2. 中国石化胜利油田公司新疆勘探开发中心,东营 257017;
3. 中国科学院地质与地球物理研究所,北京 100029
2. Xinjiang Exploration and Development Center, Shengli Oil field Company, SINOPEC, Dongying 257017, China;
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
中亚造山带(CAOB) 是全球最大的增生造山带, 它记录了显生宙以来的地壳生长过程(Şengör et al., 1993; Jahn et al., 2000a, b; Xiao et al., 2008, 2009, 2010; Wong et al., 2010; Rojas-Agramonte et al., 2011)。作为中亚造山带的重要组成部分, 东准噶尔经历了多期复杂的构造演化过程(Coleman, 1989; Şengör et al., 1993; Windley et al., 2007; 肖序常等, 1992; 何国琦等, 1994, 2001, 2007; 李锦轶等, 2000; 陈发景等, 2005; 何登发等, 2005; 韩宝福等, 2006), 其构造演化与中亚造山带的形成过程密切相关。
东准噶尔地区广泛发育泥盆-石炭纪以火山岩、火山碎屑岩为主的地层,局部地区也出现二叠纪(张元元等, 2009) 和新生代火山岩(张前锋等, 1994; 张元元等, 2007)。大规模发育的具有正的εNd(t) 和低(87Sr/86Sr)i值特征的花岗岩(Zhu et al., 2005; 李锦轶和肖序常, 1999) 和裂陷带被认为是300~265Ma后碰撞地壳垂向生长的物质表现(韩宝福等, 2006),因此认为准噶尔与相邻的阿尔泰和北天山等块体最晚在晚石炭世期间就已经完成了碰撞和拼贴(Han et al., 2010)。然而,林克湘等(1997)对三塘湖地区发育的早二叠世中酸性火山岩组合进行了地球化学分析,认为这些钙碱性中高钾火山岩形成于活动陆缘环境。而东准噶尔地区向南变年轻的A2型花岗岩可能是俯冲带不断向南后退、增生的产物(毛启贵等, 2008)。那么东准噶尔石炭-二叠纪火山岩究竟形成于岛弧环境(龙晓平等, 2006) 还是后碰撞伸展环境(Zhang et al., 2009; 张元元等, 2009),至今仍存在争论。这个问题对于解决该区从古生代到新生代持续的岩浆活动是来自于微陆块或地体的多期碰撞(何国琦等, 1994) 还是岛弧地体俯冲增生的结果(Şengör et al., 1993) 至关重要。另外,东准噶尔的构造演化也控制了成矿作用的发生和油气资源的聚集,不同的大地构造演化阶段形成了不同的岩石组合和矿床类型(韩春明等, 2006)。该区是斑岩型铜矿床的重要勘探区,是板块汇聚晚期的陆缘挤压环境下的产物(Han et al., 2006; 韩春明等, 2006; 张连昌等, 2006; 肖文交等, 2006)。东准噶尔地区发育有晚古生代的埃达克岩-富Nb玄武岩-高镁安山岩组合,其中的许多岩石与铜金矿床伴生(王强等, 2006; 赵振华等, 2006, 2007)。前人认为后碰撞期是大规模成矿的高峰期,伴随有岩浆铜镍硫化物矿床和夕卡岩型矿床(陈衍景, 2006; 韩春明等, 2006) 以及剪切带性金矿床形成(王京彬和徐新, 2006)。不仅如此,随着准噶尔地区外围盆地-坳陷油气勘探扩展项目的进行,在东准噶尔扎河坝地区也发现了多处油气显示,证实了该区具有良好的勘探潜力。众所周知,构造断裂为油气运移提供了有利通道,是油气运移和成藏的重要因素,而且断裂和圈闭的形成时间的确定是油气圈闭预测的关键指标。因此对东准噶尔扎河坝坳陷的研究不仅对揭示中亚地区构造演化具有重要的科学意义,也对矿产勘探有利区带的预测具有重要的现实意义。
本文选取扎河坝坳陷蕴都卡拉地区原巴塔玛依内山组中与玄武岩共生的流纹岩作为研究对象,通过对其SHRIMP U-Pb年代学、岩石学、地球化学和Lu-Hf同位素研究,讨论东准噶尔扎河坝地区晚古生代晚期构造环境,结合前人的已发表的数据,试图厘定和探讨早二叠世构造属性,为限定准噶尔洋的闭合时间、揭示东准噶尔的构造演化以及中亚地区地壳生长方式提供依据。
1 区域地质背景东准噶尔造山系位于准噶尔盆地东北缘,是西伯利亚板块与哈萨克斯坦-准噶尔板块拼贴过程的产物,其间发育多个洋盆,形成了复杂的沟-弧-盆系统。东准噶尔造山系中保存着两条蛇绿岩带,即东准噶尔中部的扎河坝-阿尔曼太蛇绿岩带和南部的卡拉麦里-莫钦乌拉蛇绿岩带(图 1),早在八十年代初期,李春昱等(1982)指出扎河坝-阿尔曼太岩带是西伯利亚古板块南缘的中泥盆世俯冲带,随后李锦轶(1995)对该带进行了详细的地质调查并认为该带是早古生代洋盆的遗迹。简平等(2003)对扎河坝蛇绿岩的层状辉长岩和斜长岩中锆石的SHRIMP测年分析得出了489Ma和481Ma的年龄,表明扎河坝蛇绿岩形成于奥陶纪。张元元和郭召杰(2010)对扎河坝蛇绿岩中斜长花岗岩采用SHRIMP U-Pb方法测定年龄为496Ma,证实扎河坝蛇绿岩形成于晚寒武世-早奥陶世,并且该年龄与西准噶尔和布克赛尔-洪古勒楞蛇绿岩、塔尔巴哈台蛇绿岩的形成时代相近,为新疆北部及邻区古生代构造格局的重建以及东、西准噶尔构造对比连接提供了重要信息(Wang et al., 2003; 张元元和郭召杰, 2010)。因此扎河坝-阿尔曼太蛇绿混杂岩带及相关断裂带成为了近年来研究新疆北部以及古亚洲洋构造演化的重要窗口。
![]() |
图 1 北疆构造单元划分图及蕴都卡拉地区地质简图 (a)-北疆构造单元划分图(据Chen and Jahn, 2004修改); (b)-蕴都卡拉地区晚古生代地层和侵入体分布图(据新疆维吾尔自治区地质局, 1971修改①); (c)-蕴都卡拉地区晚古生代地层柱状图及构造地层特征; (d)-蕴都卡拉地区石炭系地质剖面示意图 Fig. 1 Tectonic subdivision of North Xinjiang and simplified geological map of the Yundukala area, East Junggar (a)-tectonic subdivision of northern Xinjiang (modified after Chen and Jahn, 2004); (b)-the distribution of Late Paleozoic strata and plutons in the Yundukala area; (c)-the schematic Late Paleozoic stratigraphic column and tectonostratigraphy in the Yundukala area; (d)-the schematic diagram of geological section for Carboniferous Formation in the Yundukala area |
① 新疆维吾尔自治区地质局.1971. 1:20万恰库尔特图幅区域地质矿产报告
扎河坝坳陷是东准噶尔的一个重要的构造单元,其南部紧邻扎河坝-阿尔曼太缝合带(图 1b)。古生代火山岩在东准噶尔出露广泛(梅厚钧等, 1994; 于学元等, 1995),而在扎河坝坳陷地区主要发育泥盆-石炭纪的中基性的玄武岩、玄武安山岩和安山岩。该区发育的泥盆-石炭系地层从老到新为中泥盆统托让格库都克组(D2t) 和蕴都卡拉组(D2w),上泥盆统卡希翁组(D3k) 和江孜尔库都克组(D3j),以及之上的石炭-二叠系地层,这其中包括南明水组(C1n) 和巴塔玛依内山组(C2b)(图 1c)。中泥盆统托让格库都克组最老的火山岩地层,包括三个亚组。但本区仅出露上亚组,主要为火山碎屑岩并夹有少量的灰岩和含铁硅质岩。近年来,在东准噶尔扎河坝地区泥盆纪至石炭纪火山岩的研究中取得了许多新的成果(Wang et al., 2003; Zhang et al., 2008, 2009; 李锦轶, 1995; 许继峰等, 2001; 简平等, 2003; 张海祥等, 2004; 袁超等, 2006; 龙晓平等, 2006; 张招崇等, 2007; 张元元等, 2009)。托让格库都克组地层中发现的埃达克岩和富铌玄武岩(许继峰等, 2001; 张海祥等, 2004) 表明该区中泥盆世可能处于与消减带有关的构造环境。在托让格库都克组之上为中泥盆统蕴都卡拉组,卡希翁组和江孜尔库都克组(三者未见明显的接触关系), 主要由玄武岩、安山岩以及火山碎屑岩组成,局部可见灰岩透镜体。Zhang et al. (2008)系统的研究了该区泥盆系苦橄岩和相关熔岩,认为研究区在泥盆纪处于岛弧环境,而早石炭世可能经历了弧后盆地的演化,并于晚石炭世进入碰撞造山阶段(Zhang et al., 2009)。由此看来,研究区泥盆纪的洋壳俯冲构造背景基本已经被多数学者所认可。然而,对于扎河坝地区石炭系地层的构造属性和洋陆转换的时限仍存在分歧:部分学者认为扎河坝地区石炭系原巴塔玛依内山组火山岩形成于后碰撞伸展环境(张招崇等, 2007; 张元元等, 2009),而另有学者认为该火山岩形成于俯冲消减带(龙晓平等, 2006)。东准噶尔分布有3条富碱花岗岩带,从北向南依次沿额尔齐斯-玛因鄂博断裂,乌伦古大断裂和克拉美丽大断裂呈北西向展布(忻建刚等, 1995; 刘家远等, 1999)。扎河坝坳陷就位于乌伦古大断裂的东部延长线上,Han et al.(1997)对该带中的富碱花岗岩开展了详细的研究工作,并提出了地壳岩石部分熔融、幔源岩浆高度分异等不同的成岩模型。然而对该坳陷的石炭-二叠系火山岩构造属性的研究相对薄弱,而且对于该区广泛发育的石炭系地层缺乏精确的年代学约束。
我们在扎河坝坳陷恰库尔特西部乌伦古河南岸区域地质调查表明发现(图 1d),石炭系地层不整合覆盖在泥盆系之上,以互层的玄武岩和流纹岩为主。南明水组上亚组为灰色-绿灰色砂岩、凝灰质砂岩,夹安山玢岩、凝灰角砾岩、凝灰岩(图 2a); 下亚组为紫色、灰绿色凝灰岩夹安山玢岩、沉凝灰岩。地层受到区域性挤压,多发育褶皱和劈理构造(图 2c),甚至部分地层产状近直立(图 2b),后期大量的南东-北西向的辉绿岩脉和花岗岩脉侵入下石炭统地层中(图 2d, e)。上石炭统巴塔玛依内山组不整合于南明水组之上,主要为一套灰色-暗紫灰色凝灰角砾岩、角砾熔岩、安山玢岩、玄武岩、辉绿岩、流纹岩、凝灰岩、火山灰凝灰岩,偶夹凝灰质砂岩和酸性角砾岩等。在构造上,延续了下石炭统的挤压背景,在火山碎屑岩中发育逆冲推覆构造(图 2g),并多见共轭剪节理(图 2f)。与下石炭统不同的是,该组火山岩出露极为广泛。玄武岩-安山岩-流纹岩具有较好的共生关系(图 2i):玄武岩和安山岩均呈灰色,不易分辨;流纹岩呈浅红色,具流纹构造,其位于中基性火山岩之上,并多与玄武岩共生(图 2h, j)。苏都库都克组以平行不整合与巴塔玛依内山组之上,主要为一套泥质粉砂岩、中砾砂岩,黄色中酸性火山灰沉凝灰岩,夹沉凝灰角砾岩及多层斑脱岩,砂岩中间夹煤层,含生物化石。该区还存在不完整的蛇绿岩套组合。巴塔玛依内山组在1:20万恰库尔特幅区调报告将其划为石炭系。前人对本区原巴塔玛依内山组发育的玄武岩已开展过研究(龙晓平等, 2006; 张招崇等, 2007; 张元元等,2009),整体上虽然已经积累了比较丰富的资料,但是由于岩体众多,而且岩性复杂,分布又十分广泛,而对于原巴塔玛依内山组的流纹岩,研究程度很低,缺乏相关的研究记录。蕴都卡拉地区石炭系流纹岩呈浅红色位于基性熔岩之上,尽管表面因暴露地表而遭受蚀变,但流纹构造特征仍很明显,其上覆围岩为凝灰砂岩,地层总体向南东倾斜,并以火山岩为主体(图 1d),我们对原巴塔玛依内山组流纹岩开展了年代学研究,揭示它的大致年龄在276.0~279.8Ma,表明其形成于早二叠世晚期。因此,深入分析该岩体的形成时代、地球化学特征以及成岩背景,对于探讨扎河坝地区晚古生代的构造环境具有重要意义。
![]() |
图 2 东准蕴都卡拉地区石炭系地层的野外地质特征 Fig. 2 The field geological characteristics of Carboniferous strata in the Yundukala area |
研究样品采自扎河坝地区蕴都卡拉村东南部乌伦古河南岸的原巴塔玛依内山组火山岩(图 1b),主要为灰色玄武岩以及肉红色流纹岩。玄武岩的斜长石斑晶明显,基质中长石为短柱状,岩石中镁铁质矿物多发生绿泥石化;流纹岩呈肉红色,块状构造。表面风化较严重,发育气孔和杏仁构造,中间可见有深灰色基性块状捕虏体,基性岩块有浅灰色的暗化边。流纹岩显微镜下特征显示(图 3a-d),岩石具有典型的流纹构造,斑晶的碱性长石表面不干净,镜下多见联斑结构(图 3c, d),长石发育颗粒较大,直径近1mm,在正交偏光镜下,碱性长石出现明显的网状消光现象(图 3a, b)。基质由隐晶质和长石石英微晶各自组成条带,相间排列成流纹构造,遇到斑晶则绕过,长石多发生了绢云母化。此外,薄片中也发育明显的微裂隙,穿切着早期形成石英和长石颗粒,显示了后期构造运动对该流纹岩体的改造作用。另外,部分样品镜下具有珍珠构造,呈玻基少斑结构,斑晶为石英、透长石(Sa),基质由淡黄-褐色的火山玻璃组成,并且具有清晰的珍珠裂理(图 3e, f),这种珍珠岩是火山喷发过程中急剧冷却条件下的酸性岩。少量样品的镜下视野中未见到斑晶,基质由细小的长英质和少量的玻璃质组成,呈现霏细结构。
![]() |
图 3 东准蕴都卡拉地区巴塔玛依内山组酸性火山岩的岩相学特征 (a、c、e) 为单偏光;(b、d、f) 为正交偏光.Kf-钾长石; Af-碱性长石; Q-石英; Sa-透长石 Fig. 3 Petrography features of felsic volcanic rocks from Batamayineishan Formation in the Yundukala area Kf-K-feldspar; Af-alkali feldspar; Q-quartz; Sa-sanidine |
