岩石学报  2013, Vol. 29 Issue (1): 67-82   PDF    
南秦岭东河群碎屑锆石U-Pb年龄及其板块构造意义
毛世东1,2, 陈衍景2,3, 周振菊3, 鲁颖淮4     
1. 中国人民武装警察部队黄金第十二支队, 成都 611732;
2. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州 510640;
3. 北京大学造山带与地壳演化重点实验室, 北京 100871;
4. 中国地质大学地质作用过程与矿产资源国家重点实验室,北京 100083
摘要: 南秦岭微陆块是秦岭造山带的重要构造单元,其早白垩世沉积物是研究物源区及南秦岭微陆块构造演化的理想对象。南秦岭微陆块南缘观音坝盆地早白垩世砂砾岩中的碎屑锆石LA-ICP-MS U-Pb年龄给出了5个年龄峰,范围分别是2600~2300Ma、2050~1800Ma、1200~750Ma、650~400Ma和350~200Ma,对应于Kenor、Columbia、Rodinia、Gondwana和Pangaea等5次超大陆事件。碎屑锆石源区复杂,但主要源自华北克拉通和北秦岭增生带,表明晚古生代南秦岭微陆块是秦岭-华北联合大陆板块的一部分,而非独立的微陆块。最年轻的锆石年龄峰给出了勉略洋向秦岭-华北大陆俯冲的时限,即350~200Ma;扬子与秦岭-华北联合大陆板块的碰撞造山作用始于三叠纪-侏罗纪之交,强烈的挤压造山作用发生在侏罗纪,而非三叠纪或更早。
关键词: 碎屑锆石     U-Pb年龄     早白垩世     南秦岭微陆块     构造演化    
U-Pb ages of detrital zircon grains from the Donghe Group in the Southern Qinling Microcontinent: Implications for tectonic evolution
MAO ShiDong1,2, CHEN YanJing2,3, ZHOU ZhenJu3, LU YingHuai4     
1. 12th Gold Team of Chinese People's Armed Police, Chengdu 611732, China;
2. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
3. Key Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China;
4. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosceinces, Beijing 100083, China
Abstract: The Southern Qinling Microcontinent is an important tectonic unit of the Qinling orogenic belt. The Early Cretaceous sedimentary sequence is useful to trace the tectonic evolution of the Southern Qinling Microcontinent and sedimentary provenances. Detrital zircon grains from the Early Cretaceous sediments in Southern Qinling Microcontinent yield five U-Pb age clusters of 2600~2300Ma, 2050~1800Ma, 1200~750Ma, 650~400Ma and 350~200Ma, corresponding five supercontinental events, namely Kenor, Columbia, Rodinia, Gondwana and Pangaea, respectively. The zircon grains have very complicated sources, but mainly from the Northern Qinling Accretionary Belt and North China Craton, implying that the Southern Qinling Microcontinent was a part of the Qinling-North China united continent, never being an isolated continent, during Late Paleozoic. The youngest age peak constrained that the subduction duration of the Mian-Lue ocean plate northwardly beneath the Qinling-North China united continent was 350~200Ma; and that the continental collision between the Yangtze Craton and the Qinling-North China united continent began at the Triassic-Jurassic transition, and culminated in Jurassic, instead of in Triassic or earlier suggested in previous studies.
Key words: Detrital zircon     U-Pb ages     Early Cretaceous     Southern Qinling Microcontinent     Tectonic evolution    

造山带作为盆地沉积物的物源区,其形成和演化控制着盆地的成因、物质组成和充填序列,通过研究沉积记录可以了解物源区的构造属性和物质组成(Dickinson and Suczek, 1979; 陈衍景, 1996; 李任伟等, 2005)。盆地碎屑沉积物中碎屑锆石的U-Pb年龄组成可帮助约束物源区的性质和演化,了解盆地和造山带的构造背景(Machao and Gauthier, 1996; Ireland et al., 1998)。锆石Lu-Hf同位素体系较为稳定(Kinny and Maas, 2003),既可提供沉积物源区岩浆岩的形成年龄,还可提供岩浆岩的源岩形成信息(Stevenson and Patchett, 1990)。因此,单颗粒碎屑锆石U-Pb年龄和Hf同位素的联合应用,是探索沉积盆地及其物源区地壳性质和构造演化的有力工具(Griffin et al., 2004; Condie et al., 2005)。

