2. 中国科学院大学,北京 100049
2. University of Chinese Academey of Sciences, Beijing 100049, China
流体是控制变质作用的最重要的因素之一。例如,流体的含量和成分决定着羟基矿物组合的温压条件。流体通过弱化矿物的强度导致岩石大规模的变形。流体与岩石的交代作用形成不同类型的蚀变岩石和脉体。高压、超高压变质过程中,流体影响或决定着俯冲带岩石变质作用的特征和岛弧岩浆的形成(Peacock, 1990; Scambelluri and Philippot, 2001; Manning, 2004; Hermann et al., 2006; Guo et al., 2012)。因此,高压、超高压流体成分、含量、行为特征的研究是目前岩石学研究最前沿的课题之一。研究岩石中流体的最直接对象是流体包裹体,流体包裹体中主要类型之一是流体的盐度。高盐度的流体包裹体在榴辉岩以及其中的高压、超高压脉体中均有发育(Philippot and Selverstone, 1991; Philippot et al., 1998; Scambelluri et al., 1998; Glassley, 2001; Svensen et al., 2001; Xiao et al., 2000, 2002; Fu et al., 2001, 2002)。除了流体包裹体外,高盐度的流体可以通过含氯矿物加以研究。如角闪石、黑云母、方柱石、磷灰石等含羟基矿物均含少量的氯, 可用来研究岩石中盐流体的特征(Mora and Valley, 1989; Nijland et al., 1993; Markl and Bucher, 1998; Kullerud and Erambert, 1999; Kullerud, 2000; Liu et al., 2009, 2011; 张灵敏和刘景波, 2012)。
在含氯矿物中,磷灰石是一个产状广泛、成分简单的矿物。磷灰石由三个端员组分组成,即氟磷灰石[Ca5(PO4)3F]、氯磷灰石[Ca5(PO4)3Cl]、羟基磷灰石[Ca5(PO4)3OH]。磷灰石的稳定温压范围比较宽,从低级到高级变质岩中都可以存在(Spear and Pyle, 2002)。俯冲带的岩石中,磷灰石以副矿物出现在岩石和脉体中(Philippot and Selverstone, 1991; Franz et al., 2001)。磷灰石中的挥发组分与流体成分直接相关(Korzhinskiy, 1981; Yardley, 1985; Zhu and Sverjensky, 1991, 1992; Brenan, 1993; Piccoli and Candela, 1994; Penniston-Dorland and Ferry, 2005; Antignano and Manning, 2008; Webster et al., 2009),因此可以用磷灰石挥发份的组成特征来反演岩石中流体的成分特征。
近十年来,大别-苏鲁高压、超高压岩石中的流体包裹体研究已获得很多成果(Xiao et al., 2000, 2002; Franz et al., 2001; Fu et al. 2001, 2002; 范宏瑞等, 2005; 翟伟等, 2005, 2006; 沈昆等, 2003, 2005, 2008; Zhang et al., 2008)。含盐流体包裹体主要存在于蓝晶石、绿辉石、石榴石等榴辉岩相的矿物中,表明含盐流体出现在高压、超高压变质阶段。同时,这些榴辉岩中磷灰石也很发育(陈振宇等, 2006, 2009),本文对榴辉岩中磷灰石氯含量进行了系统的研究,结合相应岩石中的流体包裹体资料,探讨了流体盐度与磷灰石中氯含量之间的关系。
1 地质背景和样品地点大别-苏鲁造山带位于中国中东部,是由扬子板块在晚三叠世(245~219Ma) 向华北板块俯冲-碰撞形成(Li et al., 1993; Ames et al., 1993; Hacker et al., 1996; Rowley et al., 1997)。该造山带内广泛发育高压、超高压榴辉岩带,从东到西,榴辉岩带分布超过1000km,大体划分为三个部分,郯庐断裂以东的苏鲁榴辉岩带、郯庐断裂以西的安徽东大别榴辉岩带和商麻断裂以西的红安榴辉岩带(图 1)。
|
图 1 大别-苏鲁造山带地质简图以及采样位置 Fig. 1 The schematic geological map of the Dabie-Sulu orogenic belt (modified after Zhang et al., 2000), showing the locations of studied eclogite blocks |
本文研究的样品来自苏鲁榴辉岩带西南端青龙山和池庄地区的榴辉岩,东大别榴辉岩带碧溪岭和朱家冲地区榴辉岩四个露头。前人对这些榴辉岩进行了岩石学、地球化学和年代学等方面的深入研究(例如:池庄榴辉岩:张泽明等, 2005; 沈昆等, 2008; Zhang et al., 2008。青龙山榴辉岩:Zheng et al., 1998; Zhang et al., 2005。碧溪岭榴辉岩:Zhang et al., 1995; Xiao et al., 2000。朱家冲榴辉岩:Wang et al., 1992; Castelli et al., 1998; Franz et al., 2001; Li et al., 2004; 石永红等, 2006)。
2 榴辉岩和脉体岩相学及磷灰石产状特征池庄地区露头可观察到浅色镁铝型榴辉岩和深色钛铁型榴辉岩两大类。浅色镁铝型榴辉岩的矿物组成为石榴石(Grt)+绿辉石(Omp)+石英(Qtz)+金红石(Rt)+绿帘石(Ep)+多硅白云母(Phn)±黝帘石(Zo)±蓝晶石(Ky)。深色钛铁型榴辉岩的矿物组成主要为Grt+Omp+Qtz+Rt±Ep。榴辉岩中,磷灰石作为粒间矿物与石榴石、绿辉石、金红石、石英等矿物共生(图 2a),另一些呈细小颗粒包裹在石榴石和绿辉石中(粒径约20~100μm)。池庄榴辉岩中脉体十分发育,根据产状和矿物组成特征,可划分石英脉、富绿辉石-石英脉、绿辉石-黝帘石-蓝晶石-石英脉和富多硅白云母-石英脉。石英脉主要矿物是石英,可含少量石榴石、绿辉石、磷灰石、金红石等。富绿辉石-石英脉主要由石英和绿辉石组成,其次是金红石、石榴石、磷灰石等。绿辉石-黝帘石-蓝晶石-石英脉由石英、黝帘石、蓝晶石、绿辉石、磷灰石及少量金红石、多硅白云母和石榴石等矿物组成。富多硅白云母-石英脉由多硅白云母和石英,及少量石榴石、绿辉石和磷灰石组成。绿辉石、蓝晶石和帘石等脉体矿物呈半自形-自形,粒度较大,长轴方向平行于脉体的生长方向。四类脉体中均有磷灰石发育,其中富绿辉石-石英脉和绿辉石-黝帘石-蓝晶石-石英脉中的磷灰石含量较高,较自形,粒度较大,粒径0.1~3mm,与脉体中其它矿物共生(图 2b)。
|
