岩石学报  2013, Vol. 29 Issue (6): 2251-2264   PDF    
新疆西南天山哈布腾苏一带高压-超高压变质基性岩的地球化学特征及其构造意义
施建荣, 杨红, 刘福来, 孟恩, 刘平华, 王舫, 蔡佳     
中国地质科学院地质研究所,北京 100037
摘要: 新疆西南天山哈布腾苏地区的高压-超高压变质基性岩(榴辉岩和蓝片岩) 主要以形态各异的岩块或构造透镜体形式产于其围岩变质沉积岩石榴多硅白云母片岩中。本文对这些变质基性岩进行了详细的岩石学、矿物学和地球化学研究,并对其原岩性质及区域构造演化进行了讨论。地球化学分析结果显示其原岩成分主要为拉斑玄武岩和少量碱性玄武岩。榴辉岩原岩可进一步划分为N-MORB (正常洋中脊玄武岩)、E-MORB (富集洋中脊玄武岩) 和OIB (洋岛玄武岩) 三种类型,而蓝片岩为OIB型。第一种榴辉岩具低的TiO2(1.00%~1.08%)、P2O5(0.09%~0.15%) 和∑REE (35.98×10-6~43.51×10-6) 含量以及低的LREE/HREE (1.35~1.43) 和(La/Yb)N(0.63~0.71) 比值等特征,具有N-MORB属性,暗示其原岩可能来源于亏损的地幔源区,形成于大洋环境;第二种榴辉岩具有较高的Ti (TiO2=1.35%~2.25%)、P (P2O5=0.05%~0.20%) 和∑REE (60.10×10-6~77.35×10-6) 含量和较高的LREE/HREE (1.25~2.43)、(La/Yb)N(0.52~1.52) 比值,具有E-MORB特征;第三种榴辉岩TiO2含量为1.16%~2.86%,Zr/Y=5.32~7.78,∑REE=79.12×10-6~192.1×10-6,LREE/HREE=4.15~6.54,(La/Yb)N=3.77~9.44,其轻重稀土元素分异明显,显示OIB属性,暗示其原岩可能来源于富集地幔源区。而OIB型蓝片岩则富集TiO2(1.39%~2.86%) 和∑REE (88.18×10-6~227.8×10-6) 和具有相对高的(La/Yb)N(5.03~9.84) 和Zr/Y (4.93~9.55) 比值,这些特征与OIB型榴辉岩类似,暗示二者可能具有共同的岩浆源区。新疆西南天山哈布腾苏地区具MORB和OIB属性岩石组合的出现揭示该区早古生代曾发育有洋盆,其演化过程中可能受到结晶分异作用以及异源岩浆混合的影响,导致该区的变质基性岩元素地球化学特征具有MORB和OIB的亲缘性,暗示其原岩是在大洋中脊和临近洋岛共同作用背景下形成的。该区榴辉岩和蓝片岩的形成可能与先存洋壳残片经历高压-超高压变质作用及后期构造折返有关。
关键词: 西南天山     哈布腾苏     高压-超高压变质基性岩     地球化学     构造意义    
Geochemical characteristics and tectonic implications of the HP-UHP metabasites from the Habutengsu area, southwestern Tianshan, Xinjiang
SHI JianRong, YANG Hong, LIU FuLai, MENG En, LIU PingHua, WANG Fang, CAI Jia     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The high-pressure (HP) and ultrahigh-pressure (UHP) metabasites including eclogite and blueschist are exposed in garnet phengite schists mainly as rock slices or variable tectonic lenses in the Habutengsu area, southwestern Tianshan, Xinjiang. Detailed petrology, mineralogy and geochemisitry studies have been carried out to put constrains on their protolith and regional tectonic evolution. Geochemical analyses indicate that compositions of the metabasites are mainly tholeiites with minor alkali basalts. Based on trace element and REE features, the eclogites can be subdivided into three types: N-MORB type, E-MORB type, and OIB type, while all the blueschists are OIB type. The first type eclogites are characterized by low Ti (TiO2=1.00%~1.08%), P (P2O5=0.09%~0.15%) and ∑REE (35.98×10-6~43.51×10-6) contents, and low LREE/HREE (1.35~1.43) and (La/Yb)N(0.63~0.71) ratios, which are similar to those of typical N-MORB basalts, and are considered to be products of magma derived from the depleted mantle sources in an mid-ocean ridge setting. The second type eclogites are characterized by high Ti (TiO2=1.35%~2.25%), P (P2O5=0.05%~0.20%) and ∑REE (60.1×10-6~77.35×10-6) contents, and high LREE/HREE (1.25~2.43) and (La/Yb)N(0.52~1.52) ratios, which are similar to those of typical E-MORB basalts, and are considered to be products of magma from the enriched mantle sources. The third type eclogites are characterized by higher Ti (TiO2=1.16%~2.86%), Zr/Y (5.32~7.78), ∑REE (79.12×10-6~192.1×10-6) contents, and higher LREE/HREE (4.15~6.54) and (La/Yb)N(3.77~9.44) ratios, which are similar to those of typical OIB basalts, indicative of enriched mantle sources. Geochemical characters of the OIB type blueschists are similar to the OIB type eclogites, characterized by high Ti (TiO2=1.39%~2.86%), ∑REE (88.18×10-6~227.8×10-6) contents and high (La/Yb)N(5.03~9.84), Zr/Y (4.93~9.55) ratios, indicating the same magmatic sources. Combined with the previous data from this region, the presence of such MORB and OIB rock assemblages suggests the existence of an ocean basin in the Early Paleozoic era from the Habutengsu area, southwestern Tianshan, Xinjiang. The evolution process may be also impacted by the crystallization differentiation and different sources magma mixing, which produced the element geochemistry affinity of MORB and OIB in the metabasites. It is suggested that protolith of the metabasites were formed under the tectonic setting of mid-ocean ridge and adjacent ocean island, and the formation of the blueschists and eclogites might be related to HP-UHP metamorphism and later tectonic exhumation.
Key words: Southwestern Tianshan     Habutengsu     HP-UHP metabasites     Geochemistry     Tectonic implications    
1 引言

榴辉岩和蓝片岩作为板块俯冲-碰撞作用的产物,可以有效地揭示板块会聚边界的深部地幔行为及岩石圈板片俯冲与折返的演化历史,因而成为国内外地质学家研究的热点(张立飞等, 2000, 2007, 2008)。早期的研究结果表明新疆西南天山地区蓝片岩和榴辉岩极为发育(高俊等, 1994, 1997a, b, c),随着对出露的榴辉岩、蓝片岩及其围岩石榴多硅白云母片岩的岩石学、矿物学以及变质作用研究的深入,逐步确立了西南天山高压-超高压变质带的存在(Zhang et al., 2002a, b2003ab2005吕增等, 2007; et al., 200820092012)。目前西南天山高压-超高压变质带的峰期变质年龄已无争议,其区域峰期超高压榴辉岩相变质作用应发生在约305~320Ma的晚石炭世(Klemd et al., 2005Zhang et al., 2009Su et al., 2010Li et al., 2011),西南天山也被认为是一条典型的晚古生代增生型碰撞造山带(高俊等, 1997a, b2009Xiao et al., 2009)。

