma。这一地区晚太古代的岩浆作用开始于2562Ma(玄武岩,刘利等,2012),一直持续到2510Ma(安山岩,陈亮,2007),在2562~2510Ma,在50Myr内,一直有持续的岩浆活动,形成绿岩带中大量的火山岩(2533~2510Ma),TTG(2534~2515Ma),sanukitoid(2523~2520Ma)及高级变质杂岩的原岩(2544~2516Ma)。随后在~2500Ma和在~2480Ma经历两期变质作用(蒙炳儒,2007董晓杰,2009),并在~2450Ma形成稳定的陆块(马旭东,未刊资料)。

表 1 阴山地块锆石U-Pb年龄及同位素组成统计表 Table 1 Zircon U-Pb age and Hf-Nd isotope statistics in the table

图 3 阴山地块年龄统计图 数据参见表 1 Fig. 3 Age statistics diagram in Yinshan block
3 岩浆作用

如前文所述,固阳地区晚太古代最主要的岩浆作用发生在2562~2510Ma。最早的岩浆记录是绿岩带底部的玄武岩(2562±14Ma,刘利等,2012),这套玄武岩具有低TiO2,富集大离子亲石元素(LILE)和轻稀土(LREE),亏损高场强元素(HFSE)的地球化学特征。εNd(t)=+1.8~+3.0(马旭东,未刊数据),可能起源于富集地幔。在这套玄武岩中,可见有科马提质岩石以夹层或者透镜体产出,这些科马提质岩石可以划分为玄武质科马提岩与科马提岩两种岩石(陈亮,2007)。根据微量元素特征可以把科马提岩进一步划分为两种类型,一种具有类似于玻安岩的“U”型的稀土模式,并含有较低TiO2和P2O5;另一种与Abitibi绿岩带中的Barberton型科马提岩具有相似的特征,富集轻稀土,亏损高场强元素(Ti、Nb、Zr)和重稀土元素,TiO2含量略高(陈亮,2007),这类科马提岩一般被认为与地幔柱活动有关(Sproule et al., 2002)。绿岩带中上部的基性-中酸性火山岩旋回形成于阴山地块晚太古代岩浆作用的后期,与晚期的TTG片麻岩几乎同期。在这套火山岩中可以识别出富Nb玄武岩,高镁安山岩两类具有特殊构造意义的岩石,在绿岩带层序中,富Nb玄武岩与高镁安山岩密切伴生(陈亮,2007)。高镁安山岩以安山质为主,少量为英安质,具有典型晚太古代高镁安山岩的特征(高Mg#、Cr、Ni、富LILE,轻重稀土中等至显著分异)(Smithies and Champion, 2000)。富Nb玄武岩以富Nb、FeOT、TiO2、P2O5为特征,Mg# 较低。重稀土含量较高,Cr和Ni含量变化较大(陈亮,2007),可与北美Superior地区的晚太古代Wawa和Pickle lake绿岩带对比(Polat and Kerrich, 2001Hollings,2002)。

Sanukitoid侵入到绿岩带下部层位中,岩体内经常包含有属于绿岩带底部层序的捕掳体(图 2)。年代学统计也显示Sanukitoid形成时代要晚于绿岩带底部的玄武岩,而早于绿岩带中上部的基性-中酸性火山岩旋回(图 3),同时又处在TTG形成的间歇期。其具有典型太古代Sanukitoid的特征(高MgO、Mg#,富Cr、Ni、LREE、LILE)。高正εHf值(+6.3~+1.5)及εNd(+1.6、+2.0)表明其来源于新生地壳或者富集地幔的部分熔融。TTG片麻岩则明显形成于两个时期(图 3),第一个时期,时代上略早于Sanukitoid,而略晚于绿岩带底部的玄武岩;另一个时期则在时代上绿岩带中上部的基性-中酸性火山岩旋回相当,略晚于Sanukitoid,这两个时期的TTG具有高SiO2,富Na2O(N2O/K2O>1),富集LREE和LILE,亏损Nb、Ta等共同的地球化学特征,但后期的TTG重稀土(HREE)具有明显不同的特征(张永清等,2006简平等,2005陶继雄,2003Jian et al., 2012)。实验岩石学研究表明,石榴石是控制重稀土含量的重要矿物(Rudnick,1990),在高压下熔融的过程中,较多的石榴石作为残留相,而在低压条件下,残留相中石榴石所占比例较小(Springer and Seck, 1997)。因此HREE含量不同的TTG片麻岩可能形成于不一样的压力环境下。

图 3可以看出阴山地块晚太古代的岩浆作用始于绿岩带,终于绿岩带,绿岩带中火山岩序列贯穿整个晚太古代岩浆作用,而TTG与Sanukitoid等侵入岩体只出现在岩浆作用的中后期,尤其是Sanukitoid只出现在TTG质岩浆的间歇期。