图 2 池庄榴辉岩和青龙山榴辉岩特征照片 池庄榴辉岩(09CZ5a)(a) 和富绿辉石-石英脉(09CZ3a)(b) 的背散射图像,显示了磷灰石与榴辉岩相矿物平衡共生;青龙山榴辉岩(09QLS8) 显微照片(c) 和背散射图像(d),磷灰石与石榴石、绿辉石、石英等矿物共生,磷灰石含有石榴石、绿辉石和绿帘石包裹体.矿物缩写根据Kretz (1983) Fig. 2 Photos of eclogites from Chizhuang and Qinglongshan Back-scattered electron (BSE) image of eclogite (a) and of omphacite-rich quartz vein (b) from Chizhuang, showing apatites coexist with eclogite facies minerals; photomicrograph (c) and BSE image (d) of the eclogite from Qinglongshan, showing apatites with the inclusions of garnet, omphacite and epidote. Mineral abreactions after Kretz (1983) |
青龙山榴辉岩显示了强烈变形特征,岩石为S-L或L构造岩。矿物组成为Grt+Omp+Phn+Rt+Qtz±Ky±Ep±Tlc (滑石)±Amp (角闪石)。露头上观察到的绿帘石变斑晶常成层出现,且切割面理和线理。局部可见角闪石变斑晶,呈筛状变斑晶,包裹有石榴石、绿辉石、石英、金红石、蓝晶石和多硅白云母等矿物。榴辉岩中,磷灰石与石榴石、绿辉石等矿物平衡共生,有些磷灰石中含有石榴石和绿辉石包裹体,表明这些磷灰石是榴辉岩相阶段形成的矿物(图 2c, d)。此外,绿帘石筛状变斑晶中也含有磷灰石包裹体。
碧溪岭榴辉岩由深色钛铁型榴辉岩和浅色镁铝型榴辉岩组成,原岩为堆晶辉长岩类。深色钛铁型榴辉岩矿物颗粒相对较粗,矿物组成为Grt+Omp+Rt±Qtz,部分绿辉石发生退变,具有后成合晶边。浅色镁铝型榴辉岩矿物颗粒相对较细,矿物组成为Grt+Omp+Phn+Rt+Zo±Ky±Qtz±Tlc,绿辉石和石榴石中含有柯石英或柯石英假象,石榴石、石英呈长条状集合体与柱状绿辉石定向排列构成岩石面理(图 3a)。两类榴辉岩均有磷灰石发育,与绿辉石、石榴石等矿物共生(图 3b)。此外,榴辉岩中的局部发生了强烈退变质作用,转变为石榴角闪岩,可观测到很多磷灰石颗粒与石榴子石、绿帘石等共生。碧溪岭榴辉岩中主要发育绿辉石脉和蓝晶石-多硅白云母-石英脉。绿辉石脉发育在深色榴辉岩中,主要由绿辉石组成,可见一些金红石和磷灰石,绿辉石的粒度大,粒径约2~4mm,边部具有后成合晶退变边,磷灰石与绿辉石共生,粒径约1~2mm,局部富集(图 3a)。蓝晶石-多硅白云母-石英脉主要发育在浅色榴辉岩中,含有蓝晶石、多硅白云母和石英等矿物,蓝晶石呈长柱状,可达3~5mm。该类脉体中磷灰石颗粒粗大,与蓝晶石、多硅白云母共生,磷灰石中可见蓝晶石、绿辉石包裹体(图 3c),指示磷灰石是榴辉岩相变质阶段的矿物。
|
图 3 碧溪岭榴辉岩和朱家冲榴辉岩特征照片 碧溪岭绿辉石脉与围岩榴辉岩(10BXLZ2) 的显微照片(a),碧溪岭榴辉岩(10BXLZ2)(b) 和蓝晶石-多硅白云母-石英脉(10DB55)(c) 的BSE图像, 显示了磷灰石包裹细粒蓝晶石和绿辉石; (d)-朱家冲蓝晶石-多硅白云母-石英脉和围岩榴辉岩(10DB86) 的显微照片; (e)-朱家冲榴辉岩(10DB85) BSE图像.Ec-榴辉岩; Vein-脉体; Sym-后成合晶 Fig. 3 Photos of eclogites from Bixiling and Zhujiachong Photomicrograph of omphacite vein and host eclogite from Bixiling (a), BSE images of Bixiling eclogite (b) and Ky-Phn-Qtz vein (c), showing the inclusions of kyanite and omphacite in apatite; (d)-photomicrograph of Ky-Phn-Qtz vein and host eclogite; (e)-BSE image of eclogite from Zhujiachong. Ec-eclogite; Sym-symplectite |
朱家冲榴辉岩矿物组成为Grt+Omp+Phn+Rt+Ep+Ky+Qtz±Tlc±Pg (钠云母)。石榴石常呈环礁状,中间包裹多硅白云母、蓝晶石、石英、磷灰石等矿物。岩石退变质作用相对强烈,绿辉石有明显的后成合晶退变边,石榴石边缘有角闪石的反应边,多硅白云母边部退变为黑云母+斜长石组合(图 3d)。磷灰石与石榴石、绿辉石、多硅白云母、绿帘石共生,为榴辉岩相阶段的矿物。此外,环礁状石榴石中,磷灰石与多硅白云母、石英、绿辉石共生(图 3e)。朱家冲榴辉岩中发育蓝晶石-多硅白云母-石英脉、帘石-多硅白云母-石英脉等。蓝晶石、多硅白云母、磷灰石等脉体矿物颗粒粗大,较自形,部分颗粒呈集合体定向排列(图 3d)。脉体中磷灰石含量较少,与石英、蓝晶石和多硅白云母共生,粒径达1mm。
3 实验分析方法矿物成分采用中国科学院地质与地球物理研究所的JXA-8100电子探针进行分析。实验条件:加速电压为15kV、电子束流为10nA、电子束斑直径1~5μm (根据矿物颗粒大小调整)。天然和人工合成的矿物用来做标样,采用ZAF校正。电子背散射图像(BSE) 也在同一台仪器上采集。磷灰石的分析结果见表 1和图 4。
|
|
表 1 榴辉岩和脉体中代表性磷灰石的探针成分(wt%) Table 1 Representative analyses of apatites from the studied rocks (wt%) |
|
图 4 榴辉岩和脉体中磷灰石的成分特征 (a)、(b) 分别是榴辉岩和脉体中磷灰石的F和Cl重量百分含量投图;(c)、(d) 分别是榴辉岩和脉体中磷灰石的F-Cl-OH投图 Fig. 4 The compositions of apatites from the studied rocks (a) and (b): F-Cl plots of the apatites in eclogite and veins, respectively; (c) and (d): F-Cl-OH plots for the apatites in the eclogite and veins, respectively |
池庄榴辉岩中磷灰石的氟和氯含量变化范围较大,氯含量的范围为0.01%~2.34%,氟含量的变化范围为0.74%~2.78%(图 4a)。四类脉体的磷灰石氯含量也有所差异,绿辉石-黝帘石-蓝晶石-石英脉中磷灰石的氯含量变化范围较大,在0.01%~0.91%之间,而石英脉、富绿辉石-石英脉和富多硅白云母-石英脉中磷灰石氯含量变化范围较小,在0~0.30%之间(图 4b和表 1;Ec-榴辉岩,V-脉体)。单颗粒剖面分析表明榴辉岩和脉体中的磷灰石均无氯成分环带。
