岩石学报  2013, Vol. 29 Issue (4): 1358-1376   PDF    
青海大场金矿田矿床成因:流体包裹体地球化学及H-O同位素的约束
夏锐1,2, 邓军1, 卿敏2, 王长明1, 李文良2     
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;
2. 武警黄金地质研究所,廊坊 065000
摘要: 青海大场金矿田位于可可西里-巴颜喀拉晚古生代-中生代浊积盆地褶断带内,是川陕甘交接地区的一个超大型矿田。矿床受NW向构造破碎蚀变带控制,赋矿围岩为三叠系炭质砂板岩,矿石矿物主要为黄铁矿、毒砂和辉锑矿,脉石矿物主要为石英、长石和方解石。金的赋存状态以微细粒金为主。大场金矿田矿石中流体包裹体主要为盐水溶液包裹体(W型)、少量的含CO2包裹体(C型)和富CO2包裹体(PC型)组成。成矿流体具有中低温(180~200℃)、低盐度(2%~5%NaCleqv)、成矿深度为7.9~12.3km的特征。气、液相成分测定显示气相成分以N2、CO2、O2、H2O为主;液相成分中阳离子以Ca2+、Na+、Li+、K+为主,阴离子以富SO42-、Cl-、NO3-、F-为特点,成矿流体属Ca2++Na++SO42-型,有机碳参与了流体成矿作用。氢氧同位素组成分别为δD=-62‰~-106‰,δ18OH2O=3.1‰~10.5‰,说明成矿流体主要为建造水,也有岩浆流体的加入。根据大场金矿田成矿地质背景、流体特征及演化和成矿的构造背景和机制,本文首次提出大场金矿为类卡林型金矿,为研究该区金矿成矿作用提供了参考。
关键词: 类卡林型金矿     流体包裹体     H-O同位素     大场金矿田     青海    
The genesis of the Dachang gold ore field in Qinghai Province: Constraints on fluid inclusion geochemistry and H-O isotopes
XIA Rui1,2, DENG Jun1, QING Min2, WANG ChangMing1, LI WenLiang2     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Gold Geological Institute of CAPF, Langfang 065000, China
Abstract: The Dachang gold ore field, one of the super large ore field in the Sichuan-Shanxi-Gansu boundary region, is located in the Kekexili-Songpanganze in Late Palaeozoic-Mesozoic turbidite basin and fold and fault belt. It is controlled by an NW-trending structural and altered belt, and hosted in the Triassic carbonaceous sandstone-slate of flysch deposition. The main ore minerals are pyrite, arsenopyrite and stibnite, and gangue minerals are quartz, feldspar and calcite. The gold occurred as grained gold. Microthermometric measurements show that auriferous quartz veins in the Dachang gold ore field have three types of fluid inclusions: NaCl-H2O inclusions (type W); CO2 brine inclusions (type C) and pure gaseous inclusions (type PC). The salinity values of NaCl-H2O inclusions have a peak of 2%~5%NaCleqv, homogenization temperature values with a peak of 180~200℃ and metallogenic depths are 7.9~12.3km. The pure gaseous inclusions are dominanted by N2, CO2, O2, H2O, with minor H2S. Liquid phase composition are Ca2+, Na+, Li+, K+ and SO42-, Cl-, NO3-, F-, with minor Mg2+. They suggest that the ore-forming fluids of the Dachang gold ore field are characterized by low salinity, low to moderate homogenization temperature. H-O isotopes analyses show that δD=-62‰~-106‰, δ18OH2O=3.1‰~10.5‰, indicating that the ore-forming fluids are composed mainly of devolatilization of organic matter, with meteoric water. Geological and fluild features and metallogenic mechanism suggest that the Dachang gold ore field may be Carlin-like gold deposit.
Key words: Carlin-like gold deposit     Fluid inclusion     H-O isotopes     Dachang gold ore field     Qinghai    

青海大场金矿田属北巴颜喀拉成矿带金矿矿集区之一,是矿集区内一超大型金矿田。矿田内已发现多个大、中型金矿床和矿化点,如大场、扎家同哪、加给龙洼、稍日哦、大东沟、扎拉依(胡正国等,1998张昆宏,2010赵俊伟等,2007)等。2011年,研究区新增金资源量40t,总资源量达到220t。前人的研究重点集中在大场金矿床(张德全等, 2001, 2007丰成友等, 2003, 2004a, b赵财胜等,2005韩英善等,2006赵俊伟等,2007),取得了一定的成果和认识,但是仍然存在着明显的不足,尤其是矿床成因存在较大的争议。大部分学者根据矿床产出的构造背景认为其属于造山型金矿床(丰成友等, 2003, 2004a赵财胜等,2005张德全等, 2001, 2005, 2007丁清峰等,2010),另外一些学者根据矿石中的金赋存状态,认为其类型为卡林型金矿(韩英善等,2006;Inter-Citic Mineral Inc, 2003)。故本文拟通过矿田尺度对青海大场金矿田流体包裹体地球化学和H-O同位素研究,揭示导致大规模金富集的成矿流体组成、来源及其演化,进而探讨成矿元素的淀积机理,讨论矿床的成因类型,为深入认识该矿田的成矿机制和分布规律提供依据。

①Prepared for Inte-Citic minerals Technologies Inc. 2003. Dachang Gold Property in Qumalai County, Qinghai Province, People's Republic of China

1 区域地质

大场金矿田大地构造位于可可西里-巴颜喀拉晚古生代-中生代浊积盆地褶断带内(图 1a) (李荣社等,2008陈守建等,2011),是川陕甘“金三角”地区在扬子陆块周边的一个超大型矿田(欧阳玉飞等,2011丁清峰等,2010)。

图 1 青海大场矿田地质简图(据青海省地质调查院,2004; Prepared for Inte-Citic minerals Technologies Inc., 2003修改) 1-第四系、第三系泥、砂砾岩;2-巴颜喀拉山群变砂岩;3-巴颜喀拉山群变砂岩夹板岩;4-布青山群灰岩;5-布青山群变砂岩;6-中粗粒二长花岗岩;7-辉长岩;8-断裂;9-地质界线;9-金矿点;10-砂金矿点;11-铜矿点 Fig. 1 Simplified geological map of Dachang ore field in Qinghai Province 1-mudstone and sandy conglomerate of Tertiary-Quaternary; 2-metasandstones of Bayankala group; 3-metasandstone and slate of Bayankala Group; 4-limestone of Buqingshan Group; 5-metasandstone of Buqingshan Group; 6-medium-coarse adamellite; 7-gabbro; 8-fault; 9-gold occurrence; 10-sand gold occurrence; 11-Cu mining occurrence

①青海省地质调查院. 2004.曲麻莱县大场金矿评价报告

区域地层主要有二叠系布青山群马尔争组变砂岩(P1m1)和灰岩(P1m2)、三叠系巴颜喀拉山群变砂岩夹板岩(TB1)和板岩夹变砂岩(TB2)、第三系、第四系陆相河湖沉积物。其中,二叠-三叠系主要为海相沉积,比较连续,尤以海相三叠系最具特色,著名的巴颜喀拉山群横贯全区,分布广泛,厚度巨大(>6160m)(陈守建等,2011),也是区域内最主要的赋矿地层。

区域岩浆活动较弱,岩浆岩分布零星,以晚印支期中酸性钙碱性系列、I型花岗岩最为发育,侵入年龄为:SHRIMP U-Pb年龄218~197Ma,锆石207Pb/206Pb年龄216~221Ma,锆石U-Pb年龄228Ma (沙淑清等,2007陈文和Arnaud, 1997陈守建等,2011),与巴颜喀拉俯冲、碰撞造山的构造岩浆事件发生时间(243~223Ma)相一致(陈文和Arnaud, 1997李海兵等,2001许志琴等,2012),也与川陕甘“金三角”地区卡林-类卡林金矿成矿省成矿时间(220~100Ma)相吻合(陈衍景等,2004a李晶等,2007)。火山岩主要赋存于二叠系、三叠系中, 多为钠质型钙碱性系列,显示活动大陆边缘(或岛弧)构造环境(陈守建等,2011),其构造背景与分布于大陆边缘地区的美国卡林型金矿床相似(Kerrich et al., 2000陈衍景等,2004b)。虽然岩浆活动微弱,但地球物理资料显示深部有隐伏岩体存在(孙丰月, 2003)。大场金矿矿石中绢云母40Ar-39Ar法年龄测定成矿年龄218.6±3.2Ma (张德全等,2005)和含金石英脉Pb-Pb年龄187Ma (青海省地质矿产勘查开发局, 2011),显示大场金矿田大规模成矿作用与巴颜喀拉的构造演化有密切关系,这与我国滇黔桂卡林型矿集区的成矿时代与地质演化相似(刘学飞等,2008)。

②孙丰月. 2003.新疆-青海东昆仑成矿规律和找矿方向综合研究

③青海省地质矿产勘查开发局. 2011.青海省金矿资源潜力评价成果报告

大场金矿田位于北巴颜喀拉构造带(图 1)。褶皱构造以印支期变形为主,断裂构造依其展布方向可分为北西西向和北东向两组,以北西西向断裂为主(昆南断裂、甘德-玛多断裂、玛多断裂、玛多南断裂),该断裂形成早,规模大,具多期复合的特点,性质为北倾深大逆断层,具有明显的控岩、控矿作用;北东向断裂多属平移断层,形成时间晚,规模大小不一。

2 矿床地质

矿区位于阿棚鄂里曲背斜构造南西和甘德-玛多深大断裂带内。大中型矿床主要有大场金矿、扎家同哪金矿、加给龙洼金矿和大场砂金矿(图 1)。

矿区出露地层有三叠系巴颜喀拉群和第四系。岩金矿床赋存于三叠系巴颜喀拉群,砂金矿床赋存于第四系,砂金矿与岩金矿有明显的空间对应分布特点(张昆宏,2010),符合矿床中出现明金的事实。三叠系巴颜喀拉群主要为砂泥质类复理石沉积,主要为泥、砂质碎屑岩夹砾质岩和少量碳酸盐岩,局部地段有基性火山岩,砂岩局部含铁较高,板岩含炭或局部含炭质较高,以及部分板岩和砂岩富含黄铁矿(青海省地勘局, 2003),这些特征与内华达卡林型金矿的赋矿围岩特征(Strenger et al., 1998; Emsbo et al., 1999, 2003)相一致(陈衍景等,2004b)。据胡继春等(2010)研究,变砂岩、粉砂质板岩和泥质板岩的金丰度分别为73.52×10-9、10.7×10-9和22.67×10-9,显著高于矿区背景值3.74×10-9,并分布一系列Au-Sb-As-Hg组合异常(徐文艺等,2001),总体构成了元素的高背景场(张德全等,2001),有利于大型、超大型卡林型金矿床的形成。

④青海省地勘局. 2003.青海省三轮区划报告

矿区缺乏具有规模的岩浆侵入体,仅在扎日加-琼走一带,出露规模不大,呈岩脉、岩株状产出,岩性为中粗粒二长花岗岩,K-Ar年龄为188~189Ma (青海省地质调查院, 2005a),表明为成矿期后岩浆活动。虽然与美国卡林-类卡林金矿区有侵入体和火山岩发育特征不同,但与我国陕甘川地区卡林-类卡林金矿成矿省特征相一致(陈衍景等,2004b)。

⑤青海省地质调查院. 2005a.青海省曲麻莱县大场金矿评价报告-青海曲麻莱县大场-加给龙洼地区区域地质矿产图

矿体赋存于深大逆断层甘德-玛多断裂的次级断裂破碎蚀变带中,且矿体严格受破碎蚀变带控制,沿走向具有波状弯曲、膨大缩小、分支复合及分叉现象,倾向稳定,矿体平面上呈舒缓波状(图 2a),上为脉状、似层状(图 2c图 3a, b)。矿田内主要矿床的地质特征见表 1,它们除赋存的地层不同外,其他特征几乎完全一致。

