岩石学报  2013, Vol. 29 Issue (5): 1713-1726   PDF    
喜马拉雅造山带的高压超高压变质作用与印度-亚洲大陆碰撞
张泽明, 董昕, 贺振宇, 向华     
中国地质科学院地质研究所,北京 100037
摘要: 喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室。高压和超高压变质岩分布在喜马拉雅造山带的核部。这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定。含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程。在约5Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用。高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融。高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融。因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性。
关键词: 高压和超高压变质作用     陆-陆碰撞     喜马拉雅造山带     青藏高原    
Indian and Asian continental collision viewed from HP and UHP metamorphism of the Himalayan orogen
ZHANG ZeMing, DONG Xin, HE ZhenYu, XIANG Hua     
Institute of Geology, CAGS, Beijing 100037, China
Abstract: The Himalayan orogen formed in response to ongoing continental convergence between the India and Asia that began as ca. 55Ma, and is the largest active orogen in existence and provides a nature laboratory for studying plate tectonics. High-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks occur in the core segment of Himalayan orogen. The formation conditions, times and processes of these HP and UHP rocks provide important constraints on the geometry, kinematic and dynamic evolution of the India-Asia collisional zone. In the western Himalayan orogen, coesite-bearing UHP rocks formed during the early stage of steep subduction of the Indian northern margin at the time of the Paleocene to Eocene boundary (53~46Ma). These UHP rocks experienced the rapid exhumation with a duration time of ca. 5Myr from the mantle depth of >100km to the middle crustal level, resulted in the amphibolite-facies retrograde metamorphism. In contrast, in the central Himalayan orogen, HP eclogites formed by the shallower subduction of the Indian continent at ca. 45Ma. These HP rocks experienced a slow exhumation with a duration time of up to 20Myr from the lower crust to the middle-upper crust level, resulted in the overprinting of granulite-facies metamorphism and partial melting. Similarly, in the eastern Himalayan orogen, HP granulites formed by the shallower subduction of the Indian continent at ca. 35Ma. These HP rocks also experienced a slow exhumation with a duration time of up to 20Myr, resulted in the overprinting of granulite-facies retrograde metamorphism and multistage of partial melting. Therefore, the metamorphism of whole Himalayan orogen shows distinct temporal and spatial change, indicating difference of the continental subduction and exhumation processes, and diverse of the mechanism of continent-continent collisional orogeny.
Key words: HP and UHP metamorphism     Continent-continent collision     Himalayan orogen     Tibetan Plateau    
1 引言

印度与亚洲大陆从约55Ma以来的碰撞形成了正在活动的喜马拉雅造山带。从位于巴基斯坦的西喜马拉雅构造结(Nanga Parbat Syntaxis) 到位于中国西藏的东喜马拉雅构造结(南迦巴瓦构造结,Namche Barwa Syntaxis),喜马拉雅造山带延伸超过2400km,是板块构造形成的大自然杰作(图 1图 2)。喜马拉雅山脉是世界上最高和最长的山脉,有世界最高峰--珠穆朗玛峰(Everest, 8844m),世界上最快的剥蚀速率(2~12mm/yr),是世界上几条最大河流的源头,是极地之外冰川分布面积和密度最大的地区。

图 1 青藏高原和喜马拉雅造山带简化地质图 Fig. 1 Simplified geological map of the Tibetan Plateau and Himalayan orogen

图 2 喜马拉雅造山带地质简图(据Guillot et al., 2008) Fig. 2 Geological map of the Himalayan orogen (after Guillot et al., 2008)

在晚元古代至古生代,印度次大陆是冈瓦纳大陆的一部分,其与欧亚大陆之间为古特提斯洋。在这一时期,冈瓦纳大陆北缘经历了泛非晚期的造山作用,广泛发育早古生代岩浆岩。在早石炭纪,印度大陆与北部Cimmerian超地体之间的裂谷开始形成。到早二叠纪,裂谷发展成新特提斯洋。Cimmerian地体群从冈瓦纳大陆向北漂移。现在的伊朗、阿富汗和拉萨地体是这些地体的一部分。

在三叠纪冈瓦纳超大陆裂解成东、西两个部分,印度、澳大利亚和南极是东冈瓦纳的组成部分。在早白垩纪,南印度洋打开,印度板块从澳大利亚和南极板块分离。从白垩纪开始,随着新特提斯洋向欧亚大陆之下俯冲,印度板块迅速向北漂移了约6000km,并在约55Ma与亚洲大陆发生碰撞,喜马拉雅造山带开始形成。

二十世纪初,喜马拉雅山就被认为是一个陆-陆碰撞带。到七十年代,研究者认为特提斯洋闭合后发生的陆-陆碰撞形成了阿尔卑斯-喜马拉雅造山带(如Şengör, 1979)。在喜马拉雅造山带,俯冲形成的变质岩在20世纪被逐渐发现。Hayden (1904)在印度Tso Morari地块的片麻岩中发现了含石榴石的基性变质岩。喜马拉雅造山带的蓝片岩最早被发现在巴基斯坦(Shams,1972) 和印度(Virdi et al., 1977)。榴辉岩最早被发现在巴基斯坦Kaghan地块(Chaudhry and Ghazanfar, 1987),超高压的含柯石英榴辉岩也被发现在相同地区(O'Brien et al., 1999)。另外,榴辉岩被发现在喜马拉雅造山带中段(Lombardo and Rolfo, 2000),高压麻粒岩被发现在喜马拉雅造山带东端,即东喜马拉雅构造结(Zhong and Ding, 1996; Liu and Zhong, 1997; Ding and Zhong, 1999)。

近几十年来,人们运用板块构造理论,通过多学科综合研究,初步揭示出喜马拉雅造山带及青藏高原的地体组成与构造格架,初步探索出大陆碰撞造山、地壳加厚和高原隆升的过程与机制。本文综述了喜马拉雅造山带高压、超高压变质作用的研究进展,探讨了喜马拉雅造山带变质作用的时、空演化过程,以及深俯冲的印度大陆的几何学、运动学和动力学特征。

2 喜马拉雅造山带的主要构造单元

青藏高原由四个地体组成,自北向南为松潘-甘孜、羌塘、拉萨和喜马拉雅地体,它们之间依次为金沙江、班公湖-怒江和印度-藏布江缝合带(图 1)。这些缝合带分别是古特提斯、中特提斯和新特提斯洋盆的残余(Yin and Harrison, 2000)。新生代的喜马拉雅造山作用发生在印度大陆北缘、亚洲大陆(拉萨地体) 南缘和它们之间的新特提斯洋缝合带(图 1图 2图 3)。构成喜马拉雅造山带的主体是印度大陆北缘物质。一般认为,喜马拉雅造山带由沿造山带走向分布的、四个近平行的构造单元组成,从南到北依次为:次喜马拉雅单元(SubHimalayan unit,或前陆盆地)、低喜马拉雅岩系(Lesser Himalayan Sequence,LHS), 高喜马拉雅结晶岩系(High Himalayan Crystalline Sequence,HHC),特提斯喜马拉雅系列(Tethyan Himalayan Sequence,THS)。它们之间依次分别为主边界逆冲断裂(Main Boundary Thrust,MBT),主中央逆冲断裂(Main Central Thrust,MCT) 和藏南拆离断裂(South Tibet detachment,STD;图 2图 3)(Le Fort, 1975; Burg et al., 1984; Burchfiel and Royden, 1985; Hodges, 2000; Yin and Harrison, 2000; Yin, 2006)。

图 3 喜马拉雅造山带中段横剖面示意图(据Searle et al., 2011) MBT-Main Boundary Thrust; MCT-Main Central Thrust; MHT-Main Himalayan Thrust Fig. 3 Cross-section of the central Himalayan orogen (after Searle et al., 2011)

次喜马拉雅单元构成喜马拉雅山的前陆,由中新世到更新世的磨拉石组成,为来自喜马拉雅山的剥蚀物质。这些被称之为Siwaliks组的磨拉石沉积物内部褶皱和叠瓦状构造发育。次喜马拉雅构造单元沿向北倾斜的主前缘逆冲断裂(MFT) 逆冲到第四系的河流冲积层之上,表明喜马拉雅山依然是一个正在活动的造山带。