南秦岭广泛发育早白垩世山间断陷盆地沉积物,为研究南秦岭微陆块物质来源和发展演化提供了良好条件。甘肃省文县北部的观音坝盆地发育早白垩世东河群,本文作者运用LA-ICP-MS方法研究了东河群砂砾岩碎屑中的锆石U-Pb年龄和Hf同位素地球化学特征,探讨东河群砂砾岩物源区(南秦岭微陆块) 的性质、物质来源和构造演化,为全面认识南秦岭微陆块的构造演化历史提供科学依据。限于篇幅,本文重点介绍U-Pb年龄结果及其地质意义。

1 地质背景

秦岭造山带横亘中国大陆腹地,大地构造上联接华北和扬子克拉通(图 1a),是古亚洲构造域与特提斯构造域的转换带(Huang and Chen, 1987),或者说是古特提斯构造带的最北部(陈衍景, 2010; Li et al., 2011a),是认识中国陆区乃至东亚大陆构造和古特提斯洋演化的关键地区(张国伟等, 2001; Ernst et al., 2007)。

图 1 甘肃观音坝盆地早白垩世沉积物地质背景及采样位置(a, b据Li et al., 2012) Fig. 1 Regional geology of Early Cretaceous sediment in Guanyinba basin, Gansu, showing sample locations (a, b are modified after Li et al., 2012)

秦岭造山带自北向南包括了华北克拉通南缘(华熊地块)、北秦岭增生带、南秦岭微陆块、扬子克拉通北缘松潘前陆褶冲带(含碧口地体) 等4个二级构造单元,不同构造单元之间的分界均为深大断裂带,自北向南分别为三宝断裂、栾川断裂、商丹缝合带、勉略缝合带、龙门山-大巴山断裂(图 1b; 陈衍景等, 2009)。

张国伟等(2001)高度重视了商丹缝合带和勉略缝合带在显生宙以来构造意义,将秦岭造山带古生代构造格局概括为“三块两缝”(图 1b),即华北、南秦岭和扬子陆块以及商丹和勉略缝合带。新元古代-早古生代,南秦岭属于扬子陆块的北缘,北秦岭属华北克拉通南缘,之间被原特提斯秦岭洋(商丹洋) 所分隔;原特提斯洋板块向北俯冲消减,在华北古板块南缘发育沟-弧-盆体系(胡受奚等, 1988; Li and Sun, 1996);早古生代末,原特提斯洋闭合,扬子与华北古板块沿商丹缝合带碰撞。晚古生代早期,勉略洋打开,形成古特提斯洋的一部分,南秦岭微陆块与扬子陆块分离(Meng and Zhang, 2000);与此同时,沿商丹缝合带发生伸展,形成商丹再生海盆(陈衍景和富士谷, 1992; 陈衍景等, 2004),使南秦岭微陆块广泛发育晚古生代-三叠纪沉积地层。晚古生代晚期至三叠纪,勉略洋板块俯冲到南秦岭之下,在勉略缝合带保留了年龄为350~242Ma的蛇绿岩残片(Lai et al., 2008),在秦岭造山带广泛发育三叠纪陆缘弧环境的花岗岩类(李诺等, 2007; 陈衍景, 2010; Jiang et al., 2010; Ni et al., 2012)。三叠纪之后,秦岭地区不再发育海相沉积,标志着古特提斯洋彻底闭合,扬子与华北两大陆板块之间全面碰撞,致使三叠系及其以下地层强烈变形和变质(Mattauer et al., 1985)。在秦岭造山带内部,迄今少见侏罗系地层,侏罗纪被认为是最强烈的造山隆升期(Zhang et al., 2002; Li et al., 2012)。白垩纪开始,断陷盆地在秦岭造山带内部广泛出现(Chen et al., 2007)。秦岭造山带内的白垩系断陷盆地多沿商丹、勉略等大断裂带发育,近东西向延长,呈地堑式或箕状盆地。盆地沉积物与下伏地层或岩石呈角度不整合,具磨拉石特点(陈衍景和富士谷, 1992; 张国伟等, 2001)。

甘肃省文县北部的观音坝盆地位于勉略缝合带北侧,南秦岭微陆块的南缘,盆地沉积物为一套紫红色砂砾岩、泥岩、灰色页岩(图 1),出露约150km2,呈NEE向展布,并与西北部的徽成盆地断续相连。该套沉积物产多种植物化石,限定其时代为侏罗纪-白垩纪;1999年1:5万区域地质调查中(董翰等, 2000),发现了鱼类化石Lycoptera sp.,属早白垩世标准化石分子,使该套地层被厘定为早白垩世。