4 变质作用

阴山地块可以依照变质程度,包括低级的花岗-绿岩地体和高级别变质的麻粒岩地体。低级变质的花岗-绿岩地体的变质级别为绿片岩相-低角闪岩相,刘喜山(1996)讨论绿岩带的变质作用时,认为变质程度从底部到顶部由低角闪岩相渐变为低绿片岩相,为逆时针P-T轨迹(图 4)。麻粒岩地体则经历了高角闪岩相-麻粒相变质(沈其韩等,1992李树勋等,1987李树勋,1994金巍等,1994)。但对于区内的早前寒武纪高级变质杂岩遭受到几次麻粒岩质作用、高级变质杂岩与低级变质岩系的变质作用关系的确定仍存在分歧。金巍等(1994)刘喜山等(1992)刘喜山(1994)认为这一区域内的高级变质杂岩一期逆时针的P-T轨迹的变质作用。蒙炳儒(2007)认为具有两期麻粒岩相变质作用,早期为逆时针,后期又变为顺时针的P-T演化轨迹。董晓杰(2009)却认为该地区仅经历了一期碰撞造山型顺时针的P-T轨迹特征的变质作用。最新的年代学研究也表明,这些麻粒岩系确实是经历两期变质作用(蒙炳儒,2007董晓杰等,2012)(图 4)。笔者认为之所以造成这么多观点原因,可能是由于第二期的麻粒岩相变质作用由西向东变强,而将东部大部分地区的第一麻粒岩相变质重置,只在局部地区同时保留了两期变质作用,而西部由于没有受到第二期变质作用的影响或较弱,明显的保留了逆时针P-T轨迹的那一期变质作用,亦或是第一期麻粒岩相变质作用影响范围有限,并未波及全部区域。因此本文赞同阴山地块经历了两期的变质作用的观点,第一期为逆时针P-T轨迹,第二期是与碰撞造山有关的顺时针P-T轨迹。

图 4 阴山地块变质P-T轨迹 ①据蒙炳儒,2007;②据董晓杰,2009;3,4,5据赵国春,2002及参考文献 Fig. 4 P-T path from metamorphic complex in the Yinshan Block
5 阴山地块晚太古代地壳形成与演化

通过对现有研究成果的总结,我们发现在阴山地块多种类型的岩石在晚太古代集中出现并经历了两期变质事件,这给解释该地区的构造演化提出了挑战。关于固阳绿岩带的形成背景,无论是大陆裂谷(刘建忠等,2001),岛弧叠加地幔柱(陈亮,2007),还是地壳拆沉模式(Jian et al., 2012)都不能准确解释绿岩带的岩石组合特征。绿岩带发育大量的岛弧岩浆是裂谷模式难于合理解释的现象,而拆沉模式难于解释富Nb玄武岩的成因,岛弧叠加地幔柱的模式虽然能解释科马提岩以及高镁安山岩、富Nb玄武岩等岛弧火山岩的形成,但这种构造模式仅仅是为了解释这些现象而把两种不同的构造过程直接叠加在一起,这样的构造背景很不稳定,在实际中很难出现。因此需要一个更完善的模式来解释固阳绿岩带的形成过程。

固阳绿岩带底部的科马提岩以透镜体或夹层产出,并与BIF夹层伴生,这些科马提质透镜体与典型的科马提岩相比,具有独特的地球化学特征。其中一部分科马提岩稀土配分与玻安岩类似;另一部分科马提岩与Al亏损型科马提岩相似(陈亮,2007)。两者出现在同一个透镜体内是极其罕见的。一般情况下,玻安岩与科马提岩被认为形成于不同的时代及不同的构造环境中,很少共生在一起,大部分玻安岩都出现在显生宙,一般形成于年轻热的板片或者洋脊俯冲的弧前环境中(Crawford et al., 1989; Tatsumi and Maruyama, 1989; Stern and Bloomer, 1992; Pearce et al., 1992; Bédard,1999; Dilek and Flower, 2003; Pearce,2003; Hawkins,2003),被解释为被俯冲带流体或者熔体交代过的亏损地幔较高程度部分熔融的产物(Sun and Nesbitt, 1978; Barnes,1989)。尽管太古宙基底中也发现了不同时代的玻安岩,但仅有部分玻安岩与科马提岩或苦橄岩共生(Kerrich et al., 1998)。高温高压实验显示,形成像科马提岩这样富MgO的岩浆需要地幔发生高程度部分熔融,在干体系下,需要很高的温度,只有深部地幔上涌可以提供这种特殊的环境(Campbell et al., 1989; Herzberg,1992);在有水参与的条件下,所需的熔融温度会降低,因此俯冲带中含水地幔楔的高程度部分熔融也被用来解释科马提岩的成因(如,Allégre,1982; Parman et al., 1997)。在显生宙,玻安岩通常会与另外一种超镁铁岩石(苦橄岩)伴生,这样的组合的出现通常由于洋脊俯冲时,岩石圈地幔沿板片窗上涌造成的异常高的地温梯度。在晚太古代,地温梯度更高,洋脊的长度更长,板块移动的更慢,推测洋脊俯冲会较显生宙更加普遍,当岩石圈地幔上涌时的熔融程度会更高,甚至形成科马提质岩石(Hargraves,1986)。对比两组不同科马提岩的稀土配分模式,发现U型稀土配分形式的科马提岩相对于另一组只是亏损了LREE,而重稀土是一致的,这样的差别很容易通过海水热液的改造来完成。因为海水热液极其亏损LREE,科马提岩中多变的铕异常恰恰也说明其经受过海底热液的改造。在一般情况下,海水热液具有强烈的正铕异常,但是当BIF沉淀时,会通过Eu3++Fe2+→Eu2++Fe3+反应,将Eu的正异常保留在BIF中,同时造成热液海水中铕的负异常,这样不同的热液海水交代科马提岩会造成铕异常的多变。科马提岩与BIF夹层经常伴生也说明这一点。做为科马提岩与BIF夹层的围岩存在于绿岩带底部的玄武岩,具有明显的低TiO2含量,富集LILE和LREE,亏损HFSE和HREE,及εNd(t)=+1.8~+3.0的地球化学特征,说明其形成与俯冲作用相关,来源于富集地幔。