低喜马拉雅单元(LHS),主要由形成在印度大陆被动陆缘的早元古代至早寒武纪的浅变质沉积岩组成,厚度超过10km,发育基性和长英质侵入岩。眼球状片麻岩的锆石U-Pb年龄为1850Ma (Le Fort, 1989)。LHS的碎屑锆石年龄在2.6~1.8Ga之间,表明它们主要是来源于晚太古代至早元古代的印度大陆岩石(DeCelles et al., 2000; Richards et al., 2005; Robinson et al., 2006)。二叠纪至古近纪的冈瓦纳和前陆盆地沉积岩覆盖在LHS之上。LHS沿向北倾斜的主边界断裂(MBT) 逆冲到次喜马拉雅地层之上。

高喜马拉雅结晶岩系(HHC) 是一个约30km厚的中、高级变质岩系,主要由800Ma之后形成的变质沉积岩组成,发育早奥陶纪和新生代的花岗岩,普遍经历了巴罗型(中压型) 区域变质作用(Parrish and Hodges, 1996; Robinson et al., 2001, 2006; Richards et al., 2005)。一般认为,HHC的变质沉积岩为上覆的特提斯喜马拉雅底部沉积岩系变质作用的产物。HHC沿向北倾斜的主中央逆冲断裂带(MCT) 逆冲到低喜马拉雅单元之上。

特提斯喜马拉雅带(THS) 是一个约100km宽的复向斜带,主要由低级变质的沉积岩组成,保存了几乎完整的从奥陶纪至始新世的海相沉积地层(Garzanti et al., 1986)。这些沉积在印度大陆北缘的岩石记录了印度大陆北缘从冈瓦纳大陆演化到与欧亚大陆碰撞的历史。特提斯喜马拉雅的低级沉积岩与下部的高喜马拉雅结晶岩之间经常是过渡的。THS发育形成在石炭纪至二叠纪裂谷环境的基性火成岩。

在特提斯喜马拉雅带的中部和北部发育一系列的片麻岩穹窿(图 2),被称之为特提斯变质岩(Tethyan metamorphic rocks) 或北喜马拉雅变质岩(North Himalayan metamorphic rocks)(Zhang et al., 2012a)。这些变质穹窿在构造上位于特提斯喜马拉雅之下,由新元古代至寒武纪的变质沉积岩和早元古代的片麻岩组成。在藏南地区,这些片麻岩穹窿被中新世和始新世的花岗岩侵入(Zeng et al., 2011; Hou et al., 2012Zhang et al., 2012a)。在西喜马拉雅造山带,如Kaghan和Tso Morari地区,这些片麻岩穹窿实际上是由早期的超高压变质表壳岩组成,晚期叠加了角闪岩相退变质作用(图 2Burg et al., 1984; Brookfield, 1993; Guillot et al., 1997; de Sigoyer et al., 2004)。特提斯变质岩系具有与HHC不同的地层序列和变质演化过程,很可能代表印度大陆的北部边缘(Guillot et al., 1997, 2008; Yin et al., 1999; Hodges, 2000)。

印度-藏布缝合带(Indus-Tsangpo Suture Zone,ITSZ),为印度板块与北部的卡拉昆仑-拉萨地体之间的碰撞带。这个缝合带由蛇绿混杂岩组成,主要包括自来新特提斯洋壳的复理石和蛇绿岩,晚白垩纪到早侏罗纪由玄武岩、英安岩、火山碎屑岩、枕状熔岩和放射虫硅质岩组成的火山岛弧岩石,以及大陆碎屑岩系(磨拉石) 夹大洋盐水沉积物夹层。一般认为,印度-藏布缝合带为喜马拉雅造山带的北界。缝合带以北的拉萨地体经历了中生代的安第斯型造山作用,发育在新特提斯洋壳向北俯冲过程中形成的中生代火成岩,包括广泛分布的Ladakh-Gangdese (冈底斯) 岩基。但是,拉萨地体南部也经历了强烈的新生代岩浆作用和变质作用,表明其经历了喜马拉雅造山作用(如Chung et al., 2003, 2005; Hou et al., 2004; Mo et al., 2007, 2009; Dong et al., 2010; Xu et al., 2010; Zhang et al., 2010, 2012b, 2013; Guan et al., 2012)。

3 喜马拉雅造山带西段的超高压变质作用

在喜马拉雅带西段的北部,特提斯变质岩系邻近印度缝合带,构成了整个喜马拉雅推覆地体系列的最上部构造单元,相当于印度大陆的最北缘(图 2)(Guillot et al., 2008)。这些变质岩系记录了始新世的超高压变质作用。巴基斯坦的Kaghan地块是最西部的超高压变质地块,它由三个单元组成。下部单元主要由砂质和泥质片麻岩组成,含少量角闪岩透镜体。中部单元是主要的超高压单元,由长英质片麻岩、大理岩组成,含榴辉岩层或透镜体。上部单元由硅质片岩、泥质片麻岩和大理岩组成(Kaneko et al., 2003)。

在Kaghan地块,超高压榴辉岩的矿物组合是石榴石+绿辉石+柯石英(或石英)+多硅白云母+金红石,可含角闪岩和绿帘石。柯石英或其石英假象在绿辉石中呈包裹体产出。许多绿辉石中含有定向分布的针状石英出溶体。榴辉岩经历了角闪岩相退变质作用,表现为绿辉石被单斜辉石+斜长石+角闪石+石英合晶替代,或绿辉石和石榴石被粗粒角闪石替代。作为榴辉岩围岩的长英质片麻岩的矿物组合是石英+斜长石+钾长石+多硅白云母+石榴石,泥质片麻岩的矿物组合是石英+多硅白云母+石榴石+斜长石+金红石。除了片麻岩中锆石含柯石英包裹体之外,片麻岩并没有保存其它的超高压变质作用证据(Kaneko et al., 2003)。据计算,含柯石英榴辉岩的峰期变质条件是3.0±0.2GPa和770±50℃(O'Brien et al., 2001)。在超高压变质岩折返过程中,经历了缓慢降温、快速降压过程,并发生角闪岩相退变质作用(图 4中橙色实线;Lombardo and Rolfo, 2000Lombardo et al., 2000; O'Brien et al., 2001)。Wilke et al.(2010)认为,Kaghan地块的超高压榴辉岩在折返早期经历了快速降压过程,当其折返到中下地壳经历了加热过程,发生了麻粒岩相退变质作用和部分熔融(图 4中棕色虚线)。

图 4 喜马拉雅造山带高压和超高压岩石变质作用P-T-t轨迹 Fig. 4 Metamorphic P-T-t paths of the HP and UHP rocks from the Himalayan orogen

Kaghan地块的榴辉岩已经进行了较多的年代学研究。如Tonarini et al. (1993)Spencer and Gebauer (1996)用Sm-Nd和U-Pb定年方法获得的变质年龄在50~40Ma。用锆石U-Pb方法获得的柯石英榴辉岩进变质年龄为50±1Ma,峰变质年龄为46.2±0.7Ma和46.4±0.1Ma (Kaneko et al., 2003Parrish et al., 2006)。榴辉岩中的锆石和金红石给出了~44Ma的高压退变质年龄(Spencer and Gebauer, 1996; Treloar et al., 2003; Parrish et al., 2006)。这表明超高压变质岩经历了快速折返过程,折返速率为3~8cm/yr。基于多硅白云母Rb-Sr定年,Kaghan地块变质岩在43~40Ma冷却到了500~400℃以下(Tonarini et al., 1993),揭示出一个缓慢的折返速率(~0.3cm/yr)。斜长角闪岩角闪石40Ar/39Ar定年结果为42.6±1.6Ma (Chamberlain et al., 1991), 41±2Ma (Smith et al., 1994) 和39.8±1.6Ma (Hubbard et al., 1995)。这进一进支持超高压岩石经历了晚期的缓慢折返过程。最近,Rehman et al.(2013)对Kaghan超高压变质岩中的锆石进行了系统的原位定年,从锆石岩浆核中获得了267.6±2.4Ma的原岩年龄,从锆石变质结晶域中获得了44.9±1.2Ma的变质年龄。结合已经有定年结果,他们认为超高压变质岩原岩的侵位年龄为267~253Ma,榴辉岩进变质年龄为49~47Ma,超高压变质年龄为45~46Ma,角闪岩相退变质年龄为40Ma (图 4中橙色实线上标注的年龄)。

