岩石学报  2013, Vol. 9 Issue (4): 1223-1235   PDF    
云南腾冲大松坡锡矿成矿年代学研究:锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据
马楠, 邓军, 王庆飞, 王长明, 张静, 李龚健     
中国地质大学地质过程与矿产资源国家重点实验室,北京 100083
摘要: 大松坡锡矿床是三江特提斯成矿域腾冲-梁河锡-钨多金属矿带内的典型锡矿床之一,与古永岩基有密切的成生联系。本文利用LA-ICP-MS锆石U-Pb定年手段对大松坡锡矿床小龙河含锡黑云母花岗岩和二长花岗岩进行制约,两件黑云母花岗岩样品分析结果分别为70.3±3.2Ma和75.3±4.2Ma,一件二长花岗岩样品结果为71.5±2.1Ma,代表了岩浆结晶年龄。LA-MC-ICP-MS U-Pb方法直接对锡石进行年龄测试在国内外研究报道尚少,本文首次对该矿床云英岩型锡矿石中锡石进行定年尝试,结果为75.5±2.6Ma,与岩体年龄在误差范围内一致。小龙河锡矿床含锡岩体与古永岩基年龄一致,表明该含锡岩体可能是古永岩基的一部分。大松坡锡矿床的成矿年龄与含锡岩体年龄一致,表明二者同时形成,共系新特提斯洋俯冲构造背景的产物。
关键词: U-Pb年龄     小龙河岩体     古永岩基     大松坡锡矿床     腾冲    
Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age.
MA Nan, DENG Jun, WANG QingFei, WANG ChangMing, ZHANG Jing, LI GongJian     
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Dasongpo tin deposit is located in Tengchong-Lianghe Sn-W metallogenic belt in the Sanjiang Tethys metallogenic domain, which is related to Guyong batholith. In the Dasongpo tin deposit, the Xiaolonghe biotite-granite and monzogranite yielded zircon U-Pb ages of 71.5±2.1Ma~75.3±4.2Ma, and 70.3±3.2Ma respectively, likely represents crystallization age of magma. Few researches have reported on the cassiterite LA-MC-ICP-MS U-Pb dating in China and overseas. In order to constrain the timing of metallogenic age better, we carried out cassiterite U-Pb dating for the greisen-type ore with age of 75.5±2.6Ma. The ages of the Xiaolonghe tin-bearing granitoid are similar with those of the Guyong batholith, indicating the tin-bearing granitoid as a part of the Guyong batholith. Metallogenic age is similar with that of tin-bearing granitoid, indicating their formation at the same time from the subduction of the Neo-Tethys Ocean.
Key words: U-Pb dating     Xiaolonghe rock mass     Guyong batholith     Dasongpo     Tengchong    
1 引言

三江特提斯经历了复合造山与成矿过程,形成了多种类型的锡多金属矿床,与东南亚巨型锡矿带相连(Cobbing et al., 1986Yokart et al., 2003Yang et al., 2004侯增谦等,2006卢映祥等,2009邓军等, 2010, 2011Wang et al., 2010a)。腾冲-梁河锡-钨多金属成矿带位于三江西南部,该区发育古永岩基与多个小型岩体,以及与岩浆活动具成生联系的大松坡、新岐、百花脑等锡多金属矿床,其中比较典型的是小龙河含锡岩体及相应的大松坡锡矿床。前人对锡矿床地质特征进行了较为系统的研究,对含锡岩体开展了岩石学、元素地球化学以及Rb-Sr、K-Ar同位素年代学研究,并将区域锡矿床划分为早燕山期、晚燕山期和喜马拉雅期三个系列(陈吉琛,1987Mao, 1989施琳等,1989罗君烈,1991赵准,1993吕伯西等,1993董方浏等,2006)。然而,因定年方法的精度不高,目前对于含锡成矿岩体的年龄仍存在争议。近年来,随着LA-ICPMS定年手段的进步,直接对锡石进行U-Pb定年分析也逐渐被报导(刘玉平等,2007Yuan et al.,2008, 2011袁顺达等,2010张东亮等,2011)。然而,该方法至今尚未用于腾冲锡多金属地区,导致区域岩浆活动与锡成矿的关系难以确定。本文基于LA-ICPMS定年方法,对小龙河含锡岩体进行锆石U-Pb测试,并首次尝试矿石中的锡石U-Pb年龄分析,以进一步梳理成岩成矿关系,对该成矿带甚至三江特提斯成岩成矿研究提供参考。

2 地质背景及矿床特征

腾冲地块位于怒江缝合带和密支那缝合带之间,属于青藏高原东南缘大型构造变形域的一部分(图 1a)(Dewey et al., 1988莫宣学等,1993姜朝松等,1998Searl et al., 1998钟大赉,1998李兴振等,1999Yin and Harrison, 2000Wei et al., 2003Kapp et al., 2005莫宣学和潘桂堂,2006Acharyya, 2007Deng et al., 2010)。其早元古宙变质基底为绿片岩相角闪岩相变质岩,主要由片麻岩、角闪岩、混合岩、大理岩和片岩组成(杨启军等,2009)。晚古生代-中生代沉积岩零星出露于变质基底之上,泥盆-三叠纪地层岩性以碳酸盐岩为主,侏罗-白垩纪地层缺失(云南省地质局,1982)。由于腾冲地块处于印度板块俯冲碰撞的前缘,强烈的构造运动导致该地区岩浆活动异常频繁,中新生代岩浆岩出露面积达50%,形成了腾冲岩浆岩带(戚学祥等,2011)。腾冲地区主体构造以NS向为主,北西段为嘉黎断裂带,中段为怒江断裂带,南段为龙陵-瑞丽断裂。其中怒江断裂带控制了腾冲花岗岩的展布(李文昌等,2010)。