样品在分析前进行显微镜下矿物组成与结构观察,挑选未蚀变、风化的样品作进一步分析。适合分析的全岩样品手工粗碎至1~2cm,挑选出大约100g,用无污染刚玉碎样机粉碎至200目。每个样品缩分出两份准备进行岩石主微量组成分析。岩石的主量、微量和稀土元素分析是在中国地质大学(北京) 测试中心测试完成的。主量元素测试是在美国Leeman公司生产的PS-950型等离子发射光谱仪上进行。微量元素测定在美国安捷伦公司生产的Agilent7500a型离子质谱仪上进行,REE与其他微量元素分析样品由带钢套的聚四氟乙烯封溶样罐溶解样品。分析过程中使用美国地质调查局标样AGV2和中国地质大学测试中心岩石标样R1和R2进行分析质量监控。分析数据误差:Ni、Co、Cr、Sc介于10%~15%,其他元素小于10%。
锆石的SHRIMP U-Pb年龄是在中国地质科学院北京离子探针中心远程实验室SHRIMP-II型离子探针仪器内测定的。将样品清洗干净后,烘干、粉碎,先按常规方法分选锆石,最后在双目镜下人工挑纯。将样品锆石和RSES标样锆石(TEM,417Ma) 一起在玻璃板上用环氧树脂固定,抛光到暴露出锆石的中心面,用反光和透光照相,然后镀金,用阴极发光(CL) 照相,根据锆石成因类型,确定测点的位置,避开裂纹和包裹体,然后用高灵敏度二次离子探针对所选的点进行分析。详细的实验流程和原理参考Williams (1987)和宋彪等(2002)。数据处理过程中应用实测204Pb校正锆石中的普通铅。单个数据点的误差均为1σ,采用年龄为206Pb/238U年龄,其加权平均值为95%的置信度。
锆石原位Lu-Hf同位素是在西北大学大陆动力学国家重点实验室ICP-MS仪器上测试完成的。锆石原位Lu-Hf同位素测定用176Lu/175Lu=0.02669(Bievre and Taylor, 1993) 和176Yb/172Yb=0.5886;(Chu et al., 2002) 进行同量异位干扰校正计算测定样品的176Lu/177Hf和176Hf/177Hf比值。在样品测定期间,对标准参考物质91500和GJ-1进行分析,一方面进行仪器状态监控,另一方面以此来对样品进行校正。分析获得锆石91500的176Hf/177Hf=0.282315±0.000016(n=26, 2σ),标样GJ-1的176Hf/177Hf=0.282039±0.000014(n=16, 2σ),标样MON-1的176Hf/177Hf=0.282735±0.00002(n=77, 2σ),分别与推荐值0.282307±0.000036(2σ)(Wu et al., 2006) 和0.282015±0.000019(2σ)(Elhlou et al., 2006) 吻合的很好。εHf的计算采用176Lu衰变常数为1.865×10-11yr (Scherer et al., 2001),球粒陨石现今的176Hf/177Hf=0.282772、176Lu/177Hf=0.0332(Blichert-Toft and Albarede, 1997);Hf亏损地幔模式年龄(tDM) 的计算采用现今的亏损地176Hf/177Hf=0.28325和176Lu/177Hf=0.0384 (Vervoort and Blichert-Toft, 1999)。Hf同位素单阶段模式年龄tDM以亏损地幔为参考计算。
4 样品分析结果 4.1 火山岩锆石SHRIMP U-Pb年龄蕴都卡拉火山岩样品的锆石形态以短柱状为主,多为浅黄色、无色的透明晶体,长度变化于80~120μm之间,晶体形态自形程度较高,多集中在100μm左右,长宽比多数介于1:1~3:1之间。我们对上石炭统巴塔玛依内山组地质剖面中的3个火山岩样品(K28-5-1,K28-16-1,K28-18-1) 进行了锆石SHIMP U-Pb年龄测试。阴极发光图像(图 4) 显示大部分锆石具有较为典型的岩浆振荡环带,个别锆石内部含有少量暗色包裹体。通过透射光、反射光以及阴极发光对比研究,分别对每个火山岩样品进行了锆石SHRIMP U-Pb分析,锆石SHRIMP U-Pb分析结果列于表 1。
![]() |
图 4 东准噶尔蕴都卡拉流纹岩锆石的CL图像、SHRIMP U-Pb和Lu-Hf测点位置 小圈代表锆石年龄点;大圈代表Lu-Hf同位素测点 Fig. 4 Representative cathodoluminescence images, SHRIMP U-Pb and Lu-Hf analysis spots of the zircons Small circles are zircon SHRIMP U-Pb dating spots, and big dash circles are Lu-Hf analysis spots |
![]() |
表 1 蕴都卡拉流纹岩SHRIMP U-Pb年龄分析结果 Table 1 Zircon SHRIMP U-Pb analysis data of rhyolite in Yundukala area |
流纹岩样品K28-5-1:其锆石的U含量介于113×10-6~907×10-6之间,Th含量为62×10-6~492×10-6,Th/U比值为0.36~0.69,均大于0.1,表明锆石为岩浆成因。图 4中显示,12个测点中有一个点年龄偏低,206Pb/238U年龄为262.1Ma,可能是铅的丢失造成的。其余11个点基本给出一致的206Pb/238U年龄:273~288Ma。在锆石SHRIMP U-Pb年龄谐和图上成群分布(图 5),几乎全部集中在一点上,11颗锆石的206Pb/238U加权平均年龄为279.8±2.5Ma (MSDW=1.4)。
![]() |
图 5 蕴都卡拉流纹岩锆石SHRIMP U-Pb年龄谐和图 Fig. 5 Zircon SHRIMP U-Pb concordia diagrams of rhyolite |
流纹岩样品K28-16-1:其锆石的U含量介于137×10-6~326×10-6之间,Th含量为51×10-6~214×10-6,Th/U比值为0.34~0.66,均大于0.1,显示为岩浆锆石。图 4中显示,12个测点中有一个年龄偏高(Spot 2.2),206Pb/238U年龄为288Ma,可能是分析测试过程中铅的混染造成的,其余的11个测点的年龄接近,206Pb/238U年龄范围为270~280Ma,在锆石SHRIMP U-Pb年龄谐和图上成群分布(图 5),几乎全部集中在一点上,这11个锆石的206Pb/238U加权平均年龄为276.0±3Ma (MSDW=1.3)。
流纹岩质样品K28-18-1:其锆石的U含量介于129×10-6~399×10-6之间,Th含量为43×10-6~267×10-6,Th/U比值为0.39~0.67,均大于0.1,不同于变质锆石(小于0.1) 的Th/U比值,显示为岩浆锆石。图 4中显示,12个测点中有两个点年龄偏高(2.1、6.1),206Pb/238U年龄分别为288.1Ma和285Ma。其余10个点基本给出一致的206Pb/238U年龄:268~281Ma。在锆石SHRIMP U-Pb年龄谐和图上成群分布(图 5),去掉年龄偏高的两个点后,几乎其余10个测点全部集中在一点上,锆石的206Pb/238U加权平均年龄为276.2±3.1Ma (MSDW=1.7)。
由于上述三个样品的采样位置比较接近,并且其测得的年龄值均在276.0~279.8Ma之间,测试结果也非常接近,可以代表所测火山岩的绝对年龄。表明这套火山岩并非前人所认为的石炭纪,而是早二叠世晚期火山活动的产物。
4.2 Lu-Hf同位素组成蕴都卡拉3个早二叠世火山岩样品的所有锆石具有低的Lu/Hf值,介于0.001024到0.002546之间(均值0.001820)(表 2),大部分小于0.002,表明锆石在形成后具有极低量的放射性成因Hf积累。样品K28-5-1的12个锆石测点的(176Hf/177Hf)i值为0.282930~0.283023,εHf(t) 值为11.5~14.6(图 6、表 2),地壳模式年龄(tDMC) 为348~503Ma,与Hf模式年龄(337~464Ma) 接近。样品K28-16-1的12个锆石分析点的(176Hf/177Hf)i值为0.282925~0.283016,εHf(t) 值为11.1~14.4(图 6、表 2),地壳模式年龄(tDMC) 为351~517Ma,与Hf模式年龄(338~478Ma) 接近。样品K28-18-1的11个锆石分析点的(176Hf/177Hf)i值为0.282901~0.282999,εHf(t) 值为10.3~13.7(图 6、表 2),地壳模式年龄(tDMC) 为389~557Ma,与Hf模式年龄(371~510Ma) 接近。蕴都卡拉3个早二叠世流纹岩样品的所有锆石的εHf(t) 与西准噶尔地区花岗岩(Geng et al., 2009; 唐红峰等, 2008) 和克拉美丽地区石炭系流纹岩(Su et al., 2012) 的εHf(t) 相近。
![]() |
表 2 蕴都卡拉流纹岩锆石Lu-Hf同位素分析结果 Table 2 Lu-Hf isotope analysis results of zircons from rhyolites in Yundukala area |
![]() |
图 6 蕴都卡拉流纹岩的锆石Hf同位素组成 每个锆石的εHf(t) 根据样品各自的年龄计算; 准噶尔花岗岩εHf(t) 数据来自Geng et al., 2009; 唐红峰等, 2008; 克拉美丽石炭系流纹岩εHf(t) 数据来自Su et al., 2012 Fig. 6 Zircon Hf isotopic composition of rhyolites in Yundukala area The εHf(t) of each zircon was calculated at its SHRIMP U-Pb age; the εHf(t) values of granites from western and eastern Junggar terrane after Geng et al. (2009) and Tang et al. (2008); the εHf(t) values of Carboniferous rhyolites from Karamaili area after Su et al. (2012) |
扎河坝流纹岩成分分析结果列于表 3中。从表中可以看到,岩石样品烧失量介于1.18%~5.05%之间,平均为2.36%,表明火山岩可能遭受过不同程度的蚀变或轻微的变质。岩石的蚀变会造成火山岩中一些活动元素含量的变化(如K、Rb、Cs)。然而,Nb、Y、Zr等非活动微量元素受蚀变和变质作用的影响较小,对于碱性和亚碱性系列火山岩,其Nb/Y值的变化范围不大,尤其对于中酸性火山岩,其碱性和非碱性类型的判别主要取决于Nb/Y值,而较少受到SiO2含量变化的影响(Winchester and Floyd, 1997)。因此在本文的分析中,微量元素尽可能采用相对非活动的高场强元素及其比值来提供地球化学约束。
![]() |
表 3 蕴都卡拉流纹岩全岩主量(wt%)、微量(×10-6) 元素分析结果 Table 3 Major elements (wt%) and trace elements (×10-6) analyses of rhyolite |
蕴都卡拉流纹岩具有高的SiO2含量,除两个样品(K28-18-1,SiO2=64.43%;K28-13-2,SiO2=60.61%) 的SiO2含量低于70%以外,其它样品SiO2含量较集中(71.04%~78.07%)。样品Al2O3含量为10.26%~15.32%,K2O+Na2O含量为7.05%~9.28%,K2O/Na2O为0.51~4.39。在Nb/Y-Zr/TiO2×0.0001图解中岩石样品投在流纹岩和流纹质英安岩区(图 7a),并显示中-高钾亚碱性特征(图 7a, b)。样品属于弱过铝质,铝饱和指数A/CNK为0.95~1.22(图 7c)。另外,样品具有低含量的CaO (0.25%~2.79%)、Fe2O3T(0.70%~6.32%) 和MgO (0.13%~1.31%),高的K2O+Na2O-CaO含量(4.85%~8.90%) 和Fe2O3T/(Fe2O3T+MgO) 比值(0.75~0.92),按照Frost et al. (2001)的花岗岩分类原则,这些岩石样品属于铁质钙碱性系列岩石,其上述特征与西天山达巴特A型花岗岩相似(唐功建等, 2008)。蕴都卡拉流纹岩具有高的稀土总量(112×10-6~210×10-6),轻重稀土分馏不明显((La/Yb)N=5.89~9.13),不同程度的负铕异常(δEu=0.27~0.78)(图 8a)。原始地幔标准化的蛛网图上显示(图 8b),样品整体富集大离子亲石元素Rb、Th、U,高场强元素Zr和Hf,亏损Ba、Sr,Eu。并且流纹岩高场强元素Nb=10.5×10-6~21.0×10-6,Ta=0.82×10-6~1.46×10-6,Zr=128×10-6~505×10-6,La/Yb和Ba/La微量元素比值分别介于8.71~15.39、12.94~30.40之间,以上特征与共生的晚古生代玄武岩(表 3)(张元元等, 2009) 主微量元素特征并未呈现出良好的相关性(Harker图解略),而是展现两种端元组分特征。
![]() |