图 2 青海大场矿区地质-构造简图 (a)-大场金矿区地质略图(张德全等,2007);(b)-3-18号矿体褶皱控矿地质平面图(张德全等,2007);(c)-135号勘探线剖面图(据青海省地质调查院,2004修编).1-三叠系变砂岩;2-三叠系砂岩;3-三叠系板岩;4-矿体 Fig. 2 Simplified geological map of Dachang gold ore field in Qinghai Province (a)-sketch geological map of the Dachang gold ore field (Zheng et al., 2007); (b)-geological sketch map of No.3-18 ore body, showing the ore-controlling fold (Zheng et al., 2007); (c)-schematic geological section along No.135 exploration line in the Dachang gold deposit. 1-Triassic metasandstone; 2-Triassic sandstone; 3-Triassic slate; 4-orebody

图 3 大场金矿田野外、手标本及镜下照片 (a)-矿体全景;(b)-炭质板岩;(c)-含金石英脉;(d)-石英黄铁矿脉;(e)-毒砂矿化;(f)-自然金;(g)-褐铁矿化;(h)-绢云母化;(i)-绿泥石化 Fig. 3 Photographs of field work, specimen and microphotographs form Dachang gold deposits (a)-ore body; (b)-carbonaceous slate; (c)-auriferous quartz vein; (d)-quartz-pyrite vein; (e)-arsenopyrite mineralization; (f)-native gold; (g)-ferritization; (h)-sericitization; (i)-chloritization

表 1 大场金矿田矿床地质特征对比 Table 1 Contract of geologic feature on deposits in the Dachang ore field

矿区内矿石类型主要为硫化物-蚀变破碎岩型,以硫化物-角砾岩型、硫化物-千枚岩型和硫化物-糜棱岩型为主,硫化物-千枚岩型、硫化物-粉砂岩型、硫化物-板岩型次之。围岩蚀变多表现为硅化、绢云母化、泥化及碳酸盐化(图 3g-i),其中绢云母化、硅化与金锑矿化关系最为密切。矿体与围岩界限清楚,围岩岩性单一,矿体上下盘岩性多为板岩类和砂岩类,且破碎带的长度和宽度基本框定了矿体的长度和宽度。

矿石经光谱半定量和化学多项分析表明,矿石中砷碳铁硫含量较高(青海省地质调查院, 2005b)。矿石矿物主要为黄铁矿、毒砂、辉锑矿(图 3c-e),脉石矿物为石英、长石、绢云母和方解石等。自然金、黄铁矿、毒砂呈自形-半自形分散于脉石矿物中(图 3e)。矿石呈粒状、碎裂、碎斑结构,浸染状、角砾状构造。自然金和金矿赋存于毒砂、黄铁矿和蚀变岩中,自然金(粒度0.74~2mm)约占21%,小于0.74mm和不可见的金占79%(赵财胜等,2009),总体而言,金矿石中有大量的金是以显微、超显微(<0.02mm)金存在于矿石矿物裂隙及晶格中,且自然金多以次显微金形式存在于金属矿物中,但矿区内发现明金(图 3f),其粒度可达2~5mm。

①青海省地质调查院. 2005b.青海省曲麻莱县大场金矿评价报告

根据野外与镜下观察的矿物共生组合及其生成顺序,将大场金矿田热液成矿过程划分为三个成矿阶段:早成矿阶段石英-绢云母-黄铁矿组合(Ⅰ)、主成矿阶段金-石英-黄铁矿-毒砂-(辉锑矿)组合(Ⅱ)、晚成矿阶段以发育透明度较高的石英-碳酸盐为特征(Ⅲ),本文重点对主成矿阶段(Ⅱ)进行了流体包裹体地球化学研究,其中成矿(Ⅰ)、(Ⅲ)阶段数据引至赵财胜等(2005)

3 样品和测试

本文研究样品主要采自大场、扎家同哪和加给龙洼3个矿床,其中大场3件、扎家同哪8件和加给龙洼2件。样品为主成矿阶段(Ⅱ)的黄铁矿-毒砂-石英脉矿石。

显微测温分析是在中国地质大学(北京)地质过程与矿产资源国家重点实验室流体包裹体实验室英国Linkam THMS 600型冷热台上完成,测试温度范围是-196~+600℃,在-120~-70℃测试精度为±0.5℃、-70~+100℃范围的测试精度为±0.2℃、>100℃时的测试精度为±2℃,并利用美国FLUID INC公司的人工流体包裹体标准样品进行温度标定。测试过程中采用Wilkinson (2001)总结的冷冻-加热法来记录相变温度点,升温速率一般为0.2~5℃/min,含CO2包裹体相转变点附近的升温速率为0.2℃/min,水溶液包裹体相变点附近的升温速率为0.2℃~0.5℃/min,基本保证了相转变温度的准确性。利用流体包裹体计算程序MacFlincor (Brown and Hagemann, 1995)对测试结果进行了数据计算。根据Hall et al. (1988)提出H2O-NaCl体系盐度-冰点公式求得水溶液包裹体盐度,根据CO2笼合物熔化温度和盐度关系表(Collins, 1979),获得H2O-NaCl-CO2包裹体水溶液相盐度;利用含CO2包裹体均一温度和CO2相密度关系图解(Shepherd et al., 1985)推算出CO2相的密度。

群体包裹体成分测试的样品为人工挑选的纯度大于99%的石英颗粒,粒度在0.2~0.5mm,样品挑选工作由廊坊市宇能岩石矿物分选技术服务有限公司完成。包裹体中气液相成分分析在地科院矿产资源研究所进行,气相成分测试仪器为日本岛津公司GC2010气相色谱仪和澳大利亚SGE公司热爆裂炉,液相成分测试仪器为日本岛津公司Shimadzu HIC-SP Super离子色谱仪,GC-2010型气相色谱仪最低检出限1×10-6;HIC-SP Super型离子色谱仪最低检出限阴离子为1×10-9,阳离子为1×10-6

氢、氧同位素分析在中国地质科学院矿产资源研究所完成。流体包裹体氢同位素用爆裂法取水,铬法制氢(万德芳等,2005);氧同位素用BrF5法。氢、氧同位素采用MAT253质谱计测定,氢、氧同位素采用的国际标准为SMOW。氧同位素分析精度为±0. 2‰,氢同位素分析精度为±2‰。根据石英中流体包裹体的均一温度和矿物-水氧同位素分馏方程,计算出流体的δ18OH2O值。流体的均一温度取其平均值,石英与水的氧同位素平衡公式采用以下公式(Clayton et al., 1972): 103lnαquart-H2O=3.42×106 T-2-3.40。

4 流体包裹体特征及显微测温 4.1 岩相学

显微镜下不同蚀变带岩石及各成矿阶段脉体石英中均含有较丰富的流体包裹体,根据Roedder (1984)卢焕章等(2004)提出的流体包裹体在室温及冷冻回温过程中的相态变化,可将成矿期的流体包裹体分为三种类型:水盐溶液包裹体(W型)、含CO2包裹体(C型)和富CO2包裹体(PC型)。

(1)水盐溶液包裹体(W型)。室温下由气液两相(VH2O+LH2O)组成。约占包裹体数的90%左右,包裹体形态为负晶形、椭圆形、长条形或不规则形(图 4a),长轴2~16μm,个体变化较大。存在包裹体的泄漏现象(图 4d)

图 4 青海大场金矿田石英中的流体包裹体照片 Fig. 4 Photomicrgraphs of fluid inclusions in the Dachang gold orefield

(2)含CO2包裹体(C型)。根据相态进一步分为C1和C2亚型。C1亚型常温下呈两相VCO2+H2O+LH2O,包裹体形态为椭圆形或不规则形,其中LCO2+VCO2占包裹体总体积20%~50%不等。C2亚型常温下呈三相LH2O+LCO2+VCO2,包裹体形态为椭圆形、不规则形、长条形等(图 4b),包裹体长轴长一般为8~40μm,多数在12~15μm之间。

(3)富CO2包裹体(PC型)。几乎全部由CO2充填,包裹体形态为椭圆形和不规则形,富CO2包裹体气液体积比一般为75 %~95 %。包裹体总体颜色较暗,中心透明(图 4c)。其分布特征与含CO2三相包裹体极为相似,并常与其共生。其均一温度相近,这反映出该期流体在被捕获时可能有不混溶现象发生(Ramboz et al., 1982; Roedder, 1984; Shepherd et al., 1985; 卢焕章等,2004胡芳芳等,2008)。

由上可见,早成矿阶段包裹体类型复杂,以W型为主,C型、PC型为次(赵财胜等,2005);主成矿阶段包裹体主要为W型,出现个别的C型和PC型;晚阶段为W型(赵财胜等,2005)。总之,大场金矿田流体包裹体主要为水盐溶液包裹体,少量含/富CO2包裹体。

4.2 显微测温结果

对大场金矿田不同成矿阶段代表性样品(12件)中各类流体包裹体进行了详细的显微测温,其中早阶段的数据(2件)和晚阶段数据(1件)引用(赵财胜等,2005)、主阶段的数据(9件)结果见表 2图 5,现分述如下。

表 2 大场金矿田流体包裹体显微测温结果(℃) Table 2 Microthermometric data on fluid inclusions in the Dachang ore field (℃)

图 5 石英中流体包裹体均一温度和盐度直方图 Fig. 5 Histograms of homogenization temperatures and salinities of fluid inclusions in quartz

(1)成矿早阶段包裹体W型、C型和PC型

早成矿阶段包裹体类型复杂,以W型为主,C型、PC型为次。

W型包裹体:冰点温度分布于-5.2~-0.8℃之间,盐度集中为6%~8%NaCleqv,均一温度分布于165.4~249.5℃之间,集中在于240~250℃。

C型包裹体:部分均一温度分布于23.6~29.6℃之间,集中在于24~28℃,均一温度分布于218.2~304.5℃之间,集中在于240~260℃;

PC型包裹体:部分均一温度分布于19.2~25.5℃,集中在于22~23℃。

(2)成矿主阶段包裹体W型

冰点温度分布于-0.1~-6.2℃之间,盐度最大值为9.47%NaCleqv,最小值为0.18%NaCleqv,平均为3.91%NaCleqv,集中于2%~4%NaCleqv;均一温度为117~354℃,集中在180~200℃。

(3)成矿晚阶段包裹体(W型)

均一温度为152.2~207.8℃,集中在160~180℃,盐度为2.8%~8.81%NaCleqv,集中在2%~4%NaCleqv。

图 5表明从早成矿期到成矿晚期,均一温度逐渐降低,同时显示了成矿流体具有中低温、低盐度的特征,符合卡林型金矿床的一般特征(刘家军等,2007刘东升等,1994张静等,2002刘学飞等,2008)。

4.3 成矿流体压力和深度估算

早期富含CO2流体的存在表明流体捕获时压力较高,此时的构造主要以压扭性的为主,到主成矿期压扭性构造向张性构造转变,压力得到释放,导致流体压力下降,这对金的沉淀有重要意义(MacDonald and Ohle, 1984; Robert and Kelly, 1984)。

根据显微测温数据,利用流体包裹体数据处理MacFlincor程序(Bakker,1999)计算获得主成矿阶段流体压力(均一压力)为94~220MPa,平均130MPa。