①云南地质局.1982.区域地质调查报告(1/20万腾冲幅和盈江幅). 12-217

图 1 三江地区大地纲要略图(a,据王瑜,1999)和腾冲地块花岗岩分布图据(Xu et al., 2012修改) Fig. 1 Sketch map of structures in Sanjiang area (a, modified after Wang, 1999) and distribution of granite in Tengchong Block (modified after Xu et al., 2012)

大松坡锡矿床位于云南省腾冲县城以北约40km,是一个中型锡矿床。该矿床属于腾冲-梁河锡钨多金属成矿带,发育于腾冲岩浆岩带中部,晚白垩世古永复式岩基中的小龙河岩体内(图 1b)(陈吉琛等,1991邓军等,2010)。矿区地层为上石炭统空树河组(C3k),原岩岩性为砂页岩,已成角岩化砂岩、黑云长英角岩、绢云母板岩和含砾长石石英砂岩等,下部有含锡云英岩脉(夏志亮,2003)。矿区构造东侧为棋盘石-腾冲断裂,西侧为槟榔江断裂(赵成峰,1999)。断裂主体走向NNW-NS,倾向SW, 倾角55°~80°。矿区出露小龙河中细粒花岗岩体,岩性以二长花岗岩和黑云母花岗岩为主,是该矿床的含锡岩体。

大松坡锡矿床包括西南部的小龙河矿段和东北部的大松坡矿段,锡矿体以三种方式产出:(1)产于岩体与围岩内接触带,形成面状云英岩型矿体;(2)产于岩体穹顶处NW-NNW -NS向平行带状或雁行排列的密集断裂带裂隙带内,充填形成脉状云英岩型矿体;(3)少数产于岩体与围岩外接触带附近的层间断裂带内,形成细脉状云英岩型矿体。矿区共圈出锡矿体(脉)60多条,均大致平行,走向NW-NNW,倾向SW,倾角65°~85°。矿体(脉)大小不一,一般长100~500m,倾向延伸100~150m (施琳等,1989夏志亮,2003),明显受岩体和构造共同控制。围岩蚀变发育,包括云英岩化、硅化、萤石化、钾长石化、绢云母化和绿泥石化等,其中云英岩化、硅化、萤石化、钾长石化与锡矿化关系密切。矿石矿物主要为锡石,少量黑钨矿、黄铁矿和铌钽铁矿;脉石矿物主要为石英、白云母(绢云母)、萤石、黄玉、红柱石、金红石等。矿石结构以粒状变晶结构、鳞片变晶结构为主,构造以浸染状、脉状和块状为主。

图 2 大松坡锡矿床地质略图及采样位置据(施琳等,1989修改) Fig. 2 Geological sketch map of the Dasongpo tin deposit and sample positions (modified after Shi et al., 1989)
3 样品采集及岩石学特征

对矿区岩体进行了系统的野外考察,分别在小龙河矿段平硐PD-9内和露天采场采集了黑云母花岗岩及二长花岗岩样品,在大松坡矿段平硐PD-10内采集了黑云母花岗岩样品,并挑选其中的锆石单矿物颗粒进行定年测试。同时,在大松坡矿段采集了云英岩型锡矿石样品,从中挑选了锡石单矿物颗粒进行定年测试。具体采样位置见表 1图 2

表 1 样品及采样位置 Table 1 Geological feature and the locations of the samples

二长花岗岩为灰白色,似斑状结构、变余花岗结构,块状构造;主要矿物组成为石英(30%~35%)、钾长石(30%~40%)、斜长石(20%~25%)、黑云母(5%),其中斑晶为石英、钾长石;发生绢云母化、云英岩化(图 3a)。黑云母花岗岩为淡肉红色,似斑状结构、细粒等粒结构,块状构造;主要矿物组成为石英(30%~35%)、斜长石(30%~40%)、钾长石(20%~25%)、黑云母(10%)。其中似斑状黑云母花岗岩斑晶主要为石英、钾长石,斜长石聚片双晶常见;细粒黑云母花岗岩中可见条纹长石,发生绢云母化、云英岩化(图 3b, c)。云英岩型锡矿石为粒状变晶结构,浸染状、块状构造;主要矿物组成为石英、白云母(绢云母)、萤石和锡石,其中石英+白云母(绢云母)含量达80%~85%;锡石粒度0.1~1mm,半自形-他形,透光镜下为无色、浅粉红色或者棕红色,具不均一性,有些具有环带,多与萤石共生在一起(图 3d)。

图 3 大松坡锡矿床花岗岩显微特征 (a)-长石内部蚀变成白云母和石英;(b)-条纹长石比较发育;(c)-云英岩化花岗岩内钾长石、黑云母残晶;(d)-云英岩型矿石锡石与萤石共生. Qz-石英;Ms-白云母;Or-钾长石;Pl-斜长石;Pth-条纹长石;Bi-黑云母;Fl-萤石;Cst-锡石 Fig. 3 Microphotographs of granite in the Dasongpo tin deposit (a)-alteration of feldspar into muscovite; (b)-well-developed perthite; (c)-orthoclase and biotite relict crystals in greisenized granite; (d)-symbiotic fluorite and cassiterite in greisen type ore. Qz-quartz; Ms-muscovite; Or-orthoclase; Pl-plagioclase; Pth-perthite; Bi-biotite; Fl-fluorite; Cst-cassiterite
4 分析方法