西喜马拉雅造山带东部的Tso Morari地块由超高压变质岩组成。该超高压变质岩系呈穹窿状产出在特提斯喜马拉雅岩系之中(图 2)。该变质穹窿由三个推覆体组成,下面两个推覆体由元古代至寒武纪的基底岩石组成,上面一个推覆体还包括古生代至第三系的沉积岩。奥陶纪的花岗岩和基性岩侵入在前两个推覆体的基底岩石之中。含柯石英榴辉岩产出在基底和沉积盖层中。榴辉岩的原岩是形成在特提斯洋与印度大陆边缘过渡环境下的基性岩墙,这表明Tso Morari变质岩系为印度大陆的最北缘(Guillot et al., 2008)。

Tso Morari地块经历了超高压榴辉岩相变质作用(O'Brien and Sachan, 2000; O'Brien et al., 2001; Guillot et al., 2003; Mukheerjee et al., 2003; de Sigoyer et al., 2004; Ahmad et al., 2006)。榴辉岩的矿物组合是石榴石+绿辉石+柯石英+蓝闪石+多硅白云母+钠云母+黝帘石+金红石。柯石英及其假象在石榴石和绿辉石中呈包裹体产出。富铁泥质岩的矿物组合是石榴石+硬玉+蓝闪石+硬绿泥石+钠云母+多硅白云母+黝帘石。白片岩的矿物组合是石榴石+绿泥石+滑石+蓝晶石+金红石。据估算,含金刚石和柯石英榴辉岩的峰变质条件是~750℃和>3.5GPa,说明印度陆壳的俯冲深度>120km (Mukheerjee et al., 2005)。在超高压变质岩折返到40~30km深度经历了升温过程,发生了角闪岩相退变质作用(1.1±0.3GPa和580±50℃),在进一步折返过程中发生了绿片岩相退变质作用(图 4)。

de Sigoyer et al.(2000)通过Lu-Hf、Sm-Nd和U-Pb定年,获得的Tso Morari地块变质作用时代为55±6Ma。Leech et al.(2005)在长英质片麻岩中获得了53.3±0.7Ma和50.0±0.6Ma的锆石U-Pb年龄,认为前者是超高压变质年龄,后者是榴辉岩相退变质年龄(图 4)。这个超高压变质年龄与53.8±0.2Ma的多硅白云母40Ar/39Ar年龄类似(Schlup et al., 2003),表明超高压变质岩经历了早期快速折返。角闪石Sm-Nd、Rb-Sr和锆石U-Pb定年表明,角闪岩相退变质作用发生47±0.5Ma (图 4de et al., 2000; Leech et al., 2005)。最后的绿片岩相退变质作用发生在34±2Ma和45±2Ma之间,表明折返速率已经降低到了0.3cm/yr (Guillot et al., 2008)。

4 中喜马拉雅造山带的高压榴辉岩相变质作用

高喜马拉雅结晶岩系(HHC) 以发育典型的中压型变质作用为特征(Le Fort, 1975; Hodges, 2000)。但近十多年来,在喜马拉雅造山带中段陆续发现了高压变质的榴辉岩和麻粒岩(Lombardo and Rolfo, 2000; Groppo et al., 2007; Cottle et al., 2009Chakungal et al., 2010)。而且,最近的研究也证明大面积分布的正、副片麻岩也经历了高压变质作用(Liu et al., 2007a; Kali et al., 2010)。

在珠穆郎玛峰(Everest) 东部的Ama Drime地块,榴辉岩分布在高喜马拉雅结晶系的下部构造层位,其围岩主要是花岗质片麻岩和变质沉积岩(图 2)(Lombardo and Rolfo, 2000; Groppo et al., 2007; Cottle et al., 2009)。锆石定年揭示,榴辉岩的原岩是形成于110~88Ma的基性岩墙(Lombardo and Rolfo, 2000)。由于强烈的麻粒岩相退变质,Ama Drime地块榴辉岩主要单斜辉石、斜长石、石榴石和角闪石组成,含少量斜方辉石、黑云母、钛铁矿和石英(Groppo et al., 2007)。可识别出四期矿物组合,第一期为榴辉岩相,矿物组成为石榴石、绿辉石(被单斜辉石+斜长石合晶替代)、多硅白云母(被黑云母+斜长石合晶替代),第二期为高压麻粒岩相,矿物组合包括单斜辉石、斜方辉石、斜长石和副矿物钛铁矿,第三期为麻粒岩相,以石榴石被斜长石+斜方辉石冠状体替代为特征,第四期为角闪岩相,为基质中的角闪石+斜长石组合。榴辉岩相变质作用的证据包括石榴石的化学成分、钛铁矿替代金红石、斜长石+透辉石±斜方辉石后成合晶呈绿辉石假象等(Joanny et al., 1991Groppo et al., 2007)。据估算,原来绿辉石中的硬玉分子含量为35mol%~45mol%(Lombardo and Rolfo, 2000)。榴辉岩的峰期变质压力>1.5GPa,很可能达到2.0GPa,麻粒岩相退变质作用发生~1.0GPa和>750℃,角闪岩相退变质作用发生在~750℃和0.7~0.5GPa (图 4Groppo et al., 2007)。Ama Drime榴辉岩的退变质P-T轨迹为顺时针型,榴辉岩折返早期经历了加热过程,之后是近等温降压过程,后跟随一个近等压冷却过程(图 4中的红实线)。基于角闪石40Ar/39Ar定年,Lombardo and Rolfo (2000)认为Ama Drime榴辉岩相变质作用发生在25Ma之前的始喜马拉雅变质期。Rolfo et al.(2005)从榴辉岩锆石的变质边中获得的U-Pb SHRIMP年龄为13~14Ma,认为是榴辉岩的后期麻粒岩相退变质时间。

Kali et al. (2010)从Ama Drime地块副片麻岩中识别出四期矿物组合:第一个组合是黑云母+斜长石+石英+白云母,在大的石榴石或石榴石核部呈包裹体产出;第二个组合是蓝晶石或夕线石+黑云母+斜长石+石英+石榴石边缘+钾长石+熔体,指示麻粒岩相变质条件和深熔作用;第三期矿物组成是黑云母+斜长石+石英;第四期表现为铝硅酸盐矿物被白云母替代,蓝晶石被红柱石替代、石榴石被绿泥石、白云母和绿泥石化黑云母。基于矿物成分分析和相平衡模拟,Ama Drime副片麻岩具有一个顺时针的P-T轨迹,峰期变质作用发生在~1.6GPa和700℃,这之后近等压增温到~850℃,并发生部分熔融,然后是近等温降压和降温、降压退变质过程(图 4中的粉色虚线)。由此可见,Ama Drime地块的片麻岩和榴辉岩具有类似的变质作用P-T轨迹,都在折返的早期经历了加热和深熔过程。Groppo et al.(2010)研究也表明,该地区的片麻岩在蓝晶石稳定域发生了脱水部分熔融,P-T条件为820℃和1.3GPa,然后冷却降压到805℃和1.0GPa,导致熔体结晶。独居石和锆石U-Pb SHRIMP定年表明,深熔作用发生在早渐新世(~31Ma)。

Catlos et al.(2002)对喜马拉雅造山带中段片麻岩中的独居石进行了系统的Th-Pb离子探针定年,石榴石中包裹的独居石和基质中的独居石分别给出了45.8±2.8Ma和44.5±0.9Ma的变质年龄。另一个样品中的独居石给出了39.5±0.8Ma和33.5±1.2Ma的变质年龄。据此,Guillot et al.(2008)推测Ama Drime地块榴辉岩的峰期变质年龄很可能是在约45Ma (图 4)。Groppo et al.(2007)通过榴辉岩中锆石低U边缘的U-Pb SHRIMP定年,获得了约13Ma的变质年龄,认为它代表榴辉岩的晚期低压麻粒岩相退变质年龄(图 4)。由此可见,喜马拉雅造山带中段的高压变质岩很可能经历了较长期的折返过程。实际上,该地区片麻岩的研究也得出了类似的结果。如,Liu et al.(2007a)认为Ama Drime地块的含石榴石夕线石片麻岩经历了33±2Ma的高压变质作用(1.4GPa和750~800℃),23±2Ma和~12Ma的低压变质退变质作用。Cottle et al.(2009)对高喜马拉雅结晶岩系中的锆石、独居石和磷钇石进行了U-Pb定年,其结果表明,随着印度-亚洲的碰撞,与地壳加厚所伴随的进变质作用至少在39Ma就已经发生,后来的夕线石级变质作用发生在28Ma,并伴随有两期(20Ma和16Ma) 淡色花岗岩的侵入,整个变质作用过程持续了至少20Myr。