图 7 蕴都卡拉流纹岩的Zr/TiO2-Nb/Y图解(a, 据Winchester and Floyd, 1977)、K2O-Na2O图解(b) 和A/NK-A/CNK图解(c) Fig. 7 Zr/TiO2-Nb/Y (a, after Winchester and Floyd, 1977), K2O-Na2O (b) and A/NK-A/CNK (c) diagrams of rhyolite in the Yundukala area |
![]() |
图 8 蕴都卡拉流纹岩球粒陨石标准化稀土元素配分图(a, 据Sun and McDonough, 1989) 和原始地幔标准化微量元素蛛网图(b, 据Sun and McDonough, 1989) Fig. 8 Chondrite normalized REE patterns (a, normalization values after Sun and McDonough, 1989) and trace element (b, normalization values after Sun and McDonough, 1989) diagram of rhyolite in Yundukala area |
本文在东准噶尔扎河坝坳陷蕴都卡拉地区3个流纹岩中获得的锆石高精度SHRIMP U-Pb年代学数据一致表明,蕴都卡拉原上石炭统巴塔玛依内山组流纹岩形成于276.0~279.8Ma,属于早二叠世岩浆活动的产物。前人曾对扎河坝煤矿附近该套层系的流纹岩进行了SHRIMP锆石U-Pb定年,结果为275.6±2.8Ma (张元元等, 2009),这和我们本次定年结果相一致。在东准噶尔,小红山(296Ma,韩宝福等, 2006)、也布山(268Ma, 韩宝福等, 2006)、别拉格库都克(273, 韩宝福等, 2006)、白坡南(278Ma, 郭芳放等, 2008)、二台北(279Ma, 童英等, 2010)、大加山(284Ma, 毛启贵等, 2008)、哈旦逊杂岩体(289.5Ma, 周刚等, 2009) 和红土井子(300Ma, Hopson et al., 1989) 地区,均发现了与蕴都卡拉流纹岩浆活动(276.0~279.8Ma) 同期的岩浆作用记录。另外,在扎河坝地区也广泛发育早二叠世或更晚的基性岩脉(徐芹芹等, 2008; 周晶等, 2008)。已报道的资料表明,与蕴都卡拉流纹岩同期的岩浆也同样分布于三塘湖盆地(284.3Ma, 未发表数据)、巴里坤盆地(292.6Ma, 未发表数据)、准噶尔盆地腹部陆西地区(289~297Ma, 未发表数据)、西准地区(Zhou et al., 2008; 苏玉平等, 2006; 魏荣珠, 2010; 宋彪等, 2011; 尹继元等, 2012) 和西天山地区(徐学义等, 2006; 王博等, 2007; 唐功建等, 2008)。综上所述,已有年代学数据表明北疆在早二叠世经历了大规模的岩浆活动事件,即从东疆地区到西准噶尔乃至西天山,均发育与蕴都卡拉流纹岩岩浆活动同期的岩浆事件,并且持续整个二叠纪甚至更晚,幔源岩浆活动以及壳幔相互作用(如基性岩脉,花岗岩及暗色包体等) 明显增强。
5.2 岩石类型和成因最早Loiselle and Wones (1979)将A型花岗岩定义为碱性(alkaline)、贫水(anhydrous) 和非造山(anorogenic) 的花岗岩,它一般是碱过饱和而铝不饱和。但近年来的研究,A型花岗岩不仅包括碱性岩类,还扩大到钙碱性、弱碱-准铝、弱过铝甚至强过铝质岩石(袁忠信, 2001; 廖忠礼等, 2006; 李鹏春等, 2007)。同时,一些流纹岩也显示出A型花岗岩的特征,一般认为它们是A型花岗岩喷出相的产物(Li et al., 2002; Li et al., 2005)。蕴都卡拉流纹岩具有A型花岗岩的特征:(1) 高硅富碱,贫镁,具有高的Fe2O3T/(Fe2O3T+MgO);(2) 富集大离子亲石元素(Rb、Th、U),高场强元素Zr和Hf,亏损Ba、Sr、Eu (图 8b),富Ga,10000Ga/Al值变化于1.23~3.05之间。在Whalen et al.(1987)的花岗岩分类图解中,本区流纹岩总体落在A型花岗岩区(图 9),与铝质A型花岗岩相一致(图 7c),其中有两个样品的Nb、Zr、K的含量低于A型花岗岩,可能是地壳混染或蚀变作用造成的。一般来说,高硅的铝质A型花岗岩与高分异的S型或I型花岗岩具有相似的特征(King et al., 1997)。蕴都卡拉流纹岩样品具有低的P2O5(0.05%~0.36%,平均0.11%) 和高的Na2O (1.72%~5.07%),而且随着分异SiO2的增加,P2O5含量减小,区别于高分异的S型花岗岩(King et al., 1997)。铝质A型花岗岩与S型花岗岩富铝的原因存在本质差别,其低Ti、P的特点反映岩浆经历了高程度的钛铁矿和磷灰石等矿物的结晶分异(Thirlwall et al., 1994)。另外,样品具有高的Fe2O3T含量(>1)、Ga/Al和(Na2O+K2O)/CaO (3~49) 比值,相对低的Rb含量(52×10-6~139×10-6),锆石饱和温度也较高(781~910℃), 以上特征均不同于高分异的I型花岗岩。因此,蕴都卡拉流纹岩不是分异的I或S型花岗岩,也不同于一般的碱性A型流纹岩,而是典型的铝质A型流纹岩。
![]() |
图 9 蕴都卡拉流纹岩的Nb、Zr、K2O/MgO-10000Ga/Al和(Na2O+K2O)/CaO-Zr+Nb+Ce+Y判别图解(据Whalen et al., 1987) Fig. 9 Nb, Zr, K2O/MgO-10000Ga/Al and (Na2O+K2O)/CaO-Zr+Nb+Ce+Y discrimination diagrams of rhyolite in Yundukala area (after Whalen et al., 1987) |
已有的研究认为,A型花岗岩形成于地幔玄武质岩浆高度结晶分异(Han et al., 1997; Mushkin et al., 2003),或壳内中基性岩或变质岩部分熔融(Collins et al., 1982; Clemens et al., 1986; Whalen et al., 1987; King et al., 1997; Wu et al., 2002),再或形成于壳幔物质混合(Konopelko et al., 2007; Mingram et al., 2000; Yang et al., 2006)。在野外中蕴都卡拉流纹岩与玄武岩密切共生,未见大量典型的安山岩存在,可以排除其形成于地幔玄武岩浆高度结晶分异的可能性。一般来说,基性下地壳在任何程度下熔融所产生的熔体的Mg#均低于0.4。蕴都卡拉早二叠世流纹岩样品的Mg#较低(0.18~0.42),明显低于幔源熔体(>0.4, Rapp and Watson, 1995; Chen and Arakawa, 2005);流纹岩中绝大多数样品具有明显的负铕异常(δEu=0.27~0.82),Th/La比值(0.12~0.43) 与陆壳(Th/La=0.3, Plank, 2005) 的特征相近;另外样品具有低的Nb含量(10.5×10-6~21.0×10-6),Nb/La (0.39~0.73) 和(Ce/Pb)PM(0.33~0.91) 比值,Th>Ta,La>Ta以及Nb-Ta亏损,以上特征与塔里木北缘壳源(Tian et al., 2010) 流纹岩相似。此外,锆石的Hf同位素数据显示,流纹岩具有正的εHf(t)(10.3~14.6)(图 6),对应的锆石Hf同位素地壳模式年龄为348~557Ma,其与Hf模式年龄接近,这表明它们的源区物质主要为新生地壳,也表明他们的源区有大量地幔物质的参与,但这并不能表明这些地幔物质就是直接来源于软流圈地幔,因为目前的实验岩石学证明地幔橄榄岩和辉石岩发生部分熔融作用并不能形成花岗质岩浆。因此这套具有正的εHf(t) 和年轻的Hf模式年龄(<510Ma) 流纹岩样品可能起源于早古生代新生的下地壳物质的重熔作用。
5.3 蕴都卡拉A型流纹岩的构造意义蕴都卡拉早二叠世酸性岩明显具有铝质A型流纹岩的特征。一般来说,铝质A型花岗岩的产出能够早指示一定的构造意义。然而目前北疆大范围出露的A型花岗岩通常被认为产出于裂谷或稳定大陆块体内的非造山环境(Loiselle and Wones, 1979; Whalen et al., 1987)。Eby (1992)根据地球化学特征将A型花岗岩分为A1和A2型,并认为A1型是地幔来源,且侵位于大陆裂谷或板内的构造环境,而A2型则来源于大陆地壳或板内下地壳,主要形成于后碰撞环境。蕴都卡拉流纹岩在Nb-Y-Ce和Rb/Nb-Y/Nb判别图解中落入A2区(图 10)。相比之下,样品在Nb-SiO2构造环境判别图中显示其构造背景兼具板内和火山弧特征(图 11a)。前人在扎河坝地区泥盆系中识别了钾质玄武岩(袁超等, 2006)、埃达克岩和富铌玄武岩(许继峰等, 2001; 张海祥等, 2004),充分表明了本区泥盆纪处于与洋壳俯冲有关的构造环境。然而,目前还没有石炭系地层的年代学报道。仅从现有的地层和沉积特征来看,早石炭世南明水组主要沉积类型为三角洲相、滨海相、海岸平原相(庞绪勇等, 2009),该组玄武岩具有高TiO2拉斑玄武岩的特征,指示早石炭世本区可能处于弧后盆地演化阶段(Zhang et al., 2009),并最终碰撞于晚石炭世,形成科迪勒拉型造山带(Goldfarb et al., 2003)。由此看来,石炭纪可能是扎河坝地区重要的洋陆转化阶段。那么早二叠世,扎河坝地区很可能已经进入碰撞后伸展阶段,研究区的玄武岩Ba/La比值多小于30(张元元等, 2009),均低于与板块俯冲作用有关的岛弧火山岩的Ba/La值(大于30)(Ajaji et al., 1998),更接近于板内玄武岩,其与共生的流纹岩可能为早二叠世后碰撞岩石圈伸展背景下的的产物。在Rb-Y+Nb图解中(图 11b),所有样品落入后碰撞区域,进一步证实了流纹岩的后碰撞伸展环境。另外,按照张旗等(2010)对花岗岩的最新分类标准(图 11c),本文样品总体类似于南岭型花岗岩(相当于A型花岗岩),仅有少量落入南岭型和浙闽型花岗岩的交汇区域,表明早二叠世扎河坝地区的处于地壳拉张减薄阶段,其厚度小于30km。
![]() |
图 10 蕴都卡拉流纹岩的Nb-Y-Ce (a) 和Rb/Nb-Y/Nb (b) 判别图解(据Eby, 1992) Fig. 10 Nb-Y-Ce (a) and Rb/Nb-Y/Nb (b) discrimination diagrams of rhyolite in Yundukala area (after Eby, 1992) |
![]() |
图 11 蕴都卡拉流纹岩微量元素构造判别图解 (a)-火山岩Nb-SiO2构造环境判别图(据Pearce and Gale, 1977); (b)-火山岩Rb-(Y+Nb) 构造判别图解(据Pearce et al., 1984); (c)-花岗岩Sr-Yb分类图解(据张旗等, 2010) Fig. 11 Tectonic setting discrimination diagram with trace elemental plots of rhyolite in Yundukala area (a)-tectonic discrimination diagram of Nb-SiO2 for volcanic rocks (after Pearce and Gale, 1977); (b)-tectonic discrimination diagram of Rb-(Y+Nb) for volcanic rocks (after Pearce et al., 1984); (c)-tectonic discrimination diagram of Sr-Yb for granites (after Zhang et al., 2010) |
中亚造山带的地壳生长方式是近年来热议的问题。东准噶尔向南逐渐变年轻的火山岩(Xiao et al., 2008; 毛启贵等, 2008) 和碎屑沉积岩(Long et al., 2012) 表明至少存在显著的地壳侧向增生现象。然而,大规模出露的具有正的εNd(t) 和εHf(t) 的花岗岩在造山过程中表现出地壳垂向生长的特征。简平等(2003)对扎河坝蛇绿岩的层状辉长岩和斜长岩中锆石的SHRIMP测年分析得出了489Ma和481Ma的年龄,表明扎河坝蛇绿岩形成于奥陶纪,并在晚泥盆世-早石炭世拼贴到阿尔泰地体南缘,形成科迪勒拉型俯冲边缘(Windley et al., 2002; Xiao et al., 2004)。而其南部的克拉美丽洋的闭合时限利用年代学和古生物学的方法控制在早石炭世的维宪阶(李锦轶等, 1990; 李锦轶, 1995; 舒良树和王玉净, 2003),同时,克拉美丽蛇绿岩带被石炭纪晚期的花岗岩切穿(李锦轶, 1995),该区发育晚石炭世带有暗色包体的A型花岗岩,限定了克拉美丽地区后碰撞的起始时间不晚于晚石炭世(Yang et al., 2011)。尽管在扎河坝地区北部新发现的青河蛇绿岩杂岩中辉长岩的锆石SHRIMP U-Pb年龄显示为352Ma (吴波等, 2006),表明本区在早石炭世准噶尔洋存在,但在区域上代表北准噶尔洋闭合的额尔齐斯-斋桑碰撞带发育于泥盆-石炭纪,上石炭统的陆相磨拉石建造不整合于泥盆-石炭系地层之上,说明此时洋盆已闭合,该带两侧的石炭-二叠系花岗岩多为碱性花岗岩或碱性岩,进一步限定了洋盆的闭合时间。后碰撞期是俯冲碰撞期和板内期的过渡阶段,岩石圈处于伸展的背景而且壳幔相互作用强烈,常见大规模的岩浆活动(Liegeois, 1998)。目前,北疆多数地区的上石炭统-二叠系玄武岩均揭示了伸展构造环境(赵泽辉等, 2006; 郝建荣等, 2006; 周涛发等, 2006; 谭绿贵等, 2006, 2007; 吴小奇等, 2009; 李涤等, 2012)。由此可见,在晚石炭世-早二叠世,东准噶尔地区克拉美丽和扎河坝两个主要区域小洋盆已经关闭,乌伦古河流域侵入混杂带中的过碱性花岗岩和碱性花岗岩以及暗色包体可能都形成于后碰撞伸展环境(Han et al., 1997; 李宗怀等, 2004),并同时伴随着超高压变质岩折返事件的发生(牛贺才等, 2007)。