锆石激光剥蚀等离子体质谱(LA-ICP-MS) U-Pb同位素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成, 实验采用的ICP-MS为美国Agilent公司生产的Agilent7500a。激光剥蚀系统为德国MicroLas公司生产的GeoLas2005, 分析所用的激光斑束直径为32μm, 分析流程参见(Yuan et al., 2004)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算采用软件ICPMASDataCal (Liu et al., 2008, 2010a)完成,详细的仪器操作条件和数据处理方法见Liu et al. (20082010ab)。年龄计算及谐和图的绘制采用Isoplot3.0完成(Ludwig, 2003)。

在锡石样品中选取粒度较大、裂隙和包裹体少见的颗粒制靶,过程与锆石制靶类似。分析测试工作在天津地质矿产研究所完成,LA-MC-ICP-MS分析在Thermo fisher Neptune型多接收等离子体质谱上进行,激光剥蚀系统为ESI UP193-FX ArF准分子激光器,采用的波长为193nm,脉冲宽度为5ns。在进行LA-MC-ICP-MS分析过程中,为了校正仪器分析过程及激光剥蚀过程中的U-Pb分馏,我们采用已准确获得ID-TIMS U-Pb年龄的锡石(AY-4)作为测量外标(Yuan et al., 2008, 2011)。锡石206Pb/207Pb-238U/207Pb等时线年龄计算及等时线图的绘制采用Isoplot完成(Ludwig, 1998, 2001)。

5 结果分析

腾冲大松坡锡矿床小龙河岩体的3个花岗岩样品锆石的阴极发光(CL)图像见图 4, LA-ICP-MS U-Pb同位素测定结果见表 2, 其谐和图见图 5。小龙河矿段花岗岩样品XLH11D2-2和XLH11D3-2中锆石主要为长柱状,可见四方双锥晶型,晶面平直, 阴极发光图像显示锆石具清晰的震荡环带, 属典型的岩浆锆石。这些锆石的U含量较高,且变化范围大(110×10-6~35455×10-6),Th/U范围为0.10~2.48, 普遍大于0.4,具岩浆锆石的地球化学特征(吴元保和郑永飞,2004)。XLH11D2-2样品7个分析点的206Pb/238U加权平均值年龄为75.3±4.2Ma (MSWD=6.5),XLH11D3-2样品9个分析点的206Pb/238U加权平均值年龄为70.3±3.2Ma (MSWD=5.8)。大松坡矿段样品DSP11D2-5中锆石的U含量同样高且具较大变化范围(74×10-6~6268×10-6),Th/U范围0.39~1.94,同样具岩浆锆石的地球化学特征。它的8个分析点的206Pb/238U加权平均值年龄为71.5±2.1Ma (MSWD=4.0)。三个年龄在误差范围内一致,解释为大松坡锡矿床小龙河含锡花岗岩体的侵位年龄。

图 4 大松坡锡矿床花岗岩中锆石阴极发光图像实线圆表示LA-ICP-MS U-Pb年龄分析点 Fig. 4 Cathodoluminescence (CL) images of analyzed zircons separated from Dasongpo graniteSolid circles indicate the location of U-Pb

表 2 大松坡花岗岩中锆石LA-ICP-MS U-Pb分析数据 Table 2 LA-ICP-MS zircon U-Pb data of the Dasongpo granite

图 5 大松坡锡矿床花岗岩中锆石U-Pb年龄谐和图 Fig. 5 Zircon U-Pb ages of granite in the Dasongpo tin deposit

对大松坡矿段矿石样品DSP11D3-3中锡石进行了29个LA-MC-ICP-MS点测试(表 3),结果可以拟合一条较好的206Pb/207Pb-238U/207Pb等时线(图 6),对应的等时线年龄为75.5±2.6Ma (MSWD=0.21),代表了锡成矿年龄。Yuan et al.(2011)中标样AY-4数据为159.9±1.9Ma,本次测试时标样数据为153.7±5.1Ma,二者在误差范围内一致,因此本次数据可靠。

表 3 大松坡锡矿床中锡石LA-MC-ICP-MS U-Pb分析数据 Table 3 LA-MC-ICP-MS cassiterite U-Pb data of the Dasongpo tin deposit

图 6 大松坡矿床矿石中锡石U-Pb等时线图 Fig. 6 Cassiterite U-Pb age in the Dasongpo tin deposit
6 讨论 6.1 含锡岩体年龄

陈吉琛等(1991)提出,大松坡锡矿床含锡岩体为演化更成熟、形成更晚的小龙河岩体,其形成年龄较古永岩基略晚。Rb-Sr和K-Ar法测年的年龄范围为83.4~71.8Ma (陈吉琛,1987),由于测试矿物的封闭温度低并容易受到蚀变和构造事件的影响,导致年龄结果变化范围较大。近年来,杨启军等(2009)Xu et al.(2012)对古永岩基二长花岗岩中的锆石进行了SHRIMP和LA-ICP-MS U-Pb年龄测试,得到单颗粒锆石U-Pb年龄76±1Ma、67.8±1.4Ma和74.9±1.8Ma。古永岩基形成年龄(76~69Ma)与大松坡锡矿床含锡岩体年龄(75~70Ma)一致,并无明显先后顺序,其中古永岩基形成时间略长,因此认为大松坡锡矿床含锡岩体可能为古永复式岩基的一部分。