该高压-超高压变质带以往有关榴辉岩-蓝片岩的研究多集中于岩石学、矿物学、变质作用研究和变质年代学方面(高俊等, 1997a, b, cGao et al., 1999; Gao and Klemd, 20002003张立飞等, 2000, 2002Zhang et al., 2002a, b2003ab2005吕增等,2007et al., 200820092012),而对其地球化学特征、原岩类型和构造环境属性方面的探讨比较薄弱。艾永亮等(2005)曾对位于阿克牙孜上游阿坦泰依河源头和哈斯阿特河源头的榴辉岩和蓝片岩进行了初步的地球化学研究,认为原岩为形成于海山环境下的大洋玄武岩和陆源岛弧环境下的岛弧玄武岩,但其研究仅位于上述两条河流源头附近,其它支流榴辉岩和蓝片岩出露点尚未开展详细的地球化学研究,因此对于西南天山早期构造属性及后期区域地质演化历史的研究尚需开展更多的地球化学工作。et al.(20082009) 通过对哈布腾苏地区含柯石英榴辉岩的矿物学和变质作用研究认为西南天山榴辉岩-蓝片岩带应经历了高压-超高压变质作用,但该区榴辉岩-蓝片岩成因及其构造属性尚需进一步研究。本文选取西南天山哈布腾苏一带典型的榴辉岩和蓝片岩样品,通过详细的岩石学和地球化学研究,试图对其原岩类型和构造属性进行探讨。

2 地质背景

南天山造山带西起乌兹别克斯坦,向东与中国新疆境内东天山相连,代表了伊犁-中天山板块与塔里木板块间的俯冲、碰撞带(Gao et al., 1998Zhang et al., 2003a, b2007张立飞等,2005)(图 1a)。该造山带在我国境内主要出露于新疆伊犁自治州昭苏县以南,东西延长超过200km,西部与哈萨克斯坦境内含柯石英假象的Atbashy榴辉岩-蓝片岩带相接(Gao et al., 1995Tagiri et al., 1995Volkova and Budanov, 1999)。区内主要发育一套以榴辉岩、蓝片岩、石榴多硅白云母片岩为代表的高压-超高压变质岩(Zhang et al., 2002a, b2005),其中榴辉岩多呈豆荚状、布丁状、薄层状或大的团块状与蓝片岩互层状产出(高俊,1997Gao et al., 1999),而榴辉岩与含绿辉石的蓝片岩之间逐渐过渡,揭示两者具有相同的峰期变质条件,其峰期变质温压估算为P=14~21kbar,T=480~580℃(Gao et al., 1999Klemd et al., 2002Wei et al., 2003)。

图 1 西南天山哈布腾苏河一带地质简图(a) 及采样位置(b, 据Lü and Zhang,2012修改) 1-晚古生代火山岩及火山碎屑岩;2-前寒武纪基底,古生代花岗岩及地层(未分);3-前寒武纪角闪岩相变质岩;4-古生代地层;5-高压-超高压变质带;6-逆断层;7-断层;8-研究区;9-第四纪冲积物;10-花岗岩;11-高压-超高压变质带;12-早古生代地层;13-前寒武纪基底,古生代地层及火山岩(未分);14-断层;15-超高压岩石;16-蓝片岩;17-采样点;18-水系.虚线代表推测的高压地体(南) 和超高压地体(北) 的界线 Fig. 1 Simplified geological maps of the orogenic belt of southwestern Tianshan (a) and the sample area (b, modified after Lü and Zhang, 2012b) 1-Late Paleozoic volcanic and volcaniclastic rocks; 2-Precambrian basement, Paleozoic granites and Paleozoic strata; 3-Precambrian amphibolite facies metamorphic rocks; 4-Paleozoic strata; 5-HP-UHP belt; 6-thrust; 7-fault; 8-study area; 9-Quaternary alluvial; 10-granitoid; 11-HP-UHP complex; 12-marble; 13-Precambrian basement, Paleozoic strata and volcanics (undifferentiated); 14-fault; 15-UHP rock locality; 16-blueschist locality; 17-sample locality; 18-river.Dashed line indicates the inferred boundary of the HP (south) and UHP (north) terrains

近年的研究成果表明,西南天山南部哈布腾苏和科布尔特一带以榴辉岩、蓝片岩为代表的高压低温变质带与北部木扎尔特以堇青石榴夕线石片麻岩、夕线石片麻岩、混合岩化片麻岩和混合岩化斜长角闪岩为代表的低压高温变质带共同构成了洋壳俯冲特有的双变质带(Zhang et al., 2007李强和张立飞,2004张立飞等,2005苟龙龙和张立飞,2009),二者以韧性剪切带为界。双变质带的北部可能为一套具有岛弧成因的火山岩带(朱永峰等,2005),南部(也以韧性剪切带为界) 则为一套早古生代沉积物,主体为奥陶纪灰岩。et al.(2012) 依据相平衡模拟方法将双变质带中的高压低温变质带进一步划分为超高压带和高压带(Lü and Zhang, 2012; et al., 2012;) 两部分(图 1b),本文样品采集点ZS06、ZS18和ZS05、ZS09、ZS08分别位于超高压带和高压带分界线北侧和南侧。

3 岩石学

本文分析的15个变质基性岩样品均采自西南天山哈布腾苏河谷内,岩石学和矿物学研究表明,这些变质基性岩主要分为榴辉岩和蓝片岩两类,呈巨大的岩块或构造透镜体产于石榴多硅白云母片岩中(图 2)。榴辉岩属低温型,包括蓝闪石榴辉岩、绿帘石榴辉岩、钠云母榴辉岩及退变榴辉岩,主要矿物组合为石榴石、绿辉石、金红石、钠云母和多硅白云母,含少量的蓝闪石、绿帘石及方解石;蓝片岩主要为石榴蓝闪石片岩,主要矿物组合为石榴石、蓝闪石和石英等。

图 2 西南天山哈布腾苏一带布丁状榴辉岩的野外照片 Fig. 2 Field photographs of boudin-shaped eclogites from Habutengsu, southwestern Tianshan