另外,更为重要的是大面积的A型花岗岩反映的后碰撞伸展环境似乎与北疆地区晚古生代增生造山作用存在矛盾。我们认为中亚造山带不断增生的过程中可能同时伴随着侧向和垂向的地壳生长,在不同的地质历史时期地壳生长方式不尽相同。东准噶尔自早古生代的洋壳俯冲以来,侧向增生占地壳生长的主导地位,并自北向南持续增生,一直持续到早石炭世(或稍早)。晚石炭世(或稍早)-二叠纪,随着俯冲带的向南后退,多个块体和岛弧先后拼合到西伯利亚板块边缘,在拼贴过程中发生弧-弧或弧-陆碰撞,而造山后的伸展阶段是研究区大量碱性花岗岩以及基性岩脉的发育期,蕴都卡拉地区早二叠世流纹岩可能形成于弧-弧或弧-陆后碰撞伸展阶段,是前二叠系(或石炭系) 具有岛弧印记的年轻地壳重熔的产物。与同期的基性岩脉、碱性侵入体以及共生的幔源玄武质火山岩共同主要反映了早二叠世地壳的垂向生长。目前尽管在准噶尔地区未明确发现古老地体,但前寒武纪的碎屑锆石在西准噶尔(Shen et al., 2012) 和盆地腹部均有发现。因此中亚增生造山带的结构究竟是不包含古老陆壳贡献的长期、持续的增生(Şengör et al., 1993) 还是短期的多个古老地体的拼合(Mossakovsky et al., 1993) 仍需进一步研究。
6 结论(1) 东准噶尔蕴都卡拉流纹岩的锆石SHRIMP U-Pb年龄为276.0~279.8Ma,揭示其形成于早二叠世晚期。根据目前现有的资料来看,同期的岩浆事件广泛发育整个北疆地区。
(2) 蕴都卡拉流纹岩高硅高碱,高Fe2O3T、Ga/Al,低CaO、MgO,富集大离子亲石元素和高场强元素(Zr、Y),弱亏损Nb-Ta,总体具有A2型铝质花岗岩的特征;所有锆石具有正的εHf(t) 和年轻的地壳模式年龄(<557Ma),可能是年轻的玄武质下地壳在伸展背景下熔融形成的。
(3) 东准噶尔扎河坝地区在早二叠世处于伸展环境,可能与弧-弧或弧-陆碰撞后的伸展机制有关。垂向生长在中亚造山带早二叠世地壳生长过程中占主导地位。
[] | Ajaji T, Weis D, Giret A, Bouabdellah M. 1998. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: Geochemical, isotopic and geochronological evidence. Lithos, 45(1-4): 371–393. DOI:10.1016/S0024-4937(98)00040-1 |
[] | Bievre DP, Taylor PD. 1993. Table of the isotopic compositions of the elements. International Journal of Mass Spectrometry and Ion Processes, 132(2): 149–166. |
[] | Blichert-Toft J, Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243–258. DOI:10.1016/S0012-821X(97)00040-X |
[] | Chen B, Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5): 691–703. DOI:10.1016/S1367-9120(03)00118-4 |
[] | Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307–1320. DOI:10.1016/j.gca.2004.09.019 |
[] | Chen FJ, Wang XW, Wang XW. 2005. Prototype and tectonic evolution of the Junggar basin, northwestern China. Earth Science Frontiers, 12(3): 77–89. |
[] | Chen YJ. 2006. Orogenic-type deposits and their metallogenic model and exploration potential. Geology in China, 33(6): 1181–1196. |
[] | Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574. DOI:10.1039/b206707b |
[] | Clemens JD, Holloway JR, White AJR. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71(3-4): 317–324. |
[] | Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621–635. DOI:10.1029/TC008i003p00621 |
[] | Collins WJ, Beams SD, White AJR, Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. DOI:10.1007/BF00374895 |
[] | Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 |
[] | Elhlou S, Belousova E, Griffin WL, Pearson NJ, O'reilly SY. 2006. Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18): 158. |
[] | Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. DOI:10.1093/petrology/42.11.2033 |
[] | Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 266(3-4): 364–389. DOI:10.1016/j.chemgeo.2009.07.001 |
[] | Goldfarb RJ, Mao JW, Hart C, Wang DH, Anderson E, Wang ZL. 2003. Tectonic and metallogenic evolution of the Altay Shan, northern Xinjiang Uygur Autonomous Region, northwestern China. In: Mao JM, Goldfarb RJ, Seltmann R, Wang DH, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. IAGOD Guidebook Series, London, 10: 17–30. |
[] | Guo FF, Jiang CY, Su CQ, Xia MZ, Xia ZD, Wei W. 2008. Tectonic settings of A-type granites of Shaerdelan area, southeastern margin of Junggar block, Xinjiang, western China. Acta Petrologica Sinica, 24(12): 2778–2788. |
[] | Han BF, Wang SG, Jahn BM, Hong DW, Kagami H, Sun YL. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135–159. DOI:10.1016/S0009-2541(97)00003-X |
[] | Han BF, Ji JQ, Song B, Chen LH, Zhang L. 2006. Late Palezonic vertical growth of continental Crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077–1086. |
[] | Han BF, Guo ZJ, Zhang ZC, Zhang L, Chen JF, Song B. 2010. Age, geochemistry and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geological Society of America Bulletin, 122(3-4): 627–640. DOI:10.1130/B26491.1 |
[] | Han CM, Xiao WJ, Zhao GC, Mao JW, Li SZ, Yan Z, Mao QG. 2006. Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China. Ore Geology Reviews, 28(3): 308–328. DOI:10.1016/j.oregeorev.2005.04.002 |
[] | Han CM, Xiao WJ, Cui B, Mao QG, Zhang JE, Ao SJ. 2006. Major types and characteristics of Late Paleozoic copper deposits in North Xinjiang, Northwest China. Acta Geologica Sinica, 80(1): 74–89. |
[] | Hao JR, Zhou DW, Liu YQ, Xing XJ. 2006. Geochemistry and tectonic settings of Permian volcanic rocks in Santanghu Basin, Xinjiang. Acta Petrologica Sinica, 22(1): 189–198. |
[] | He DF, Zhai GM, Kuang J, Zhang YJ, Shi X. 2005. Distribution and tectonic features of Paleo-uplifts in the Junggar basin. Chinese Journal of Geology, 40(2): 248–261, 304. |
[] | He GQ, Li MS, Liu DQ, Tang YL, Zhou RH. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's Publishing House: 1-437. |
[] | He GQ, Li MS, Jia JD, Zhou H. 2001. A discussion on age and tectonic significance of ophiolite in eastern Junggar, Xinjiang. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 852–858. |
[] | He GQ, Liu JB, Zhang YQ, Xu X. 2007. Keramay ophiolite mélange formed during Early Paleozoic in western Junggar basin. Acta Petrologica Sinica, 23(7): 1573–1576. |
[] | Hopson C, Wen J, Tilton G et al. 1989. Paleozoic plutonism in East Junggar, Bogda Shan, and eastern Tianshan, NW China. EOS Transactions, American Geophysical Union, 70: 1403-1404 |
[] | Jahn BM, Wu FY, Chen B. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh-Earth Sciences, 91(1-2): 181–193. DOI:10.1017/S0263593300007367 |
[] | Jahn BM, Wu FY, Chen B. 2000b. Massive granitoid generation in Central Asian: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82–92. |
[] | Jian P, Liu DY, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ, Tao H. 2003. SHRIMP dating of ophiolite and leucocratic rocks within ophiolite. Earth Science Frontiers, 10(4): 439–456. |