6.2 锡成矿年龄

陈吉琛(1987)对大松坡锡矿床云英岩矿体中铁锂云母进行Rb-Sr测年,结果为70Ma。施琳等(1991)对锡石云英岩型矿石中云母进行Rb-Sr测年,结果为78.7Ma。由于受到测试方法的精度限制,两个成矿年龄有一定差异。因此大松坡锡矿床成矿年龄依然存在争议,其原因之一是缺少精确的成矿年代学判据。本文运用LA-MC-ICP-MS U-Pb法获得该矿床锡石206Pb/207Pb-238U/207Pb等时线年龄为75.5±2.6Ma。自Gulson and Jones (1992)首次提出并讨论了锡石U-Pb直接测年的方法及其可行性以来,国内外学者对该方法的可靠性进行了实验和论证。在非超高温热液条件下,锡石U-Pb法是一种准确厘定锡矿床成矿年龄的有效方法(Mcnaughton et al., 1993刘玉平等,2007Yuan et al.,2008, 2011袁顺达等,2010张东亮等,2011)。0.1~1mm级别锡石封闭温度为600~800℃(张东亮等,2011),且流体包裹体研究显示,大松坡锡矿床成矿期矿物包裹体均一温度为590~170℃(施琳等,1989金明霞等,1999沈冰和金明霞,2003),说明该矿床锡石在形成过程中,热液活动温度未超过其封闭温度,表明该结晶年龄(~75Ma),即为锡成矿年龄。对比锡石年龄、古永岩基年龄和成矿岩体的年龄,三者均在误差范围内一致(图 7),说明大松坡锡矿床的成矿年龄与成岩年龄相吻合,矿床的热液演化活动时间较短。

图 7 古永岩体大松坡锡矿床锆石、锡石U-Pb年龄对比图(古永岩基年龄来自杨启军等,2009; Xu et al., 2012) Fig. 7 Zircon and cassiterite U-Pb ages for the Guyong batholith and the Dasongpo tin deposit (Age data of Guyong batholith after Yang et al., 2009; Xu et al., 2012)
6.3 构造背景

古永岩基具有高硅、高钾钙碱性及过铝质-强过铝质特征,87Sr/86Sr (i)值(0.7124~0.7402)均大于0.708(陈吉琛等,1991杨启军等,2009),εHf(t)值(-4.61~-13.07)均小于0(Xu et al., 2012),表明其物质来源主要为大陆地壳。然而,对于岩基形成的构造环境及大地构造背景,一直存有争议:(1)施琳等(1991)吕伯西等(1993)认为,古永岩基为印亚板块会聚,导致地壳增厚引起陆壳深熔形成的以S型为主的同碰撞花岗岩;(2)杨启军等(2009)认为,在新特提斯洋闭合与印亚板块碰撞的转换期,岩浆底侵以及地壳加厚,促使中下地壳部分熔融形成的S型(岛弧-)同碰撞花岗岩;(3)江彪等(2012)认为,古永岩基是中特提斯洋闭合进入造山后伸展阶段与新特提斯洋俯冲开始的构造转换阶段的岩浆活动,是典型造山后A2型花岗岩;(4) Xu et al. (2012)通过对腾梁地区岩浆岩进行系统研究,提出古永岩基是新特提斯洋东向俯冲,导致俯冲带岩浆弧后腹地,地壳增厚至顶点后继之的伸展垮塌形成的S型花岗岩。

通过本次研究以及综合分析,笔者较为认同最后一个观点。首先,大松坡锡矿床所处的腾冲地块经历了复杂的大地构造演化过程。早二叠世,冈瓦纳大陆北缘发生分裂,中特提斯帷幕由此拉开,滇缅泰马地块(含保山地块)向北漂移,形成了怒江洋。晚二叠世-早白垩世怒江洋西向俯冲,中三叠世-中侏罗世东向俯冲,于早白垩世洋盆消失(~110Ma),腾冲地块与保山地块拼合,继而进入陆陆碰撞造山作用阶段(莫宣学等,2003; Booth et al., 2004Chung et al., 2005Mo et al., 2007, 2008Liang et al., 2008Chiu et al., 2009朱弟成等,2009Deng et al., 2010肖昌浩等,2010Cong et al., 2011a, b戚学祥等,2011Xu et al., 2012Zhu et al., 2012)。新特提斯洋(印度河-雅江洋)于中三叠世开启,中侏罗-古新世向北东俯冲(165~56Ma),并于始新世(~50Ma)闭合(Najman et al., 2010; Zhu et al., 2012)。怒江洋和新特提斯洋的俯冲闭合,引发了腾冲地块内大规模花岗岩的侵位(Xu et al., 2012),并形成了相应的W-Sn多金属矿床。古永岩基的成岩年龄为76~69Ma,该时段正值新特提斯洋俯冲,为其产生在新特提斯俯冲环境提供了年代学证据。