阴山地块TTG可分为2.53Ga和2.50Ga两期(任云伟,2010Jian et al., 2012),2.50Ga期的TTG的HREE的含量也存在差别(Jian et al., 2012)。目前,比较一致的观点是TTG是基性岩石在高压条件下有石榴子石作为残留相发生部分熔融形成(如,Rapp et al., 1991,2003; Atherton and Petford, 1993; Sen and Dunn, 1994; Rapp and Watson, 1995Xiong et al., 2005,2009; Nair and Chacko, 2008),但其形成的构造环境却有多种观点,最主要的有两种观点:俯冲板块的部分熔融(Drummond and Defant, 1990Peacock et al., 1994; Martin,1999; Prouteau et al., 1999)和加厚下地壳的部分熔融(Atherton and Petford, 1993, Smithies,2000; Whalen et al., 2002),阴山地块的TTG普遍具有俯冲板块的部分熔融的特点(张永清等,2006)。石榴石是控制重稀土含量的重要矿物(Rudnick,1990),低重稀土含量需要在高压下熔融的过程中,石榴石作为残留相,而在低压条件下的部分熔融,只有少量石榴石保留在残留相(Springer and Seck, 1997),因此这些TTG片麻岩可能形成于不一样的压力下。后期TTG的εNd(t)=+2.5(表 1),表明其来源于新生地壳的部分熔融,结合上面讨论,推测其形成于俯冲板片的部分熔融。但是不同的重稀土含量需要不同的压力环境,在俯冲环境下,只有板片俯冲到一定深度(压力>2.0Gpa,Rapp and Watson, 1995)才会发部分熔融,这时的压力足够使石榴石作为残留相存在,形成HREE低含量的TTG熔体。然而,当洋脊俯冲时,由于岩石圈地幔从俯冲板片下方上涌提供额外的热量,从而促使板片不需要俯冲到早期TTG质岩浆形成的深度就可以发生部分熔融,由于在相对低压条件下,残留矿物相中石榴石比例降低,因此板片部分熔融产生TTG熔体具有更高的HREE含量。

Sanukitoid目前认为是受到俯冲板片相关的熔体或流体交的地幔楔发生部分熔融的产物(Shirey and Hanson, 1984; Stern et al., 1989; Smithies and Champion, 2000; Stevenson et al., 1999; Kamber et al., 2002; Moyen et al., 2003; Halla,2005; Polat et al., 2006a; Martin et al., 2005,2010),或者是俯冲板片部分熔融产生的熔体受到地幔楔的混染(Rapp et al., 1999,2010; Martin et al., 2010)。 为了区分这两个过程Martin et al.(2010)提出用TiO2含量为标准,高TiO2的对应第一种情况,低TiO2的对应第二种情况。固阳Sanukitoid低TiO2含量及具有高正值εHf(+6.3~+1.5)(表 1),因此,这些Sanukitoid更符合俯冲板片部分熔融产生的熔体受到地幔楔的混染的特征。而Sanukitoid出现的时期刚好是TTG形成的一个间歇期,说明这一时期的俯冲的深度足够深,使上升的板片熔体(TTG质)与上覆的地幔楔能够充分反应,改变了TTG熔体的地球化学特征,形成Sanukitoid岩浆。当额外热源的加入,会使地温梯度的不断升高,造成板片熔融的深度降低,TTG质的熔浆不能与地幔楔充分反应,便形不成Sanukitoid岩浆,这时板片熔融又会重新形成TTG,由于熔融压力的降低,一部分会形成高HREE的TTG。

在岩浆活动的后期,富Nb玄武岩-高Mg闪长岩/安山岩组合出现。富Nb玄武岩的形成一般被认为是板片窗下MORB源区的低程度部分熔融(Hollings and Kerrich, 2000);俯冲板片中富钛矿物相的分解(Yogodzinski et al., 1995);或者受板片熔体交代的地幔楔的部分熔融(Sajona et al., 1996)。但与高镁闪长岩的组合一般认为这样的火山岩组合是俯冲板片熔体和上覆地幔楔之间相互作用过程的岩浆产物(Hollings and Kerrich, 2000Wyman et al., 2000),它们的存在指示类似现代类型俯冲消减环境的存在(Polat et al., 2006a),洋脊的俯冲可以很好的为上文提到过的被板片熔体交代过的地幔楔提供额外的低温梯度,从而使交代过的地幔楔发生部分熔融形成富Nb玄武岩-高Mg闪长岩/安山岩组合。

阴山地块两期的变质作用,第一期为逆时针P-T轨迹,并且多具有等压冷却(IBC)演化过程,这类变质作用一般认为与岩浆弧,大陆裂谷或地慢柱(热点)环境中大量幔源岩浆底侵有关。这一期变质发生的时间正是大量绿岩带中上层位火山岩及第二期TTG产生的时间的后期,同时期与洋脊俯冲相关的紫苏花岗岩形成(Ma et al., 2013b),固阳科马提岩的特殊地化特征,也与洋脊俯冲造成的岩石圈地幔上涌有关,因此我们推断这一期逆时针的变质作用应与洋脊的俯冲有关。第二期是与碰撞造山有关的顺时针P-T轨迹,发生在所有事件的最晚期,暗示着板片俯冲结束,发生碰撞造山,并在这一时期形成大量的高级区同碰撞花岗岩。