孙丰月等(2000)Sibson (1994)的断裂带流体垂直分带规律引入到脉状热液金矿床成矿深度的计算公式:当40MPa≦P≦220MPa时,H=0.0868/(1/P+0.00388)+2(P为流体压力(MPa),H为成矿深度(km))。大场金矿田严格断裂控矿特点符合该公式的适用条件。求得成矿深度范围为7.9~12.3km,平均9.5km,属于中深范围。

4.4 流体包裹体成分

包裹体是解译成矿作用的密码,被喻为成矿溶液的原始样品(何知礼,1982),可以确定流体系统的演化(Vapnik, 2002)。表 3表 4列出了主成矿阶段色谱仪测试的石英样品群体包裹体气液相成分,显示出如下特征。

表 3 大场金矿田包裹体气相成分(×10-6) Table 3 Gaseous composition (×10-6) in fluid inclusions of the Dachang gold ore field

表 4 大场金矿田包裹体液相成分(×10-6) Table 4 Aqueous composition (×10-6) in fluid inclusions of the Dachang gold field
4.4.1 气相成分

流体包裹体气相成分以N2、CO2、O2、H2O为主;其中N2平均为427×10-6、CO2平均为232×10-6、O2平均为149×10-6、H2O平均为110×10-6、CO平均为20.4×10-6、C2H2+C2H4平均为0.365×10-6、CH4平均为0.176×10-6、C2H6平均为0.022×10-6

主成矿阶段成矿流体气相成分协变图(图 6)表明,除CH4与H2O呈现良好的线性关系(R2=0.6336)外,CO2、O2、N2与H2O之间的线性关系均较差(R2<0.6)。假如CH4-H2O的良好线性关系是由相分离造成的,相分离将同样造成其它气体与H2O之间的线性相关关系,因为这些气体在相分离过程中倾向于与CO2共同分馏到气相中,那么各气体组分与H2O之间应成相近或一致的变化关系,即线性拟合程度应很好(Liu et al., 2003李新俊和刘伟,2002高文亮和詹国年,2006)。图 6说明本矿床成矿流体中各气相组分并非从相同的相态下分离形成,而是由流体在迁移过程中混入外来流体(王巧云等,2007),致使不同比例气相组分的加入而造成的。

图 6 主成矿阶段成矿流体气相成分协变图 Fig. 6 Covariation diagrams of gas composition CH4, CO2, O2, N2and H2O

主成矿阶段样品均含有C2H6,指示有机碳或有机质参与了流体成矿作用,与大场金矿田赋矿围岩含碳量相对较高的特点相吻合,很大程度上排除了岩浆热液主导成矿流体系统的可能性(李晶等,2007);且C2H6的形成往往与还原环境(李永胜等,2011)有关,丰富的CO2的出现可能与深部地壳甚至地幔流体的参与有关(孙晓明等,2010),且X (H2O)/ X (CO2)值较高(平均1.33)也证实了有岩浆热液参与成矿(李士辉等,2011)。有机组分可与金形成有机化合物和螯合物(Boyle, 1984),增强了热液活化迁移岩石中的金属成矿元素的能力(卢焕章和郭迪江,2002),有利于金迁移、富集,而形成超大型矿床。

4.4.2 液相成分

液相成分中阳离子含量从高到低顺序依次为Ca2+、Na+、Li+、K+,阴离子以富SO42-、Cl-、NO3-、F-为特点。其中液相成分中阳离子含量Ca2+平均为19.07×10-6、Na+平均为4.818×10-6、Li+平均为0.121×10-6、K+平均为0.85×10-6、Mg2+平均为0.052×10-6;阴离子含量SO42-平均为9.673×10-6、Cl-平均为2.693×10-6、NO3-平均为1.984×10-6、F-平均为1.861×10-6、Br-平均为0.041×10-6、NO2-平均为0.004×10-6。表明大场金矿田成矿流体属于Ca2++Na++SO42-型。

主成矿阶段包裹体溶液X (Na+)/ X (K+)值变化范围为2.836~12.124,按照Roedder (1984)的研究成果,岩浆热液的X (Na+)/ X (K+)<1,变质热液X (Na+)/ X (K+)≈1,而与沉积岩或地下热卤水有关的成矿流体较高,通常大于1。说明大场金矿田流体中有与沉积岩或地下热卤水有关的成矿流体的介入,这与赋矿围岩泥炭质砂板岩相符合。

主成矿阶段包裹体溶液X (F-)/ X (Cl-)值集中在0~0.2之间。X (F-)/ X (Cl-)较小时成矿常反映其地下热卤水或大气降水成因(卢焕章等,1990)。再次验证了成矿流体中有地下热卤水的加入。

溶液中SO42-代表了流体包裹体中的所有含硫物相,如S2-, HS-和SO42-等(陈衍景等,2004b)。成矿流体中高的SO42-浓度是岩浆水存在的有效证据(姜耀辉等,1994),大场金矿田成矿流体中SO42-含量普遍偏高,表明了成矿流体中岩浆热液的存在(李龚建等,未发表),这与深部有隐伏岩体的存在和后文中H-O同位素图解有两个点落入岩浆水区域相一致。

5 H-O同位素地球化学

不同来源流体的同位素组成有明显的差异(White, 1974),把成矿流体的同位素组成与已知流体源区的同位素组成进行对比是判断成矿流体来源的重要方法(宋国学等,2010)。本文收集了国内外典型造山型金矿和卡林型金矿石英脉成矿流体的H-O同位素数据,统一采用Clayton et al. (1972)石英与水之间的氧同位素分馏方程计算石英δ18OH2O值。在δD-δ18O同位素图解(图 7)上造山型金矿与卡林型金矿石英脉成矿流体的H-O同位素有两个明显的集中区,对成矿流体的来源和矿床成因的判别有一定的指导意义。

图 7 大场金矿田石英脉流体δD-δ18O同位素组成图 图中不同成因水的δD-δ18O同位素组成据Sheppard (1986);造山型金矿资料据:1-胶东地区(Fan et al., 2003; 张连昌等,2002; 辛洪波,2005; 侯明兰等,2007; 郭春影等,2008; 郭春影,2009; 陆丽娜等,2011; 薛琮一,2011);2-小秦岭地区(徐九华等,1997; 王义天等,2005; 陈莉,2006; 简伟,2010; 赵海香,2011; 范寿龙等,2012);3-东昆仑地区(丰成友等,2004b; 沈鑫,2012; 王冠,2012);4-三江地区(Sun et al., 2009; 葛良胜等,2007; 石贵勇等,2010; 梁业恒等,2011);卡林型金矿资料据:5-滇黔桂地区(苏文超,2002; 陈本金等,2010; 韩雪等,2011; );6-陕甘川地区(付绍洪和王苹,2000; 冯建忠等,2004; 朱赖民等,2009; 张玙,2011) Fig. 7 Plot of δD versus δ18O for ore forming fluids from the Dachang gold ore field

表 5所示,对大场金矿田主成矿阶段(Ⅱ)的黄铁矿-毒砂-石英脉流体包裹体进行了氢、氧同位素分析。从表中可见,大场金矿田中石英流体包裹体水的δD变化较大,为-62‰~-106‰,石英矿物δ18O石英为16.5‰~19.7‰。根据石英与水之间的氧同位素分馏方程计算的成矿流体的δ18OH2O=3.1‰~10.5‰。

表 5 大场金矿田成矿流体氢氧同位素组成 Table 5 Plot of δD vs. δ18O for ore fluids from Dachang gold ore field

δD-δ18O同位素图上(图 7),大场金矿田样品中多数点落在建造水范围内,暗示成矿流体主要来自沉积建造水(或称沉积热卤水),与丰成友等(2004b)研究相一致。且处于中国造山型金矿与卡林型金矿氢氧同位素集中区域之间,表明大场金矿田与卡林型金矿和造山型金矿可能有一定的成因关系或为过渡中间产物(李晶等, 2007, 2008朱赖民等,2009)。其中有两个点落入岩浆水范围内再次表明了成矿流体中岩浆热液的加入。

δ18O石英为16.5‰~19.7‰,与低级变质作用的千枚岩或片岩的δ18O (11‰~13‰)和浅变质岩中石英的δ18O (13‰~15‰) (郑永飞和陈江峰,2000)值要高,主要原因是围岩地层主要由高18O的岩石类型(石英砂岩,粉砂岩夹粉砂质板岩)组成。总之成矿流体主要来自三叠系的沉积地层,即含矿建造(陈衍景等,2004a),有部分岩浆热液的加入。

6 矿床成因讨论 6.1 成矿流体特征及演化

流体是热能的载体,也是不同存在形式矿质的载体(Wilkinson,2001),热液脉型矿床的成矿过程实质上就是流体作用的过程(邓军等,2000Deng et al., 2011),包裹体类型、组成和均一温度等能反映成矿流体的演化规律(胡芳芳等,2005)。大场金矿田流体从早到晚发生了一系列规律性的变化,如包裹体的类型,由Ⅰ阶段水盐溶液包裹体为主,含CO2包裹体、富CO2包裹体次之,经Ⅱ阶段水盐溶液包裹体为主,出现个别的含CO2包裹体和富CO2包裹体,至Ⅲ阶段水盐溶液包裹体。均一温度逐渐降低,由Ⅰ阶段240~250℃,经Ⅱ阶段180~220℃,至Ⅲ阶段160~180℃;盐度逐渐降低,从Ⅰ阶段至Ⅲ阶段依次为6%~8%NaCleqv,2%~6%NaCleqv和2%~4%NaCleqv。气相成分主要为N2、CO2、O2、H2O,液相成分主要为Ca2+、Na+、SO42-、Cl-。总体上讲,成矿流体为Ca2++Na++SO42-体系,属中低温、低盐度流体。这与已知卡林型金矿化集中区之一的川陕甘“金三角”地区在扬子陆块周边金矿床的成矿流体性质相似(卢焕章等, 2004)。

6.2 成矿构造背景及机制

大场矿石中绢云母40Ar-39Ar法年龄测定(张德全等,2005)成矿年龄为218.6±3.2Ma,证明大场金矿田形成于晚印支期。研究表明,巴颜喀拉造山带属于印支-燕山期的大陆碰撞造山带(任纪舜和肖黎薇,2004; 许志琴等, 2007a, b, 2012),且东昆仑韧性断裂形成于236.8Ma (姜春发等,1992),20Ma之后,韧性应变向脆性应变转化(Arnaud et al., 1995),巴颜喀拉发生走滑型褶皱造山是与东昆仑走滑断裂有成因联系的古特提斯斜向碰撞的产物(李海兵等,2001许志琴等,2012),如此以来,大场金矿田属于典型的同碰撞造山期形成的超大型矿田,显示了大场金矿田与区域内中生代构造体制转折作用有关。

碰撞造山作用的挤压伸展转变期就是大规模成矿时期,其内矿床往往受控于脆性-韧性变形的转变带或转变期(邓军等,1998陈衍景,2006)。表现在成矿的早期到晚期阶段由水盐溶液包裹体,少量含/富CO2包裹体,经水盐溶液包裹体,个别含/富CO2包裹体,至水盐溶液包裹体,由于流体的演化也经历了脆性-韧性变形的转变带或转变期所导致的挥发份逃逸(Wilkinson,2001; 陈衍景等,2007)。加之沸腾包裹体组合的存在(赵财胜等,2005丁清峰等,2010),表明主阶段流体压力交替于静岩压力与静水压力系统之间(李晶等,2007),是赋矿断裂的断层阀作用(Sibson et al., 1988)的结果。也说明了大场金矿田成矿作用与应力场转变有关。