[] | King PL, White AJR, Chappell BW, Allen CM. 1997. Characterization and origin of aluminous A-type granites of the Lachlan Fold Belt, southeastern Australia. Journal of Petrology, 38(3): 371–391. DOI:10.1093/petroj/38.3.371 |
[] | Konopelko D, Beske G, Seltmann R, Eklund O, Belyatsky B. 2007. Hercynian post-collisional A-type granites of the Kokshaal Range Southern Tian Shan, Kyrgyzstan. Lithos, 97(1-2): 140–160. DOI:10.1016/j.lithos.2006.12.005 |
[] | Li CY, Wang Q, Liu XY, Tang YQ. 1982. Explanatory Notes to the Tectonic Map of Asia. Beijing: Cartographic Publishing House: 1-49. |
[] | Li D, He DF, Fan C, Tang Y, Yang XF, Chang QS, Yuan H. 2012. Geochemical characteristics and tectonic significance of Carboniferous basalt in the Karamaili gas field of Junggar Basin. Acta Petrologica Sinica, 28(3): 981–992. |
[] | Li JY, Xiao XC, Tang YQ, Zhao M, Zhu BQ, Feng YM. 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of East Junggar, Xinjiang. Geological Review, 36(4): 305–316. |
[] | Li JY. 1995. Main characteristics and emplacement progresses of the East Junggar ophiolites, Xinjiang, China. Acta Petrologica Sinica, 11(Suppl.): 73–84. |
[] | Li JY, Xiao XC. 1999. Brief reviews some issues of framework and tectonic evolution of Xinjiang crust, NW China. Scientia Geologica Sinica, 34(4): 405–419. |
[] | Li JY, Xiao XC, Chen W. 2000. Late Ordovician continental basement of the eastern Junggar basin in Xinjiang. NW China: Evidence from the Laojunmiao metamorphic complex on the northeast basin margin. Regional Geology of China, 19(3): 297–302. |
[] | Li PC, Chen GH, Xu DR, He ZL, Fu GG. 2007. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in northeastern Hunan Province. Geotectonica et Metallogenia, 31(1): 126–136. |
[] | Li WX, Li XH, Li ZX. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 136(1): 51–66. DOI:10.1016/j.precamres.2004.09.008 |
[] | Li XH, Li ZH, Zhou HW, Liu Y, Pinny PD. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implication for the initial rifting of Rodinia. Precambrian Research, 113(1-2): 135–154. DOI:10.1016/S0301-9268(01)00207-8 |
[] | Li ZH, Han BF, Song B. 2004. SHRIMP zircon U-Pb dating of the Ertaibei granodiorite and its enclaves from eastern Junggar, Xinjiang, and geological implications. Acta Petrologica Sinica, 20(5): 1263–1270. |
[] | Liao ZL, Mo XX, Pan GT, Zhu DC, Wang LJ, Zhao ZD. 2006. Characteristics and implication of the topology of zircons from the peraluminous granites in Tibet. Geotectonica et Metallogenia, 30(1): 63–71. |
[] | Liegeois JP. 1998. Preface some words on the post-collisional magmatism. Lithos, 45(1-4): 15–17. |
[] | Lin KX, Yan CD, Gong WP. 1997. The geochemical characteristics and analysis of tectonic settings of Early Permian volcanic rocks in Santanghu Basin, Xinjiang. Bulletin of Mineralogy, Petrology and Geochemistry, 16(1): 39–42. |
[] | Liu JY, Yu HX, Wu GQ. 1999. Two kinds of alkaline granites in eastern Junggar, Xinjiang and their geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 18(2): 89–94. |
[] | Loiselle MC, Wones DR. 1979. Characteristics and origin of anorogenic granites. Abstract of Papers to be Presented at the Annual Meetings of Geological Society of America and Associated Societies, San Diego, California, November 5-8, 11: 468. |
[] | Long XP, Sun M, Yuan C, Xiao WJ, Chen HL, Zhao YJ, Cai KD, Li JL. 2006. Genesis of Carboniferous volcanic rocks in the eastern Junggar: Constrains on the closure of the Junggar Ocean. Acta Petrologica Sinica, 22(1): 31–40. |
[] | Long XP, Yuan C, Sun M, Safonova I, Xiao WJ, Wang YJ. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21(2-3): 637–653. DOI:10.1016/j.gr.2011.05.015 |
[] | Mao QG, Xiao WJ, Han CM, Yuan C, Sun M. 2008. Late Paleozoic south-ward accretionary polarity of the eastern Junggar orogenic belt: Insight from the Dajiashan and other A-type granites. Acta Petrologica Sinica, 24(4): 733–742. |
[] | Mei HJ, Yang XC, Li SR. 1994. Volacanic rocks of Northwest Xinjiang and their relationship with mineralization. Xinjiang Geology, 12(1): 16–26. |
[] | Miller CF, McDowell SM, Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529–532. DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 |
[] | Mingram B, Trumbull RB, Littman S, Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos, 54(1-2): 1–22. DOI:10.1016/S0024-4937(00)00033-5 |
[] | Mossakovsky AA, Ruzhentsev SV, Samygin SG, Kheraskova TN. 1993. The Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics, 27: 455–473. |
[] | Mushkin A, Navon O, Halicz L, Hartmann G, Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815–832. DOI:10.1093/petrology/44.5.815 |
[] | Niu HC, Shan Q, Zhang HX, Yu XY. 2007. 40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz-magnesitite in Zaheba, eastern Junggar, Xinjiang. Acta Petrologica Sinica, 23(7): 1627–1634. |
[] | Pang XY, Wang Y, Wei W, Xu B. 2009. Sedimentary facies of the Lower Carboniferous Nanmingshui Formation in Fuyun County, Xinjiang and their paleogeography signification. Acta Petrologica Sinica, 25(3): 682–688. |
[] | Pearce JA, Gale GH. 1977. Identification of ore deposition environment from trace elements geochemistry of associated igneous host rocks. Volcanic Process in Ore Genesis. Geological Society of London Special Publications, 7(1): 14–24. DOI:10.1144/GSL.SP.1977.007.01.03 |
[] | Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956 |
[] | Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921–944. DOI:10.1093/petrology/egi005 |
[] | Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931. DOI:10.1093/petrology/36.4.891 |
[] | Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3): 751–763. DOI:10.1016/j.gr.2010.10.004 |
[] | Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683–687. DOI:10.1126/science.1061372 |
[] | Şengör AMC, Natal'in BA, Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299–307. DOI:10.1038/364299a0 |