榴辉岩为黑色-灰黑色,斑状变晶结构,块状构造,局部可见矿物弱定向分布。矿物组合变化较大,主要由石榴子石(25%~30%)、绿辉石(50%~55%)、钠云母(15%~20%) 所组成(图 3a),含少量的金红石、黝帘石、多硅白云母。受原岩成分的影响,不同样品中可含有不等量的绿帘石、蓝闪石等矿物,岩性从典型的榴辉岩过渡为蓝闪石榴辉岩、绿帘石榴辉岩以及钠云母榴辉岩等。石榴子石多为变斑晶,呈自形-半自形颗粒,大小0.10~0.50mm左右,具有绿帘石、钠云母、蓝闪石和绿辉石的包体,石榴子石具明显的成分环带结构。部分蓝闪石也呈变斑晶状,具清晰的环带结构(图 3b),内部含有绿辉石等矿物包体,受退变质作用影响,部分蓝闪石边部转变为冻蓝闪石。蓝片岩外观为蓝色,总体上呈粒状片状变晶结构,片状构造。主要由石榴子石(20%~25%)、蓝闪石(55%~60%)、钠云母(10%~20%)、石英(5%~10%) 所组成(图 3cd),含少量的绿帘石、榍石等,岩性主要为石榴蓝闪石片岩。

图 3 榴辉岩和蓝片岩的显微结构 (a)-蓝闪石榴辉岩;(b)-蓝闪石榴辉岩中蓝闪石变斑晶,背散射图像;(c)-粗粒石榴蓝闪石片岩;(d)-细粒石榴蓝闪石片岩.矿物代号:Grt-石榴石; Omp-绿辉石; Rt-金红石; Phe-多硅白云母; Pg-钠云母; Gln-蓝闪石; Bar-冻蓝闪石; Ep-绿帘石 Fig. 3 Textures of eclogites and blueschists (a)-glaucophane eclogite; (b)-porphyroblastic glaucophane in the glaucophane eclogite; (c)-coarse grain garnet glaucophane schists; (d)-fine grain garnet glaucophane schists.Grt-garnet; Omp-omphacite; Rt-rutile; Phe-phengite; Pg-paragonite; Gln-glaucophane; Bar-barroisite; Ep-epidote

榴辉岩和蓝片岩中的石榴石组分为:铁铝榴石58.40%~72.01%、钙铝榴石15.03%~24.27%、镁铝榴石2.44%~12.91%、锰铝榴石0.60%~7.73%。石榴石具明显的成分环带,从核部到边部镁铝榴石和钙铝榴石逐渐增加,锰铝榴石则减少,指示石榴石的进变质生长过程。榴辉岩中绿辉石的硬玉分子含量为41.99%~43.75%,没有明显成分环带,石榴石中绿辉石包体的硬玉组分与基质中绿辉石的硬玉组分大致相当。

4 地球化学 4.1 分析方法

在系统的岩相学研究基础上,选取新疆西南天山哈布腾苏河一带变质基性岩典型样品,在河北省区域地质矿产调查研究所进行全岩粉末样品磨制至200目,然后进行全岩主量、微量元素测试分析。全岩主量、微量元素分别在国家地质实验测试中心3080E型荧光光谱仪(XRF) 以及等离子质谱仪(ICPMS) 上测得,此方法的优点是谱线简单、干扰少、分析的浓度范围广(0.005%~100%)、精确度高,误差 < 0.5%;微量元素Zr、Nb、V、Cr、Sr、Ba、Cl、Zn、Ni、Rb和Y用X射线荧光光谱分析(Rigaku-2100),误差分析为Ba=5%,Cl=2%~14%,其他元素 < 3%;其他微量元素及稀土元素采用ICP-MS (TJA-PQ-ExCell) 分析,误差 < 5%,分析结果见表 1

表 1 新疆西南天山哈布腾苏一带高压-超高压变质基性岩的化学成分特征(主量元素:wt%;稀土和微量元素:×10-6) Table 1 Chemical composition of representative HP-UHP metabasites from Habutengsu.Xinjiang (Major elements:%:Trace elements:×10-6)
4.2 分析结果

当岩石受流体作用、变质作用以及晚期蚀变作用的影响,K、Na和低场强元素(LFSE) Cs、Rb、S、Ba等为活泼性元素,而其他大部分微量元素(Zr、U、Pb、Th、Y、REE等) 和一部分主量元素(FeOT、MnO、TiO2、MgO等) 在变质作用(包括麻粒岩相,甚至是榴辉岩相) 中表现为惰性迁移特征,即全岩成分上从变质岩原岩到变质基性岩的转变是一个非等化学的转变,但这些惰性元素的特征基本上反映了原岩特征。因此,本文主要采用不活泼的高场强元素(HFSE) Zr、Y、Nb、Ta、Hf和Th与稀土元素(Mullen,1983) 对变质基性岩进行岩石分类并适当参考部分主量元素图解进行综合讨论。

地球化学分析结果显示,本文所选样品在SiO2-Zr/TiO2(图 4Winchester and Floyd, 1977) 和Zr/TiO2-Nb/Y图解中(图 5Winchester and Floyd, 1976),样品主体属于亚碱性系列,岩石类型主要为拉斑玄武岩和安山玄武岩,少数样品落入碱性玄武岩区域。根据研究区变质基性岩微量及稀土元素特征,我们将其进一步划分为MORB (洋中脊玄武岩) 型和OIB (洋岛玄武岩) 型两种类型,其中榴辉岩类型相对复杂,主要包括N-MORB (ZS6-1、ZS6-2、ZS6-7)、E-MORB (ZS6-9、ZS6-10、ZS9-1)、OIB (ZS8-9、ZS9-5、ZS18-1、ZS05-4) 型三种,而蓝片岩仅为OIB型,这主要由其化学成分差异决定,受控于变质基性岩原岩成分的影响。

图 4 SiO2-Zr/TiO2岩石分类图解(据Winchester and Floyd, 1977) Fig. 4 SiO2 vs.Zr/TiO2 ratio diagram (after Winchester and Floyd, 1977)

图 5 Zr/TiO2-Nb/Y岩石分类图解(据Winchester and Floyd, 1976) Fig. 5 Zr/TiO2 ratio vs.Nb/Y ratio diagram (after Winchester and Floyd, 1976)
4.2.1 主量元素

分析结果显示,研究区10件榴辉岩和5件蓝片岩样品除ZS05-4(SiO2=41.12%) 外,SiO2含量分别介于46.56%~51.53%和45.56%~48.98%之间,属于基性岩系列。其中N-MORB型榴辉岩、E-MORB型榴辉岩、OIB型榴辉岩、OIB型蓝片岩Na2O+K2O含量分别为3.92%~5.51%、2.78%~4.40%、1.56%~5.51%、3.04%~5.08%;Al2O3含量为14.36%~14.47%、12.50%~15.57%、11.83%~17.51%、13.55%~19.25%;CaO含量为10%~10.79%、7.96%~9.54%、8.68%~18.01%、7.77%~10.46%;MgO含量为7.38%~7.66%、5.72%~9.71%、3.78%~6.81%、4.95%~6.87%,相比之下,MORB型变质基性岩MgO含量比OIB型变质基性岩高;CaO/Al2O3比值为0.69~0.75、0.51~0.76、0.53~1.52、0.41~0.77,表明变基性岩经历过较高程度的分离结晶作用;TiO2含量为1.00%~1.08%、1.35%~2.25%、1.16%~2.86%、1.39%~2.86%,相比之下,MORB型变质基性岩TiO2含量比OIB型变质基性岩低,且后者含量波动较大(表 1)。四种类型的样品Na2O、K2O和MgO含量变化较大,可能与原岩成分遭受洋底蚀变、洋底变质和后期俯冲带脱水作用及折返过程中经受低温退变质改造有关(Staudigel et al., 1996Becker et al., 2000),同时MgO含量的变化也受到岩浆分离结晶作用的影响。