青龙山榴辉岩中的磷灰石主要是氟磷灰石,氯含量很低,变化范围在0.01%~0.40%之间。
碧溪岭榴辉岩中磷灰石氯含量变化范围比较大,浅色榴辉岩中磷灰石氯含量变化范围为0.17%~1.42%,深色榴辉岩中磷灰石氯含量变化范围为0.12%~1.46%。同一样品中不同磷灰石颗粒之间氯含量也显示明显的差别,而单颗粒磷灰石并无明显的氯成分环带。脉体中磷灰石的氯含量比榴辉岩中的稍低,绿辉石脉和蓝晶石-多硅白云母-石英脉之间的磷灰石氯含量无明显差异,变化范围在0.22%~0.91%之间(图 4b)。
朱家冲榴辉岩中磷灰石氯含量很低( < 0.05%)(图 4a)。环礁状石榴石包裹的磷灰石和基质中的磷灰石的氯含量无明显差异,在0.0~0.04%之间。脉体中的磷灰石氯含量均低于榴辉岩中磷灰石氯含量,其含量低于0.03%,不同脉体中磷灰石氯含量没有差异,且单颗粒磷灰石也无明显的氯成分环带。
岩石中磷灰石组分整体呈现两个演化趋势(图 4c, d):一种形式的取代关系是羟基(OH) 和氟(F) 之间的替代:Ap-F+OH=Ap-OH+F,(Ap-F代表氟磷灰石,Ap-OH代表羟基磷灰石);另一种形式的取代关系是氯(Cl)、氟和羟基之间的替代:Ap-F-OH+Cl=Ap-Cl+F+OH,(Ap-Cl代表氯磷灰石)。由于氯离子半径比氟和羟基的离子半径大,相对不易取代。在流体低氯含量的情况下,主要是F和OH之间的替代,受氯组分的影响不大,这种取代关系主要体现在青龙山榴辉岩、池庄、朱家冲和碧溪岭低氯含量的磷灰石中。随着流体中氯含量的增加,Cl对F和OH同时取代,这种替代主要体现在碧溪岭和池庄榴辉岩中高氯含量的磷灰石中。
5 讨论 5.1 磷灰石中氯含量与平衡流体盐度的关系磷灰石的氯含量是温度、压力和流体成分的函数(Zhu and Sverjensky, 1991, 1992; Brenan, 1993; Piccoli and Candela, 1994)。在给定的温压条件下,磷灰石氯含量与平衡溶液中氯的浓度呈正相关关系,与氟的浓度呈负相关关系。Brenan (1993)对磷灰石在不同溶液体系下进行了高温高压实验研究。在溶液体系中,磷灰石与流体可构成下列反应:
|
(1) |
|
(2) |
反应(1) 的平衡常数为K1=aHF×XOHAp/aH2O×XFAp;反应(2) 的平衡常数为K2=aHCl×XOHAp/aH2O×XClAp。其中,aHF和aHCl分别代表溶液中HF和HCl的活度,XClAp、XOHAp和XFAp代表磷灰石三个端员的摩尔分数,XClAp=mClAp/(mFAp+mClAp+mOHAp)。磷灰石的XFAp/XOHAp=1/K1×(aHF/aH2O) 和XClAp/XOHAp=1/K2× (aHCl/aH2O) 可以反映流体中aHCl/aH2O和aHF/aH2O比值特征。以盐流体-磷灰石描述岩石中磷灰石成分的变化特征时,XClAp/XOHAp和XFAp/XOHAp的值可近似为流体盐度和氟含量变化的量度。
我们分析测试结果显示,不同露头榴辉岩中磷灰石的XClAp/XOHAp变化范围不同,反映了岩石中流体盐度的变化。图 5给出了榴辉岩和各类脉体中磷灰石的XClAp/XOHAp比值的变化范围。青龙山榴辉岩中磷灰石的XClAp/XOHAp比值变化范围为0.02~0.3,个别值可高达0.45(图 5a)。池庄榴辉岩磷灰石的XClAp/XOHAp比值大致可分三个范围:0~0.15,0.2~0.4,0.55~0.65(图 5b)。碧溪岭浅色榴辉岩和深色榴辉岩中磷灰石的XClAp/XOHAp比值均有两个变化范围,在低比值范围(0.05~0.15) 内二者相似;高比值范围二者差别明显,深色榴辉岩的为0.2~0.3,浅色榴辉岩的为0.3~0.35;退变榴辉岩中磷灰石的XClAp/XOHAp比值很低( < 0.05)(图 5e)。朱家冲榴辉岩中磷灰石的XClAp/XOHAp值特别低( < 0.015)(图 5g)。与榴辉岩相似,各类脉体中磷灰石的XClAp/XOHAp比值也有不同的范围。池庄发育的石英脉、富绿辉石-石英脉和富多硅白云母-石英脉中磷灰石的XClAp/XOHAp比值相对较低,分别为0.01~0.15,0~0.1,0.01~0.06;绿辉石-黝帘石-蓝晶石-石英脉中磷灰石的XClAp/XOHAp比值相对较高,有三个范围:0~0.05,0.08~0.2和0.25~0.45(图 5c, d)。碧溪岭绿辉石脉中磷灰石的XClAp/XOHAp有0.05~0.1和0.18~0.25两个变化范围,蓝晶石-多硅白云母-石英脉中的磷灰石的两个范围分别为0.08~0.12和0.16~0.28(图 5f)。朱家冲脉体中磷灰石的XClAp/XOHAp比值均很低( < 0.014)(图 5h)。
|
图 5 榴辉岩和脉体中磷灰石的XClAp/XOHAp比值的直方图 Fig. 5 Histograms for XClAp/XOHAp ratio of apatites from the eclogites and hosted veins |
从Brenan (1993)实验研究的结果来看,在给定的温压条件下,磷灰石的XClAp/XOHAp比值与流体盐度呈正相关关系,因此,该比值可用来探讨与磷灰石平衡的流体的盐度特征。朱家冲榴辉岩中磷灰石的XClAp/XOHAp值特别低,反映了其平衡流体盐度非常低。青龙山、池庄和碧溪岭榴辉岩中磷灰石的XClAp/XOHAp变化很大,表明与磷灰石平衡的流体的盐度变化很大。各类脉体中磷灰石组分所反映的流体成分也不同(图 5)。发育在池庄榴辉岩中的绿辉石-黝帘石-蓝晶石-石英脉中XClAp/XOHAp比值变化范围大,表明形成此类脉体的流体盐度变化范围较大。池庄其他三类脉体中磷灰石组分相似,均具有较低XClAp/XOHAp比值,表明成脉流体的盐度较低。碧溪岭榴辉岩中的两类脉体中磷灰石均具有很高XClAp/XOHAp比值,反映了成脉流体盐度较高。朱家冲两类脉体中的磷灰石组分反映了成脉流体的盐度很低。
5.2 流体包裹体盐度和磷灰石氯含量的关系如前面所述,磷灰石的XClAp/XOHAp与平衡流体的盐度呈直线正相关系,如果认为同一地区流体包裹体所代表的流体与岩石中磷灰石达到了平衡,那么磷灰石的XClAp/XOHAp比值和流体包裹体所反映的盐度大小应该存在相关关系。结合大别-苏鲁高压、超高岩石中流体包裹体的研究结果,我们进一步探讨了自然样品中二者之间的相关关系。前人研究的流体包裹体结果与我们研究的相应岩石和脉体中磷灰石成分结果如表 2所示。
|
|
表 2 各地区流体包裹体的研究结果 Table 2 The results of fluid inclusions from the previous literatures |