6 BIF型铁矿成矿作用

条带状硅铁建造(BIF),是早前寒武纪的标志性矿产,约占世界铁矿储量的70%~80%以上,占中国铁矿储量的80% 左右。一般认为BIF是化学沉积物,并且与生物(细菌)的活动有关,BIF有多种类型划分方案,最简单的方案是分为阿尔戈玛型和苏必利尔型,前者的BIF岩石组合中含火山岩,后者的岩石组合中不含火山岩(Zhai et al., 2012)。BIF型铁矿在阴山地块分布非常广泛,属于阿尔戈玛型,大型铁矿有三合明、书记沟、东五分子、公益民铁矿等(图 2,张连昌等,2012)。这些矿体主要赋存在绿岩带的底部基性火山岩及高级变质杂岩内,少数BIF以捕掳体形式存在斜长花岗岩体,高镁闪长岩体,但不管哪种赋存状态都与科马提质岩石伴生。对三合明及东五分子铁矿中斜长角闪岩锆石U-Pb定年,分别获得了2562±14Ma(刘利等,2012)与2538±9Ma(马旭东等,未刊资料)。捕虏BIF包体的Sanukitoid岩体的年龄则为2520Ma(Jian et al., 2012; Ma et al., 2013a),因此可以肯定BIF的形成时代应该在阴山地块晚太古代岩浆作用的早期。

对于BIF中的Fe与Si的来源一直是颇具争议的问题,有观点认为其来源于大陆物质,也有观点认为是通过淋滤洋壳获得(Frei et al., 2007)。Al2O3、TiO2的含量是判别陆源碎屑添加的良好标准,一般情况下如果有明显的陆源碎屑添加,Al2O3+TiO2>2%(Kato et al., 1996)。而阴山地块晚太古代的BIF Al2O3+TiO2值很低(0.35~0.94),同时HFSE含量也很低,这些特征可以轻易的排除其陆源的可能(刘利等,2012;马旭东,未刊资料)。在矿床研究中,稀土元素(REEs)和Y/Ho值经常被用来示踪成矿过程(如,Taylor and McLennan, 1985; McLennan,1989; Zhang et al., 2012)。阴山地区的BIF具有强烈的Eu正异常,轻稀土相对重稀土富集(刘利等,2012)。这样的稀土配分特征一般被认为有海水与海底热液混合的特征。通常情况下,在沉积成岩和岩浆过程中,Y/Ho值始终保持球粒陨石的值(26~28),只有当有热液参与才会造成Y/Ho值的改变(McLennan,1989)。 现代海水的Y/Ho值是44,深海热液则在25~50之间变化(Nozaki et al., 1997)。阴山地块的BIF的Y/Ho值在26~37变化,很显然在BIF形成过程中,一定是有热液的参与的。前文中我们讨论过与BIF伴生的科马提岩是洋脊俯冲过程中的产物,同时受到了海底热液的淋滤。在现在的洋脊周围,Fe和亲硫元素经常被热液从洋壳中淋滤出来,并沉淀下来形成硫化物或者氧化物(Scott and Hajash, 1976; Michard et al., 1983; Newsom et al., 1986; Erzinger,1989; Ridley et al., 1994; Gillis and Banerjee, 2000)。太古代具有更高的地温梯度,在洋脊俯冲过程中,岩石圈地幔的上涌,这些都会让热液的淋滤作用更加强烈。

对比BIF中玄武岩夹层(刘利等,2012)与绿岩带底部的作为BIF围岩的玄武岩,我们发现前者与后者相比低SiO2,LREE及LILE,这些都是容易随热液迁移的元素(马旭东,未刊资料)。同时玄武质科马提岩与科马提岩相比具有更高的Fe2O3T(陈亮,2007)。将BIF与围岩、夹层,伴生的科马提岩联系起来,推测固阳地区的BIF的形成过程如下:海水经过上涌的岩石圈地幔的加热,淋滤出科马提岩中的Fe,同时继承了海水高正Eu异常的特征,这样的热液继续淋滤玄武岩中的Si、LREE和LILE,同时形成络合物,并沉淀下来形成BIF,这时的热液具有亏损LREE,LILE及Eu负异常的特征,这样的热液再次淋滤科马提岩是就会形成U型稀土配分模式的科马提岩。

7 阴山地块地壳演化新模式

综上所述,我们尝试提出新的阴山地块的地壳演化模式:

(1) 2562Ma之前,早期的洋壳向陆壳俯冲(大量2.6Ga、3.1Ga的继承锆石存在证明了早期陆壳的存在(Ma et al., 2013a)。

(2) 2562~2538Ma,洋脊开始俯冲,岩石圈地幔开始上涌,基性火山岩喷发,形成科马提岩和BIF。

(3) 2538~2510Ma,俯冲板片发生部分熔融形成第一期的TTG,随着俯冲深度的加大,TTG成分的熔体与地幔楔反应形成Sanukitoid,当洋脊发生俯冲时,沿板片窗上涌的岩石圈地幔的加热,使板片进一步升温,俯冲板片发生部分熔融的深度降低,板片熔体不能与地幔楔反应,形成HREE含量变化较大的第二期TTG,随后,由于沿板片窗上涌的岩石圈地幔的加热,造成被交代过的地幔楔发生部分熔融形成绿岩带中上部的基性-中酸性火山岩。