大场金矿田和整个松潘-甘孜构造带三叠系陆源碎屑为主的沉积物(胡健民等,2005苏本勋等,2006王伟等,2007),以板岩夹砂岩或砂岩、板岩互层为主,并分布一系列Au-Sb-As-Hg组合异常,且向成矿系统提供成矿物质,致使矿床往往具有卡林型金矿床的矿石矿物组合和成矿元素组合。由于金主要赋存在硫化物-破碎蚀变岩中,因此硫化物的来源更能代表金矿的物质来源。丰成友等(2003)研究表明,变砂岩中黄铁矿δ34S为-3.3‰,206Pb/204Pb为18.380;泥质板岩中黄铁矿δ34S为-3.7‰,206Pb/204Pb为18.380;黄铁矿化蚀变岩中黄铁矿δ34S为-3.2‰,206Pb/204Pb为18.338;破碎岩金矿石中黄铁矿δ34S为-4.7‰,206Pb/204Pb为18.338;且包存义等(2003)研究也表明矿床围岩和蚀变破碎岩矿石中的黄铁矿δ34S介于-4.7‰~-3.2‰,均认为围岩与矿石中的黄铁矿δ34S数值变化范围小。再次表明了成矿物质来源于围岩,与我国南秦岭卡林-类卡林型金矿表现出成矿元素来自容矿地层相一致(张复新等,2001)。

研究表明,成矿流体中金的搬运主要以金硫络合物[Au (Hs)0, HAu (Hs)20, Au (Hs)2-]和金氯络合物[AuCl2-, AuCl0, AuCl (OH)-]等形式进行运移(Hayashi and Ohmoto, 1991; Seward, 1991; Zotov et al., 1991; Gammons et al., 1994; Benning and Seward, 1996)。Phillips and Evans (2004)认为CO2在金的运移过程中起着至关重要的作用,CO2具有弱酸性,可调节流体的pH值使其保持在硫金络合物稳定存在的范围内,从而提高金的溶解度,随CO2出溶会引起流体pH值的降低,会导致金的大量沉淀。有机质在一定条件下具有搬运及卸载金的能力,对金矿床的物质搬运及卸载成矿及萃取围岩中分散的金可起重要作用(Gatallier and Disnar, 1989; Kettler et al., 1990; 李九龄等,1996)。

大场金矿田成矿流体属Ca2++Na++SO42-体系,主要来自三叠系的沉积地层,有岩浆热液的加入。这与地层中含钙、炭质成分、包裹体气相成分中含有C2H6和金矿石中Pt含量高达0.4×10-6相吻合。由于SO42-的含量反映了介质中与金迁移有密切关系的HS-的数量,本区成矿流体中SO42-的高含量,体现了金主要是以金硫络和物的形式迁移。围岩为富含有机生物的沉积碎屑岩建造,包裹体CO2、CH4气体中的碳也多为有机碳,或以有机碳为主的混合碳(王莉娟等,2008),很好的解释了大场金矿田中包裹体气相成分CO2、CH4高的原因,恰好反映了围岩沉积地层生物成因有机碳参与了该类型矿床金的搬运与卸载成矿,草莓状黄铁矿可以佐证(赵财胜等,2009)。

大场金矿田由于巴颜喀拉发生走滑型褶皱造山,产生了强烈的构造变形和变质作用,导致巴颜喀拉三叠系复理石沉积建造的改造脱水和变质脱水(陈衍景和富士谷,1992),为成矿系统发育提供流体;巴颜喀拉群富含Au-Sb-As-Hg等元素,且向成矿系统提供成矿物质;同时形成的甘德-玛多深大断裂和一系列韧性剪切带,为成矿流体提供通道;金主要是以金硫络和物的形式迁移,围岩沉积地层生物成因有机碳参与金的搬运;随后, 构造体制由挤压环境向伸展环境转变,地幔上隆、岩石圈减薄,为幔源岩浆活动参与成矿提供了保障,应力场的转变促使流体介质条件发生强烈变化,形成了一个新的岩浆-流体-成矿系统(胡芳芳等,2008),引发流体沸腾、成矿物质沉淀以及断裂构造的愈合和破裂,由此爆发短时限、高强度、大规模的金成矿作用。此即大场金矿田的成矿构造背景和机制。

6.3 矿床成因类型

造山型金矿自提出以来,在国内外掀起了研究和讨论的热潮(Radtke et al., 1970, 1980; Boyle, 1984; Bagby and Berger, 1985; Bache, 1987; Li and Peters, 1998; Kerrich et al., 2000; Hofstra and Cline, 2000; Goldfarb et al., 2001; Muntean, 2003; Groves et al., 2003; 陈衍景和富士谷, 1992; 陈衍景等, 1992, 2004a; 陈衍景, 2006刘东升等,1994毛景文,2001)。大家普遍接受造山型的概念是:矿床主要产于造山带(含俯冲型和碰撞型)的断裂构造中,成矿流体具有富CO2、低盐度的特点,成矿作用发生在造山峰期变质之后,通常盐度低于6%NaCleqv,(CO2+CH4)含量为5%~30%mol,δ18OH2O值为8.32‰~8.70‰,其实质是变质热液矿床(Groves et al., 1998; Kerrich et al., 2000; Wang et al., 2008; 毛景文,2001; 陈衍景,2006陈衍景等,2007);而卡林型的概念是:产于含碳酸盐地层的沉积岩系的中低温浅层断控系统的微细粒浸染状金矿床,且地球化学组合为Au-Hg-Sb-As-W±U,其实质是构造驱动或岩浆驱动的改造热液主导了成矿作用(毛景文,2001陈衍景等, 2004a, 2007)。虽然两大类金矿的成矿系统有所不同,但时空分布和成因有着紧密联系(Wang et al., 2010a, b; 毛景文,2001)。

大场金矿田作为巴颜喀拉成矿带储量最大的金矿田,其成因类型前人提出了造山型和卡林型2种观点。其中甘肃阳山金矿(李晶等,2007)和陕西金龙山金矿(张静等,2002)也存在类似的争议观点,当然也是揭示碰撞造山带地区卡林型金矿流体成矿规律的理想研究对象。为较好探讨其成因类型,表 6综合对比了其与造山型和卡林型金矿的地质和成矿流体特征。显示,大场金矿田的地质、构造、地球化学特征复杂,部分特征与造山型金矿一致,部分与卡林型金矿一致,部分特征兼与造山型和卡林型两类矿床一致。总体而言,矿床地质特征与卡林型金矿一致,突出地表现为赋矿地体特征、矿石矿物组合、成矿元素组合、赋矿围岩和矿体地质等方面;而成矿流体和产出构造背景、赋矿构造等方面兼有造山型和卡林型金矿的特征。

表 6 大场金矿田与造山型和卡林型金矿的地质和成矿流体特征对比 Table 6 The geological and ore-fluid feature of the Guoluolongwa deposit and their comparison with the orogenic-type and Carlin-types gold deposits

虽然大场金矿田属于典型的同碰撞造山期形成的超大型矿田,前人曾认为矿床成因为造山型。但是,本文的研究结果并不支持上述观点,具体解释如下:

(1)大场金矿田是由应力场转变驱动的改造热液(封存于沉积的盆地流体和大气降水的再活化)主导了成矿作用,符合卡林-类卡林型矿床成矿作用的实质,虽然少量富/含CO2包裹体被解释为类卡林或造山型或卡林与造山型之间的过渡型(陈衍景等,2007)。

(2)大场金矿田位于川陕甘“金三角”卡林-类卡林型成矿省,赋矿围岩为三叠系富Au-Sb-As-Hg的复理石沉积建造,属于中低温、低盐度、中浅成热液矿床,成矿流体主要以建造水为主,有机碳参与成矿,与内华达卡林-类卡林型金矿一致。

(3)卡林型金矿床最显著的特点之一,就是金不可见或其颗粒极细(纳米级)(Arehart, 1996; Hofstra and Cline, 2000张湖和李统锦,2004)。至于,大场金矿田局部出现明金,王奎仁等(1992a, b)和Zhou and Wang, (2003)对我国几个典型卡林型金矿的金赋存状态进行研究时,认为金主要以微细(<1μm)自然金颗粒的形式赋存于黄铁矿、毒砂等矿物的内部,少量(7%)次显微可见然金颗粒(1~2μm)见于这些矿物的表面,被解释为由硫化物内部更微小的金颗粒归并聚集的结果(刘家军等,2007)。

鉴于大场金矿田成矿地质背景、流体特征及演化和成矿的构造背景和机制,成矿发生在前人重视不够的碰撞造山作用的挤压向伸展转变期(陈衍景等,2004a杨荣生等,2006),构造动力体制转换叠合无论从空间上还是时间上是一个普遍发生的地质现象,在控制成矿过程的多种参数中,它可能起着根本的作用(Deng et al., 2004Mo et al., 2007, 2008; 翟裕生和吕古贤,2002邓军等2010a, b, 2011, 2012杨立强等,2010),且矿床规模较大,在巴颜喀拉成矿带甚至松潘甘孜造山带具有较广泛的代表性,作者认为属广义的类卡林型金矿。

7 结论

大场金矿田流体包裹体地球化学和H-O同位素特征表明,大场金矿田成矿流体属Ca2++Na++SO42-型,中低温、低盐度、中浅成;以建造水为主,也有岩浆流体的加入;成矿物质主要来源于赋矿围岩;金可能与以金硫络合物形式迁移搬运,有机碳参与了金的搬运与卸载成矿;成矿应力场转变导致的流体减压沸腾作用促使流体介质条件发生强烈变化,可能是大场金矿田金沉淀成矿的主要原因。