其次,前人讨论岩体构造环境问题均通过地球化学投图的方法,其依据是在不同构造环境下形成的花岗岩具有特定的岩石地球化学特性(Pearce et al., 1984; Maniar and Piccoli, 1989)。但是新研究显示,花岗岩的岩石地球化学特性不但与形成构造环境有关,而且直接与源区物质的性质和地壳熔融程度有关,因此微量元素地球化学投图不能完全反映花岗岩形成的构造环境(Xu et al., 2012)。且在高分异情况下,无论是I型、S型或是A型,当它们经历高度分异结晶作用之后,其矿物组成和化学成分都趋近于低共结的花岗岩,三者将具有相同的矿物学与地球化学特点,从而使上述三类型的鉴定出现困难,甚至不可能(Chappell and White, 1992吴福元等,2007)。古永岩基及大松坡岩体具有强酸性(SiO2≈75%)、高分异指数(DI≈88)和低固结指数(SI≈2),且在微量元素上具有富Rb,亏损Ba和Sr的特点(数据来源于施琳等,1989吕伯西等,1993江彪等,2012Xu et al., 2012),体现较高分异型花岗岩特征。另外,岩石含有云母显示其富水特征,指示其为高分异花岗岩而非A型花岗岩(King et al., 1997)。前文同位素证据表明古永岩基和大松坡含锡岩体物质来源于大陆地壳,因此我们推测古永岩基和大松坡含锡岩体为高分异S型花岗岩。传统观点认为俯冲环境下应形成I型花岗岩为主的岩石组合,但为什么在腾冲梁河地区主要形成了古永岩基为代表的S型花岗岩呢?主要原因是,腾冲地区位于新特提斯洋俯冲岩浆弧后的腹地。该地区在俯冲作用下,深部热作用导致地壳和岩石圈强度变低(Barton, 1990),持续的挤压力导致地壳增厚并向上抬升,当抬升高度达到最大,在薄弱地区,挤压力会使地壳增厚区域向周围发展(Livaccari, 1991),因此在俯冲岩浆弧后的腹地发生大规模的伸展垮塌,形成俯冲环境下过铝质岩浆岩(Xu et al., 2012)。综上所述,古永岩基形成于新特提斯洋向东俯冲背景下,位于俯冲带岩浆弧后腹地,是地壳增厚至顶点而伸展垮塌引起的过铝质S型花岗岩。

此外,产于俯冲背景的锡矿床在我国范围具有一定的普遍性。最新的研究成果表明,全球最大的南岭锡多金属成矿带中晚侏罗世钨锡成矿系列与大松坡锡矿床相似,发育于高硅过铝质、高锶同位素初始值的高分异花岗岩内,是形成于中侏罗世太平洋板块持续低角度俯冲环境下,大陆地壳持续加厚,弧后岩石圈伸展减薄引起大规模岩浆作用的结果(毛景文等, 2007, 2011Wang et al., 2010c)。Zhou et al. (2012)也提出,内蒙古黄岗锡铁矿床很可能产生在中生代古太平洋向北北西方向俯冲环境下,与地壳重熔、分异并继续演化形成的花岗岩具有密切的成因关系。

由于大松坡含锡岩体是古永岩基的一部分,因此二者应产于相同的大地构造背景之下,且成矿年龄与成岩年龄一致。综合前人岩浆-流体成矿理论(Chen et al., 2007; Deng et al., 2004, 2006, 2011; Wang et al., 2008, 2010b, 2013; Xu et al., 2012; Li et al., 2013),腾冲大松坡锡矿床形成过程可能为:新特提斯洋洋壳向东俯冲至腾冲地块下,导致岩石圈强度、板块汇聚力抗压强度降低,因此在俯冲带后的腹地,地壳增厚之后,下地壳部分熔融形成花岗质岩浆;岩浆侵入浅表分异含锡岩浆热液,在岩基边部发生蚀变并成矿,同时热液输运到岩体顶部张性断层或层间断裂带中形成脉状或面状矿体。

7 结论

(1)大松坡含锡岩体LA-ICP-MS锆石U-Pb年龄为75.3±4.2Ma、71.5±2.1Ma和70.3±3.2Ma,其与古永岩基形成年龄(76~69Ma)吻合,因此认为大松坡锡矿床含锡岩体(小龙河岩体)可能为古永复式岩基的一部分。

(2)锡石LA-ICP-MS U-Pb年龄为75.5±2.6Ma,即锡成矿年龄约为75Ma。古永岩基年龄、成矿岩体年龄和成矿年龄在误差范围内一致,说明大松坡锡矿床的成矿年龄与成岩年龄接近,矿床的热液演化活动时间较短。