(4) ~2500Ma,由于岩浆的底垫作用,下地壳发生部分熔融,形成大量紫苏花岗岩及逆时针的P-T轨迹。

(5) ~2480Ma,洋壳闭合,发生碰撞造山,形成高级变质杂岩及相关的花岗岩。

(6) ~2450Ma(马旭东,未刊数据),淡色花岗岩侵入体,形成稳定的阴山地块。

致谢 感谢中国科学院地质与地球物理研究所张连昌研究员、刘富博士、周艳艳博士和西北大学陈亮博士对本文进行了细致的评审。感谢中国科学院广州地球化学所赵太平研究员对初稿的评阅和指正。
参考文献
[] Allégre CJ. 1982. Genesis of Archaean komatiites in a wet ultramafic subducted plate. In: Arndt NT and Nesbit EG (eds.). Komatiites. Berlin: Springer-Verlag, 495-500
[] Atherton MP, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144–146. DOI:10.1038/362144a0
[] Barnes SJ. 1989. Are Bushveld U-type parent magmas boninites or contaminated komatiites?. Contributions to Mineralogy and Petrology, 101(4): 447–457. DOI:10.1007/BF00372218
[] Bédard JH. 1999. Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: Identification of subducted source components. Journal of Petrology, 40(12): 1853–1889. DOI:10.1093/petroj/40.12.1853
[] Campbell IH, Griffiths RW, Hill RI. 1989. Melting in an Archaean mantle plume: Heads it’s basalts, tail it’s komatiites. Nature, 339: 697–699. DOI:10.1038/339697a0
[] Chen L. 2007. Geochronology and geochemistry of the Guyang greenstone belt.Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences: 1-40.
[] Cheng YQ, Xu HF. 1991. Komattites from the Late Archean Yanlingguan Formation, Sltandong: Some new findings. Geology in China, 13(4): 31–32.
[] Crawford AJ, Fallon TJ and Green DH. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed.). Boninites and Related Rocks. London: Unwin Hyman, 1-49
[] Dilek Y and Flower MFJ. 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. In: Dilek Y and Robinson PT (eds.). Ophiolites in Earth History, 218. Geological Society London Special Publication, 43-68
[] Dong XJ. 2009. The metamorphism、Times and tectonic significance of high-grade metamorphic rocks in Xiwulangbulang area Inner Mongolia. Master Degree Thesis. Changchun: Jilin University, 1-70 (in Chinese with English summary)
[] Dong XJ, Xu ZY, Liu ZH, Sha Q. 2012. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia. Science China (Earth Sciences), 55(2): 204–212. DOI:10.1007/s11430-011-4360-5
[] Drummond MS, Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research-Solid Earth, 95(B13): 21503–21521. DOI:10.1029/JB095iB13p21503
[] Erzinger J. 1989. Chemical alteration of the oceanic crust. Geologische Rundschau, 78(3): 731–740. DOI:10.1007/BF01829318
[] Frei R, Polat A. 2007. Source heterogeneity for the major components of ~3.7Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth Planet Sci.Lett., 253: 266–281. DOI:10.1016/j.epsl.2006.10.033
[] Grant ML, Wilde SA, Wu FY, et al. 2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 261(1): 155–171.
[] Geng YS, Liu FL, Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80(6): 819–833.
[] Gillis KM, Banerjee NR. 2000. Hydrothermal alteration patterns in supra-subduction zone ophiolites. In: Dilek Y, Moores E, Elthon D and Nicolas A (eds.).Ophiolites and Oceanic Crust: New Insights from Field Studies and the Oceanic Drilling Program.Geol.Soc.Am.Spec., 349: 283–297.
[] Halla J. 2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions. Lithos, 79(1-2): 161–178. DOI:10.1016/j.lithos.2004.05.007
[] Hargraves RB. 1986. Faster spreading or greater ridge length in the Archean?. Geology, 14(9): 750–752. DOI:10.1130/0091-7613(1986)14<750:FSOGRL>2.0.CO;2
[] Hawkins JW. 2003. Geology of supra-subduction zones-Implications for the origin of ophiolites. In: Dilek Y and Newcomb S (eds.).Ophiolite Concept and the Evolution of Geological Thought.Geol.Soc.Am.Spec., 373: 227–268.
[] He GP, Ye HW. 1998. Two types of Early Proterozoic metamorphism and its tectonic significance in Eastern Liaoning and southern Jilin areas. Acta Petrologica Sinica, 14(2): 151–162.
[] Herzberg C. 1992. Depth and degree of melting of komatiites. Journal of Geophysical Research, 97(B4): 4521–4540. DOI:10.1029/91JB03066
[] Hollings P, Kerrich R. 2000. An Archean arc basalt-Nb-enriched basalt-adakite association: The 2.7Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contribution to Mineralogy and Petrology, 139(2): 208–226. DOI:10.1007/PL00007672
[] Hollings P. 2002. Archean Nb-enriched basalts in the northern Superior Province. Lithos, 64(1-2): 1–14. DOI:10.1016/S0024-4937(02)00154-8
[] Jian P, Zhang Q, Liu DY, et al. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151–157.
[] Jian P, Kröner A, Windley BF, et al. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Research, 222-223: 230–254. DOI:10.1016/j.precamres.2012.03.002
[] Jin W, Li SX, Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamophic dynamics. Acta Petrologica Sinica, 7(4): 27–36.
[] Jin W and Li SX. 1994. The lithological association and geological features of Early Proterozoic orogenic belt in Daqingshan, Inner Mongolia. In: Qian XL and Wang RM (ed.). Geological Evolution of the Granulite Terrain in North Part of the North China Craton. Beijing: Seismological Press (in Chinese)
[] Jin W, Li SX. 1996. P-T-t path and crustal thei-nodynamic model of Late Archaean-Early Proterozoic high grade metamorphic terrain in North China. Acta Petrologica Sinica, 12(2): 209–221.