将榴辉岩和脉体中不同期次流体包裹体的盐度范围,与我们所测试的榴辉岩和脉体中磷灰石的XClAp/XOHAP比值范围相互对应。具体情况如下:青龙山榴辉岩中磷灰石唯一的XClAp/XOHAp区间范围(0.02~0.30,取峰值为0.12) 与超高压变质柯石英榴辉岩相阶段的高盐流体包裹体盐度对应(22.5%~23.2%NaCleqv)(翟伟等, 2005);池庄绿辉石-黝帘石-蓝晶石-石英脉中磷灰石的XClAp/XOHAp三个峰值区间(0~0.05,取峰值为0.03;0.08~0.20,取峰值为0.1;0.25~0.45取峰值为0.3),分别与三种流体包裹体盐度相对应:0~7.86%NaCleqv;5.26%~21.26%NaCleqv;31.12%~≥53%NaCleqv (沈昆等, 2008; Zhang et al., 2008)。碧溪岭榴辉岩中磷灰石的XClAp/XOHAp两个变化区间(0.05~0.15,取峰值为0.1;0.20~0.35取峰值为0.23),分别对应于两期原生的流体包裹体盐度(13.94%~23%NaCleqv; >23%NaCleqv),退变榴辉岩磷灰石的XClAp/XOHAp变化范围(0~0.05,取峰值为0.025) 对应于后期退变质阶段晚期流体的盐度(0~9.21%NaCleqv)(Xiao et al., 2000)。朱家冲脉体中磷灰石XClAp/XOHAp很低,变化区间(0~0.015) 对应于石英脉中进变质阶段蓝晶石内的原生流体包裹体盐度(0.7%~2.1%NaCleqv)(Franz et al., 2001)。
将以上所选榴辉岩或者脉体中磷灰石的XClAp/XOHAp峰值与相对应的流体包裹体盐度范围的平均值(%NaCleqv) 投图,发现二者呈很好的线性正相关(图 6)。这与实验研究的结果一致(Brenan,1993)。从图 6中我们可以看出高压、超高压岩石中磷灰石的氯组分与流体包裹体的盐度之间呈现很好的线性相关。榴辉岩和脉体中磷灰石的XClAp/XOHAp比值在0~0.35之间变化时,对应的流体包裹体的盐度范围约为0~40%NaCleqv。
|
图 6 磷灰石的XClAp/XOHAp比值与流体包裹体的盐度关系投图 池庄绿辉石-黝帘石-蓝晶石-石英脉中磷灰石的XClAp/XOHAp三个峰值分别对应三种流体包裹体盐度.青龙山榴辉岩中磷灰石的XClAp/XOHAp一个峰值对应超高压变质峰期流体的盐度.碧溪岭榴辉岩中磷灰石的XClAp/XOHAp两个峰值对应两期原生流体包裹体的盐度;碧溪岭退变质榴辉岩中磷灰石的XClAp/XOHAp峰值对应退变质晚期流体的盐度.朱家冲脉体中磷灰石的XClAp/XOHAp值对应早期进变质阶段流体的盐度.流体包裹体资料见表 2 Fig. 6 Relation between XClAp/XOHAp ratios of apatites and salinities of the fluid inclusions |
在变质过程中,流体作为一个相与含羟基矿物组合平衡共生。流体成分强烈影响流体参与的变质反应。在相平衡模拟中,一般假设水的活度aH2O=1(例如,Yang and Powell, 2006; 娄玉行等, 2009; Wei et al., 2003, 2009, 2010),即流体相作为纯水流体来考虑。通过前人流体包裹体的研究(Xiao et al., 2000; Franz et al., 2001; 翟伟等, 2005; 沈昆等, 2008; Zhang et al., 2008) 和我们对磷灰石成分的观察,证实大别-苏鲁高压、超高压变质带榴辉岩平衡的流体均为不同盐度的流体。朱家冲榴辉岩中流体的盐度很低, < 5%NaCleqv (图 6),可以近似处理为纯水流体,而且其它三个露头榴辉岩中流体具有一定的盐度,相平衡计算中需要考虑水的活度。如果把盐流体作为理想体系考虑,即aH2O=XH2O,那么可以大致估算出我们所研究榴辉岩中流体的水活度,具体情况为:青龙山榴辉岩中流体的水活度为0.75;池庄绿辉石-黝帘石-蓝晶石-石英脉中不同盐度流体对应的水的活度分别约为0.95、0.85、0.58;碧溪岭榴辉岩中不同盐度流体水的活度约为0.80和0.65。
实际上,盐流体具有非理想体系特征,以NaCl-H2O体系为例,当压力>0.2GPa,NaCl-H2O体系是非理想的,表现为aH2O < XH2O,而且水活度随着压力升高而降低(Aranovich and Newton, 1996)。按照在压力为1.5GPa条件下的实验结果计算,青龙山榴辉岩流体中水的活度从理想的0.75降低到0.58,池庄绿辉石-黝帘石-蓝晶石-石英脉中不同盐度流体对应的水活度分别降低到0.88、0.72和0.40,碧溪岭榴辉岩流体中不同盐度流体水的活度则降低到0.65和0.45。我们研究的榴辉岩形成压力通常大于1.5GPa,流体中水活度aH2O应该比上述值更低。流体中水活度的降低将影响含水矿物组合的稳定温压范围和矿物的成分特征。与纯水平衡的变质矿物组合稳定的温压条件和与盐流体平衡的岩石稳定的温压条件应该有很大差别,因此,以纯水为假设计算的相图以及由此确定的温压条件可能与实际情况相差很大,其估算的岩石变质温压条件应该存在巨大的不确定性。
6 结论(1) 池庄和碧溪岭榴辉岩中磷灰石的组分特征表明与其平衡的流体具有较低的氟含量和较高的盐度;青龙山榴辉岩中磷灰石的成分表明平衡流体具有高的氟含量和中等的盐度;朱家冲榴辉岩中磷灰石的成分表明平衡流体具有中等氟含量,很低的盐度。
(2) 榴辉岩和脉体中磷灰石XClAp/XOHAp比值与前人流体包裹体研究反映的流体盐度相对应,二者呈很好的线性相关。榴辉岩和脉体磷灰石的XClAp/XOHAp比值在0~0.35时,对应的流体包裹体盐度约为0~40%NaCleqv。
致谢 样品分析过程中得到了中国科学院地质与地球物理研究所马玉光老师的协助;王清晨研究员和苏文研究员审阅了全文,并提出了宝贵的修改意见;在此一并表示衷心感谢。| [] | Ames L, Tilton GR, Zhou GZ. 1993. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 21(4): 339–342. DOI:10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2 |
| [] | Antignano A, Manning CE. 2008. Fluorapatite solubility in H2O and H2O-NaCl at 700 to 900℃ and 0. 7 to 2. 0 GPa. Chemical Geology, 251(1-4): 112–119. DOI:10.1016/j.chemgeo.2008.03.001 |
| [] | Aranovich LY, Newton RC. 1996. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium. Contributions to Mineralogy and Petrology, 125(2-3): 200–212. DOI:10.1007/s004100050216 |