4.2.2 微量元素

稀土元素分析结果和稀土元素球粒陨石标准化配分型式显示(表 1图 6) 本文所选样品可以分为两类,一类REE含量相对较高,具“平坦型”REE配分型式,REE总体比球粒陨石富集10~30倍左右,Eu异常不明显,类似于MORB型(Sun and McDonough, 1989),岩石类型主要为榴辉岩;另一种具有轻稀土元素富集的配分形式,轻、重稀土元素的分异较强,具明显右倾型,其LREE/HREE为4.15~8.02,La/Yb比值为3.77~9.44,Eu异常不明显,类似于OIB型(Sun and McDonough, 1989),岩石类型为蓝片岩和少量榴辉岩,其具体特征如下。

图 6 变质基性岩稀土配分曲线和微量元素蛛网图(球粒陨石、原始地幔、N-MORB、E-MORB和OIB值据Sun and McDonough, 1989) 图 4图 5图 7-图 9的图例同此图 Fig. 6 Chondrite-normalized REE patterns and primitive mantle normalized spiderdiagram of trace elements for the metabasites (data of chondrite, primitive mantle, N-MORB, E-MORB and OIB after Sun and McDonough, 1989)

图 7 变质基性岩Zr/Y-Zr图解(据Pearce and Norry, 1979) A-板内玄武岩;B-岛弧玄武岩;C-洋中脊玄武岩;D-岛弧玄武岩和洋中脊玄武岩 Fig. 7 Zr/Y ratio vs.Zr diagram for the metabasites (after Pearce and Norry, 1979) A-Within Plate Basalts; B-Island Arc Basalts; C-Mid Ocean Ridge Basalts; D-Island Arc Basalts and Mid Ocean Ridge Basalts

图 8 变质基性岩构造环境判别图解 在图(a, 据Bass et al., 1973) 中,MORB-大洋中脊玄武岩,OIT-洋岛拉斑玄武岩,WPB-板内玄武岩,实线域-碱性玄武岩,虚线域-拉斑玄武岩;在图(b, 据Glassley,1974) 中,A-岛弧玄武岩,B-大洋中脊玄武岩,C-洋岛玄武岩 Fig. 8 tectonic discrimination diagram for the metabasites In Fig. 8a (after Bass et al., 1973): MORB-mid-ocean ridge basalts, OIT-ocean island tholeiites, WPB-Within-Plate basalts, closed circles, alkali metabasalts, open circles, tholeiitic metabasalts; in Fig. 8b (after Glassley, 1974): A-Island Arc Basalts, B-MORB, C-Ocean Island Basalts

图 9 变质基性岩构造环境判别图解 在图(a,据Wood,1980) 中,A-正常洋中脊玄武岩(N-MORB);B-富集洋中脊玄武岩(E-MORB) 和板内拉斑玄武岩;C-板内碱性玄武岩;D-岛弧拉斑玄武岩(Hf/Th>3.0) 和钙碱性玄武岩(Hf/Th < 3.0);在图(b,据Meschede,1986) 中,AⅠ-板内碱性玄武岩;AⅡ-板内碱性玄武岩和板内拉斑玄武岩;B-富集洋中脊玄武岩(E-MORB);C-板内拉斑玄武岩和火山弧玄武岩;D-正常洋中脊玄武岩(N-MORB) 和火山弧玄武岩;在图(c,据Pearce and Cann, 1973) 中,A-岛弧拉斑玄武岩;B-大洋中脊玄武岩+岛弧拉斑玄武岩+钙碱性玄武岩;C-钙碱性玄武岩;D-板内玄武岩;在图(d,据Mullen,1983) 中,OIT-洋岛拉斑玄武岩;MORB-大洋中脊玄武岩;IAT-岛弧拉斑玄武岩;CAB-钙碱性玄武岩;OIA-洋岛碱性岩 Fig. 9 tectonic discrimination diagram for the metabasites In Fig. 9a (after Wood, 1980): A-N-MORB; B-E-MORB and Within-plate tholeiitic basalts; C-Within-plate alkali basalts; D-Island Arc Tholeiite (Hf/Th>3.0) and Calc-Alkali Basalt (Hf/Th < 3.0).In Fig. 9b (after Meschede, 1986): AⅠ-Within-plate alkali basalts; AⅡ-Within-plate alkali basalts and Within-plate tholeiitic basalts; B-E-MORB; C-Within-plate tholeiitic basalts and island arc basalts; D-N-MORB and island arc basalts.In Fig. 9c (after Pearce and Cann, 1973): IAT-Island Arc Tholeiite; B-Mid-Ocean Ridge Basalt+Island Arc Tholeiite+Calc-AlkalineBasalt; C-Calc-Alkaline Basalt; D-Within-Plate Basalt.In Fig. 9d (after Mullen, 1983): OIT-Ocean Island Tholeiite; MORB-Mid Ocean Ridge Basalts; IAT-Island Arc Tholeiite; CAB-Calc-Alkali Basalt; OIA-Ocean Island Alkaline

MORB型岩石包括N-MORB和E-MORB两种榴辉岩,前者稀土元素总量较低,∑REE (35.98×10-6~43.51×10-6),∑LREE (21.20×10-6~25.55×10-6),LREE/HREE (1.35~1.43),(La/Yb)N(0.63~0.71),δEu (0.98~1.01),轻稀土元素(LREE) 含量低并且亏损,轻重稀土元素分馏不明显,总体表现为不具有明显Eu异常、配分模式呈平坦型(图 6a),与秦岭勉略蛇绿岩(许继峰等,1997)、滇西双沟蛇绿岩(张旗等,1995) 以及滇东南八布蛇绿岩(钟大赉等,1998) 中基性岩石特征相类似,具有N-MORB属性(Sun and McDonough, 1989);后者稀土元素总量有所升高,∑REE (60.10×10-6~77.35×10-6),∑LREE (42.17×10-6~51.21×10-6),LREE/HREE (1.25~2.43),(La/Yb)N比值为1.46~1.52(异常点为ZS09-1),轻重稀土元素有弱分馏(图 6c),显示弱正Eu异常(δEu=0.98~1.69),这种REE特征与E-MORB一致(Sun and McDonough, 1989)。