鉴于大场金矿田成矿地质背景、流体特征及演化和成矿的构造背景和机制,视为广义的同碰撞造山期形成的类卡林型金矿。

致谢 野外工作中得到青海地调院人员的大力支持和协助;郭晓东高级工程师,陈永福博士、郭春影博士和李龚健博士也提出了宝贵的建议;实验室工作得到诸惠燕老师、杨丹老师、万德芳老师和张增杰老师的帮助;一并谨致谢忱。
参考文献
[] Arehart GB. 1996. Characteristics and origin of sediment-hosted disseminated gold deposits: A review. Ore Geology Reviews, 11(6): 383–403. DOI:10.1016/S0169-1368(96)00010-8
[] Arnaud NM, Brunel J, Malaville US, Chen W and Tapponnier P. 1995. Age and regime of deformation on the eastern Kunlun fault. Symposium on Uplift, Deformation and Deep Structure of Northern Tibet, 1
[] Bache JJ. 1987. World Gold Deposits: A Geological Classification. London: North Qxford Academic, 1-178
[] Bagby WC, Berger BR. 1985. Geologic characteristics of sediment-hosted, disseminated precious-metal deposits of the western United States. Review in Economic Geology, 2: 169–202.
[] Bakker RJ. 1999. Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O-CO2-CH4-N2-NaCl system. Chemical Geology, 154: 225–236. DOI:10.1016/S0009-2541(98)00133-8
[] Bao CY, Xu GW, Li YC, Gao YW. 2003. Analysis of genetic type and metallogenic potential of gold deposit in Dachang area. Management and Plan for Territory of Qinghai Province(3): 17–22.
[] Benning LG, Seward TM. 1996. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150 to 500℃ and 500 to 1500bars. Geochimica et Cosmochimica Acta, 60(11): 1849–1871. DOI:10.1016/0016-7037(96)00061-0
[] Boyle RW. 1984. Geochemistry of Au and Gold Deposits. Beijing: Geological Publishing House: 1-785.
[] Brown PE, Hagemann SG. 1995. MacFlinCor and its application to fluids in Archean lode-gold deposits. Geochimica et Cosmochimica Acta, 59(19): 3943–3952. DOI:10.1016/0016-7037(95)00254-W
[] Chen BJ, Wen ZQ, Huo Y, Cao SY, Song FZ, Zhou Y. 2010. Study on fluid inclusion of the Shuiyindong gold deposit, southwestern Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 45–51.
[] Chen L. 2006. Characteristics of ore-forming fluid and ore genesis of Dahu dold deposit, in Xiaoqinling aold area. : 48-54.
[] Chen SJ, Li RS, Ji WH, Zhao ZM, Li GD, Rong L, Dai ZG, Zhu YT. 2011. Lithostratigraphy character and tectonic-evolvement of Permian-Triassic in the Bayankala tectonic belt. : 393-408.
[] Chen W, Aranud N. 1997. Isotope geochronology study for "POG Type" granite in Bayan Har Terrain. Acta Geoscientia Sinica, 18(3): 38–43.
[] Chen YJ, Fu SG. 1992. Gold Mineralization in West Henan. Beijing: Seismological Press: 1-224.
[] Chen YJ, Zhang J, Zhang FX, Pirajno F, Li C. 2004a. Carlin and Carlin-like gold deposits in western Qinling Mountains and their metallogenic time, tectonic setting and model. Geological Review, 50(2): 134–152.
[] Chen YJ, Li J, Pirajno F, Lin ZJ, Wang HH. 2004b. Hydrothermal metallogeny of the shanggong gold deposit, East Qinling: Studies on ore geology and fluid inclusion geochemistry. Journal of Mineralogy and Petrology, 24(3): 1–12.
[] Chen YJ. 2006. Orogenic-type deposits and their metallogenic model and exploration potential. Geology in China, 33(6): 1181–1195.
[] Chen YJ, Ni P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang L. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits, 23(9): 2085–2108.
[] Clayton RN, O'Neil JR, Mayeda TK. 1972. Oxygen isotope exchange between quartz and water, 77(17): 3057–3067.
[] Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusion and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435–1444. DOI:10.2113/gsecongeo.74.6.1435
[] Deng J, Lv GX, Yang LQ, Guo T, Fang Y, Shu B. 1998. The transformation of tectonic stress field and interfacial metallogensis, 19(3): 244–250.
[] Deng J, Yang LQ, Sun ZS, Peng RM, Chen XM, Du ZT. 2000. Ore-forming dynamics of tectonic regime transformation and multi-layer fluid circulation. Earth Science, 25(4): 397–403.
[] Deng J, Wang QF, Wei YG, Wang JP, Sun ZS, Yang LQ. 2004. Metallogenic effect of transition of tectonic dynamic system. Journal of China University of Geosciences, 15(1): 23–28.
[] Deng J, H ou, Z Q, Mao XX, Yang LQ, Wang QF, Wang CM. 2010a. Superimposed orogenesis and metallogenesis in Sanjiang Tethys, 29(1): 37–42.
[] Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ, Wang CM. 2010b. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China, 26(6): 1633–1645.
[] Deng J, Wang QF, Xiao CH, Yang LQ, Liu H, Gong QJ, Zhang J. 2011. Tectonic-magmatic-metallogenic system, Tongling ore cluster region, Anhui Province, China. International Geology Review, 53(5-6): 449–476. DOI:10.1080/00206814.2010.501538
[] Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501–2509.
[] Deng J, Wang CM, Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349–1361.
[] Ding QF, Wang G, Sun FY, Zang BL, Jin SK. 2010. Ore-forming fluid evolution of Dachang gold deposit in Qumalai County, Qinghai Province: Evidence from fluid inclusion study and arsenopyrite geothermometer, 26(12): 3709–3719.
[] Emsbo F, Hutchinson RW, Hofstra AH, Vollk JA, Bettles KH, Baschuk GJ, Johnson CA. 1999. Syngenetic Au on the Carlin trend: Implications for Carlin-type deposits. Geology, 27(1): 59–62. DOI:10.1130/0091-7613(1999)027<0059:SAOTCT>2.3.CO;2
[] Emsbo P, Hofstra AH, Lauha EA, Gtiffin GL, Hutchinson RW. 2003. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin trend, Nevada. Economic Geology, 98(6): 1069–1105. DOI:10.2113/gsecongeo.98.6.1069
[] Fan HR, Zhai MG, Xie YH, Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38(6): 739–750. DOI:10.1007/s00126-003-0368-x
[] Fan SL, He MC, Yao SZ, Ding ZJ. 2012. Fluid inclusions and stable isotope geochemistry of Dongchuang gold deposit in western Henan: Implications for genesis, 31(1): 27–40.
[] Feng CY, Zhang DQ, Li DX, Yu HQ. 2003. Sulfur and lead isotope geochemistry of the orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geoscientia Sinica, 24(6): 593–598.
[] Feng CY, Zhang DQ, Wang FC, She HQ, Li DX, Wang Y. 2004a. Multiple orogenic processes and geological characteristics of the major orogenic gold deposits in East Kunlun area, Qinghai Province. Acta Geosicientia Sinica, 25(4): 415–422.
[] Feng CY, Zhang DQ, Wang FC, Li DX, Yu HQ. 2004b. Geochemical characteristics of ore-forming fluids from the orogenic Au (and Sb) deposits in the eastern Kunlun area, Qinghai province. Acta Petrologica Sinica, 20(4): 949–960.
[] Feng JZ, Wang D, Wang XM, Shao SC. 2004. Stable isotope geochemistry of three typical gold deposits in the West Qinling, 31(1): 78–84.
[] Fu SH, Wang P. 2000. Study of fluid inclusions and the constraint for ore-forming conditions of gold deposit at Manaoke, northwestern Sichuan province. Acta Petrologica Sinica, 16(4): 569–574.
[] Gammons CH, Williams-Jones AE, Yu Y. 1994. New data on the stability of gold (I) chloride composes at 300℃. Mineralogieal Magazine, 58A: 309–310. DOI:10.1180/minmag
[] Gao WL, Zhan GN. 2006. The research on fluid inclusion in Zhangshiba lead-zinc ore, North Jiangxi Province. Journal of East China Institute of Technology(Suppl.): 132–138.
[] Gatallier JP, Disnar JR. 1989. Organic matter and gold-ore association in a hydrothermal deposit, France, 4(2): 143–149.
[] Ge LS, Deng J, Li HG, Yang LQ, Zhang WZ, Yuan SS, Xing JB. 2007. Superposed mineralization in Daping Au-Cu-Ag-Pb deposit, Yunnan Province: Evidences from geology, fluid inclusions and stable isotopes. Acta Petrologica Sinica, 23(9): 2131–2143.
[] Goldfarb RJ, Groves DI, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis, 18(1-2): 1–75.
[] Groves DL, Goldfarb RJ, Gebre-Mriam M, Hagemann SG, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5): 7–27. DOI:10.1016/S0169-1368(97)00012-7
[] Groves DI, Goldfarb RJ, Robert F, Hart CJR. 2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and explotation significance. Economic Geology, 98(1): 1–29.
[] Guo CY, Yang LQ, Zhang J, Gao BF, Wang QF, Yu HJ. 2008. Ore fluid chemical evolution and stable isotope composition of Damoqujia gold deposit in Shandong Province, 28(3): 51–56.
[] Guo CY. 2009. Tectonic setting, magmatic sequence and fluid of gold metallogenic system of the Sanshandao-Cangshang Fault in Jiaodong, China. Ph. D. Dissertation. Beijing: China University of Geosciences, 90-104 (in Chinese with English sumary)
[] Hall DL, Sterner SM, Bodnar RJ. 1998. Freezing point depression of NaCl-KCl-H2O solution. Economic Geology, 83(1): 197–202.
[] Han X, He MY, Zhang H, Yang Z, Dai L, Xie X. 2011. Study on the sources of ore-forming substances of Carlin-type gold deposits in Southwestern Guizhou. Nonferrous Metals(4): 10–14.
[] Han YS, Li JD, Wang W, Zhao LS. 2006. New cognizance of Dachang auriferous mineralization style. Plateau Earthquake Research, 18(3): 54–57, 49.