最近,Corrie et al. (2010)对Ama Drime地块南部Arun河谷中的榴辉岩进行了石榴石Lu-Hf定年,获得了20.7±0.4Ma年龄,对角闪岩中石榴石定年,获得了15~14Ma年龄。结合岩石学研究结果,Corrie et al. (2010)认为Arun榴辉岩经历了三个变质阶段,第一阶段为榴辉岩相阶段,形成条件为~670℃和≥1.5GPa,形成时间为23~16Ma,第二阶段为麻粒岩相退变质阶段(~780℃和1.2GPa),第三阶段为角闪岩相退变质阶段(~675℃和0.6GPa),时代为~14Ma。上述研究结果很可能表明,在喜马拉雅造山带中段,高喜马拉雅结晶岩系在新生代经历了多期构造-热事件。

5 东喜马拉雅造构造结的高压麻粒岩相变质作用

在喜马拉雅造山带东端,即东喜马拉雅构造结,高压麻粒岩产出在高喜马拉雅结晶岩系,又称南迦巴瓦岩群中(Zhong and Ding, 1996; Liu and Zhong, 1997; Ding and Zhong, 1999; Ding et al., 2001)。Geng et al.(2006)将南迦巴瓦岩群划分为三个单元,即上部含大理岩和钙硅酸盐岩的片麻岩单元,中部的混合片麻岩单元和下部的含高压麻粒岩的片麻岩单元。Zhang et al.(2010)认为南迦巴瓦岩群是由不同时代的岩浆岩和沉积岩组成,它们经历了多期变质和变形改造,因此,应该称之为南迦巴瓦杂岩。据锆石U-Pb定年研究(Zhang et al., 2012a),南迦巴瓦杂岩的正片麻岩原岩主要形成在~1610Ma的晚古元古代和~490Ma的早古生代。斜长角闪岩的原岩是~1600Ma形成的基性岩浆岩。副片麻岩中的碎屑锆石年龄在新太古代至早古生代之间,主要的年龄峰值为2490Ma, 1640Ma, 990Ma和480Ma。钙硅酸盐岩具有早古生代(~540Ma) 的变质年龄。

作为大印度地壳的一部分,南迦巴瓦杂岩经历了深俯冲,发生了高压麻粒岩相变质作用,并在折返过程中叠加了中压麻粒岩相和角闪岩相退变质作用(Liu and Zhong, 1997; Ding and Zhong, 1999; Zhang et al., 2010)。基性高压麻粒岩的峰期矿物组合是石榴石+单斜辉石+斜长石+石英+金红石,长英质和泥质高压麻粒岩的矿物组成是石榴石+蓝晶石+钾长石+条纹长石+石英。据估算,高压麻粒岩的峰期变质条件为1.7~1.8GPa和890℃(Liu and Zhong, 1997) 或1.4~1.8GPa和750~850℃(Ding and Zhong, 1999)。

Guilmette et al.(2011)对南迦巴瓦杂岩中副片麻岩的研究表明,含蓝晶石的深熔片麻岩在含夕线石片麻岩中呈透镜体产出。矿物组成与结构特征表明,这些片麻岩在蓝晶石稳定的高压麻粒岩相条件下经历了黑云母脱水熔融和熔体分离。相平衡模拟表明,片麻岩中黑云母脱水熔融时的稳定矿物组合是黑云母+蓝晶石+石榴石+石英+斜长石+钾长石+流体+金红石+钛铁矿,变质条件是800~875℃和1.0~1.7GPa。模拟结果也表明,这些片麻岩被俯冲到下地壳深度,在1.5~1.6GPa和850℃条件下经历了高压麻粒岩相峰期变质作用,然后冷却、降压到0.9GPa和810℃条件下发生麻粒岩相退变质作用(图 4)。

由于南迦巴瓦杂岩经历了长期的新生代变质演化和多期部分熔融,所以,矿物同位素定年经常获得不同的变质和岩浆事件年龄。由此导致研究者对南迦巴瓦杂岩的形成与演化过程有不同的认识。Liu et al.(2007b)在高压长英质麻粒岩锆石中获得了33~30Ma峰变质年龄和~23Ma的退变质年龄。Su et al.(2012)获得了~25Ma的峰期变质年龄和~18Ma的退变质年龄。Zhang et al.(2010)通过对高压泥质麻粒岩中的变质锆石进行U-Pb定年,获得了39.5~16.3Ma的年龄,大多数分析点得出的加权平均年龄为36.6±0.9Ma和32.4±0.8Ma,认为代表高压麻粒岩相的峰期变质年龄(图 4)。Booth et al.(2009)认为南迦巴瓦的变泥质岩经历了1.0~1.4GPa和700~900℃的峰变质作用,并基于独居石和榍石定年获得了10~3Ma的变质年龄,并认为高压岩石从~11Ma到~6Ma经历了~0.5GPa的快速降压。这一研究结果至少说明,南迦巴瓦高压变质岩在~6Ma经历了角闪岩相退变质作用,表明高压岩石从下地壳折返到中地壳深度至少持续了20Myr (图 4)。正在由于这样的缓幔折返导致其叠加了强烈的角闪岩相退变质作用。

6 高压、超高压变质作用的构造意义 6.1 印度大陆板块的俯冲

一般认为,轻的大陆岩石圈发生碰撞后并不容易发生俯冲。但是,超高压变质岩在喜马拉雅造山带的存在,表明印度大陆确实被俯冲到亚洲大陆之下,俯冲深度至少可达100km。导致了印度大陆俯冲的有利因素可能包括以下两方面。首先,层析图像揭示,喜马拉雅造山带以南的印度大陆岩石圈厚度为250~300km (Van der Voo et al., 1999)。但是,向着喜马拉雅碰撞带,印度大陆岩石圈的厚度变薄。这很可能是由于印度大陆北缘经历了泛非期造山作用,以及二叠纪至早白垩纪的裂谷作用,导致印度大陆北部的岩石圈变薄。Ranalli et al.(2000)认为减薄的大陆岩石圈可以发生俯冲。其次,早期的裂谷作用形成了大量的溢流玄武岩和基性岩浆岩的底侵,这可以导致印度板块的密度变大。在巴基斯坦Kaghan地块,二叠纪基性火山岩的厚度可达2km,这些岩石已经在俯冲过程中被变质成了榴辉岩和斜长角闪岩(Spencer et al., 1995)。据计算,如果上地壳含有10%的基性岩其密度会增加100kg/m-3,这很可能是大陆地壳发生俯冲的另一个重要因素(Bousquet et al., 1997Ranalli et al., 2000)。

目前的研究结果表明,超高压变质岩仅仅产出在喜马拉雅造山带西段,而在中、东段产出的是高压榴辉岩和高压麻粒岩。这很可能说明印度大陆的俯冲角度和俯冲深度存在空间上的变化。在西喜马拉雅造山带,特别是西构造结,印度大陆的初始俯冲角度约为40°(Guillot et al., 2007)。而且,层析和地震研究揭示,这样的陡俯冲作用还正在进行(Roecker, 1982; Van der Voo et al., 1999; Searle et al., 2001Negredo et al., 2007)。这表明印度大陆地壳被俯冲到超过100km的深度,形成了含柯石英或金刚石的超高压变质岩(图 5a)。相反,层析和地震研究显示,在喜马拉雅造山带中段印度板块以9°倾角俯冲到亚洲大陆之下,最大的地壳俯冲深度不超过80km,仅仅能够形成高压变质岩(压力小于2.5GPa;图 5b)。而且,由于中喜马拉雅造山带仅上地壳岩石被折返,所记录的变质压力应该不会超过2.0GPa (Guillot et al., 2008)。