(3)腾冲大松坡锡矿床是新特提斯洋向东俯冲背景下,加厚地壳重熔引发的的岩浆活动与热液作用的结果。

致谢 本文在野外工作和成文过程中得到龚庆杰老师、江彪、郑宇舟、肖昌浩、刘欢、蒋成竹和骆文娟同学的大力支持;在完成锡石U-Pb年龄测试过程中得到天津地质矿产研究所的周红英老师、耿建珍老师和禹丽同学的无私帮助;审稿人提出了宝贵的修改意见;在此对他们一并表达最诚挚的谢意。
参考文献
[] Acharyya SK. 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture. Journal of Asian Earth Sciences, 29(2-3): 229–242.
[Barton1990] Barton MD. 1990. Cretaceous magmatism, metamorphism, and metallogeny in the east-central Great Basin. In: Anderson JL (ed.). The Nature and Origin of Cordilleran Magmatism. Geological Society of America Memoir, 174: 283-302
[] Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu YP, Idleman B, Hren M, Chamberlain CP. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10): 889–929. DOI:10.2475/ajs.304.10.889
[] Chappell BW, White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1–26. DOI:10.1017/S0263593300007720
[] Chen FK, Li XH, Wang XL, Li QL, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179–1194. DOI:10.1007/s00531-006-0146-y
[] Chen JC. 1987. Discusion on the age division and the selects of isotopic age determination for granitic rock in western Yunnan. Yunnan Geology, 6(2): 101–113.
[] Chen JC, Chen LZ, Lin WX. 1991. Series and unit research on tin-bearing granites of Tengchong-Lianghe area. Yunnan Geology, 10(3): 241–289.
[] Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang YB, Chu MF. 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3–19. DOI:10.1016/j.tecto.2009.02.034
[] Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196.
[] Cobbing EJ, Mallick DIJ, Pitfield PEJ, Teoh LH. 1986. The granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 143(3): 537–550. DOI:10.1144/gsjgs.143.3.0537
[] Cong F, Lin SL, Zou GF, Li ZH, Xie T, Peng ZM, Liang T. 2011a. Magma mixing of granites at Lianghe: In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Science China (Earth Sciences), 54(9): 1346–1359. DOI:10.1007/s11430-011-4208-z
[] Cong F, Lin SL, Zou GF, Xie T, Li ZH, Tang FW, Peng ZM. 2011b. Geochronology and petrogenesis for the protolith of biotite plagioclase gneiss at Lianghe, western Yunnan. Acta Geologica Sinica, 85(4): 870–880. DOI:10.1111/acgs.2011.85.issue-4
[] Deng J, Wang QF, Wei YQ, Wang JP, Sun ZS, Yang LQ. 2004. Metallogenic effect of transition of tectonic dynamic system. Journal of China University of Geosciences, 15(1): 23–28.
[] Deng J, Wang QF, Huang DH, Wan L, Yang LQ, Gao BF. 2006. Transport network and flow mechanism of shallow ore-bearing magma in Tongling ore cluster area. Science in China (Series D), 49(4): 397–407. DOI:10.1007/s11430-006-0397-2
[] Deng J, Xiao CH, Wang QF, Zhou XZ, Yang LQ, Zhang J, Zhao Y. 2010. Influence of the Chuxiong-Yao'an Earthquake on the mineralization of hot springs in the Tengchong geothermal area, southwestern China. Acta Geologica Sinica, 84(6): 1391–1400. DOI:10.1111/acgs.2010.84.issue-6
[] Deng J, Hou ZQ, Mo XX, Yang LQ, Wang QF, Wang CM. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37–42.
[] Deng J, Wang QF, Xiao CH, Yang LQ, Liu H, Gong QJ, Zhang J. 2011. Tectonic-magmatic-metallogenic system, Tongling ore cluster region, Anhui Province, China. International Geology Review, 53(5-6): 449–476. DOI:10.1080/00206814.2010.501538
[] Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501–2509.
[] Dewey JF, Shackleton RM, Chang CF, Sun YY. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical transactions of the Royal Society of London (Series A): Mathematical and Physical Sciences, 327(1594): 379–413. DOI:10.1098/rsta.1988.0135
[] Dong FL, Hou ZQ, Gao YF, Zeng PS, Jiang CX. 2006. Cenozoic granitoid in Tengchong, western Yunnan: Genesis type and implication for tectonics. Acta Petrologica Sinica, 22(4): 927–937.
[] Gulson BL, Jones MT. 1992. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology, 20(4): 355–358. DOI:10.1130/0091-7613(1992)020<0355:CPFDDO>2.3.CO;2
[] Hou ZQ, Yang ZS, Xu WY, Mo XX, Ding L, Gao YF, Dong FL, Li GM, Qu XM, Li GM, Zhao ZD, Jiang SH, Meng XJ, Li ZQ, Qin KZ, Yang ZM. 2006. Metallogenesis in Tibetan collisional orogenic belt: Ⅰ.Mineralization in main collisional orogenic setting. Mineral Deposits, 25(4): 339–357.
[] Jiang B, Gong QJ, Zhang J, Ma N. 2012. Late Cretaceous aluminium A-type granites and its geological significance of Dasongpo Sn deposit, Tengchong, West Yunnan. Acta Petrologica Sinica, 28(5): 1477–1492.
[] Jiang CS, Zhou RQ, Yao XQ. 1998. Fault structure of Tengchong volcano. Journal of Seismological Research, 21(4): 330–336.
[] Jin MX, Wang JM, Gao JX. 1999. Ebullition of the residual magma and Sn-W mineralization. Acta Geoscientia Sinica, 20(3): 265–271.
[] Kapp P, Yin A, Harrison TM, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7): 865–878. DOI:10.1130/B25595.1
[] King PL, White AJR, Chappell BW, Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371–391. DOI:10.1093/petroj/38.3.371
[] Li GJ, Wang QF, Wang JQ, Fang QL. 2013. Geological and geochemical characteristics of the Huangshilao stratabound gold deposit in the Tongguanshan orefield, Tongling, East-Central China. Resource Geology, 63(2): 141–154. DOI:10.1111/rge.12001
[] Li WC, Pan GT, Hou ZQ, Mo XX, Wang LQ. 2010. Ore-Forming Thesis of Multi-Island-Arc-Basin-System and Collisional Orogeny and Exploration Techniques in Sanjing Region, SW China. Beijing: Geological Publishing House: 1-491.