[] Kamber BS, Ewart A, Collerson KD, et al. 2002. Fluid mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144(1): 38–56. DOI:10.1007/s00410-002-0374-5
[] Kato Y, Kawakami T, Kano T, et al. 1996. Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India. Journal of Southeast Asian Earth Sciences, 14(3-4): 161–164. DOI:10.1016/S0743-9547(96)00054-2
[] Kerrich R, Wyman D, Fan J, et al. 1998. Boninite series: Low Ti-tholeiite association from the 2.7Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1-2): 303–316. DOI:10.1016/S0012-821X(98)00223-4
[] Kröner A, Cui WY, Wang SQ, et al. 1998. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences, 16(5-6): 519–532. DOI:10.1016/S0743-9547(98)00033-6
[] Kusky TM, Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. DOI:10.1016/S1367-9120(03)00071-3
[] Li JH, Qian XL, Huang XN, et al. 2000. Tectonic framework of North China Block and its cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1–10.
[] Li SZ, Zhao GC, Sun M, et al. 2004. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, Eastern Block, North China craton. International Geology Review, 46(2): 162–176. DOI:10.2747/0020-6814.46.2.162
[] Li SZ, Hao DF, Zhao GC, et al. 2004. Geochemical features and origin of Dandong granite. Acta Petrologica Sinica, 20: 1417–1423.
[] Li SZ, Zhao GC, Sun M, et al. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659–674. DOI:10.1016/j.jseaes.2003.11.008
[] Li SZ, Zhao GC, Sun M, et al. 2006. Are the South and North Liaohe groups of North China Craton different exotic terranes?. Nd isotope constraints.Gondwana Research, 9(1-2): 198–208.
[] Li SZ, Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1): 1–16.
[] Li SX, Liu XS, Zhang LQ. 1987. Granite-greenstone belt in sheerteng area, Inner Mongolia, China. Journal of Changchun University of Science and Technology, 17: 81–102.
[] Li SX. 1994. Early Precambrian Geology in Ula Mountain, Inner Mongolia. Beijing: Geological Press: 1-40.
[] Liu JZ, Zhang FQ, Ouyang ZY, et al. 2001. Study on geochemistry and chronology of Se’ertengshan greenstone, Inner Mongolia. Journal of Changchun University of Science and Technology, 31(3): 236–240.
[] Liu L, Zhang LC, Dai YP, et al. 2012. Formation age, geochemical signatures and geological significance of the Sanheming BIF-type iron deposit in the Guyang greenstone belt, Inner Mongolia. Acta Petrologica Sinica, 28(11): 3623–3637.
[] Liu XS, Jin W, Li SX. 1992. Low-pressure metamorphism of granulate fades in an Early Proterozoic orogenic event in central Inner Mongolia. Acta Geologica Sinica, 66(3): 244–256.
[] Liu XS. 1994. Characteristics of basement reworked complex and implication for Daqingshan orogenic belt. Acta Petrologica Sinica, 10(4): 413–426.
[] Liu XS. 1996. Progressive metamorphic genesis of Archaean granulites in central Nei Mongol. Acta Petrologica Sinica, 12(2): 287–298.
[] Ma XD, Guo JH, Liu F, et al. 2013a. Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks: Implications for the Archean crustal evolution of the Yinshan Block, North China Craton. Precambrian Research, 230: 61–78. DOI:10.1016/j.precamres.2013.02.001
[] Ma XD, Fan HR, Santosh M et al. 2013b. Geochemistry and zircon U-Pb chronology of charnockites in the Yinshan Block, North China Craton: Tectonic evolution associated with Neoarchean ridge subduction. International Geology Review, doi:10.1080/00206814.2013.796076
[] Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids?. Lithos, 46(3): 411–429. DOI:10.1016/S0024-4937(98)00076-0
[] Martin H, Smithies RH, Rapp R, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1–24. DOI:10.1016/j.lithos.2004.04.048
[] Martin H, Moyen JF, Rapp R. 2010. The sanukitoid series: Magmatism at the Archaean-Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15–33.
[] McLennan SM. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169–200.
[] Meng BR. 2007. Isotopic chronological restriction of granulite facies metamorphism in Daqingshan area, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University, 1-117 (in Chinese with English summary)
[] Michard A, Albaréde F, Michard G, et al. 1983. Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 303: 795–797. DOI:10.1038/303795a0
[] Moyen JF, Martin H, Jayananda M, et al. 2003. Late Archaean granites: A typology based on the Dharwar Craton (India). Precambrian Research, 127(1-3): 103–123. DOI:10.1016/S0301-9268(03)00183-9
[] Nair R, Chacko T. 2008. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36(7): 583–586. DOI:10.1130/G24773A.1
[] Newsom HE, White WM, Jochum KP, et al. 1986. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet Sci.Lett., 80(3-4): 299–313. DOI:10.1016/0012-821X(86)90112-3
[] Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth Planet Sci.Lett., 148(1-2): 329–340. DOI:10.1016/S0012-821X(97)00034-4
[] Parman S, Dann J, Grove T, et al. 1997. Emplacement conditions of komatiite magmas from the 3.49Ga Komati Formation, Barberton Greenstone belt, South Africa. Earth and Planetary Science Letters, 150(3): 303–323.
[] Peacock SM, Rushmer T, Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227–244. DOI:10.1016/0012-821X(94)90042-6