图 5 印度大陆俯冲的动力学模型(据Guillot et al., 2008) (a) 在西喜马拉雅造山带,印度大陆发生陡俯冲,导致了超高压变质作用的发生; (b) 在中和东喜马拉雅造山带,印度大陆平俯冲,仅形成了高压变质岩 Fig. 5 Geodynamical models for the initial subduction of the Indian continental margin (after Guillot et al., 2008) (a) In the western Himalaya, the steep subduction of the Indian continent resulted in the formation of UHP metamorphism on the India side; (b) In central and eastern Himalayas, the flat subduction of the Indian continent resulted in only HP rocks

造山带西段与中段的变质岩存在两个大的差异,那就是它们具有不同的分布位置和热演化过程。在西喜马拉雅带,超高压变质岩沿着印度-藏布缝合带产出(图 2),是印度大陆最西北缘早期俯冲的产物(图 6)。而且,超高压变质岩在40Ma之前就沿着板块缝合带快速折返到了上地壳(图 7de Sigoyer et al., 2000, 2004; Treloar et al., 2003; Schlup et al., 2003)。但在造山带中段,Ama Drime地块的榴辉岩远在缝合带之南产出(图 2),很可能是大印度地壳中部缓俯冲形成的(图 5图 6),其变质年龄很可在~45Ma,与造山带西段超高压变质岩的折返年龄相当。而且,直到中新世,高压榴辉岩才沿着MCT发生折返(Burg, 2006)。因此,高压榴辉岩在约45~13Ma之间经历了缓慢折返,并被加热发生麻粒岩相退变质作用(图 4)。

图 6 印度与亚洲碰撞之前大印度的几何形态(据Guillot et al., 2008) 图中灰色部分为大印度,相当于被俯冲到亚洲大陆之下的印度地壳,示意性地表示着喜马拉雅造山带中四个高压、超高压变质地块的初始位置 Fig. 6 Greater India geometry before India-Asia collision (after Guillot et al., 2008) Greater India (dark grey) corresponds to the Indian continent involved in the subduction-collision zone, showing the initial locations of the HP and UHP massifs form the Himalayan orogen

图 7 西喜马拉雅Tso Morari超高压变质岩片形成与折返的构造模型(据Epard and Steck, 2008) Fig. 7 Formation and exhumation model of the Tso Morari UHP slab, Western Himalayan orogen (after Epard and Steck, 2008)
6.2 大陆的碰撞时间与印度板块北缘的初始形态

印度与亚洲大陆的碰撞时间是一个长期争论的问题(Rowley, 1996; Guillot et al., 2003; Leech et al., 2005; Najman et al., 2006)。基于碎屑锆石年龄和地层学资料,两个大陆在喜马拉雅造山带中部发生碰撞的时间被认为是在40~46Ma之间(Rowley,1996),或51Ma (Zhu et al., 2005)。但是,古地磁资料表明,印度与亚洲板块的汇聚速率在60Ma至55Ma之间明显降低,很可能是两个大陆发生碰撞的结果(Klootwijk et al., 1992; Lee and Lawver, 1995; Acton, 1999)。在西喜马拉雅造山带的Tso Morari地块,印度与亚洲初始碰撞时间应该在超高压变质年龄(~53Ma) 之前,所以,de Sigoyer et al.(2000)Guillot et al.(2003)认为是在53~57Ma,Leech et al.(2005)认为是在56~58Ma。这与古地磁资料得出的印度与亚洲汇聚速率明显降低时间(58Ma) 是一致的。因此,Guillot et al.(2008)认为,印度与亚洲在Tso Morari地区初始碰撞的时间很可能是56±3Ma。

在西构造结以西的Kaghan地区,印度与亚洲的初始碰撞的时间可能较晚,因为这里的超高压变质作用年龄在大约46Ma (Kaneko et al., 2003; Parrish et al., 2006)。比Tso Morari地块的超高压变质年龄晚了7Myr,正好与Tso Morari超高压变质岩的退变质年龄(~47Ma)。这表明Kaghan地块开始发生俯冲时,西构造结以东的Tso Morari超高压变质岩已经被折返上来。Kaghan地块较晚发生俯冲很可能是由于该地块当时处在印度大陆的最西北缘(图 6)。相对于Tso Morari地块来说,Kaghan地块明显远离亚洲大陆南缘,所以较晚发生陆-陆碰撞(Guillot et al., 2008)。同样,相对于西构造结,在造山带的中、东段,大印度北缘与亚洲大陆南缘之间的距离更大,所以碰撞的时间应更晚。特别是东构造结,作为大印度的最东缘,其与亚洲大陆之间的距离最长,汇聚的时间应该最晚。如上面描述的,喜马拉雅造山带从西向东,超高压或高压变质岩的形成年龄变小,即从Tso Morari地块的53Ma,到Ama Drime地块的~45Ma,到南迦巴瓦的~35Ma。这很可能说明大印度北缘与亚洲大陆南缘是从西向东部逐渐汇聚的。

研究表明,在喜马拉雅造山带西段,印度与亚洲碰撞过程中地壳的缩短小于600~700km (Coward and Butler, 1985; Di Pietro and Pogue, 2004),而喜马拉雅造山带中段的缩短量大于1000km (Le Pichon et al., 1992; DeCelles et al., 2002; Guillot et al., 2003)。这一差异表明,在西构造结,被俯冲到亚洲之下的大印度地壳的长度较短。基于印度与亚洲初始汇聚年龄和速率,Guillot et al. (2007)认为大印度地壳在西部的长度要比中东部短300~400km (图 6)。

从~55Ma到现在印度大陆一直在向亚洲大陆之下俯冲,有600~1000km宽的大印度地壳已经被俯冲到亚洲大陆之下(Ali and Aitchinson, 2005),所以应该一直有高压或超高压变质岩不断在下地壳或上地幔深处被形成。但是,喜马拉雅造山带产出的高压和超高压变质岩的形成年龄是很有限的。在造山带西段,超高压变质岩沿缝合带产出,变质作用年龄大体上与大陆初始碰撞的时间相当,这说明只有初期俯冲下去的大印度地壳北缘被折返上来。相反,在造山带中部,高压榴辉岩远离缝合带产出,形成年龄也比西构造结超高压变质岩的更晚,很可能是大印度地壳内部深俯冲高压变质后折返上来的岩石(图 6)。因此,大陆地壳不同部位的穿时性俯冲很可能是导致喜马拉雅造山带中出露的高压和超高压变质岩具有不同形成年龄的原因之一。

6.3 超高压变质岩的形成与折返模型

基于对Tso Morari地块超高压变质岩的构造地质学、岩石学和年代学研究,Epard and Steck (2008)提出了西喜马拉雅造山带大陆地壳超深俯冲与折返的构造模型(图 7)。这个模型包括如下主要阶段:(1) 洋壳俯冲阶段。在晚中生代,新特提斯洋向亚洲大陆之下俯冲,导致了亚洲大陆南缘经历了安第斯型造山作用,形成了广泛分布的Ladakh岩基(图 7a)。(2) 大陆碰撞阶段与北喜马拉雅增生楔形成阶段。印度与亚洲大陆在~55Ma发生碰撞。在55~53Ma之间,大洋沉积物和大洋地壳板片从俯冲洋壳中拆离,元古代至早始新世的沉积岩从俯冲的印度地壳拆离,共同形成了北喜马拉雅增生楔(图 7b)。(3) 超高压变质岩片形成与拆离折返阶段。印度大陆最北缘在~53Ma被俯冲到大于100km深度,形成了Tso Morari超高压变质岩片(图 7c)。超高压岩片从印度地壳拆离,并快速挤出。深俯冲的洋壳蛇纹岩的脱水为超高压变质陆壳岩片的拆离和折返提供了有力条件(Leech et al., 2005)。而且,主要由长英质岩石组成的Tso Morari岩片与地幔橄榄岩相比,具有较低的密度,因此,浮力应该是低密度岩片折返的驱动力,并同时受到印度岩圈和亚洲地幔楔汇聚的推挤。(4) 超高压变质岩片挤出和中压型变质叠加。在~48Ma以后,Tso Morari岩片被挤出到北喜马拉雅增生楔的底部,并发生巴罗型退变质作用和穹窿状变形,长英质超高压变质岩中的白云母在40km深度和850℃条件下发生熔融(图 7d, e)。据估算,在53~48Ma之间,Tso Morari岩片快速挤出,折返速率可达~3cm/yr,在48~30Ma具有一个中等的折返速率(~1.2mm/yr),但在30Ma之后,Tso Morari岩片的抬升和剥蚀速率仅为0.5mm/yr (Epard and Steck, 2008)。