OIB型岩石包括榴辉岩和蓝片岩两种,榴辉岩稀土元素总量较高,∑REE (79.12×10-6~192.1×10-6),∑LREE (63.77×10-6~163.6×10-6),LREE/HREE (4.15~6.54),(La/Yb)N(3.77~9.44),δEu (1.00~1.12),轻重稀土元素分馏明显,总体表现为Eu无异常、较陡的右倾型稀土元素配分模式(图 6e),与OIB (洋岛玄武岩) 一致(Sun and McDonough, 1989)。蓝片岩稀土元素总量在四类变质基性岩中最高,且各元素含量波动较大,∑REE (88.18×10-6~227.8×10-6),∑LREE (72.99×10-6~202.5×10-6),LREE/HREE (4.78~8.02),(La/Yb)N(5.03~9.84),总体表现为Eu无异常(δEu=0.98~1.11),配分形式与OIB型榴辉岩类似(图 6g)。

在原始地幔标准化微量元素蛛网图上,N-MORB型榴辉岩的微量元素分布型式与典型的正常洋中脊玄武岩相似,元素的丰度高于或等于N-MORB,其中Rb、Ba、Th、U的丰度比原始地幔明显偏高(图 6b),而样品(ZS06-2) Sr含量呈正异常,暗示其原岩可能受到变质作用或地壳混染作用影响。E-MORB型榴辉岩可能由于较明显的分离结晶而使多数微量元素富集,类似于富集洋中脊玄武岩,其中Ba和Sr显示了较大的活动性,除ZS09-1外均显示明显的正异常。OIB型榴辉岩的元素除ZS05-4样品Rb和Ba含量偏低外,其它元素与原始地幔较一致,显示出相似的“隆起”分布型式,但微量元素含量总体偏低,没有明显的Nb、Ta亏损,Ce有轻微负异常,类似于洋岛和大陆裂谷的板内碱性玄武岩(图 6f)。

5 构造环境

构造环境判别图解是判断玄武岩构造环境的有效手段,采用不活动的高产强元素和稀土元素可以避免变质作用对岩石的影响,以此研究岩浆的成因及演化过程。

本文研究区所选样品中N-MORB型榴辉岩Zr、Hf、Nb、Ta质量分数分别为61.50×10-6~66.40×10-6、1.89×10-6~2.28×10-6、1.69×10-6~2.21×10-6、0.18×10-6~0.23×10-6,类似于正常洋中脊玄武岩(Zr=74×10-6,Hf=2.05×10-6,Nb=2.33×10-6,Ta=0.132×10-6)(Sun and McDonough, 1989)。E-MORB型榴辉岩Zr质量分数(96.40×10-6~124×10-6) 则偏高,远大于岛弧拉斑玄武岩的Zr质量分数;Hf质量分数为2.97×10-6~3.91×10-6,与MORB的Hf平均质量分数(2.40×10-6) 基本相当;Nb质量分数为1.85×10-6~4.86×10-6,稍小于富集型洋中脊玄武岩(Nb=8.30×10-6) 的质量分数(Sun and McDonough, 1989),远大于岛弧拉斑玄武岩Nb平均质量分数(0.70×10-6),小于板内拉斑玄武岩(Nb>12×10-6);Ta质量分数为0.18×10-6~0.33×10-6,类似于E-MORB (Ta=0.47×10-6)(Sun and McDonough, 1989),而明显区别于板内玄武岩(Ta>0.70)。OIB型榴辉岩Zr、Hf、Nb、Ta质量分数分别为115×10-6~273×10-6、3.19×10-6~7.19×10-6、7.50×10-6~24.80×10-6、0.50×10-6~1.57×10-6;OIB型蓝片岩Zr、Hf、Nb、Ta质量分数分别为113×10-6~317×10-6、3.29×10-6~8.35×10-6、9.76×10-6~33.90×10-6、0.67×10-6~1.86×10-6。该OIB型变质基性岩上述微量元素质量分数与典型的OIB (Zr=280×10-6、Hf=7.80×10-6、Nb=48×10-6、Ta=2.70×10-6)(Sun and McDonough, 1989) 较为一致。Zr/Nb比值是非常有效的环境判别指标,正常的洋中脊玄武岩Zr/Nb比值多大于30,E-MORB和洋岛拉斑玄武岩的Zr/Nb比值则约为10,本次研究的样品N-MORB型榴辉岩、E-MORB型榴辉岩、OIB型榴辉岩和OIB型蓝片岩Zr/Nb比值分别为27.83~39.17、22.63~67.03、11.01~11.97(ZS18-1除外)、9.35~11.58,表明西南天山的高压-超高压变质基性岩原岩具有MORB和OIB的亲源性,可与Gao and Klemd (2003)资料中的变质基性岩的特征对比。

在Zr/Y-Zr (图 7Pearce and Norry, 1979) 判别图解中,样品主要落入板内玄武岩及大洋中脊玄武岩区域,极少量落入岛弧玄武岩和大洋中脊玄武岩过渡区。分析的样品中,由于普遍存在含水矿物绿帘石、钠云母以及碳酸盐岩矿物,导致全岩数据烧失量含量较一般基性岩高,部分主量元素判别图解不再适用,然而,TiO2-P2O5图解对于发生蚀变的岩石其岩石分类仍是有效的。在TiO2-P2O5(图 8aBass et al., 1973) 中,样品多数落入MORB区,少数落入碱性玄武岩区。在FeOT/MgO-TiO2(图 8bGlassley,1974) 上,样品主要落入大洋中脊玄武岩和洋岛玄武岩区域。

在Hf/3-Th-Ta相关图(图 9aWood,1980) 上,OIB型蓝片岩5件样品以及OIB型榴辉岩除ZS18-1外均落入富集型洋中脊玄武岩(E-MORB) 和板内拉斑玄武岩区;N-MORB型榴辉岩ZS06-1和E-MORB型榴辉岩3件样品落入正常洋中脊玄武岩区;N-MORB型榴辉岩ZS06-7微量元素特征介于正常洋中脊玄武岩与岛弧拉斑玄武岩间;OIB型榴辉岩ZS18-1和N-MORB型榴辉岩ZS06-2落入钙碱性玄武岩区。Zr和Y是蚀变和变质作用过程中十分稳定的不活动微量元素,根据Zr/Y比值并联合其它构造环境判别图解可以判别变质基性岩的来源,在2Nb-Zr/4-Y相关图(图 9bMeschede,1986) 上,OIB型蓝片岩ZS05-5落入板内碱性玄武岩区;OIB型蓝片岩ZS05-6、ZS08-5、ZS08-7和OIB型榴辉岩ZS08-9、ZS09-5落入板内碱性玄武岩和板内拉斑玄武岩区;OIB型榴辉岩ZS05-4、ZS18-1和OIB型蓝片岩ZS08-6落入板内拉斑玄武岩和火山弧玄武岩区;E-MORB型榴辉岩3件样品和N-MORB型榴辉岩3件样品落入正常洋中脊玄武岩(N-MORB) 和火山弧玄武岩区。所有样品都不具有Nb、Ta、Zr、Ti等元素的亏损和Th富集,显示它们没有受到明显的地壳物质的混染,不同于典型的岛弧拉斑玄武岩,而与洋中脊玄武岩和板内环境的玄武岩更加接近。在Ti/100-Zr-3Y (图 9cPearce and Cann, 1973) 上,样品主要落于板内玄武岩区,少量样品落入拉斑玄武岩和钙碱性玄武岩区,表明变质基性岩具有板内拉斑玄武岩的微量元素地球化学特征,主要形成于大洋板内构造环境。在TiO2-10MnO-10P2O5相关图(图 9dMullen,1983) 上,样品落入洋岛碱性岩和大洋中脊玄武岩范围内,暗示变质基性岩原岩具有过渡性质。