[] Pearce JA, van der Laan S, Arculus RJ, et al. 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Fore-arc): A case study of magma genesis during the initial stage of subduction. In: Fryer P, Pearce JA and Stokking LB (eds.).Proceedings for the Ocean Drilling Program.Scientific Results, 125: 623–659.
[] Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. In: Dilek Y and Newcomb S (eds.).Ophiolite Concept and the Evolution of Geological Thought.Geological Society of America, Special Paper, 373: 269–293. DOI:10.1130/0-8137-2373-6
[] Polat A, Kerrich R. 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from Late-Archean 2.7Ga Wawa greenstone belts, Superior Province, Canada: Implications for Late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1): 36–52. DOI:10.1007/s004100000223
[] Polat A, Herzberg C, Münker C, et al. 2006a. Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca. 2.5Ga) peridotites, central orogenic belt, North China craton.Geological Society of America Bulletin, 118(7-8): 771–784.
[] Polat A, Li J, Fryer B, et al. 2006b. Geochemical characteristics of the Neoarchean (2800~2700Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. Chemical Geology, 230(1-2): 60–87. DOI:10.1016/j.chemgeo.2005.11.012
[] Prouteau G, Scaillet B, Pichavant M, et al. 1999. Fluid-present melting of ocean crust in subduction zones. Geology, 27(12): 1111–1114. DOI:10.1130/0091-7613(1999)027<1111:FPMOOC>2.3.CO;2
[] Rapp RP, Watson EB, Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalities. Precambrian Research, 51(1-4): 1–25. DOI:10.1016/0301-9268(91)90092-O
[] Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931. DOI:10.1093/petrology/36.4.891
[] Rapp RP, Shimizu N, Norman MD, et al. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335–356. DOI:10.1016/S0009-2541(99)00106-0
[] Rapp RP, Shimizu N, Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605–609. DOI:10.1038/nature02031
[] Ren YW. 2010. The study of granite-greenstone belt in Xihongshan area, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University, 1-69 (in Chinese with English summary)
[] Ridley WI, Perfit MR, Jonasson IR, et al. 1994. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos fossil hydrothermal field. Geochim.Cosmochim.Acta, 58(11): 2477–2494. DOI:10.1016/0016-7037(94)90025-6
[] Rudnick RL. 1990. Nd and Sr isotopic compositions of lower-crustal xenoliths from north Queensland, Australia: Implications for Nd model ages and crustal growth processes. Chemical Geology, 83(3): 195–208.
[] Rudnick RL, Barth M, Horn I, et al. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278–281. DOI:10.1126/science.287.5451.278
[] Sajona FG, Maury RC, Bellon H, et al. 1996. High field strength element enrichment of pliocene-pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693–726. DOI:10.1093/petrology/37.3.693
[] Scott RB, Hajash A. 1976. Initial submarine alteration of basaltic pillow lavas a microprobe study. Amer.J.Sci., 276(4): 480–501. DOI:10.2475/ajs.276.4.480
[] Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394–409. DOI:10.1007/BF00307273
[] Shen QH, Xu HF, Zhang ZQ. 1992. Early Precambrian Granulites in China. Beijing: Geological Publishing House.
[] Shirey SB, Hanson GN. 1984. Mantle-derived Archaean monozodiorites and trachyandesites. Nature, 310(5974): 222–224. DOI:10.1038/310222a0
[] Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1): 115–125. DOI:10.1016/S0012-821X(00)00236-3
[] Smithies RH, Chamption DC. 2000. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. Journal of Petrology, 41(12): 1653–1671. DOI:10.1093/petrology/41.12.1653
[] Springer W, Seck HA. 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology, 127(1-2): 30–45. DOI:10.1007/s004100050263
[] Sproule RA, Lesher CM, Ayer JA, et al. 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Research, 115(1-4): 153–186. DOI:10.1016/S0301-9268(02)00009-8
[] Stevenson R, Henry P, Gariapy C. 1999. Assimilation fractional crystallization origin of Archaean sanukitoid suites: Western Superior Province, Canada. Precambrian Research, 96(1-2): 83–99. DOI:10.1016/S0301-9268(99)00009-1
[] Stern RA, Hanson GN, Shirey SB. 1989. Petrogenesis of mantle-derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in southwestern Superior Province. Canadian Journal of Earth Science, 26(9): 1688–1712. DOI:10.1139/e89-145
[] Stern RJ, Bloomer SH. 1992. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Marians and Jurassic California arcs. Geol.Soc.Am.Bull., 104(12): 1621–1636. DOI:10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
[] Sun SS, Nesbitt RW. 1978. Petrogenesis of Archaean ultrabasic and basic volcanics: Evidence from rare earth elements. Contributions to Mineralogy and Petrology, 65(3): 301–325. DOI:10.1007/BF00375516
[] Tatsumi Y and Maruyama S. 1989. Boninites and high-Mg andesites: Tectonic and petrogenesis. In: Crawford AJ (ed.). Boninites and Related Rocks. London: Unwin Hyman, 50-71
[] Tao JX. 2003. Characteristics of Neoarchean metamorphic intrusives and the relationship with the mineralization of gold in the Guyang region, Inner Mongolia. Geological Survey and Research, 26(1): 21–26.
[] Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific, 1-312
[] Wang HC, Yuan GB, Xin HT. 2001. U-Pb single zircon ages for granulites in Cunkongshan area, Guyang Inner Mongolia and enlightenment for its geological signification. Progress in Precambrian Research, 24(1): 28–34.
[] Whalen JB, Percival JA, McNicoll VJ, et al. 2002. A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: Implications for Late Archean tectonomagmatic processes. Journal of Petrology, 43(8): 1551–1570. DOI:10.1093/petrology/43.8.1551
[] Wu JS, Geng YS, Shen QH, et al. 1998. Archean Geological Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Beijing: Geological Publishing House: 1-210.
[] Wyman DA, Ayer JA, Devaney JR. 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: Evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1): 21–30. DOI:10.1016/S0012-821X(00)00106-0
[] Xiong XL, Adam J, Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339–359. DOI:10.1016/j.chemgeo.2005.01.014
[] Xiong XL, Keppler H, Audétat A, et al. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 94(8-9): 1175–1186. DOI:10.2138/am.2009.3158
[] Yang JH, Wu FY, Wilde SA, et al. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167(1): 125–149.
[] Yogodzinski GM, Kay RW, Volynets ON, et al. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505–519. DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
[] Zhai MG, Bian AG, Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Mesoproterozoic. Science in China (Series D), 43(Suppl.1): 219–232.
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhang LC, Zhai MG, Wan YS, et al. 2012. Studies of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431–3445.
[] Zhang WJ, Li L, Geng MS. 2000. Petrology and dating of Neoarchaean intrusive rocks from Guyang area, Inner Mongolia. Earth Science, 25(3): 221–226.
[] Zhang XJ, Zhang LC, Xiang P, et al. 2011. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137–148. DOI:10.1016/j.gr.2011.02.008
[] Zhang YQ, Zhang YK, Zheng BJ, et al. 2006. Geological character and significance of adakite and TTG in Xiaonangou-Mingxinggou district in central of Inner Mongolia. Acta Petrologica Sinica, 22(11): 2762–2768.
[] Zhao GC, Wilde SA, Cawood PA, et al. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40(8): 706–721. DOI:10.1080/00206819809465233
[] Zhao GC, Wilde SA, Cawood PA, et al. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37–53. DOI:10.1016/S0040-1951(99)00152-3
[] Zhao GC, Wilde SA, Cawood PA, et al. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Sun M, Wilde SA, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772–1792.
[] Zhao GC, Wilde SA, Guo JH, et al. 2010. Single zircon grains record two continental collisional events in the North China craton. Precambrian Research, 177(3-4): 266–276. DOI:10.1016/j.precamres.2009.12.007
[] Zhao GC, Cawood PA, Wilde SA, et al. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55–76. DOI:10.1016/j.precamres.2012.09.016
[] 陈亮. 2007. 固阳绿岩带的地球化学和年代学. 博士后出站报告.北京:中国科学院地质与地球物理研究所, 1-40
[] 程裕淇, 徐惠芬. 1991. 对山东新泰晚太古代雁翎关组中科马提岩类的一些新认识. 中国地质, 13(4): 31–32.
[] 董晓杰. 2009. 内蒙古西乌兰不浪地区高级变质岩的变质作用特征、时代及其构造意义. 硕士学位论文. 长春: 吉林大学, 1-70
[] 董晓杰, 徐仲元, 刘正宏, 沙茜. 2012. 内蒙古中部西乌兰不浪地区太古宙高级变质岩锆石 U-Pb 年代学研究. 中国科学(地球科学), 42(7): 1001–1010.
[] 贺高品, 叶慧文. 1998. 辽东-吉南地区早元古代两种类型变质作用及其构造意义. 岩石学报, 14(2): 151–162.
[] 简平, 张旗, 刘敦一, 等. 2005. 内蒙古固阳晚太古代赞岐岩 (sanukite)-角闪花岗岩的 SHRIMP 定年及其意义. 岩石学报, 21(1): 151–157.
[] 金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27–36.
[] 金巍, 李树勋, 钱祥麟等. 1994. 内蒙古大青山地区早元古宙造山带的岩石组成及特征. 见: 钱祥麟, 王仁民编. 华北北部麻粒岩带地质演化. 北京: 地震出版社, 32-42
[] 金巍, 李树勋. 1996. 华北晚太古代-早元古代高级变质区的变质PTt轨迹及其地壳热动力学演化模式. 岩石学报, 12(2): 208–221.
[] 李江海, 钱祥麟, 黄雄南, 等. 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1–10.
[] 李三忠, 郝德峰, 赵国春, 等. 2004. 丹东花岗岩的地球化学特征及其成因. 岩石学报, 20(6): 1417–1423.
[] 李树勋, 刘喜山, 张履桥. 1987. 内蒙古色尔腾山地区花岗岩-绿岩的地质特征. 长春地质学院学报(变质地质学专辑): 81–102.
[] 李树勋. 1994. 內蒙古乌拉山区早前寒武纪地质. 北京: 地质出版社: 1-140.
[] 刘建忠, 张福勤, 欧阳自远, 等. 2001. 内蒙古色尔腾山绿岩的地球化学、年代学研究. 长春科技大学学报, 31(3): 236–240.
[] 刘利, 张连昌, 代堰锫, 等. 2012. 内蒙古固阳绿岩带三合明 BIF 型铁矿的形成时代、地球化学特征及地质意义. 岩石学报, 28(11): 3623–3637.
[] 刘喜山, 金巍, 李树勋. 1992. 内蒙古中部早元古代造山事件中麻粒岩相低压变质作用. 地质学报, 66(3): 244–256.
[] 刘喜山. 1994. 大青山造山带中基底再造杂岩的特征及其指示意义. 岩石学报, 10(4): 413–426.
[] 刘喜山. 1996. 内蒙古中部太古代麻粒岩递增变质成因. 岩石学报, 12(2): 287–298.
[] 蒙炳儒. 2007. 内蒙古大青山地区麻粒岩系变质作用的同位素年代学制约. 硕士学位论文. 长春: 吉林大学, 1-117
[] 任云伟. 2010. 内蒙古西红山地区花岗-绿岩带的研究. 博士学位论文. 长春: 吉林大学, 1-69
[] 沈其韩, 徐惠芬, 张宗清. 1992. 中国早前寒武纪麻粒岩. 北京: 地质出版社.
[] 陶继雄. 2003. 内蒙固阳地区新太古代变质侵入岩特征及与成矿关系. 地质调查与研究, 26(1): 21–26.
[] 王惠初, 袁桂邦, 辛后田. 2001. 内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示. 前寒武纪研究进展, 24(1): 28–34.
[] 伍家善, 耿元生, 沈其韩, 等. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社: 1-210.
[] 翟明国, 卞爱国, 赵太平. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(S1): 129–137.
[] 张连昌, 翟明国, 万渝生, 等. 2012. 华北克拉通前寒武纪BIF 铁矿研究: 进展与问题. 岩石学报, 28(11): 3431–3445.
[] 张维杰, 李龙, 耿明山. 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学, 25(3): 221–226.
[] 张永清, 张有宽, 郑宝军, 等. 2006. 内蒙古中部小南沟-明星沟地区新太古代 TTG 岩系及其地质意义. 岩石学报, 22(11): 2762–2768.
[] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772–1792.