6.4 高喜马拉雅结晶岩系的挤出模型

正如前面描述的,喜马拉雅造山带大体上是由三个构造单元和其间的两条韧性剪切带(三层-两断裂) 组成的。高喜马拉雅结晶岩系(HHC) 构成造山带的核心,其上、下分别为低级变质的特提斯喜马拉雅岩系(THS) 和低喜马拉雅岩系(LHS),它们之间为韧性剪切带STD和MCT (图 2图 3图 8图 9)。高喜马拉雅结晶岩系经历了中压型区域变质作用,而且其下部发育典型的反转变质梯度带,即从下部构造层位向上部构造层位,变质作用程度增加,依次为黑云母带、石榴石带、十字石带、蓝晶石带和夕线石带(图 8)。在HHC的项部,其变质程度逐渐降低,从夕线石带、十字石带到石榴石带。目前主要有三种构造模式来解释高级变质岩系(HHC) 在低级变质岩系之间的产出和反转变质带的形成机制:楔形挤出模型(Wedge extrusion;Burchfiel and Royden, 1985; Grujic et al., 1996; Kohn, 2008), 隧道流与集中剥蚀模型(Channel flow coupled to focused denudation;Beaumont et al., 2001; Hodges et al., 2001) 和构造楔模型(Tectonic wedging;Yin, 2006; Webb et al., 2007)。楔形挤出模式认为HHC为向北(向下) 变细的楔形体从两个低级系岩中向南挤出(图 9a)。隧道流与集中剥蚀模型认为, HHC是造山带中熔融的中、下地壳,在高原双倍加厚地壳的重力作用下向南流动(如, Beaumont et al., 2001, 2004; Godin et al., 2006)。由于喜马拉雅山南坡大量的集中降水所导致的剥蚀作用,使隧道流物质通过两个韧切带流出到地表(图 9bBeaumont et al., 2001; Hodges et al., 2001)。隧道流与集中剥蚀耦合系统的形成很可能是气候变化导致降水量增加的结果(Beaumont et al., 2001; Hodges et al., 2001)。构造楔模式认为,沿着STD的向北运动并不代表伸展,而是MCT上盘反向逆冲的结果。STD与北部的逆冲系统(Great Counter thrust system,GCT) 相连(图 9c)。GCT在早、中中新世开始活动,将THS岩石推覆到北部的亚洲板块和缝合带岩石之上(即与STD同时活动。Yin et al., 1994, 1999)。这个模式是由于发现MCT和STD在造山带南部合并为一条断裂提出来的。这两个断裂是局部剥露出来的HHC前缘的边界断裂(Thakur, 1998; Yin, 2006; Webb et al., 2007)。Webb et al.(2011)通过中喜马拉雅造山带的研究也认为,STD和MCT在南部融合为一条韧性剪切,在MCT上盘,北部的HHC过渡成南部的THS。这表明HHC的前缘在造山带中被局部保存了下来。这样的构造格局排除了楔状挤出和隧道流模型存在的可能,因为这两个模型认为HHC在早、中中新世就已经被挤出到地表,HHC的前缘已经被侵蚀了15~20Ma,不可能被保存下来。

图 8 珠峰地区高喜马拉雅结晶岩系横剖面示意图(据Jessup et al., 2008) Fig. 8 Simplified geological cross-section of the Mount Everest transect (after Jessup et al., 2008)

图 9 高喜马拉雅结晶岩系形成的构造模型(据Webb et al., 2011) Fig. 9 Tectonic models of the emplacement of High Himalayan Crystalline Sequence (after Webb et al., 2011)

目前,我们对山脉形成过程中地质、气候和环境作用的认识大多是来源于青藏高原和喜马拉雅造山带的研究成果。尽管喜马拉雅造山带被公认为是新生代印度与亚洲大陆碰撞的产物,具有清楚的板块构造格局,但是,正如上面综述的,我们目前对造山作用机制和造山作用过程的认识还存在争议,所提出的造山作用模型还不能为大家普遍接受。雄伟的喜马拉雅山绵延近3000km,峰高谷深、冰雪覆盖,人迹罕至,需要我们有更大的勇气,付出更大的力量去揭开它的真容!