[] Li XZ, Liu WJ, Wang YZ, Zhu QW. 1999. Tectonic Evolution of the Tettys and Mineralization in the Sanjiang Region, Western Yunnan. Beijing: Geological Publishing House: 12-276.
[] Liang HY, Chung SL, Liu DY, Xu YG, Wu FY, Yang JH, Wang YB, Lo CH. 2008. Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. American Journal of Science, 308(4): 618–638. DOI:10.2475/04.2008.08
[] Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY, Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967–976.
[] Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34–43. DOI:10.1016/j.chemgeo.2008.08.004
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Liu YS, Hu ZC, Zong K, Gao CG, Gao S, Xu J, Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. DOI:10.1007/s11434-010-3052-4
[] Livaccari RF. 1991. Role of crustal thickening and extensional collapse in the tectonic evolution of the Sevier-Laramide orogeny, western United States. Geology, 19(11): 1104–1107. DOI:10.1130/0091-7613(1991)019<1104:ROCTAE>2.3.CO;2
[] Lu YX, Liu HG, Huang JN, Zhang HY, Chen YQ. 2009. Preliminary division of the metallogenetic belts in the Central South Peninsula of Southeast Asia and their regional ore-forming characteristics. Geological Bulletin of China, 28(2-3): 314–325.
[] Ludwig KR. 1998. On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta, 62(4): 665–676. DOI:10.1016/S0016-7037(98)00059-3
[] Ludwig KR. 2001. Users manual for Isoplot/Ex (rev2.49): A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, 19.
[] Ludwig KR. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley. Berleley Geochronoloty Center.
[] Luo JL. 1991. Granitoids related to western Yunnan (Dianxi) tin deposits and their metallization. Mineral Deposits, 10(1): 80–96.
[] Lv BX, Wang Z, Z hang ND, Duan JZ, Gao ZY, Sheng GF, Pan CY, Yao P. 1993. Granitoids and Mineralization in Sanjiang Region. Beijing: Geological Publishing House: 1-328.
[] Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[] Mao JW. 1989. The igneous rock series and tin polymetallic minerogenetic series in the Tengchong area, Yunnan. Acta Geologica Sinica, 2(2): 175–187.
[] Mao JW, Xie GQ, Guo CL, Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329–2338.
[] Mao JW, Chen MH, Yuan SD, Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636–658.
[] McNaughton NJ, Pollard PJ, Gulson BL, Jones MT. 1993. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites: Comment and Reply. Geology, 21(3): 285–286. DOI:10.1130/0091-7613(1993)021<0285:CPFDDO>2.3.CO;2
[] Mo XX, Lu FX, Shen SY. 1993. Sanjiang Tethyan Volcanism and Related Mineralization. Beijing: Geological Publishing House: 178-235.
[] Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang LL, Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135–148.
[] Mo XX, Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43–51.
[] Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225–242. DOI:10.1016/j.lithos.2006.10.005
[] Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49–67. DOI:10.1016/j.chemgeo.2008.02.003
[] Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han JT, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115(B12): B12416, 1–18.
[] Pearce JA, Harris AG, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956
[] Qi XX, Zhu LH, Hu ZC, Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 27(11): 3409–3421.
[] Searl MP. 1998. Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus Suture zones of Zanskar and Ladakh, western Himalaya: Reply. Journal of Structural Geology, 10(1): 130–132.
[] Shen B, Jin MX. 2003. Prospecting significance of boiling inclusions in granite. Acta Geologica Sichuan, 23(2): 103–105.
[] Shi L, Chen JC, Wu SL, Peng XJ, Tang SC. 1989. Metallogenic Regularity of the Tin Deposits in Western Yunnan Province. Beijing: Geological Publishing House: 25-273.
[] Shi L, Tang LD, Zhao M, Zhang WL. 1991. Types of primary tin ore deposit and metallogenic mechanism in Tengchong-Lianghe area. Yunnan Geology, 10(3): 290–322.
[] Wang CM, Cheng QM, Zhang ST, Deng J, Xie SY. 2008. Magmatic-hydrothermal superlarge metallogenic systems: A case study of the Nannihu ore field. Journal of China University of Geosciences, 19(4): 391–403. DOI:10.1016/S1002-0705(08)60072-2
[] Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF, Sun X. 2010a. Sediment-hosted Pb-Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geologica Sinica, 84(6): 1428–1438. DOI:10.1111/acgs.2010.84.issue-6
[] Wang CM, Deng J, Zhang ST, Yang LQ. 2010b. Metallogenic province and large scale mineralization of volcanogenic massive sulfide deposits in China. Resource Geology, 60(4): 404–413. DOI:10.1111/rge.2010.60.issue-4
[] Wang CM, Carranza EJM, Zhang ST, Zhang J, Liu XJ, Zhang D, Sun X, Duan CJ. 2013. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China. Journal of Geochemical Exploration, 124: 40–58. DOI:10.1016/j.gexplo.2012.07.011
[] Wang FY, Ling MX, Ding X, Hu YH, Zhou XY, Liang HY, Fan WM, Sun WD. 2010c. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704–726.
[] Wei H, Sparks RSJ, Liu R, Fan Q, Wang Y, Hong H, Zhang H, Chen H, Jiang C, Dong J, Zheng Y, Pan Y. 2003. Three active volcanoes in China and their hazards. Journal of Asian Earth Sciences, 21(5): 515–526. DOI:10.1016/S1367-9120(02)00081-0