在玄武岩构造环境判别图解(图 7图 8图 9) 中,样品点多数落在大洋中脊玄武岩区域内,并且部分样品位于大洋中脊玄武岩与洋岛玄武岩重合的区域或洋岛玄武岩的区域,表明哈布腾苏一带的玄武岩与大洋中脊玄武岩和洋岛玄武岩均有一定的亲缘关系,这与玄武岩的地球化学特征相一致。也就是说,哈布腾苏一带变质基性岩可能形成于大洋中脊且与洋岛(海山) 距离不太远的环境。Gao and Klemd (2003)认为西南天山的变质基性岩地球化学上相当于N-MORB、E-MORB和OIB,可能来自一个单一的地球化学源区,暗示原岩可能形成于相似构造背景下的大洋玄武岩序列,正如大洋接近扩张中心的海山残片。艾永亮等(2005)认为西南天山的超高压变质榴辉岩及其有关的蓝片岩来源于两种不同的大地构造背景下的玄武质岩石:形成于海山环境下的大洋玄武岩和陆源岛弧环境下的岛弧玄武岩。熊贤明等(2006)报道了2个榴辉岩和3个蓝片岩样品的地化数据,样品均落入OIB区域,认为其原岩类型为OIB。因此,西南天山的榴辉岩和蓝片岩原岩可能具有多样性,空间上的叠置关系也反映了其复杂性,表明高压-超高压变质带在洋壳俯冲过程中不同的玄武质岩石以及大洋沉积物经构造混杂并折返形成了现今的增生杂岩体。

综上所述,新疆西南天山哈布腾苏一带变质基性岩岩石学和地球化学属性揭示其原岩应主要为拉斑玄武岩和少量碱性玄武岩,并具有N-MORB、E-MORB或OIB属性。N-MORB通常被认为是形成于扩张中心,如大洋中脊;E-MORB形成于海山或者扩张中心,并临近地幔柱位置(Thompson et al., 1989);而OIB形成于大洋板内环境(Doubleday et al., 1994)。因此,该区具有MORB和OIB属性岩石组合的出现,表明该区早古生代存在大洋,岩石组合应形成于大洋中脊及附近洋岛(海山) 环境,这也与区域部分基性岩发育枕状构造特征(张立飞等, 2000, 2007, 2008高俊和张立飞,1998Gao and Klemd, 2003艾永亮等;2005熊贤明等,2006) 等有关西南天山变质基性岩显示大洋玄武岩序列的研究结果相吻合。

6 结论

(1) 哈布腾苏一带的变质基性岩主要为榴辉岩和蓝片岩两种岩石类型,原岩成分为拉斑玄武岩和少量碱性玄武岩;

(2) 区内变质基性岩原岩包括MORB和OIB两种类型,其中榴辉岩的原岩可进一步划分为N-MORB、E-MORB、OIB三种类型,而蓝片岩为OIB型;