致谢 感谢许志琴院士和金振民院士在工作中的指导!
参考文献
[] Acton GD. 1999. Apparent polar wander of India since the Cretaceous with implications for regional tectonics and true polar wander. Memoir Geological Society of India, 44: 129–175.
[] Ahmad T, Tanaka T, Sachan H, Mukherjee B. 2006. Petrogenesis of coesite bearing Tso Morari eclogites: Isotopic and elemental constraints. Journal of Asian Earth Sciences, 26: 122.
[] Ali JR, Aitchinson JC. 2005. Greater India. Earth-Science Reviews, 72(3-4): 169–188. DOI:10.1016/j.earscirev.2005.07.005
[] Beaumont C, Jamieson RA, Nguyen MH, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738–742. DOI:10.1038/414738a
[] Beaumont C, Jamieson RA, Nguyen MH, Medvedev S. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research, 109(B6): B06406. DOI:10.1029/2003JB002809
[] Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin, 121(3-4): 385–407. DOI:10.1130/B26041.1
[] Bousquet R, Goffé B, Henry P, Le Pichon X, Chopin C. 1997. Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the Upper crust and eclogitisation of the Lower crust. Tectonophysics, 34(1-2): 105–127.
[] Brookfield ME. 1993. The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology, 84(1-4): 1–35. DOI:10.1016/0037-0738(93)90042-4
[] Burchfiel BC, Royden LH. 1985. North-south extension within the convergent Himalayan region. Geology, 13(1): 679–682.
[] Burg JP, Guiraud M, Chen GM, Li GC. 1984. Himalayan metamorphism and deformations in the north Himalayan belt (southern Tibet, China). Earth and Planetary Science Letters, 69(2): 391–400. DOI:10.1016/0012-821X(84)90197-3
[] Burg JP. 2006. Two orogenic systems and a transform-transfer fault in the Himalayas: Evidence and consequences. Earth Science Frontiers, 13(4): 27–46.
[] Catlos EJ, Harrison TM, Manning CE, Grove M, Rai SM, Hubbard MS, Upreti BN. 2002. Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. Journal of Asian Earth Sciences, 20(5): 459–479. DOI:10.1016/S1367-9120(01)00039-6
[] Chakungal J, Dostal J, Grujic D, Duchêne S, Ghalley KS. 2010. Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan. Tectonophysics, 480(1-4): 198–212. DOI:10.1016/j.tecto.2009.10.014
[] Chamberlain CP, Zeitler PK, Erickson E. 1991. Constraints on the tectonic evolution of the northwestern Himalaya from geochronologic and petrologic studies of Babusar Pass, Pakistan. Journal of Geology, 99(6): 829–849. DOI:10.1086/629555
[] Chaudhry MN, Ghazanfar M. 1987. Geology, structure and geomorphology of Upper Kaghan valley, Northwestern Himalaya, Pakistan. Geological Bulletin University of Punjab, 22: 13–57.
[] Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021–1024. DOI:10.1130/G19796.1
[] Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196.
[] Corrie SL, Kohn MJ, Vervoort JD. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3-4): 406–416. DOI:10.1016/j.epsl.2009.11.029
[] Cottle JM, Searle MP, Horstwood MSA, Waters DJ. 2009. Timing of mid-crustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U (-Th)-Pb geochronology. Journal of Geology, 117(6): 643–664. DOI:10.1086/605994
[] Coward MP, Butler RWH. 1985. Thrust tectonics and the deep structure of the Pakistan Himalaya. Geology, 13(6): 417–420. DOI:10.1130/0091-7613(1985)13<417:TTATDS>2.0.CO;2
[] de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G. 2000. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 28(6): 487–490. DOI:10.1130/0091-7613(2000)28<487:DTICSA>2.0.CO;2
[] de Sigoyer J, Guillot S, Dick P. 2004. Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW-Himalaya): A case study. Tectonics, 23(3): TC3003. DOI:10.1029/2002TC001492
[] DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan Orogenic belt in Nepal. Science, 288(5465): 497–499. DOI:10.1126/science.288.5465.497
[] DeCelles PG, Robinson DM, Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6): 1062. DOI:10.1029/2001TC001322
[] Ding L, Zhong DL. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China (Series D), 42(2): 491–505.
[] Ding L, Zhong DL, Yin A, Kapp P, Harrisson TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423–438. DOI:10.1016/S0012-821X(01)00463-0
[] Di Pietro JA, Pogue KR. 2004. Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics, 23(5): TC5001. DOI:10.1029/2003TC001554
[] Dong X, Zhang ZM, Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau: Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118(6): 677–690. DOI:10.1086/656355
[] Epard JL, Steck A. 2008. Structural development of the Tso Morari ultra-high pressure nappe of the Ladakh Himalaya. Tectonophysics, 451(1-4): 242–264. DOI:10.1016/j.tecto.2007.11.050
[] Garzanti E, Casnedi R, Jadoul F. 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sedimentary Geology, 48(3-4): 237–265. DOI:10.1016/0037-0738(86)90032-1
[] Geng QR, Pan GT, Zheng LL, Chen ZL, Fisher RD, Sun ZM, Ou CS, Dong H, Wang XW, Li S, Lou XY, Fu H. 2006. The eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265–285. DOI:10.1016/j.jseaes.2005.03.009
[] Godin L, Grujic D, Law RD and Searle MP. 2006. Channel flow, extrusion and exhumation in continental collision zones: An introduction. In: Law RD, Searle MP and Godin L (eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268(1): 1-23
[] Groppo C, Lombardo B, Rolfo F, Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51–75. DOI:10.1111/jmg.2007.25.issue-1
[] Groppo C, Rubatto D, Rolfo F, Lombardo B. 2010. Early oligocene partial melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya). Lithos, 118(3-4): 287–301. DOI:10.1016/j.lithos.2010.05.003
[] Grujic D, Casey M, Davidson C, Hollister LS, Kundig R, Pavlis T, Schmid S. 1996. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: Evidence from quartz microfabrics. Tectonophysics, 260(1-3): 21–43. DOI:10.1016/0040-1951(96)00074-1
[] Guan Q, Zhu DC, Zhao ZD, Gong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS, Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88–99. DOI:10.1016/j.gr.2011.07.004
[] Guillot S, de Sigoyer J, Lardeaux JM, Mascle G. 1997. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): Evidence for continental subduction during India-Asia convergence. Contributions to Mineralogy and Petrology, 128(2-3): 197–212. DOI:10.1007/s004100050303
[] Guillot S, Garzanti E, Baratoux D, Marquer D, Mahéo G, de Sigoyer J. 2003. Reconstructing the total shortening history of the NW Himalaya. Geochemistry, Geophysics, Geosystems, 4(7): 1–10. DOI:10.1029/2002GC000484
[] Guillot S, Replumaz A, Hattori KH, Strzerzynski P. 2007. Initial geometry of western Himalaya and ultrahigh pressure metamorphic evolution. Journal of Asian Earth Sciences, 30(3-4): 557–564. DOI:10.1016/j.jseaes.2007.01.004
[] Guillot S, Mahéo G, de Sigoyer J, Hattori KH, Pecher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225–241. DOI:10.1016/j.tecto.2007.11.059
[] Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1-2): 66–81. DOI:10.1016/j.lithos.2010.09.003
[] Hayden HH. 1904. The geology of Spiti with parts of Bashar and Rupshu. Memory of the Geological Survey of India, 36: 1–129.
[] Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112(3): 324–350. DOI:10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
[] Hodges KV, Hurtado JM Jr, Whipple KX. 2001. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 20(6): 799–809. DOI:10.1029/2001TC001281
[] Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139–155. DOI:10.1016/S0012-821X(04)00007-X
[] Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W, Sun QZ. 2012. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38–52. DOI:10.1016/j.epsl.2012.06.030
[] Hubbard MS, Spencer DA, West DP. 1995. Tectonic exhumation of the Nanga Parbat massif, northern Pakistan. Earth and Planetary Science Letters, 133(1-2): 213–225. DOI:10.1016/0012-821X(95)00075-N
[] Jessup MJ, Cottle JM, Searle MP, Law RD, Newell DL, Tracy RJ, Waters DJ. 2008. P-T-t-D paths of Everest Series schist, Nepal. Journal of Metamorphic Geology, 26(7): 717–739. DOI:10.1111/jmg.2008.26.issue-7
[] Joanny V, Van Roermund H, Lardeaux JM. 1991. The clinopyroxene/plagioclase symplectite in retrograde eclogites: A potential geothermobarometer. Geologische Rundschau, 80(3): 303–320.
[] Kali E, Leloup PH, Arnaud N, Maheo G, Liu DY, Boutonnet E, Van der Voerd J, Liu XH, Zeng JL, Li HB. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 29(2): TC2014. DOI:10.1029/2009TC002551
[] Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman HU, Kausar AB, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21(6): 589–599. DOI:10.1046/j.1525-1314.2003.00466.x
[] Klootwijk CT, Gee JS, Peirce JW, Smith GM, McFadden PL. 1992. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20(5): 395–398. DOI:10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2
[] Kohn MJ. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence. Geological Society of America Bulletin, 120(3-4): 259–273. DOI:10.1130/B26252.1
[] Lee TY, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85–138. DOI:10.1016/0040-1951(95)00023-2
[] Le Fort P. 1975. Himalayas-collided range-present knowledge of continental arc. American Journal of Science, A275: 1–44.
[] Le Fort P. 1989. The Himalayan orogenic segment. In: Şengör AMC (ed.). Tectonic Evolution of the Tethyan Region. Kluwer Academic Press, 259: 289-386
[] Le Pichon X, Fournier M, Jolivet L. 1992. Kinematics, topography, shortening, and extrusion in the India-Eurasia collision. Tectonics, 11(6): 1085–1098. DOI:10.1029/92TC01566
[] Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters, 234(1-2): 83–97. DOI:10.1016/j.epsl.2005.02.038