[] Hayashi KI, Ohmoto H. 1991. Solubility of gold in NaCI-and H2S-bearing aqueous solutions at 250~350℃. Geochimica et Cosmochimica Acta, 55(8): 2111–2126. DOI:10.1016/0016-7037(91)90091-I
[] He ZL. 1982. Inclusion Mineralogy. Beijing: Geology Publishing House: 1-134.
[] Hofstra AH, Cline JS. 2000. Characteristics and models for Carlin-type gold deposits. Reviews in Economic Geology, 13: 163–220.
[] Hou ML, Jiang SY, Shen K, Lian JG, Liu QC, Xiao FL. 2007. Fluid inclusion and H-O isotope study of gold mineralization in the Penglai gold field, eastern Shandong. Acta Petrologica Sinica, 23(9): 2241–2256.
[] Hu FF, Fan HR, Shen K, Zhai MG, Jin CW, Chen XS. 2005. Nature and evolution of ore-forming fluids in the Rushan lode gold deposit, Jiaodong Peninsula of eastern China. Acta Petrologica Sinica, 21(5): 1329–1338.
[] Hu FF, Fan HR, Yu H, Liu ZH, Song JW, Jin CW. 2008. Fluid inclusions in the Sanjia lode gold deposit, Jiaodong Peninsula of eastern China, 24(9): 2037–2044.
[] Hu JC, Li JH, Wang SL, Lu WQ. 2010. Geological characteristics and genesis of Dachang gold deposit in Malai County of Qinghai Province. Qinghai Science and Technology, 17(5): 30–34.
[] Hu JM, Meng QR, Shi YR, Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica, 21(3): 867–880.
[] Hu ZG, Liu JQ, Qian ZZ, Li HM, Sun JM, Su CQ. 1998. Regional minerogenic regularities of east Kunlun-North Bayan Har Mountains and prospecting thought. Qinghai Geology(2): 8–13.
[] Jian W. 2010. Geology, Fluid inclusion, stable isotope and molybdenite Re-Os age constrains on the genesis of the Dahu Au-Mo deposit, Xiaoqinling region, China. Master Degree Thesis. Beijing: China University of Geosciences, 47-49 (in Chinese with English sumary)
[] Jiang CF, Yang JS, Feng BC, et al. 1992. Opening Closing Tectonics of Kunlun Mountains. Beijinag: Geological Publishing House: 1-224.
[] Jiang YH, Chen HN, Wu QH, Chen SZ. 1994. Geological characteristics, genesis and further prospecting direction of Ag-Pb-Zn mineralization of Qinxi-Guansi, Zhouning, Fujian. Geology and Prospecting, 30(4): 21–25.
[] Kerrich R, Goldfarb R, Groves D, Garwin S, Jia YF. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China (Series D)(Suppl.): 1–68.
[] Kettler RM, Waldo GS, Penner-Hah JE, et al. 1990. Sulfidation of organic matter associated with gold mineralization, Pueblo viejo, Dominican Republic. Applied Geochemistry, 5(1-2): 237–248. DOI:10.1016/0883-2927(90)90051-6
[] Li HB, Yang JS, Xu ZQ, Wu CL, Wan YS, Shi YD, Liou JG, Tapponnier P, Ireland TR. 2002. Geological and chronological evidence of Indo-Chinese strike-slip movement in the Altyn Tagh fault zone. Chinese Science Bulletin, 47(1): 28–33.
[] Li J, Chen YJ, Li QZ, Lei Y, Yang RS, Mao SD. 2007. Fluid inclusion geochemistry and genetic type of the Yangshan gold deposit, Gansu, China. Acta Petrologica Sinica, 23(9): 2144–2154.
[] Li J, Chen YJ, Li J, Mao SD, Qin Y, Guo JH, Nan ZL, Yang RS. 2008. The C-H-O isotope systematics of the Yangshan gold deposit, Gansu and its implication for the ore-fluid origin.. Acta Petrologica Sinica, 24(4): 817–826.
[] Li JL, Qi F, Xu QF. 1996. The role of carbonaceous and organic materials in the formation of Carlin type disseminated gold deposits. Mineral Deposits, 15(3): 193–206.
[] Li SH, Zhang J, Deng J, Wang H, Liu JT, Zhao K. 2011. The characteristics of ore-forming fluid and genetic type of the Chang'an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrologica Sinica, 27(12): 3777–3786.
[] Li SR, Ji WH, Yang YC, et al. 2008. The Geology in Kunlun and Its Adjacent Region. Beijing: Geological Publishing House.
[] Li XJ, Liu W. 2002. Fluid inclusion and stable isotope constraints on the genesis of the Mazhuangshan gold deposit, eastern Tianshan Mountains of China. Acta Petrologica Sinica, 18(4): 551–558.
[] Li YS, Zhao CS, Lv ZC, Yan GS, Zhen SM. 2011. Characteristics of fluid inclusions in Jiama copper-pollymetallic ore deposit, Tibet and its geological significance. : 123-136.
[] Li ZP and Peters SG. 1998. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin-type) gold deposits in the People's Republic of China and in Nevada, USA. U. S. Geologica Survey Open-file Report 98-466, 1-160
[] Liang YH, Sun XM, Shi GY, Hu BM, Zhou F, Wei HX, Mo RW. 2011. Ore-forming fluid geochemistry and genesis of Laowangzhai large scale orogenic gold deposit in Ailaoshan gold belt, Yunnan Province, China. Acta Petrologica Sinica, 27(9): 2533–2540.
[] Liu DS, Tan YJ, Wang JY. 1994. Carlin-type Gold Deposits in China. Nanjing: Nanjing University Press: 1-414.
[] Liu JJ, Yang D, Liu JM, Liu ZJ, Yang Y, Mao GJ, Zheng MH. 2007. Mineralogical characteristics of native arsenic and tracing the metallogenic physicochemical condition in Carlin-type gold deposits. Earth Science Frontiers, 14(5): 158–166.
[] Liu W, Li XJ, Deng J. 2003. Sources of ore-forming fluids and metallic materials in the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Science in China (Series D)(Suppl.): 135–153.
[] Liu XF, Wang QF, Yang LQ, Gong QJ, Zhang J, Gao BF. 2008. Geological and metallogenic features of Carlin-type gold deposits in Qinling and Dianqiangui areas, China. Geological Science and Technology Information, 27(3): 51–60.
[] Lu HZ, Li BL, Shen K, Zhao XH, Yu TJ, Wei JX. 1990. Geochemistry of Fluid Inclusion. Beijing: Geological Publishing House: 153-154.
[] Lu HZ, Guo DJ. 2002. Progress and trends of researches on fluid inclusions. Geological Review, 46(4): 385–392.
[] Lu HZ, Fan HR, Ni P. 2004. Fluid Inclusion. Bejing: Science Press: 406-419.
[] Lu LN, Fan HR, Hu FF, Yang KF, Zheng XL, Zhao H. 2011. Ore-forming fluids and genesis of Xincheng altered rock gold deposit in northwestern Jiaodong Peninsula. Mineral Deposits, 30(3): 522–532.
[] MacDonald AJ, Ohle EL Jr. 1984. The Au-CO2 association, evolving hydrothermal fluids and precipitation mechanisn. Geological Socity America Abstracts with Programs, 16: 581.
[] Mao JW. 2001. Geology, distribution and classification of gold deposits in the Western Qinling Belt, Central China. Bulletin of Mineralogy Petrology and Geochemistry, 20(1): 11–13.
[] Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225–242. DOI:10.1016/j.lithos.2006.10.005
[] Mo XX, Niu YL, Dong GC, Zhao ZD, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250: 49–67. DOI:10.1016/j.chemgeo.2008.02.003
[] Muntean J. 2003. Models for Carlin-type gold deposit. Society of Economic Geologists Short Course on Gold Deposits, China University of Geosciences. October 25-26, 1-118(Confidential Document)
[] Ouyang YF, Liu JS, Zhou YG, Liu WG, Gao QZ. 2011. Discussion on some problems in study of Carlin-type gold deposits. Contributions to Geology and Mineral Resources Research, 26(2): 151–156.
[] Phillips GN, Evans KA. 2004. Role of CO2 in the formation of gold deposits. Nature, 429(6994): 860–863. DOI:10.1038/nature02644
[] Radtke AS, Scheiner BJ. 1970. Studies of hydrothermal gold deposition-(pt. )1, Carlin gold deposit, Nevada, the role of carbonaceous materials in gold deposition. Economic Geology, 65(2): 87–102.
[] Radtke AS, Rye RO, Dickson FW. 1980. Geology and stable isotope studies of the Carlin gold deposit, Nevada. Economic Geology, 75(5): 644–672.
[] Ramboz C, Pichavant M, Weisbrod A. 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: Ⅱ.Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1-2): 29–48. DOI:10.1016/0009-2541(82)90065-1
[] Ren JS, Xiao LW. 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping. Regional Geology of China, 23(1): 1–11.
[] Robert F and Kelly WC. 1984. Gold mineralizing fluid at the Sigmamine Abitibi region Quebec. Geol. Soc., Am., Abstracts with Programs, 16: 636
[] Roedder E. 1984. Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy, 12: 644.
[] Seward TM. 1991. The hydrothermal geoehemistry of gold. In: Foster RP (ed.). Gold Metallogeny and Exploration. London: Blaekie, 37-62
[] Sha SQ, Wang ZX, Guo TZ, Xiao WF, Yang XD. 2007. Zircon SHRIMP dating and geochemical characteristics of granites in the eastern part of the Bayan Har Mountains. Acta Geoscientica Sinica, 28(3): 261–269.
[] Shen X. 2012. Study on geological characteristics and genesis of Asiha gold deposit, East Kunlun, Qinghai Province. Master Degree Thesis. Changchun: Jilin University, 54-56 (in Chinese with English sumary)
[] Shepherd TJ, Rankin AH, Alderton DHM. 1985. A Practical Guide to Fluid Inclusion Studies. London: Blackie & Son Ltd.: 1-239.
[] Sheppard SMF. 1986. Characterization and isotopic variations in natural water. Reviews in Mineralogy, 16(1): 165–183.
[] Shi GY, Sun XM, Zhang Y, Xiong DX, Zhai W, Pan WJ, Hu BM. 2010. H-O-C-S isotopic compositions of ore-forming fluids in Daping gold deposit in Ailaoshan gold belt, Yunan Province, China. Acta Petrologica Sinica, 26(6): 1751–1759.