[] | Shen P, Shen YC, Li XH, Pan HD, Zhu HP, Meng L, Dai HW. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach. Lithos, 140-142: 103–118. |
[] | Shu LS, Wang YJ. 2003. Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Calomel ophiolite, Xinjiang. Geological Review, 49(4): 408–412. |
[] | Song B, Zhang YH, Wan YS, Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26–30. |
[] | Song B, Li JY, Zhang J, Zhu ZX, Wang Y, Xu X. 2011. Zircon SHRIMP U-Pb age of Targen monzogranite in western Junggar, Xinjiang, China: Initial time of left-lateral slip of the Tuoli fault. Geological Bulletin of China, 30(1): 19–25. |
[] | Su YP, Tang HF, Liu CQ, Hou GS, Liang LL. 2006. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 25(3): 175–184. |
[] | Su YP, Zheng JP, Griffin WL, Zhao JH, Tang HJ, Ma Q, Lin XY. 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 22(3-4): 1009–1029. DOI:10.1016/j.gr.2012.01.004 |
[] | Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in ocean basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19 |
[] | Tan LG, Zhou TF, Yuan F, Fan Y, Yue SC. 2006. Geodynamic background of Permian volcanic rocks in the Sawuer region, Xinjiang. Journal of Hefei University of Technology (Natural Science), 29(7): 868–874. |
[] | Tan LG, Zhou TF, Yuan F, Fan Y, Yue SC. 2007. Mechanism of formation of the Premian volcanic rocks in Sawu'er area, Xinjiang: Constraints from rare earth elements. Journal of the Chinese Rare Earth Society, 25(1): 95–100. |
[] | Tang GJ, Chen HH, Wang Q, Zhao ZH, Wyman DA, Jiang ZQ, Jia XH. 2008. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan. Acta Petrologica Sinica, 24(5): 947–958. |
[] | Tang HF, Zhao ZQ, Huang RS, Han YJ, Su YP. 2008. Primary Hf isotopic study on zircons from the A-type granites in eastern Junggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28(4): 335–342. |
[] | Thirlwall MF, Smith TE, Graham AM, Theodorou N, Hollings P, Davidson JP, Arculus RJ. 1994. High field strength element anomalies in arc lavas: Source or process?. Journal of Petrology, 35(3): 819–838. DOI:10.1093/petrology/35.3.819 |
[] | Tian W, Campbell IH, Allen CM, Guan P, Pan WQ, Chen MM, Yu HJ, Zhu WP. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160(3): 407–425. DOI:10.1007/s00410-009-0485-3 |
[] | Tong Y, Wang T, Hong DW, Han BF, Zhang JJ, Shi XJ, Wang C. 2010. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance. Acta Petrologica et Mineralogica, 29(6): 619–641. |
[] | Vervoort JD, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533–556. DOI:10.1016/S0016-7037(98)00274-9 |
[] | Wang B, Shu LS, Cluzelz D, Faurez M, Charvertz J. 2007. Geochronological and geochemical studies on the Borohoro plutons, north of Yili, NW Tianshan and their tectonic implication. Acta Petrologica Sinica, 23(8): 1885–1900. |
[] | Wang JB, Xu X. 2006. Post-collisional tectonic evolution and metallogenesis in northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23–31. |
[] | Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F, Bai ZH. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11–30. |
[] | Wang ZH, Sun S, Li JL, Hou QL, Qin KZ, Xiao WJ, Hao J. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronological constraints from the ophiolites. Tectonics, 22(2): 1014–1029. |
[] | Wei RZ. 2010. Geochemistry and chronology of the Laba intrusion in western Junggar, Xinjiang. Acta Petrologica et Mineralogica, 29(6): 663–674. |
[] | Whalen JB, Currie KL, Chappell BW. 1987. A-type granites geochemical characteristics discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202 |
[] | Williams IS, Claesson S. 1987. Isotope evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy Petrology, 97(2): 205–217. DOI:10.1007/BF00371240 |
[] | Winchester JA, Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. DOI:10.1016/0009-2541(77)90057-2 |
[] | Windley BF, Kroner A, Guo JH, Qu GS, Li YY, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110(6): 719–739. DOI:10.1086/342866 |
[] | Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London, 164(1): 31–47. DOI:10.1144/0016-76492006-022 |
[] | Wong K, Sun M, Zhao GC, Yuan C, Xiao WJ. 2010. Geochemical and geochronological studies of the Alegedayi Ophiolitic Complex and its implication for the evolution of the Chinese Altai. Gondwana Research, 18(3-4): 438–454. |
[] | Wu B, He GQ, Wu TR, Li HJ, Luo HL. 2006. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance. Geology in China, 33(3): 476–486. |
[] | Wu FY, Sun DY, Li HM, Jahn BM, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their perogenesis. Chemical Geology, 187(1-2): 143–173. DOI:10.1016/S0009-2541(02)00018-9 |
[] | Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105–126. DOI:10.1016/j.chemgeo.2006.05.003 |
[] | Wu XQ, Liu DL, Wei GQ, Li J, Li ZS. 2009. Geochemical characteristics and tectonic settings of Carboniferous volcanic rocks from Ludong-Wucaiwan area, Junggar basin. Acta Petrologica Sinica, 25(1): 55–66. |
[] | Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ, Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the lateral growth of Central Asia. Journal of the Geological Society, London, 161: 339–342. DOI:10.1144/0016-764903-165 |
[] | Xiao WJ, Han CM, Yuan C, Chen HL, Sun M, Lin SF, Li ZL, Mao QG, Zhang JE, Sun S, Li JL. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062–1076. |
[] | Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102–117. DOI:10.1016/j.jseaes.2007.10.008 |
[] | Xiao WJ, Windley BF, Han CM, Yuan C, Sun M, Li JL, Sun S. 2009. End Permian to Mid-Triassic termination of the southern Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1189–1217. DOI:10.1007/s00531-008-0407-z |
[] | Xiao WJ, Huang BC, Han CM, Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253–273. DOI:10.1016/j.gr.2010.01.007 |
[] | Xiao XC, Tang YQ, Feng YM. 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House: 1-169. |
[] | Xin JG, Yuan KR, Liu JY. 1995. The alkali granites and their genesis and tectonic significance in the north area of the East Junggar, Xinjiang. Geotectonica et Metallogenia, 19(3): 214–226. |