| [] | Brenan JM. 1993. Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: Implications for the F and Cl content of high P-T fluids. Earth and Planetary Science Letters, 117(1-2): 251–263. DOI:10.1016/0012-821X(93)90131-R |
| [] | Castelli D, Polfo F, Compagnoni R, Xu ST. 1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. The Island Arc, 7(1-2): 159–173. |
| [] | Chen ZY, Zeng LS, Liang FH, Zhang ZM. 2006. On the mineral chemistry of apatite in eclogites from the CCSD main borehole and the geochemical behaviors of F, Cl, Sr and other elements in eclogites. Acta Geologica Sinica, 80(12): 1842–1850. |
| [] | Chen ZY, Zeng LS, Meng LJ. 2009. Mineralogy and trace elemental geochemistry of apatite in Sulu eclogites. Acta Petrologica Sinica, 25(7): 1663–1677. |
| [] | Fan HR, Guo JH, Hu FF, Chu XL, Jin CW. 2005. Fluid inclusions and exhumation history of ultra-high-pressure metamorphic rocks at Lanshantou in the Sulu terrane, southeastern Shandong Province. Acta Petrologica Sinica, 21(4): 1125–1132. |
| [] | Franz L, Romer RL, Klemd R, Schmid R, Oberhnsli R, Wagner T, Dong SW. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure-temperature-time-deformation path, composition of the fluid phase and fluid low during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3): 322–346. DOI:10.1007/s004100000233 |
| [] | Fu B, Touret JLR, Zheng YF. 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). Journal of Metamorphic Geology, 19(5): 531–548. |
| [] | Fu B, Zheng YF, Touret JLR. 2002. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chemical Geology, 187(1-2): 107–128. DOI:10.1016/S0009-2541(02)00014-1 |
| [] | Glassley WE. 2001. Elemental composition of concentrated brines in subduction zones and the deep continental crust. Precambrian Research, 105(2-4): 371–383. DOI:10.1016/S0301-9268(00)00119-4 |
| [] | Guo S, Ye K, Chen Y, Liu JB, Mao Q, Ma YG. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145–167. |
| [] | Hacker BR, Wang X, Eide EA and Ratschbacher L. 1996. Qinling-Dabie ultrahigh-preesure collisional orogen. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 345-370 |
| [] | Hermann J, Spandler C, Hack A, Korsakov AV. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92(3-4): 399–417. |
| [] | Korzhinskiy MA. 1981. Apatite solid solutions as indicators of the fugacity of HCl and HF in hydrothermal fluids. Geochemistry International, 18: 44–59. |
| [] | Kretz R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68(1-2): 277–279. |
| [] | Kullerud K, Erambert M. 1999. Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: Implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. Geochimica et Cosmochimica Acta, 63(22): 3829–3844. |
| [] | Kullerud K. 2000. Occurrence and origin of Cl-rich amphibole and biotite in the earth's crust: Implications for fluid composition and evolution. Hydrogeology of Crystalline Rocks, 34: 205–225. |
| [] | Li SG, Xiao YL, Liu DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR, Wang SS. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1-4): 89–111. DOI:10.1016/0009-2541(93)90063-O |