[] Wu FY, Li XH, Yang JH, Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217–1238.
[] Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Sciences Bulletin, 49(15): 1554–1569. DOI:10.1007/BF03184122
[] Xia ZL. 2003. Geology of ore deposits of greisen-type tin field, Dasongpo Tengchong. Yunnan Geology, 22(3): 313–320.
[] Xiao CH, Wang QF, Zhou XZ, Yang LQ, Zhang J. 2010. Rare-earth elements in hot spring waters in the Tengchong geothermal area. Acta Petrologica Sinica, 26(6): 1938–1944.
[] Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR, Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151–175. DOI:10.1016/j.jseaes.2011.06.018
[] Yang LQ, Deng J, Wang JG, Wei YG, Wang JP, Wang QF, Lu P. 2004. Control of deep tectonics on the superlarge deposits in China. Acta Geologica Sinica, 78(2): 358–367.
[] Yang QJ, Xu YG, Huang XL, Luo ZY, Shi YR. 2009. Geochronology and geochemistry of granites in the Tengliang area, western Yunnan: Tectonic implication. Acta Petrologica Sinica, 25(5): 1092–1104.
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. DOI:10.1146/annurev.earth.28.1.211
[] Yokart B, Barr SM, Williams-Jones AE, Macdonald AS. 2003. Late-stage alteration and tin-tungsten mineralization in the Khuntan Batholith, northern Thailand. Journal of Asian Earth Sciences, 21(9): 999–1018. DOI:10.1016/S1367-9120(02)00178-5
[] Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3
[] Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP, Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375–382. DOI:10.1007/s00126-007-0166-y
[] Yuan SD, Li HM, Hao S, Geng JZ, Zhang DL. 2010. In situ LA-MC-ICP-MS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province. Mineral Deposits, 29(Suppl): 543–544.
[] Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235–242. DOI:10.1016/j.oregeorev.2011.08.002
[] Zhang DL, Peng JT, Hu RZ, Yuan SD, Zheng DS. 2011. The closure of U-Pb isotope system in cassiterite and its reliability for dating. Geological Review, 57(4): 549–554.
[] Zhao CF. 1999. Variscan and Indosinian granites in northern Tengchong, Yunnan. Regional Geology of China, 18(3): 260–263.
[] Zhao Z. 1993. Minerogenetic series in the area of Nu River-Lancang River-Jinsha River. Yunnan Geology, 12(3): 247–266.
[] Zhong DL. 1998. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan. Beijing: Science Press: 9-215.
[] Zhou ZH, Mao JW, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Sciences, 49: 272–286. DOI:10.1016/j.jseaes.2012.01.015
[] Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf isotopes. Science in Chin (Series D), 39(7): 833–848.
[] Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX. 2012. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research. DOI:10.1016/j.gr.2012.02.002
[] 陈吉琛. 1987. 滇西花岗岩类时代划分及同位素年龄值选用的讨论. 云南地质, 6(2): 101–113.
[] 陈吉琛, 陈良忠, 林文信. 1991. 腾冲-梁河地区含锡花岗岩序列-单元研究. 云南地质, 10(3): 241–289.
[] 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37–42.
[] 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501–2509.
[] 董方浏, 侯增谦, 高永丰, 曾普胜, 蒋成兴. 2006. 滇西腾冲新生代花岗岩:成因类型与构造意义. 岩石学报, 22(4): 927–937.
[] 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: I.主碰撞造山成矿作用.. 矿床地质, 25(4): 337–358.
[] 江彪, 龚庆杰, 张静, 马楠. 2012. 滇西腾冲大松坡锡矿区晚白垩世铝质A型花岗岩的发现及其地质意义. 岩石学报, 28(5): 1477–1492.
[] 姜朝松, 周瑞琦, 姚孝执. 1998. 腾冲火山断裂构造. 地震研究, 21(4): 330–336.
[] 金明霞, 王洁民, 高锦曦. 1999. 残浆沸腾与锡钨成矿作用. 地球学报, 20(3): 265–271.
[] 李兴振, 刘文均, 王义昭, 朱勤文. 1999. 西南"三江"地区特提斯构造演化与成矿. 北京: 地质出版社: 12-276.
[] 李文昌, 潘桂堂, 侯增谦, 莫宣学, 王立全, 等. 2010. 西南"三江"多岛弧盆--碰撞造山成矿理论与勘查技术. 北京: 地质出版社: 1-491.
[] 卢映祥, 刘洪光, 黄静宁, 张宏远, 陈永清. 2009. 东南亚中南半岛成矿带初步划分与区域成矿特征. 地质通报, 28(2-3): 314–325.
[] 刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967–976.
[] 罗君烈. 1991. 滇西锡矿的花岗岩类及其成矿作用. 矿床地质, 10(1): 80–96.
[] 吕伯西, 王增, 张能德, 段建中, 高子英, 沈敢富, 潘长云, 姚鹏. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版社: 1-328.
[] 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报, 23(10): 2329–2338.
[] 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636–658.
[] 莫宣学, 路凤香, 沈上越, 等. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社: 178-235.
[] 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135–148.
[] 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43–51.
[] 戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMP U-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409–3421.
[] 沈冰, 金明霞. 2003. 花岗岩中沸腾包裹体的找矿意义. 四川地质学报, 23(2): 103–105.
[] 施琳, 陈吉琛, 吴上龙, 彭兴阶, 唐尚鹑. 1989. 滇西锡矿带成矿规律. 北京: 地质出版社: 25-273.
[] 施琳, 唐良栋, 赵珉, 张为鹂. 1991. 腾冲-梁河地区原生锡矿床类型及成矿机理. 云南地质, 10(3): 290–322.
[] 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217–1238.
[] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589–1604.
[] 夏志亮. 2003. 腾冲大松坡云英岩型锡矿矿床地质. 云南地质, 22(3): 313–320.
[] 肖昌浩, 王庆飞, 周兴志, 杨立强, 张静. 2010. 腾冲地热区高温热泉水中稀土元素特征. 岩石学报, 26(6): 1938–1944.
[] 杨启军, 徐义刚, 黄小龙, 罗震宇, 石玉若. 2009. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报, 25(5): 1092–1104.
[] 袁顺达, 李惠民, 郝爽, 耿建珍, 张东亮. 2010. 湘南芙蓉超大型锡矿锡石原位LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 29(Z): 543–544.
[] 张东亮, 彭建堂, 胡瑞忠, 袁顺达, 郑德顺. 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549–554.
[] 赵成峰. 1999. 云南腾冲北部华力西期印支期花岗岩. 中国区域地质, 18(3): 260–263.
[] 赵准. 1993. 怒江-澜沧江-金沙江区域矿床成矿系列. 云南地质, 12(3): 247–266.
[] 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社: 9-215.
[] 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833–848.