[] Sibson RH, Robert F, Poulsen KH. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6): 551–555. DOI:10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
[] Sibson RH. 1994. Crustal stress, faulting and fluid flow. In: Parnell J (ed.). Geofluids Origin, Migration and Evolution of Fluid in Sedimentary Basins. Geological Society, London, Special Publication, 78: 69-84
[] Song GX, Qin KZ, Li GM. 2010. Study on the fluid inclusions and S-H-O isotopic compositions of skarn-porphyry-type W-Mo deposits in Chizhou area in the Middle-Lower Yangtze Valley. Acta Petrologica Sinica, 26(9): 2768–2782.
[] Strenger DP, Kesler SE, Peltonen DR, Tapper CJ. 1998. Deposition of gold in Carlin-type deposits: The role of sulfidation and decarbonation at Twin Greeks, Nevada. Economic Geology, 93(2): 201–215. DOI:10.2113/gsecongeo.93.2.201
[] Su BX, Chen YL, Liu F, Wang QY, Zhang HF, Lan ZW. 2006. Geochemical characteristics and significance of Triassic sandstones of Songpan-Ganze block. Acta Petrologica Sinica, 22(4): 961–970.
[] Su WC. 2002. The hydrothermal fluid geochemistry of the Carlin-type gold deposits in the southwestern Yangtze Craton, China. Ph. D. Dissertation. Guiyang: Chinese Academy of Sciences and for the Diploma of the Institute of Geochemistry, 80-84 (in Chinese with English sumary)
[] Sun FY, Jin W, Li BL, Peng XL. 2000. Considerations on the mineralizing depth of hydrothermal lode gold deposit. Journal of Changchun University of Science & Technology, 30(Suppl.): 27–30.
[] Sun XM, Zhang Y, Xiong DX, Sun WD, Shi GY, Zhai W, Wang SW. 2009. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geology Reviews, 36(1-3): 235–249. DOI:10.1016/j.oregeorev.2009.05.002
[] Sun XM, Wei HX, Zhao W, Shi GY, Liang YH, Mo RW, Han MX, Zhang XG. 2010. Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China. Acta Petrologica Sinica, 26(6): 1672–1684.
[] Vapnik Y, Moroz I. 2002. Compositions and formation conditions of fluid inclusions in emerald from the Maria deposit (Mozambique). Mineralogical Magazine, 66(1): 201–203. DOI:10.1180/0026461026610023
[] Wan DF, Fan TY, Tian SH. 2005. The chromium analytical technique for hydrogen isotopes. Acta Geoscientica Sinica, 26(Suppl.): 35–38.
[] Wang CM, Cheng QM, Zhang ST, Deng J, Xie SY. 2008. Magmatic-hydrothermal superlarge metallogenic systems: A case study of the Nannihu ore field. Journal of China University of Geosciences, 19(4): 391–403. DOI:10.1016/S1002-0705(08)60072-2
[] Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF, Sun X. 2010a. Sediment-hosted Pb-Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geologica Sinica, 84(6): 1428–1438. DOI:10.1111/acgs.2010.84.issue-6
[] Wang CM, Deng J, Zhang ST, Yang LQ. 2010b. Metallogenic province and large scale mineralization of volcanogenic massive sulfide deposits in China. Resource Geology, 60(4): 404–413. DOI:10.1111/rge.2010.60.issue-4
[] Wang G. 2012. Study on geological characteristics and genesis of Guoluolongwa gold deposit in Qinghai Province. Master Degree Thesis. Changchun: Jilin University, 47-49 (in Chinese with English summary)
[] Wang KR, Zhou YQ, Li FQ, Sun LG, Wang JX, Ren CG, Zhou SJ, Tang JZ, Yang FJ. 1992a. Researching the subsieve gold occurrence by using Proton microprobe and Scanning electron microscope of Jinya gold deposit in Guangxi. Chinese Science Bulletin, 9: 832–835.
[] Wang KR, Zhou YQ, Li FQ, Lu J, Hong JA. 1992b. First discovery platinum-bearing mercury-gold, mercury-gold and platinum-gold in Jinya subsieve gold deposit. Chinese Science Bulletin(19): 1788–1790.
[] Wang LJ, Wang JB, Wang YW, Zhu HP. 2008. The characteristics of ore-fluid of gold deposits in Jungger-East Tianshan Mountains area, Xingjiang. Acta Petrologica Sinica, 24(4): 753–761.
[] Wang QY, Hu RZ, Peng JT, Bi XW, Wu LY, Liu H, Sun BX. 2007. Characteristics and significance of the fluid inclusions from Yaogangxian tungsten deposit in south of Hunan. Acta Petrologica Sinica, 23(9): 2263–2273.
[] Wang W, Li FL, Bao ZY. 2007. U-Pb constraints on provenance and evolution of Middle to Late Triassic sediment in Songpan-Garze basin. Geological Science and Technology Information, 26(5): 35–44.
[] Wang YT, Mao JW, Ye AW, Ye HS, Li YF, Lu XX, Li YG. 2005. Isotope geochemical characteristics of auriferous quartz veins from medium and great depths of Xiaoqinling area, central China and their significance. Mineral Deposits, 24(3): 270–279.
[] White ED. 1974. Diverse origins of hydrothermal ore fluids. Economic Geology, 69(6): 954–972. DOI:10.2113/gsecongeo.69.6.954
[] Wilkinson JJ. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229–272. DOI:10.1016/S0024-4937(00)00047-5
[] Xin HB. 2005. The contrast of geological geature and genesis between Xiejiagou gold deposit and Jiaojia gold deposit in Jiaodong area. Ph. D. Dissertation. Beijing: China University of Geosciences, 92-96 (in Chinese with English summary)
[] Xu JH, Xie YL, Shen SL. 1997. A comparison of ore-forming fluids between gold deposits in Xiaoqinling Mountains and those in Jiaodong Peninsula. Mineral Deposits, 16(2): 56–67.
[] Xu WY, Zhang DQ, Yan SH, Li DX, Feng CY, She HQ, Dong YQ. 2001. Investigation evolvement and foreground expectation of the East Kunlun area mineral resources. Geology in China, 28(1): 25–29.
[] Xu ZQ, Ynag JS, Li HB, Zhang JX, Wu CL. 2007a. Orogenic Plateau: Terrain Patching, Collisional Orogeny and Uplift Mechanism of Qinghai-Tibet Plateau. Beijing: Geology Publishing House: 51-86.
[] Xu ZQ, Li HB, Tang ZM, Qi XX, Li HQ, Cai ZH. 2007b. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults. Acta Petrologica Sinica, 27(11): 3157–3170.
[] Xu ZQ, Yang JS, Li HQ, Wang RR, Cai ZH. 2012. Indosinian collision-orogenic system of Chinese continent and its orogenic mechanism. Acta Petrologica Sinica, 28(6): 1697–1709.
[] Xue ZY. 2011. Characteristics of ore-forming fluids of Xincheng gold deposit, Eastern Jiaodong Peninsula. Master Degree Thesis. Beijing: China University of Geosciences, 48-51 (in Chinese with English sumary)
[] Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J, Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723–1739.
[] Yang RS, Chen YJ, Zhang FX, Li ZH, Mao SJ, Liu HJ, Zhao CH. 2006. Chemical Th-U-Pb ages of monazite from the Yangshan gold deposit, Gansu Province and their geologic and metallogenic implications. Acta Petrologica Sinica, 22(10): 2603–2610.
[] Zhai YS, Lv GX. 2002. Transition of tectonic and dynamic regime and mineralization. Acta Geoscientia Sinica, 23(2): 97–102.
[] Zhang DQ, Feng CY, Li DX, Xu WY, Yan SH, She HQ, Dong YS, Cui YH. 2001. Orogenic gold deposits in the North Qaidam and East Kunlun orogen, West China. Mineral Deposits, 20(2): 137–146.
[] Zhang DQ, Dang XY, She HQ, Li DX, Feng CY, Li JW. 2005. Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance. Mineral Deposits, 24(2): 87–98.
[] Zhang DQ, Zhang H, Feng CY, She HQ, Li JW, Li DX. 2007. Fluid inclusions in orogenic gold deposits in the northern Qaidam margin-East Kunlun region. Geology in China, 34(5): 843–854.
[] Zhang FX, Ji JL, Long LL, Fan CH. 2001. Comparative features of Carlin-Para-Carlin type gold deposits in the South Qinling and gold deposits in other areas. Geological Review, 47(5): 492–499.
[] Zhang H, Li TJ. 2004. A new subtype of sediment-hosted micro-disseminated gold deposits-silicalite-type gold deposit. Earth Science Frontiers, 11(2): 361–372.
[] Zhang J, Chen YJ, Zhang FX, Li C. 2002. Geochemical study of ore fluid in Jinlongshan Carlin-type gold ore belt in southwestern Shaanxi Province. Mineral Deposits, 21(3): 283–291.
[] Zhang KH. 2010. Discussion the metallogenic rule of Zhajiatongna in Qinghai Province. West-China Exporation Engineering, 22(6): 142–145.
[] Zhang LC, Shen YC, Li HM, Zeng QD, Li GM, Liu TB. 2002. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrologica Since, 18(4): 559–565.
[] Zhang Y. 2011. Metallization of Ajialongwa Carlin-like gold deposit in Ganzi-Litang Suture Zone, West Sichuan Province. Master Degree Thesis. Beijing: China University of Geosciences, 41-46 (in Chinese with English summary)
[] Zhao CS, Sun FY, Mao JW, Ding QF, Zhao JW, Li SJ. 2005. Fluid inclusion characteristics of Dachang gold deposit, Qinghai Province and their geological significance. Mineral Deopsits, 24(3): 305–316.
[] Zhao CS, Zhao JW, Sun FY, Li XQ. 2009. A discussion on geological characteristics and genesis of Dachang gold deposit in Qinghai Province. Mineral Deposits, 28(3): 345–356.
[] Zhao HX. 2011. Geochemistry of ore-forming processes of the Xiaoqinling gold district, Henan Province. Ph. D. Dissertation. Nanjing: Nanjing University, 74-82 (in Chinese with English sumary)