| [] | Li XP, Zheng YF, Wu YB, Chen F, Gong B, Li YL. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443–470. DOI:10.1007/s00410-004-0616-9 |
| [] | Liu JB, Liu WY, Ye K, Mao Q. 2009. Chlorine-rich amphibole in Yangkou eclogite, Sulu ultrahigh-pressure metamorphic terrane, China. European Journal of Mineralogy, 21(6): 1265–1285. DOI:10.1127/0935-1221/2009/0021-1968 |
| [] | Liu JB, Zhang LM, Mao Q and Ye K. 2011. Increasing chlorinity in fluids along the prograde metamorphic path: Evidence of apatite from Yangkou eclogite, Sulu, China. In: Dobrzhinetskaya LD, Faryad SW, Wallis S and Cuthbert S (eds.). Ultrahigh-Pressure Metamorphism: 25 Years after the Discovery of Coesite and Diamond. New York: Elsevier, 213-239 |
| [] | Lou YX, Wei CJ, Chu H, Wang W, Zhang JS. 2009. Metamorphic evolution of high-pressure eclogite from Hong'an, western Dabie Orogen, central China: Evidence from petrography and calculated phase equilibria in system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O (Fe2O3). Acta Petrologica Sinica, 25(1): 124–138. |
| [] | Markl G, Bucher K. 1998. Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature, 391(6669): 781–783. DOI:10.1038/35836 |
| [] | Mora CI, Valley JW. 1989. Halogen-rich scapolite and biotite: Implications for metamorphic fluid-rock interactions. American Mineralogist, 74: 721–737. |
| [] | Manning CE. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223(1-2): 1–16. DOI:10.1016/j.epsl.2004.04.030 |
| [] | Nijland TG, Jansen JBH, Maijer C. 1993. Halogen geochemistry of fluid during amphibolite-granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble Sector, South Norway. Lithos, 30(2): 167–189. |
| [] | Peacock SA. 1990. Fluid processes in subduction zones. Science, 248(4953): 329–337. DOI:10.1126/science.248.4953.329 |
| [] | Penniston-Dorland SC, Ferry JM. 2005. Coupled dichotomies of apatite and fluid composition during contact metamorphism of siliceous carbonate rocks. American Mineralogist, 90(10): 1606–1618. DOI:10.2138/am.2005.1719 |
| [] | Piccoli PM, Candela PA. 1994. Apatite in felsic rocks, a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294(1): 92–135. DOI:10.2475/ajs.294.1.92 |
| [] | Philippot P, Selverstone J. 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contributions to Mineralogy and Petrology, 106(4): 417–430. DOI:10.1007/BF00321985 |
| [] | Philippot P, Agrinier P, Scambelluri M. 1998. Chlorine cycling during subduction of altered oceanic crust. Earth and Planetary Science Letters, 161(1-4): 33–44. DOI:10.1016/S0012-821X(98)00134-4 |
| [] | Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J, Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191–203. DOI:10.1016/S0012-821X(97)81848-1 |
| [] | Scambelluri M, Pennacchioni G, Philippot P. 1998. Salt-rich aqueous fluids formed during eclogitization of metabasites in the Alpine continental crust (Austroalpine Mt. Emilius unit, Italian western Alps). Lithos, 43(3): 151–167. |