[] | Xu JF, Mei HJ, Yu XY, Bai ZH, Niu HC, Chen FR, Zheng ZP, Wang Q. 2001. Adaketes related to subduction in the northern margin of Junggar are for the Late Paleozoic: Products of slab melting. Chinese Science Bulletin, 46(8): 684–688. |
[] | Xu QQ, Ji JQ, Han BF, Zhu MF, Chu ZY, Zhou J. 2008. Petrology, geochemistry and geochronology of the intermediate to mafic dykes in northern Xinjiang since Late Paleozoic. Acta Petrologica Sinica, 24(5): 977–996. |
[] | Xu XY, Ma ZP, Xia ZC, Xia LQ, Li XM, Wang LS. 2006. TIMS U-Pb isotopic dating and geochemical characteristics of Paleozoic granitic rocks from the middle-western section of Tianshan. Northwestern Geology, 39(1): 50–75. |
[] | Yang GX, Li YJ, Wu HE, Zhong X, Yang BK, Yan CX, Yan J, Si GH. 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. Journal of Asian Earth Sciences, 40(3): 722–736. DOI:10.1016/j.jseaes.2010.11.008 |
[] | Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89–106. DOI:10.1016/j.lithos.2005.10.002 |
[] | Yin JY, Yuan C, Sun M, Long XP, Qiu HN, Wang YJ, Ren JB, Guan YL. 2012. Age, geochemical features and possible petrogenesis mechanism of Early Permian magnesian diorite in Hatu, Xinjiang. Acta Petrologica Sinica, 28(7): 2171–2182. |
[] | Yu XY, Mei HJ, Jiang FZ, Luo CR, Liu TG, Bai ZH, Yang XC, Wang JD. 1995. The Irtysh Volcanic Rocks and Mineralization. Beijing: Science Press: 17-30. |
[] | Yuan C, Xiao WJ, Chen HL, Li JL, Sun M. 2006. Zhaheba potassic basalt, eastern Junggar: Geochemical characteristics and tectonic implications. Geological Review, 80(2): 254–263. |
[] | Yuan ZX. 2001. A discussion on the naming of A-type granite. Acta Petrologica et Mineralogica, 20(3): 293–296. |
[] | Zhang HX, Niu HC, Sato H, Shan Q, Yu XY, Ito J, Zhang Q. 2004. Late Paleozoic adakite and Nb-enriched basalt from northern Xinjiang: Evidence for the southward subduction of the Paleo-Asian Ocean. Geological Journal of China Universities, 10(1): 106–113. |
[] | Zhang LC, Xia B, Niu HC, Li WQ, Fang WX, Tang HF, Wan B. 2006. Metallogenic systems and belts developed on the Late Paleozoic continental margin in Xinjiang. Acta Petrologica Sinica, 22(5): 1387–1398. |
[] | Zhang Q, Jin WJ, Li CD, Wang YL. 2010. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: Index. Acta Petrologica Sinica, 26(4): 985–1015. |
[] | Zhang QF, Hu AQ, Zhang GX, Fan SK, Pu ZP, Li QX. 1994. Evidence from isotopic age for presence of Mesozoic-Cenozoic magmatic activities in Altai region, Xinjiang. Geochimica, 23(3): 269–280. |
[] | Zhang YY, Guo ZJ, Liu C, Xu WQ. 2007. Geochemical characteristics and geologic implications of Cenozoic basalts, East Altai in Xinjiang. Acta Petrologica Sinica, 23(7): 1730–1738. |
[] | Zhang YY, Chen S, Guo ZJ, Fang SH. 2009. Zircon SHRIMP U-Pb dating of the Latest Paleozoic volcanic in Zhaheba area, eastern Junggar and its geological implications. Acta Petrologica Sinica, 25(3): 506–514. |
[] | Zhang YY, Guo ZJ. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection. Acta Petrologica Sinica, 26(2): 421–430. |
[] | Zhang ZC, Zhou G, Yan SH, Chen BL, He YK, Chai FM, He LX. 2007. Geology and geochemistry of the Late Paleozoic volcanic rocks of the south margin of the Altai Mountains and implications for tectonic evolution. Acta Geologica Sinica, 81(3): 344–358. DOI:10.1111/acgs.2007.81.issue-3 |
[] | Zhang ZC, Mao JW, Cai JH, Kusky TM, Zhou G, Yan SH, Zhao L. 2008. Geochemistry of picrites and associated lavas of a Devonian island arc in the northern Junggar terrane, Xinjiang (NW China): Implications for petrogenesis, arc mantle sources and tectonic setting. Lithos, 105(3-4): 379–395. DOI:10.1016/j.lithos.2008.05.013 |
[] | Zhang ZC, Zhou G, Kusky TM, Yan SH, Chen BL, Zhao L. 2009. Late Paleozoic volcanic record of the eastern Junggar terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201–215. DOI:10.1016/j.gr.2009.03.004 |
[] | Zhao ZH, Guo ZJ, Han BF, Wang Y. 2006. The geochemical characteristics and tectonic-magmatic implications of the Latest-Paleozoic volcanic rocks from Santanghu basin, eastern Xinjiang, Northwest China. Acta Petrologica Sinica, 22(1): 199–214. |
[] | Zhao ZH, Wang Q, Xiong XL, Zhang HX, Niu HC, Xu JF, Bai ZH, Qiao YL. 2006. Two types of adakites in North Xinjiang, China. Acta Petrologica Sinica, 22(5): 1249–1265. |
[] | Zhao ZH, Xiong XL, Wang Q, Bai ZH, Qiao YL. 2007. Underplating during Late Paleozoic in North Xinjiang: Evidence from Shoshonitic series volcanic rocks and adakite. Acta Geologica Sinica, 81(5): 606–619. |
[] | Zhou G, Zhang ZC, Wu GG, Dong LH, He YK, Dong YG, He LX, Qin JH, Zhao ZH, Liu GR. 2009. Postorogenic extension and continental growth of the northeastern margin of the Junggar: Evidences from petrography and geochemistry of the Hadansun intrusive complex. Acta Geologica Sinica, 83(3): 331–346. |
[] | Zhou J, Ji JQ, Han BF, Ma F, Gong JF, Xu QQ, Guo ZJ. 2008. 40Ar/39Ar geochronology of mafic dykes in North Xinjiang. Acta Petrologica Sinica, 24(5): 997–1010. |
[] | Zhou TF, Yuan F, Fan Y, Tan LG, Yue SC. 2006. Geodynamic significance of A-type granite in the Sawuer region, western Junggar: Evidences from geochemistry and zircon SHRIMP dating. Science in China (Series D), 36(1): 39–48. |
[] | Zhou TF, Yuan F, Fan Y, Zhang DY, Cooke D, Zhao GC. 2008. Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106(3-4): 191–206. DOI:10.1016/j.lithos.2008.06.014 |
[] | Zhu YF, Zhang LF, Gu LB, Guo X, Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin, 50(19): 2201–2212. DOI:10.1007/BF03182672 |
[] | 陈发景, 汪新文, 汪新伟. 2005. 准噶尔盆地的原型和构造演化. 地学前缘, 12(3): 77–89. |
[] | 陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181–1196. |
[] | 郭芳放, 姜常义, 苏春乾, 夏明哲, 夏昭德, 魏巍. 2008. 准噶尔板块东南缘沙尔德兰地区A型花岗岩构造环境研究. 岩石学报, 24(11): 2778–2788. |
[] | 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长-后碰撞深成岩浆活动的时限(I). 岩石学报, 22(50): 1077–1086. |