(3) 西南天山哈布腾苏一带具有MORB和OIB属性岩石组合的出现,指示其应形成于大洋中脊及附近洋岛(海山) 环境。

致谢 本次研究的野外工作得到北大张立飞教授及其团队成员吕增博士、苟龙龙博士和博士研究生夏彬、陶仁彪、申婷婷和田作林的全力帮助;薛怀民研究员和董永胜教授认真审阅本文,并提出了许多宝贵的修改意见;在此一并致以诚挚的谢意。
参考文献
[] Ai YL. 2005. The Geochemical characteristics and tectonic implications of the UHP eclogites and blueschists, southwestern Tianshan, China. Ph. D. Dissertation. Beijing: Peking University (in Chinese)
[] Ai YL, Zhang LF, Li XP, Qu JF. 2005. Geochemical characteristics and tectonic implications of HP-UHP eclogites and blueschists in southwestern Tianshan, China. Progress in Natural Science, 15(11): 1346–1356.
[] Bass MN, Moberly RM, Rhodes JM, Shih CY, Church SE. 1973. Volcanic rocks cored in the central Pacific, leg 17. Initial Reports of the Deep Sea Drilling Project, 17: 429–503.
[] Becker H, Jochum KP, Carlson RW. 2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology, 163(1-4): 65–99. DOI:10.1016/S0009-2541(99)00071-6
[] Doubleday PA, Leat PT, Alabaster T, Nell PAR, Tranter TH. 1994. Allochthonous oceanic basalts within the Mesozoic accretionary complex of Alexander Island, Antarctica: Remnants of proto-Pacific oceanic crust. Journal of the Geological Society, 151(1): 65–78. DOI:10.1144/gsjgs.151.1.0065
[] Gao J, Xiao XC, Tang YQ, Zhao M, Wang J. 1994. The metamorphic PTDt path of blueschists and tectonic evolution in the southwestern Tianshan Mountains, Xinjiang. Geol. Rev., 40(6): 544–553.
[] Gao J, He GQ, Li MS, Xiao XC, Tang YQ, Wang J, Zhao M. 1995. The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China. Tectonophysics, 250(1-3): 151–168. DOI:10.1016/0040-1951(95)00026-6
[] Gao J. 1997. The discovery of eclogites and its tectonic implications, southwestern Tianshan. Chinese Science Bulletin, 42(7): 737–740.
[] Gao J, He GQ, Li MS. 1997a. Studies on the features of the structural deformations in the Western Tianshan Orogenic Belt. Acta Geoscientica Sinica, 18(1): 1–10.
[] Gao J, He GQ, Li MS. 1997b. Paleozoic orogenic processes of Western Tianshan Orogen. Earth Science, 22(1): 27–32.
[] Gao J, Zhang LF, Wang ZX, Aikebeier. 1997c. Metamorphic minerals and evolution of the western Tianshan high-pressure low-temperature metamorphic belt, Xinjiang. Acta Petrologica et Mineralogica, 16(3): 244–254.
[] Gao J, Zhang LF. 1998. Forming background of high-pressure metamorphic rocks in the western Tianshan Mountains. Xinjiang Geology, 16(4): 343–352.
[] Gao J, Li MS, Xiao XC, Tang YQ, He GQ. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287(1-4): 213–231. DOI:10.1016/S0040-1951(98)80070-X
[] Gao J, Klemd R, Zhang L, Wang Z, Xiao X. 1999. P-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China. Journal of Metamorphic Geology, 17(6): 621–636. DOI:10.1046/j.1525-1314.1999.00219.x
[] Gao J, Klemd R. 2000. Eclogite occurrences in the Southern Tianshan high-pressure belt, Xinjiang, Western China. Gondwana Research, 3(1): 33–38. DOI:10.1016/S1342-937X(05)70055-1
[] Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: Geochemical and age constraints. Lithos, 66(1-2): 1–22. DOI:10.1016/S0024-4937(02)00153-6
[] Gao J, Qian Q, Long LL, Zhang X, Li JL, Su W. 2009. Accretionary orogenic process of western Tianshan, China. Geological Bulletin of China, 28(12): 1804–1816.
[] Glassley W. 1974. Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington. Geological Society of America Bulletin, 85(5): 785–794. DOI:10.1130/0016-7606(1974)85<785:GATOTC>2.0.CO;2
[] Gou LL, Zhang LF. 2009. Petrology and U-Th-Pb chemical monazite dating of the low-P metapelitic granulites at the region of Muzhaerte River in southwestern Tianshan, NW China, and their geological implications. Acta Petrologica Sinica, 25(9): 2271–2280.
[] Klemd R, Schröter FC, Will TM, Gao J. 2002. P-T evolution of glaucophane-omphacite bearing HP-LT rocks in the Western Tianshan Orogen, NW China: New evidence for 'Alpine-type' tectonics. Journal of Metamorphic Geology, 20(2): 239–254. DOI:10.1046/j.1525-1314.2002.00347.x
[] Klemd R, Broecker M, Hacker BR, Gao J, Gans P, Wemmer K. 2005. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China. Journal of Geology, 113(2): 157–168. DOI:10.1086/427666
[] Li Q, Zhang LF. 2004. The P-T path and geological significance of low-pressure granulite-facies metamorphism in Muzhaerte, Southwest Tianshan. Acta Petrologica Sinica, 20(3): 583–594.
[] Li QL, Lin W, Su W, Li XH, Shi YH, Liu Y, Tang GQ. 2011. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 122(1-2): 76–86. DOI:10.1016/j.lithos.2010.11.007
[] Lü Z, Zhang LF, Qu JF, Li HJ. 2007. Petrology and metamorphic P-T path of eclogites from Habutengsu, southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 23(7): 1617–1626.
[] Lü Z, Zhang LF, Du JX, Bucher K. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. American Mineralogist, 93(11-12): 1845–1850. DOI:10.2138/am.2008.2800
[] Lü Z, Zhang LF, Du JX, Bucher K. 2009. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication. Journal of Metamorphic Geology, 27(9): 773–784. DOI:10.1111/jmg.2009.27.issue-9
[] Lü Z, Zhang LF. 2012. Coesite in the eclogite and schist of the Atantayi Valley, southwestern Tianshan, China. Chinese Science Bulletin, 57(13): 1467–1472. DOI:10.1007/s11434-012-4979-4
[] Lü Z, Bucher K, Zhang LF, Du JX. 2012. The Habutengsu metapelites and metagreywackes in western Tianshan, China: Metamorphic evolution and tectonic implications. Journal of Metamorphic Geology, 30(9): 907–926. DOI:10.1111/j.1525-1314.2012.01002.x
[] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Z-Y diagram. Chemical Geology, 56(3-4): 207–218. DOI:10.1016/0009-2541(86)90004-5
[] Mullen ED. 1983. MnO/TiO/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53–62. DOI:10.1016/0012-821X(83)90070-5
[] Pearce JA, Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290–300. DOI:10.1016/0012-821X(73)90129-5
[] Pearce JA, Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. DOI:10.1007/BF00375192
[] Staudigel H, Plank T, White B, Schmincke HU. 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. Geophysical Monograph Series, 96: 19–38.
[] Su W, Gao J, Klemd R, Li JL, Zhang X, Li XH, Chen NS, Zhang L. 2010. U-Pb zircon geochronology of Tianshan eclogites in NW China: Implication for the collision between the Yili and Tarim blocks of the southwestern Altaids. European Journal of Mineralogy, 22(4): 473–478. DOI:10.1127/0935-1221/2010/0022-2040
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