| [] | Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55(1-4): 213–227. DOI:10.1016/S0024-4937(00)00046-3 |
| [] | Shen K, Zhang ZM, van den Kerkhof AM, Xiao YL, Xu ZQ, Hoefs J. 2003. Unusual high-density and saline aqueous inclusions in ultrahigh pressure metamorphic rocks from Sulu terrane in eastern China. Chinese Science Bulletin, 48(18): 2018–2023. DOI:10.1007/BF03183997 |
| [] | Shen K, Zhang ZM, Sun XM, Xu L. 2005. Composition and evolution of ultrabigh-pressure metamorphic fluids: A fluid inclusion study of the drill cores from the main hole of Chinese Continental Scientific Drilling Program. Acta Petrologica Sinica, 21(2): 489–504. |
| [] | Shen K, Zhang ZM, Shi C, Wang JL. 2008. A study of fluid inclusions in the eclogite-facies metamorphic veins in Donghai, Jiangsu Province, eastern China. Acta Petrologica Sinica, 24(9): 1987–2002. |
| [] | Shi YH, Wang QC, Lin W. 2006. The characteristic of petrology, minerals chemistry and P-T conditions of eclogites from Taihu area in Dabie Mountains, and its Tectonic significance. Acta Petrologica Sinica, 22(2): 414–432. |
| [] | Spear FS, Pyle JM. 2002. Apatite, monazite, and xenotime in metamorphic rocks. Reviews in Mineralogy and Geochemistry, 48(1): 293–335. |
| [] | Svensen H, Jamteit B, Banks DA, Austrheim H. 2001. Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. Journal of Metamorphic Geology, 19(2): 165–178. |
| [] | Wang XM, Liou JG, Maruyama S. 1992. Coesite-bearing eclogites from the Dabie Mountains, Central China: Petrogenesis, P-T paths, and implications for regional Tectonics. The Journal of Geology, 100(2): 231–250. |
| [] | Webster JD, Tappen CM, Mandeville CW. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200MPa. Geochimica et Cosmochimica Acta, 73: 559–581. DOI:10.1016/j.gca.2008.10.034 |
| [] | Wei CJ, Powell R, Zhang LF. 2003. Eclogites from the south Tianshan, NW China: Petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. Journal of Metamorphic Geology, 21(2): 163–179. DOI:10.1046/j.1525-1314.2003.00435.x |
| [] | Wei CJ, Wang W, Clarke GL, Zhang LF, Song SG. 2009. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. Journal of Petrology, 50(10): 1973–1991. DOI:10.1093/petrology/egp064 |
| [] | Wei CJ, Li YJ, Yu Y, Zhang JS. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology, 28(6): 647–666. DOI:10.1111/(ISSN)1525-1314 |
| [] | Xiao YL, Hoefs J, van den Kerkhof AM, Fiebig J, Zheng YF. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology, 139(1): 1–16. |
| [] | Xiao YL, Hoefs J, van den Kerkhof AM, Simon K, Fiebig J, Zheng YF. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43(8): 1505–1527. DOI:10.1093/petrology/43.8.1505 |
| [] | Yang JJ, Powell R. 2006. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. Journal of Petrology, 47(10): 2047–2071. |
| [] | Yardley BWD. 1985. Apatite composition and the fugacities of HF and HCl in metamorphic fluids. Mineralogical Magazine, 49: 77–79. DOI:10.1180/minmag |