[] Liu Y, Zhong DL. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451–466. DOI:10.1111/j.1525-1314.1997.00033.x
[] Liu Y, Siebel W, Massonne HJ, Xiao XC. 2007a. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. Journal of Geology, 115(2): 215–230. DOI:10.1086/510806
[] Liu Y, Yang ZQ, Wang M. 2007b. History of zircon growth in a high-pressure granulite within the eastern Himalayan syntaxis, and tectonic implications. International Geology Review, 49(9): 861–872. DOI:10.2747/0020-6814.49.9.861
[] Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37–60. DOI:10.1016/S0264-3707(99)00026-5
[] Lombardo B, Rolfo F and Compagnoni R. 2000. Glaucophane and barroisite eclogites from the upper Kaghan Nappe: Implications for the metamorphic history of the NW Himalaya. In: Khan MA, Treloar PJ, Searle MP and Jan MQ. (eds.). Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geological Society, London, Special Publications, 170(1): 411-430
[] Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225–242. DOI:10.1016/j.lithos.2006.10.005
[] Mo XX, Dong GC, Zhao ZD, Zhu DC, Zhou S, Niu YL. 2009. Mantle input to the crust in southern Gangdese, Tibet, during the Cenozoic: Zircon Hf isotopic evidence. Journal of Earth Science, 20(2): 241–249. DOI:10.1007/s12583-009-0023-2
[] Mukheerjee BK, Sachan HK, Ogasawaray Y, Muko A, Yoshioka N. 2003. Carbonate-bearing UHPM rocks from the Tso-Morari Region, Ladakh, India: Petrological implications. International Geology Review, 45(1): 49–69. DOI:10.2747/0020-6814.45.1.49
[] Mukheerjee B, Sachan HK and Ahmad T. 2005. A new occurrence of microdiamond from Indus Suture zone, Himalata: A possible origin. In: Memoire HS (ed.). Special extended Abstract Volume. Géologie Alpine, 44: 136
[] Najman Y. 2006. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Science Reviews, 74(1-2): 1–72.
[] Negredo AM, Replumaz A, Villasenor A, Guillot S. 2007. Modeling the evolution of continental subduction processes in the Pamir-hindu Kush region. Earth and Planetary Science Letters, 259(1-2): 212–225. DOI:10.1016/j.epsl.2007.04.043
[] O'Brien P, Zotov N, Law R. 1999. First discovery of coesite in the Kaghan eclogites (Pakistan); implications for Himalayan evolution. Terra Nova, 2: 109–111.
[] O'Brien P, Sachan HK. 2000. Diffusion modelling in garnet from Tso Morari eclogite and implications for exhumation models. Earth Science Frontiers, 7(Suppl.): 25–27.
[] O'Brien PJ, Zotov N, Law R, Khan AM, Jan MQ. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435–438. DOI:10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2
[] Parrish RP, Hodges KV. 1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geological Society American Bulletin, 108(7): 904–911. DOI:10.1130/0016-7606(1996)108<0904:ICOTAA>2.3.CO;2
[] Parrish RR, Gough SJ, Searle MP, Waters DW. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 34(11): 989–992. DOI:10.1130/G22796A.1
[] Ranalli G, Pellegrini R, D'Offizi S. 2000. Time dependence of negative buoyancy and the subduction of continental lithosphere. Journal of Geodynamics, 30(5): 539–555. DOI:10.1016/S0264-3707(00)00011-9
[] Rehman HU, Kobayash K, Tsujimori T, Ota T, Yamamoto H, Nakamura E, Kaneko Y, Khan T, Terabayashi M, Yoshida K, Hirajima T. 2013. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high-and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Journal of Asian Earth Sciences, 63: 179–196. DOI:10.1016/j.jseaes.2012.04.025
[] Richards A, Argles T, Harris N, Parrish R, Ahmadd T, Darbyshire F, Draganits E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 236(3-4): 773–796. DOI:10.1016/j.epsl.2005.05.034
[] Robinson DM, DeCelles PG, Patchett PJ, Garzione CN. 2001. The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters, 192(4): 507–521. DOI:10.1016/S0012-821X(01)00451-4
[] Robinson DM, DeCelles PG, Copeland P. 2006. Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geological Society of America Bulletin, 118(7-8): 865–885. DOI:10.1130/B25911.1
[] Roecker SW. 1982. Velocity structure of the Pamir-hindu Kush region: Possible evidence of subducted crust. Journal of Geophysical Research, 87(B2): 945–959. DOI:10.1029/JB087iB02p00945
[] Rolfo F, McClelland W, Lombardo B. 2005. Geochronological constraints on the age of the eclogites-facies metamorphism in the eastern Himalaya. Memoire HS. Special extended Abstract Volume, Géologie Alpine, 44: 170.
[] Rowley DB. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4): 1–13. DOI:10.1016/S0012-821X(96)00201-4
[] Schlup M, Carter A, Cosca M, Steck A. 2003. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: The Indus River-Tso Morari transect, NW Himalaya. Journal of the Geological Society, 160(3): 385–399. DOI:10.1144/0016-764902-084
[] Searle M, Hacker BR, Bilham R. 2001. The Hindu Kush seismic zone as a paradigm for the creation of ultrahigh-pressure diamond-and coesite-bearing continental rocks. Journal of Geology, 109(2): 143–153. DOI:10.1086/319244
[] Searle MP, Elliott JR, Phillips RJ, Chung SL. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633–672. DOI:10.1144/0016-76492010-139
[] ŞengörAMC. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590–593.
[] Shams FA. 1972. Glaucophane-bearing rocks from near Topsin, Swat. First record from Pakistan. Pakistan Journal of Scientific Research, 24: 343–345.
[] Smith HA, Chamberlain CP, Zeitler PK. 1994. Timing and duration of Himalayan metamorphism within the Indian plate, northwest Himalaya, Pakistan. Journal of Geology, 102(5): 493–508. DOI:10.1086/629694
[] Spencer DA, Tonarini S, Pognante U. 1995. Geochemical and Sr-Nd isotopic characterisation of Higher Himalayan eclogites (and associated metabasites). European Journal of Mineralogy, 7(1): 89–102. DOI:10.1127/ejm/7/1/0089
[] Spencer DA and Gebauer D. 1996. SHRIMP evidence for a Permian protolith age and a 44Ma metamorphic age for the Himalayan eclogites (Upper Kaghan, Pakistan): Implications for the subduction of Tethys and the subdivision terminology of the NW Himalaya. In: Macfarlane AM, Sorkhabi RB and Quade J (eds.). 11th Himalaya-Karakoram-Tibet Workshop Abstracts, 147-150
[] Su W, Zhang M, Liu XH, Lin JF, Ye K, Liu X. 2012. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: New constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences, 101(1): 239–252. DOI:10.1007/s00531-011-0656-0
[] Thakur VC. 1998. Structure of the Chamba nappe and position of the main central thrust in Kashmir Himalaya. Journal of Asian Earth Sciences, 16(2-3): 269–282. DOI:10.1016/S0743-9547(98)00011-7
[] Tonarini S, Villa IM, Oberli F, Meier M, Spencer DA, Pognante U, Ramsay JG. 1993. Eocene age of eclogite metamorphism in Pakistan Himalaya: Implications for India-Eurasia collision. Terra Nova, 5(1): 13–20. DOI:10.1111/ter.1993.5.issue-1
[] Treloar PJ, O'Brian PJ, Parrish RR, Khan AM. 2003. Exhumation of Early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. Journal of the Geological Society, 160(3): 367–376. DOI:10.1144/0016-764902-075
[] Van der Voo R, Spakman W, Bijwaard H. 1999. Tethyan subducted slabs under India. Earth and Planetary Science Letters, 171(1): 7–20. DOI:10.1016/S0012-821X(99)00131-4
[] Virdi NS, Thakur VC, Kumar S. 1977. Blueschist facies metamorphism from the Indus suture zone of Ladakh and its significance. Himalaya Geology, 7: 479–482.
[] Webb AAG, Yin A, Harrison TM, Célérier J, Burgess WP. 2007. The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan Orogen. Geology, 35(10): 955–958. DOI:10.1130/G23931A.1
[] Webb AAG, Schmitt AK, He D, Weigand EL. 2011. Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya. Earth and Planetary Science Letters, 304(3-4): 483–495. DOI:10.1016/j.epsl.2011.02.024
[] Wilke FDH, O'Brien PJ, Alterberger U, Konrad-Schmolke M, Khan MA. 2010. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos, 114(1-2): 70–85. DOI:10.1016/j.lithos.2009.07.015
[] Xu WC, Zhang HF, Guo L, Yuan HL. 2010. Miocene high Sr/Y magmatism, South Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293–306. DOI:10.1016/j.lithos.2009.09.005
[] Yin A, Harrison TM, Ryerson FJ, Chen WJ, Kidd WSF, Copeland P. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99(B9): 18175–18201. DOI:10.1029/94JB00504
[] Yin A, Harrison TM, Murphy MA, Grove M, Nie S, Ryerson FJ, Feng WX, Le CZ. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin, 111(11): 1644–1664. DOI:10.1130/0016-7606(1999)111<1644:TDHOSA>2.3.CO;2
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. DOI:10.1146/annurev.earth.28.1.211
[] Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1–131. DOI:10.1016/j.earscirev.2005.05.004
[] Zeng LS, Gao LE, Xie KJ, Zeng LJ. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251–266. DOI:10.1016/j.epsl.2011.01.005
[] Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY, Zhang B. 2012b. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21: 939–960. DOI:10.1016/j.gr.2011.11.004
[] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719–733.
[] Zhang ZM, Dong X, Santosh M, Liu F, Wang W, Yiu F, He ZY, Shen K. 2012a. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123–137. DOI:10.1016/j.gr.2011.02.002
[] Zhang ZM, Dong X, Santosh M and Zhao GC. 2013. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2012.08.024
[] Zhong DL, Ding L. 1996. Discovery of high-pressure basic granulite in Namjagbarwa area, Tibet, China. Chinese Science Bulletin, 41(1): 87–88.
[] Zhu B, Kidd WSF, Rowley DB, Currie BS, Shaffique N. 2005. Age of initiation of the India-Asia collision in the East-Central Himalaya. Journal of Geology, 113(3): 265–285. DOI:10.1086/428805