[] Tagiri M, Yano T, Bakirov A, Nakajima T, Uchiumi S. 1995. Mineral parageneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien-Shan. Island Arc, 4(4): 280–292. DOI:10.1111/iar.1995.4.issue-4
[] Thompson G, Bryan WB and Humphris SE. 1989. Axial volcanism on the East Pacific Rise, 10~12°N. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 181-200
[] Volkova NI, Budanov VI. 1999. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: Seamount volcanism and accretionary tectonics. Lithos, 47(3-4): 201–216. DOI:10.1016/S0024-4937(99)00019-5
[] Wei CJ, Powell R, Zhang LF. 2003. Eclogites from the south Tianshan, NW China: Petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. Journal of Metamorphic Geology, 21(2): 163–179. DOI:10.1046/j.1525-1314.2003.00435.x
[] Winchester JA, Floyd PA. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459–469. DOI:10.1016/0012-821X(76)90207-7
[] Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. DOI:10.1016/0009-2541(77)90057-2
[] Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. DOI:10.1016/0012-821X(80)90116-8
[] Xiao WJ, Windley BF, Huang BC, et al. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217. DOI:10.1007/s00531-008-0407-z
[] Xiong XM, Gao J, Klemd R, Huang DZ. 2006. Composition of hydrous fluids released by dehydration of oceanic island basalts during subduction: Constraints from the eclogite-facies high-pressure veins in the western Tianshan, NW China. Acta Petrologica Sinica, 22(1): 103–114.
[] Xu JF, Yu XY, Li XH, Han YW, Sheng JH, Zhang BR. 1997. The discovery of highly depleted N-MORB: The new evidence of Mianxian-Lueyang old ocean basin. Chinese Science Bulletin, 42(22): 2414–2418.
[] Zhang LF, Gao J, Ekerbair S, Wang ZX. 2000. Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang. Science in China (Series D), 44(1): 85–96.
[] Zhang LF, Ellis DJ, Jiang WB. 2002a. Ultrahigh-pressure metamorphism in western Tianshan, China: Part I: Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. American Mineralogist, 87(7): 853–860. DOI:10.2138/am-2002-0707
[] Zhang LF, Ellis DJ, Williams S, Jiang WB. 2002b. Ultra-high pressure metamorphism in western Tianshan, China, part Ⅱ: Evidence from magnesite in eclogite. The American Mineralogist, 87(7): 861–866. DOI:10.2138/am-2002-0708
[] Zhang LF, Ellis DJ, Ai YL, Jiang WB, Wei CJ. 2002. Ultra-high pressure metamorphic eclogite in Western Tianshan Mountains, Xinjiang. Acta Petrologica et Mineralogica, 21(4): 371–386.
[] Zhang LF, Ellis DJ, Williams S, Jiang WB. 2003a. Ultrahigh-pressure metamorphism in eclogites from the Western Tianshan, China-Reply. American Mineralogist, 88: 1157–1160.
[] Zhang LF, Ellis DJ, Arculus RJ, Jiang W, Wei CJ. 2003b. 'Forbidden zone' subduction of sediments to 150km depth-the reaction of dolomite to magnesite+aragonite in the UHPM metapelites from western Tianshan, China. Journal of Metamorphic Geology, 21(6): 523–529. DOI:10.1046/j.1525-1314.2003.00460.x
[] Zhang LF, Song SG, Liou JG, Ai YL, Li XP. 2005. Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist, 90(1): 181–186. DOI:10.2138/am.2005.1587
[] Zhang LF, Ai YL, Li Q, Li XP, Song SG, Wei CJ. 2005. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4): 1029–1038.
[] Zhang LF, Ai YL, Li XP, Rubatto D, Song B, Williams S, Song SG, Ellis D, Liou JG. 2007. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos, 96(1-2): 266–280. DOI:10.1016/j.lithos.2006.09.012
[] Zhang LF, Lü Z, Li XP, Bucher K. 2007. A comparative study on the UHP metamorphic ophiolitic rocks in Zermaat-Saas Zone, Western Alps and Western Tianshan, China. Geological Journal of China Universities, 13(3): 498–506.
[] Zhang LF, Lü Z, Zhang GB, Song SG. 2008. The geological characteristics of oceanic-type UHP metamorphic belts and their tectonic implications: Case studies from Southwest Tianshan and North Qaidam in NW China. Chinese Science Bulletin, 53(20): 3120–3130.
[] Zhang LF, Du JX, Shen XJ, Lü Z, Song SG, Wei CJ. 2009. The timing of UHP-HP eclogitic rocks in Western Tianshan, NW China: The new SIMS U-Pb zircon dating, Lu/Hf and Sm/Nd isochron ages. Abstracts of 8th International Eclogite Conference.
[] Zhang Q, Zhou DJ, Li XY, Chen Y, Huang ZX, Han S, Jia XQ, Dong JQ. 1995. Characteristics and genesises of Shuanggou ophiolites, Yunnan Province, China. Acta Petrologica Sinica, 11(Suppl): 190–202.
[] Zhong DL, Wu GY, Ji JQ, Zhang Q, Ding L. 1999. Discovery of ophiolite in southeast Yunnan, China. Chinese Science Bulletin, 44(1): 36–41. DOI:10.1007/BF03182880
[] Zhu YF, Zhang LF, Gu LB, Guo X, Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in Western Tianshan Mountains. Chinese Science Bulletin, 50(18): 2004–2014.
[] 艾永亮. 2005.新疆西南天山超高压榴辉岩及蓝片岩地球化学研究及其大地构造意义.博士学位论文.北京:北京大学
[] 艾永亮, 张立飞, 李旭平, 曲军峰. 2005. 新疆西南天山超高压榴辉岩、蓝片岩地球化学特征及大地构造意义. 自然科学进展, 15(11): 1346–1356.
[] 高俊, 肖序常, 汤耀庆, 赵民, 王军. 1994. 新疆西南天山蓝片岩的变质作用PTDt轨迹及构造演化. 地质论评, 40(6): 544–553.
[] 高俊. 1997. 西南天山榴辉岩的发现及其大地构造意义. 科学通报, 42(7): 737–740.
[] 高俊, 何国琦, 李茂松. 1997a. 西天山造山带的构造变形特征研究. 地球学报, 18(1): 1–10.
[] 高俊, 何国琦, 李茂松. 1997b. 西天山造山带的古生代造山过程. 地球科学, 22(1): 27–32.
[] 高俊, 张立飞, 王宗秀, 艾克拜尔. 1997c. 新疆西天山高压变质带的变质矿物与变质作用演化. 岩石矿物学杂志, 16(3): 244–254.
[] 高俊, 张立飞. 1998. 西天山高压变质岩的形成环境. 新疆地质, 16(4): 343–352.
[] 高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804–1816.
[] 苟龙龙, 张立飞. 2009. 新疆西南天山木扎尔特河一带低压泥质麻粒岩岩石学特征、独居石U-Th-Pb定年及其地质意义. 岩石学报, 25(9): 2271–2280.
[] 李强, 张立飞. 2004. 新疆西南天山木扎尔特一带低压麻粒岩相变质作用P-T轨迹及其地质意义. 岩石学报, 20(3): 583–594.
[] 吕增, 张立飞, 曲军峰, 李慧娟. 2007. 新疆西南天山哈布腾苏一带榴辉岩的岩石学特征及变质作用P-T轨迹. 岩石学报, 23(7): 1617–1626.
[] 熊贤明, 高俊, KlemdR, 黄德志. 2006. 俯冲洋岛玄武岩脱水释放的水流体成分:来自西天山榴辉岩相高压脉的约束. 岩石学报, 22(1): 103–114.
[] 许继锋, 于学元, 李献华, 韩吟文, 盛吉虎, 张本仁. 1997. 高度亏损的N-MORB型火山岩的发现:勉略古洋盆存在的新证据. 科学通报, 42(22): 2414–2418.
[] 张立飞, 高俊, 艾科拜尔, 王宗秀. 2000. 新疆西天山低温榴辉岩相变质作用. 中国科学(D辑), 30(4): 345–354.
[] 张立飞, EllisDJ, 艾永亮, 姜文波, 魏春景. 2002. 新疆西天山超高压变质榴辉岩. 岩石矿物学杂志, 21(4): 371–386.
[] 张立飞, 艾永亮, 李强, 李旭平, 宋述光, 魏春景. 2005. 新疆西南天山超高压变质带的形成与演化. 岩石学报, 21(4): 1029–1038.
[] 张立飞, 吕增, 李旭平, BucherK. 2007. 西阿尔卑斯Zermatt-Saas洋壳深俯冲超高压变质带与我国新疆西南天山超高压变质带的比较. 高校地质学报, 13(3): 498–506.
[] 张立飞, 吕增, 张贵宾, 宋述光. 2008. 大洋型超高压变质带的地质特征及其研究意义:以西南天山、柴北缘超高压变质带为例. 科学通报, 53(18): 2166–2175.
[] 张旗, 周德进, 李秀云, 陈雨, 黄忠祥, 韩松, 贾秀勤, 董金泉. 1995. 云南双沟蛇绿岩的特征和成因. 岩石学报, 11(增刊): 190–202.
[] 钟大赉, 吴根耀, 季建清, 张旗, 丁林. 1998. 滇东南发现蛇绿岩. 科学通报, 43(13): 1365–1370.
[] 朱永峰, 张立飞, 古丽冰, 郭璇, 周晶. 2005. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究. 科学通报, 50(18): 2004–2014.