| [] | Zhai W, Sun XM, Xu L, Zhang ZM, Liang JL, Liang YH, Shen K. 2005. Fluid inclusions of Qinglongshan ultrahigh pressure metamorphic eclogite and fluid evolution, North Jiangsu Province, China. Acta Petrologica Sinica, 21(2): 482–488. |
| [] | Zhai W, Sun XM, Liang JL, Xu L, Tang Q, Liang YH, Su LW. 2006. Chemical compositions and fluid inclusions of epidotes in Qinglongshan ultrahigh pressure metamorphic eclogite, North Jiangsu Province, China. Acta Petrologica Sinica, 22(7): 2029–2038. |
| [] | Zhang LM, Liu JB. 2012. Chlorinity and its variations in fluids revealed by chlorine-bearing minerals of rocks. Earth Science Frontiers, 19(4): 206–213. |
| [] | Zhang ZM, Xiao YL, Liu FL, Liou JG, Hoefs J. 2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81(1-4): 189–207. DOI:10.1016/j.lithos.2004.10.002 |
| [] | Zhang RY, Liou JG, Cong BL. 1995. Talc-, magnesite-and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36(4): 1011–1037. |
| [] | Zhang RY, Liou JG, Yang JS, Yui TF. 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology, 18(2): 149–166. DOI:10.1046/j.1525-1314.2000.00248.x |
| [] | Zhang ZM, Zhang JF, You ZD, Shen K. 2005. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrologica Sinica, 21(2): 257–270. |
| [] | Zhang ZM, Shen K, Sun WD, Liu YS, Liou J, Shi C, Wang JL. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200–3228. DOI:10.1016/j.gca.2008.04.014 |
| [] | Zheng YF, Fu B, Li YL, Xiao YL, Li SG. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters, 155(1-2): 113–129. DOI:10.1016/S0012-821X(97)00203-3 |
| [] | Zhu C, Sverjensky DA. 1991. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55(7): 1837–1858. |
| [] | Zhu C, Sverjensky DA. 1992. F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56(9): 3435–3467. DOI:10.1016/0016-7037(92)90390-5 |
| [] | 陈振宇, 曾令森, 梁凤华, 张泽明. 2006. CCSD主孔榴辉岩中磷灰石的矿物化学特征及对榴辉岩中F, Cl, Sr等元素地球化学行为的影响. 地质学报, 80(12): 1842–1850. |
| [] | 陈振宇, 曾令森, 孟丽娟. 2009. 苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化学. 岩石学报, 25(7): 1663–1677. |
| [] | 范宏瑞, 郭敬辉, 胡芳芳, 储雪蕾, 金成伟. 2005. 鲁东南岚山头超高压变质岩流体包裹体特征与板片折返史. 岩石学报, 21(4): 1125–1132. |
| [] | 娄玉行, 魏春景, 初航, 王伟, 张景森. 2009. 西大别造山带红安高压榴辉岩的变质演化:岩相学与Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O (Fe2O3) 体系中相平衡关系. 岩石学报, 25(1): 124–138. |
| [] | 沈昆, 张泽明, Van den KerkhofAM, 肖益林, 许志琴, HoefsJ. 2003. 南苏鲁超高压榴辉岩中罕见的原生高密度盐水溶液包裹体. 科学通报, 48(10): 1076–1081. |
| [] | 沈昆, 张泽明, 孙晓明, 徐莉. 2005. 超高压变质流体的组成与演化:中国大陆科学钻探工程主孔岩心的流体包裹体研究. 岩石学报, 21(2): 489–504. |
| [] | 沈昆, 张泽明, 石超, 王金丽. 2008. 江苏东海榴辉岩相变质脉体的流体包裹体研究. 岩石学报, 24(9): 1987–2002. |
| [] | 石永红, 王清晨, 林伟. 2006. 大别山太湖地区榴辉岩岩石学、矿物成分和P-T条件特征及其所揭示的构造含义. 岩石学报, 22(2): 414–432. |
| [] | 翟伟, 孙晓明, 徐莉, 张泽明, 梁金龙, 梁业恒, 沈昆. 2005. 苏北青龙山超高压变质榴辉岩流体包裹体特征与流体演化. 岩石学报, 21(2): 482–488. |
| [] | 翟伟, 孙晓明, 梁金龙, 徐莉, 汤倩, 梁业恒, 苏丽薇. 2006. 青龙山超高压变质榴辉岩绿帘石化学成分与流体包裹体特征. 岩石学报, 22(7): 2029–2038. |
| [] | 张灵敏, 刘景波. 2012. 流体的氯含量及其演化:来自岩石含氯矿物的记录. 地学前缘, 19(4): 206–213. |
| [] | 张泽明, 张金凤, 游振东, 沈昆. 2005. 苏鲁造山带超高压变质作用及其P-T-t轨迹. 岩石学报, 21(2): 257–270. |
2013, Vol. 29