[] | 韩春明, 肖文交, 崔彬, 毛启贵, 张继恩, 敖松坚. 2006. 新疆北部晚古生代铜矿床主要类型和地质特征. 地质学报, 80(1): 74–89. |
[] | 郝建荣, 周鼎武, 柳益群, 邢秀娟. 2006. 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析. 岩石学报, 22(1): 189–198. |
[] | 何登发, 翟光明, 况军, 张义杰, 石昕. 2005. 准噶尔盆地古隆起的分布与基本特征. 地质科学, 40(2): 248–261, 304. |
[] | 何国琦, 李茂松, 刘德权, 唐延龄, 周汝洪. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社: 1-437. |
[] | 何国琦, 李茂松, 贾进斗, 周辉. 2001. 论新疆东准噶尔蛇绿岩的时代及其意义. 北京大学学报(自然科学版), 37(6): 852–858. |
[] | 何国琦, 刘建波, 张越迁, 徐新. 2007. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定. 岩石学报, 23(7): 1573–1576. |
[] | 简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年. 地学前缘, 10(4): 439–456. |
[] | 李春昱, 王荃, 刘雪亚, 汤耀庆. 1982. 亚洲大地构造图. 北京: 地图出版社: 1-49. |
[] | 李涤, 何登发, 樊春, 唐勇, 阳孝法, 常秋生, 袁航. 2012. 准噶尔盆地克拉美丽气田石炭系玄武岩的地球化学特征及构造意义. 岩石学报, 28(3): 981–992. |
[] | 李锦轶, 肖序常, 汤耀庆, 赵民, 朱宝清, 冯益民. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质评论, 36(4): 305–316. |
[] | 李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和其侵位历史. 岩石学报, 11(增刊): 73–84. |
[] | 李锦轶, 肖序常. 1999. 对新疆地壳结构与构造演化几个问题的简要评述. 地质科学, 34(4): 405–419. |
[] | 李锦轶, 肖序常, 陈文. 2000. 准噶尔盆地东部的前晚奥陶世陆壳基底-来自盆地东北缘老君庙变质岩的证据. 中国区域地质, 19(3): 297–302. |
[] | 李鹏春, 陈广浩, 许德如, 贺转利, 符巩固. 2007. 湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论. 大地构造与成矿学, 31(1): 126–136. |
[] | 李宗怀, 韩宝福, 宋彪. 2004. 新疆东准噶尔二台北花岗岩体和包体的SHRIMP锆石U-Pb年龄及其地质意义. 岩石学报, 20(5): 1263–1270. |
[] | 廖忠礼, 莫宣学, 潘桂棠, 朱弟成, 王立全, 赵志丹. 2006. 西藏过铝花岗岩锆石群型的成因信息. 大地构造与成矿学, 30(1): 63–71. |
[] | 林克湘, 闫春德, 龚文平. 1997. 新疆三塘湖盆地早二叠世火山岩地球化学特征与构造环境分析. 矿物岩石地球化学通报, 16(1): 39–42. |
[] | 刘家远, 喻亨祥, 吴郭泉. 1999. 新疆东准噶尔两类碱性花岗岩及其地质意义. 矿物岩石地球化学通报, 18(2): 89–94. |
[] | 龙晓平, 孙敏, 袁超, 肖文交, 陈汉林, 赵永久, 蔡克大, 李继亮. 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22(1): 31–40. |
[] | 毛启贵, 肖文交, 韩春明, 袁超, 孙敏. 2008. 东准噶尔地区晚古生代向南增生:来自A型花岗岩的启示. 岩石学报, 24(4): 733–742. |
[] | 梅厚钧, 杨学昌, 李荪蓉. 1994. 新疆北部火山岩及其与成矿的关系. 新疆地质, 12(1): 16–24. |
[] | 牛贺才, 单强, 张海祥, 于学元. 2007. 东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义. 岩石学报, 23(7): 1627–1634. |
[] | 庞绪勇, 王宇, 卫巍, 徐备. 2009. 新疆富蕴县下石炭统南明水组沉积相及其古地理意义. 岩石学报, 25(3): 682–688. |
[] | 舒良树, 王玉净. 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石. 地质论评, 49(4): 408–412. |
[] | 宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制样、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26–30. |
[] | 宋彪, 李锦轶, 张进, 朱志新, 王煜, 徐新. 2011. 西准噶尔托里地区塔尔根二长花岗岩锆石U-Pb年龄-托里断裂左行走滑运动开始的时间约束. 地质通报, 30(1): 19–25. |
[] | 苏玉平, 唐红峰, 刘丛强, 侯广顺, 梁莉莉. 2006. 新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究. 岩石矿物学杂志, 25(3): 175–184. |
[] | 谭绿贵, 周涛发, 袁锋, 范裕, 岳书仓. 2006. 新疆萨乌尔地区二叠纪火山岩地球动力学背景. 合肥工业大学学报(自然科学版), 29(7): 868–874. |
[] | 谭绿贵, 周涛发, 袁锋, 范裕, 岳书仓. 2007. 新疆萨吾尔地区二叠纪火山岩成岩机制:来自稀土元素的约束. 中国稀土学报, 25(1): 95–100. |
[] | 唐功建, 陈海红, 王强, 赵振华, WymanDA, 姜子琦, 贾小辉. 2008. 西天山达巴特A型花岗岩的形成时代与构造背景. 岩石学报, 24(5): 947–958. |
[] | 唐红峰, 赵志琦, 黄荣生, 韩宇捷, 苏玉平. 2008. 新疆东准噶尔A型花岗岩的锆石Hf同位素初步研究. 矿物学报, 28(4): 335–342. |
[] | 童英, 王涛, 洪大卫, 韩宝福, 张建军, 史兴俊, 王超. 2010. 北疆及邻区石炭-二叠纪花岗岩时空分布特征及其构造意义. 岩石矿物学杂志, 29(6): 619–641. |
[] | 王博, 舒良树, CluzelD, FaureM, CharvetJ. 2007. 伊犁北部博罗霍努岩体年代学和地球化学研究及其大地构造意义. 岩石学报, 23(8): 1889–1900. |
[] | 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23–31. |
[] | 王强, 赵振华, 徐继峰, DerekA. Wyman, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武岩:对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11–30. |
[] | 魏荣珠. 2010. 新疆西准噶尔拉巴花岗岩地球化学特征及年代学研究. 岩石矿物学杂志, 29(6): 663–674. |
[] | 吴波, 何国琦, 吴泰然, 李会军, 罗红玲. 2006. 新疆布尔根蛇绿混杂岩的发现及其大地构造意义. 中国地质, 33(3): 476–486. |
[] | 吴小奇, 刘德良, 魏国齐, 李剑, 李振生. 2009. 准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造环境. 岩石学报, 25(1): 55–66. |
[] | 肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062–1076. |
[] | 肖序常, 汤耀庆, 冯益民. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社: 1-169. |
[] | 忻建刚, 袁奎荣, 刘家远. 1995. 新疆东准噶尔北部碱性花岗岩的特征、成因及构造意义. 大地构造与成矿学, 19(3): 214–226. |
[] | 徐芹芹, 季建清, 韩宝福, 朱美妃, 储著银, 周晶. 2008. 新疆北部晚古生代以来中基性岩脉的年代学、岩石学、地球化学研究. 岩石学报, 24(5): 977–996. |
[] | 徐学义, 马中平, 夏祖春, 夏林圻, 李向民, 王立社. 2006. 天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究. 西北地质, 39(1): 50–75. |
[] | 许继峰, 梅厚钧, 于学元, 白正华, 牛贺才, 陈繁荣, 郑作平, 王强. 2001. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物. 科学通报, 46(8): 684–688. |
[] | 尹继元, 袁超, 孙敏, 龙晓平, 邱华宁, 王毓婧, 任江波, 关义立. 2012. 新疆哈图早二叠世富镁闪长岩的时代、地球化学特征和可能的成因机制. 岩石学报, 28(7): 2171–2182. |
[] | 于学元, 梅厚钧, 姜福芝, 罗才让, 刘铁庚, 白正华, 杨学昌, 王俊达. 1995. 额尔齐斯火山岩和成矿作用. 北京: 科学出版社: 17-30. |
[] | 袁超, 肖文交, 陈汉林, 李继亮, 孙敏. 2006. 新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义. 地质学报, 80(2): 254–263. |
[] | 袁忠信. 2001. 关于A型花岗岩命名问题的讨论. 岩石矿物学杂志, 20(3): 293–296. |
[] | 张海祥, 牛贺才, SatoH, 单强, 于学元, ItoJ, 张旗. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲板块南向俯冲的证据. 高校地质学报, 10(1): 106–113. |
[] | 张连昌, 夏斌, 牛贺才, 李文铅, 方维萱, 唐红峰, 万博. 2006. 新疆晚古生代大陆边缘成矿系统与成矿区带初步探讨. 岩石学报, 22(5): 1387–1398. |
[] | 张旗, 金惟俊, 李承东, 王元龙. 2010. 再论花岗岩按照Sr-Yb的分类:标志. 岩石学报, 26(4): 985–1015. |
[] | 张前锋, 胡霭琴, 张国新, 范嗣昆, 蒲志平, 李启新. 1994. 阿尔泰地区中、新生代岩浆活动的同位素年龄证据. 地球化学, 23(3): 269–280. |
[] | 张元元, 郭召杰, 刘畅, 许文骞. 2007. 新疆阿尔泰东部新生代玄武岩的地球化学特征与地质意义. 岩石学报, 23(7): 1730–1738. |
[] | 张元元, 陈石, 郭召杰, 方世虎. 2009. 东准噶尔扎河坝地区古生代晚期火山岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 25(3): 506–514. |
[] | 张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 26(2): 421–430. |
[] | 张招崇, 周刚, 闫升好, 陈柏林, 贺永康, 柴凤梅, 何立新. 2007. 阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示. 地质学报, 81(3): 344–358. |
[] | 赵泽辉, 郭召杰, 韩宝福, 王毅. 2006. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义. 岩石学报, 22(1): 199–214. |
[] | 赵振华, 王强, 熊小林, 张海祥, 牛贺才, 许继峰, 白正华, 乔玉楼. 2006. 新疆北部的两类埃达克岩. 岩石学报, 22(5): 1249–1265. |
[] | 赵振华, 熊小林, 王强, 白正华, 乔玉楼. 2007. 新疆北部晚古生代的底侵作用-来自橄榄玄粗岩与埃达克岩的证据. 地质学报, 81(5): 606–619. |
[] | 周刚, 张招崇, 吴淦国, 董连慧, 贺永康, 董永观, 何立新, 秦纪华, 赵忠合, 刘国仁. 2009. 新疆准噶尔北东缘造山后伸展及陆壳生长:来自哈旦逊杂岩体的岩石学及地球化学的证据. 地质学报, 83(3): 331–346. |
[] | 周晶, 季建清, 韩宝福, 马芳, 龚俊峰, 徐芹芹, 郭召杰. 2008. 新疆北部基性岩脉40Ar/39Ar年代学研究. 岩石学报, 24(5): 997–1010. |
[] | 周涛发, 袁锋, 范裕, 谭绿贵, 岳书仓. 2006. 西准噶尔萨乌尔地区A型花岗岩的地球动力学意义--来自岩石地球化学和锆石SHRIMP定年的证据. 中国科学(D辑), 36(1): 39–48. |