[] Zhao JW, Sun FY, Li SJ, He AQ, Fan GZ, Ma XL. 2007. Geological characteristics of Au (Sb) deposits in turbidite sequences in North Bayan Har in Qinghai Province: Examples from gold deposits in Dachang-Jiageilongwa area. Gold, 28(9): 8–13.
[] Zhou YQ, Wang KR. 2003. Gold in the Jinya Carlin-type deposit: Characterization and implications. Journal of Minerals & Materials Characterization & Engineering, 2(2): 83–100.
[] Zhu LM, Zhang GW, Li B, Guo B, Kang L, Lv SL. 2009. Geology, isotope geochemistry and ore genesis of the Maanqiao gold deposit, Shaanxi Province. Acta Petrologica Sinica, 25(2): 431–443.
[] Zotov AV, Baranova NN, Dar'Yina TG, Bannykh LM. 1991. The solubility of gold in aqueous chloride fluids at 350~500℃ and 500~1500atm: Thermodynamic parameters of AuCl-(sol) up to 750℃ and 500atm. Geoehemieal International, 28: 63–71.
[] 包存义, 许国武, 李玉春, 高永旺. 2003. 大场地区金矿成因类型及成矿潜力分析. 青海国土经略(3): 17–22.
[] 陈本金, 温春齐, 霍艳, 曹盛远, 宋发治, 周玉. 2010. 黔西南水银洞金矿床流体包裹体研究. 矿物岩石地球化学通报, 29(1): 45–51.
[] 陈莉. 2006.小秦岭大湖金矿床成矿流体特征及矿床成因探讨.硕士学位论文.北京:中国地质大学, 48-54
[] 陈守建, 李荣社, 计文化, 赵振明, 李国栋, 荣丽, 戴传固, 朱迎堂. 2011. 巴颜喀拉构造带二叠-三叠纪岩相特征及构造演化. 地球科学, 36(3): 393–408.
[] 陈文, ArnaudN. 1997. 巴颜喀拉地体POG型花岗岩同位素年代学研究. 地球学报, 18(3): 38–43.
[] 陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社: 1-224.
[] 陈衍景, 张静, 张复新, PirajnoF, 李超. 2004a. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式. 地质论评, 50(2): 134–152.
[] 陈衍景, 李晶, PirajnoF, 林治家, 王海华. 2004b. 东秦岭上宫金矿流体成矿作用:矿床地质和包裹体研究. 矿物岩石, 24(3): 1–12.
[] 陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181–1195.
[] 陈衍景, 倪培, 范宏瑞, PirajnoF, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085–2108.
[] 邓军, 吕古贤, 杨立强, 郭涛, 方云, 舒斌. 1998. 构造应力场转换与界面成矿. 地球学报, 19(3): 244–250.
[] 邓军, 杨立强, 孙忠实, 彭润民, 陈学明, 杜子图. 2000. 构造体制转换与流体多层循环成矿动力学. 地球科学, 25(4): 397–403.
[] 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010a. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37–42.
[] 邓军, 杨立强, 葛良胜, 袁士松, 王庆飞, 张静, 龚庆杰, 王长明. 2010b. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报, 26(6): 1633–1645.
[] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501–2509.
[] 邓军, 王长明, 李龚建. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349–1361.
[] 丁清峰, 王冠, 孙丰月, 张本龙, 金圣凯. 2010. 青海省曲麻莱县大场金矿床成矿流体演化:来自流体包裹体研究和毒砂地温计的证据. 岩石学报, 26(12): 3709–3719.
[] 范寿龙, 何谋春, 姚书振, 丁振举. 2012. 豫西东闯金矿床流体包裹体及稳定同位素研究. 矿床地质, 31(1): 27–40.
[] 丰成友, 张德全, 李大新, 佘宏全. 2003. 青海东昆仑造山型金矿硫、铅同位素地球化学. 地球学报, 24(6): 593–598.
[] 丰成友, 张德全, 王富春, 佘宏全, 李大新, 王彦. 2004a. 青海东昆仑复合造山过程及典型造山型金矿地质. 地球学报, 25(4): 415–422.
[] 丰成友, 张德全, 王富春, 李大新, 佘宏全. 2004b. 青海东昆仑造山型金(锑)矿床成矿流体地球化学研究. 岩石学报, 20(4): 949–960.
[] 冯建忠, 汪东, 王学明, 邵世才. 2004. 西秦岭三个典型金矿床稳定同位素地球化学特征. 中国地质, 31(1): 78–84.
[] 付绍洪, 王苹. 2000. 川西北马脑壳金矿床流体包裹体研究及对成矿条件的制约. 岩石学报, 16(4): 569–574.
[] 高文亮, 詹国年. 2006. 赣北张十八铅锌矿流体包裹体研究. 东华理工学院学报(增刊): 132–138.
[] 葛良胜, 邓军, 李汉光, 杨立强, 张文钊, 袁士松, 邢俊兵. 2007. 云南大坪大型金多金属矿床叠加成矿作用:地质、流体包裹体和稳定同位素证据. 岩石学报, 23(9): 2131–2143.
[] 郭春影, 杨立强, 张静, 高帮飞, 王庆飞, 于海军. 2008. 胶东大磨曲家金矿床成矿流体成分及稳定同位素研究. 矿物岩石, 28(3): 51–56.
[] 郭春影. 2009.胶东三山岛-仓上金矿带构造-岩浆-流体金成矿系统.博士学位论文.北京:中国地质大学, 90-104
[] 韩雪, 何明友, 张海, 杨治, 代伦, 写熹. 2011. 黔西南卡林型金矿床成矿物质来源研究. 四川有色金属(4): 10–14.
[] 韩英善, 李俊德, 王文, 赵林山. 2006. 对大场金矿成因的新认识. 高原地震, 18(3): 54–57.
[] 何知礼. 1982. 包裹体矿物学. 北京: 地质出版社: 1-134.
[] 侯明兰, 蒋少涌, 沈昆, 连国建, 刘其臣, 肖风利. 2007. 胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究. 岩石学报, 23(9): 2241–2256.
[] 胡芳芳, 范宏瑞, 沈昆, 翟明国, 金成伟, 陈绪松. 2005. 胶东乳山脉状金矿床成矿流体性质与演化. 岩石学报, 21(5): 1329–1338.
[] 胡芳芳, 范宏瑞, 于虎, 刘振豪, 宋林夫, 金成伟. 2008. 胶东三甲金矿床流体包裹体特征. 岩石学报, 24(9): 2037–2044.
[] 胡继春, 李军红, 王树林, 芦文泉. 2010. 青海曲麻莱县大场金矿床地质特征及成因探讨. 青海科技, 17(5): 30–34.
[] 胡健民, 孟庆任, 石玉若, 渠洪杰. 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 867–880.
[] 胡正国, 刘继庆, 钱壮志, 李厚明, 孙继东, 苏春乾. 1998. 东昆仑-北巴颜喀拉区域成矿规律及找矿工作思考. 青海地质(2): 8–13.
[] 简伟. 2010.河南小秦岭大湖金钼矿床地质特征、成矿流体及矿床成因研究.硕士学位论文.北京:中国地质大学, 47-49
[] 姜春发, 杨经绥, 冯秉承, 等. 1992. 昆仑开合构造. 北京: 地质出版社: 1-224.
[] 姜耀辉, 陈鹤年, 巫全淮, 陈世忠. 1994. 福建周宁芹溪官司银铅锌矿化地质特征、成因及进一步找矿方向. 地质与勘探, 30(4): 21–25.
[] 李海兵, 杨经绥, 许志琴, 吴才来, 万渝生, 史仁灯, LiouJG, TapponnierP, IrelandTR. 2001. 阿尔金断裂带印支期走滑活动的地质及年代学证据. 科学通报, 46(16): 1333–1338.
[] 李晶, 陈衍景, 李强之, 赖勇, 杨荣生, 毛世东. 2007. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型. 岩石学报, 23(9): 2144–2154.
[] 李晶, 陈衍景, 李强之, 毛世东, 秦艳, 郭俊华, 南争路, 杨荣生. 2008. 甘肃阳山金矿碳氢氧同位素与成矿流体来源. 岩石学报, 24(4): 817–826.
[] 李九龄, 元峰, 徐庆生. 1996. 微细浸染型(卡林型)金矿成矿过程中碳和有机质的作用. 矿床地质, 15(3): 193–206.
[] 李荣社, 计文化, 杨永成, 等. 2008. 昆仑山及邻区地质. 北京: 地质出版社.
[] 李士辉, 张静, 邓军, 王欢, 刘江涛, 赵凯. 2011. 哀牢山南段长安金矿床成矿流体特征及成因类型探讨. 岩石学报, 27(12): 3777–3786.
[] 李新俊, 刘伟. 2002. 东天山马庄山金矿床流体包裹体和同位素地球化学研究及其对矿床成因的制约. 岩石学报, 18(4): 551–558.
[] 李永胜, 赵财胜, 吕志成, 严光生, 甄世民. 2011. 西藏甲玛铜多金属矿床流体包裹体特征及地质意义. 吉林大学学报(地球科学版), 41(1): 123–136.
[] 梁业恒, 孙晓明, 石贵勇, 胡北铭, 周峰, 韦慧晓, 莫儒伟. 2011. 云南哀牢山老王寨大型造山型金矿成矿流体地球化学. 岩石学报, 27(9): 2533–2540.
[] 刘东升, 谭运金, 王建业. 1994. 中国的卡林型金矿床. 南京: 南京大学出版社: 1-414.
[] 刘家军, 杨丹, 刘建明, 柳振江, 杨艳, 毛光剑, 郑明华. 2007. 卡林型金矿床中自然砷的特征与成矿物理化学条件示踪. 地学前缘, 14(5): 158–166.
[] 刘学飞, 王庆飞, 杨立强, 龚庆杰, 张静, 高帮飞. 2008. 秦岭与滇黔桂地区卡林型金矿地质与地球化学特征. 地质科技情报, 27(3): 51–60.
[] 卢焕章, 李秉伦, 沈昆, 赵希徽, 喻铁阶, 魏家秀. 1990. 包裹体地球化学. 北京: 地质出版社: 153-154.
[] 卢焕章, 郭迪江. 2002. 流体包裹体研究的进展和方向. 地质论评, 46(4): 385–392.
[] 卢焕章, 范宏瑞, 倪培. 2004. 流体包裹体. 北京: 科学出版社: 406-419.
[] 陆丽娜, 范宏瑞, 胡芳芳, 杨奎锋, 郑小礼, 赵海. 2011. 胶西北新城金矿成矿流体与矿床成因. 矿床地质, 30(3): 522–532.
[] 毛景文. 2001. 西秦岭地区造山型与卡林型金矿床. 矿物岩石地球化学通报, 20(1): 11–13.
[] 欧阳玉飞, 刘继顺, 周余国, 刘卫明, 高启芝. 2011. 卡林型金矿研究的若干问题探讨. 地质找矿论丛, 26(2): 151–156.
[] 任纪舜, 肖黎薇. 2004. 1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1–11.
[] 沙淑清, 王宗秀, 郭通珍, 肖伟峰, 杨欣德. 2007. 巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征. 地球学报, 28(3): 261–269.
[] 沈鑫. 2012.青海东昆仑阿斯哈金矿矿床地质特征及成因研究.硕士学位论文.长春:吉林大学, 54-56
[] 石贵勇, 孙晓明, 张燕, 熊德信, 翟伟, 潘伟坚, 胡北铭. 2010. 云南哀牢山大坪金矿床成矿流体H-O-C-S同位素组成及其成矿意义. 岩石学报, 26(6): 1751–1759.
[] 宋国学, 秦克章, 李光明. 2010. 长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究. 岩石学报, 26(9): 2768–2782.
[] 苏本勋, 陈岳龙, 刘飞, 王巧云, 张宏飞, 兰中伍. 2006. 松潘-甘孜地块三叠系砂岩的地球化学特征及其意义. 岩石学报, 22(4): 961–970.
[] 苏文超. 2002.扬子地块西南缘卡林型金矿床成矿流体地球化学研究.博士学位论文.贵阳:中国科学院地球化学研究所, 80-84
[] 孙丰月, 金巍, 李碧乐, 彭晓蕾. 2000. 关于脉状热液金矿床成矿深度的思考. 长春科技大学学报, 30(增刊): 27–30.
[] 孙晓明, 韦慧晓, 翟伟, 石贵勇, 梁业恒, 莫儒伟, 韩墨香, 张相国. 2010. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制. 岩石学报, 26(6): 1672–1684.
[] 万德芳, 樊天义, 田世洪. 2005. 用金属铬法分析微量水和有机质氢同位素组成. 地球学报, 26(增刊): 35–38.
[] 王冠. 2012.青海果洛龙洼金矿床地质特征及成因探讨.硕士学位论文.长春:吉林大学, 47-49
[] 王奎仁, 周有勤, 李凡庆, 孙立广, 王俊新, 任炽刚, 周世俊, 汤家镛, 杨福家. 1992a. 广西金牙金矿微细粒金赋存状态的质子探针和扫描电镜研究. 科学通报(9): 832–835.
[] 王奎仁, 周有勤, 李凡庆, 卢江, 洪吉安. 1992b. 金牙微细粒金矿床首次发现含铂汞金矿、汞金矿和铂金矿. 科学通报(19): 1788–1790.
[] 王莉娟, 王京彬, 王玉往, 朱和平. 2008. 新疆北部准噶尔-东天山地区金矿床成矿流体主要特征. 岩石学报, 24(4): 753–761.
[] 王巧云, 胡瑞忠, 彭建堂, 毕献武, 武丽艳, 刘华, 苏本勋. 2007. 湖南瑶岗仙钨矿床流体包裹体特征及其意义. 岩石学报, 23(9): 2263–2273.
[] 王伟, 李方林, 鲍征宇. 2007. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约. 地质科技情报, 26(5): 35–44.
[] 王义天, 毛景文, 叶安旺, 叶会寿, 李永峰, 卢欣祥, 李永革. 2005. 小秦岭地区中深部含金石英脉的同位素地球化学特征及其意义. 矿床地质, 24(3): 270–279.
[] 辛洪波. 2005.胶东谢家沟金矿与焦家金矿地质特征与成因对比.博士学位论文.北京:中国地质大学, 92-96
[] 徐九华, 谢玉玲, 申世亮. 1997. 小秦岭与胶东金矿床的成矿流体特征对比. 矿床地质, 16(2): 56–67.
[] 徐文艺, 张德全, 阎升好, 李大新, 丰成友, 佘宏全, 董英君. 2001. 东昆仑地区矿产资源大调查进展与前景展望. 中国地质, 28(1): 25–29.
[] 许志琴, 杨经绥, 李海兵, 张建新, 吴才来. 2007a. 造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制. 北京: 地质出版社: 51-202.
[] 许志琴, 李海兵, 唐哲民, 戚学祥, 李化启, 蔡志慧. 2007b. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157–3170.
[] 许志琴, 杨经绥, 李化启, 王瑞瑞, 蔡志慧. 2012. 中国大陆印支碰撞造山系及其造山机制. 岩石学报, 28(6): 1697–1709.
[] 薛琮一. 2011.胶东新城金矿床成矿流体特征.硕士学位论文.北京:中国地质大学, 48-51
[] 杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723–1739.
[] 杨荣生, 陈衍景, 张复新, 李志宏, 毛世东, 刘红杰, 赵成海. 2006. 甘肃阳山金矿独居石Th-U-Pb化学年龄及其地质和成矿意义. 岩石学报, 22(10): 2603–2610.
[] 翟裕生, 吕古贤. 2002. 构造动力体制转换与成矿作用. 地球学报, 23(2): 97–102.
[] 张德全, 丰成友, 李大新, 徐文艺, 阎升好, 佘宏全, 董英君, 崔艳合. 2001. 柴北缘-东昆仑地区的造山型金矿床. 矿床地质, 20(2): 137–146.
[] 张德全, 党兴彦, 佘宏全, 李大新, 丰成友, 李进文. 2005. 柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义. 矿床地质, 24(2): 87–98.
[] 张德全, 张慧, 丰成友, 佘宏全, 李进文, 李大新. 2007. 柴北缘-东昆仑地区造山型金矿床的流体包裹体研究. 中国地质, 34(5): 843–854.
[] 张复新, 季军良, 龙灵利, 范春花. 2001. 南秦岭卡林型-似卡林型金矿床综合地质地球化学特征. 地质论评, 47(5): 492–499.
[] 张湖, 李统锦. 2004. 微细浸染型金矿床的一种新的亚类--硅质岩型金矿. 地学前缘, 11(2): 361–372.
[] 张静, 陈衍景, 张复新, 李超. 2002. 陕西金龙山卡林型金矿带成矿流体地球化学研究. 矿床地质, 21(3): 283–291.
[] 张昆宏. 2010. 青海扎家同哪成矿规律初探. 西部探矿工程, 22(6): 142–145.
[] 张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪. 岩石学报, 18(4): 559–565.
[] 张玙. 2011.川西甘孜-理塘结合带阿加隆洼类卡林型金成矿作用.硕士学位论文.北京:中国地质大学, 41-46
[] 赵财胜, 孙丰月, 毛景文, 丁清峰, 赵俊伟, 李世金. 2005. 青海大场金矿床流体包裹体特征及其地质意义. 矿床地质, 24(3): 305–316.
[] 赵财胜, 赵俊伟, 孙丰月, 李向前. 2009. 青海大场金矿床地质特征及成因探讨. 矿床地质, 28(3): 345–356.
[] 赵海香. 2011.河南小秦岭金矿成矿作用地球化学研究.博士学位论文.南京:南京大学, 74-82
[] 赵俊伟, 孙丰月, 李世金, 何安全, 范桂忠, 马秀兰. 2007. 青海北巴颜喀拉山地区浊积岩中金(锑)矿成矿地质特征--以大场-加给陇洼一带为例. 黄金, 28(9): 8–13.
[] 朱赖民, 张国伟, 李犇, 郭波, 康磊, 吕拾零. 2009. 陕西省马鞍桥金矿床地质特征、同位素地球化学与矿床成因. 岩石学报, 25(2): 431–443.