观音坝盆地早白垩世地层属东河群(代号:K1D),主要沿八字河断续分布,沉积建造发育程度受断裂控制,总体构成一个较为平缓开阔的向斜构造,角度不整合覆盖于强变形、低级变质的泥盆系三河口群、三叠系等地层之上(图 1c)。东河群,自下而上划分为3个岩性组(图 2):田家坝组(K1D-t)、周家湾组(K1D-z) 和鸡山组(K1D-j),各组之间为整合接触。其中,田家坝组厚约89.81m,主要岩性为灰紫色厚层-块状粗砾岩、砂砾岩,局部夹泥质粉砂岩透镜体,属近源洪积物;周家湾组厚约614.61m,为一套浅紫红色系碎屑岩建造,主要岩性为砂砾岩、砂岩、粉砂岩、泥页岩,呈韵律出现,属湖相沉积。鸡山组厚约273.76m,为一套巨厚层砾岩,夹砂岩透镜体,砂岩具水平纹层,具湖岸沉积特点。

图 2 观音坝盆地早白垩世东河群地层柱状图及采样层位 Fig. 2 Stratigraphic column of the Early Cretaceous Donghe Group in Guanyinba basin, showing sample locations
2 样品分析

3件样品采集自东河群不同层位(图 2),岩性均为紫红色-浅紫红色砂砾岩,砂或砾石成分主要为灰岩、板岩、粉砂岩、石英岩等,钙铁质或泥质胶结。砾石分选性差,棱角、次棱角状,大小悬殊,砾径多为0.2~1.0cm,少数为2~7cm,显示山间近源沉积的特点。样品T1采自田家坝组下部,Z1采自周家湾组下部,Z2采自周家湾组中部(图 2)。

采用常规方法将样品粉碎至80~100目,经淘选和电磁方法分离后,在双目镜下挑选出晶形和透明度较好的锆石颗粒。锆石制靶在中国科学院地质与地球物理研究所电子探针实验室完成,首先将锆石粘在双面胶上,其次用环氧树脂固定,最后打磨抛光至锆石暴露。锆石结构图像系应用透射光、反射光和阴极发光(CL) 采集,分别在北京大学造山带与地壳演化实验室和西北大学大陆动力学国家重点实验室完成,仪器为加载于扫描电镜的Mono CL3+型阴极发光装置(美国Gatan公司生产)。

锆石U-Pb定年在西北大学大陆动力学国家重点实验室完成。锆石定年仪器为为带有Shield Torch的Agilient 7500a型ICP-MS;激光剥蚀系统为德国MicroLas公司生产的GeoLas200M,激光器为ComPex102 Excimer (工作物质ArF, 波长193nm)。以氦气作为剥蚀物质的载气, 斑束直径为44μm,频率为8Hz,每个分析点的气体背景采集时间为30s,信号采集时间为40s。详细实验过程参见Yuan et al.(2004, 2008)。

激光剥蚀方式为单点剥蚀,分析仪器校正采用标准参考物质NIST610。ICP-MS数据采集选用质量峰采点的跳峰方式。年龄以国际标准锆石91500为外标。以GLITTER (ver 4.0) 软件计算测试结果,采用Andersen (2002)的方法进行同位素比值校正以扣除普通Pb影响,采用Isoplot3.0程序(Ludwig, 2003) 绘制谐和图。所获同位素比值和年龄误差均在1σ水平。

年龄>1000Ma的古老锆石往往存在铅丢失现象,但其207Pb/206Pb比值往往保持稳定,故以207Pb/206Pb年龄作为锆石结晶年龄(Blank et al., 2003);对于 < 1000Ma的年轻锆石,则采用206Pb/238U年龄。对于>1000Ma的锆石,以100×(207Pb/206Pb年龄)/(206Pb/238U年龄) 计算谐和度;对于 < 1000Ma的锆石,则以100×(207Pb/235U年龄)/(206Pb/238U年龄) 计算谐和度。对于谐和度<90%或>110%的数据,不参与下文的讨论。

3 分析结果

透射光观察和CL图像(图 3) 显示,本文获取的碎屑锆石主要呈浅黄色、浅紫色-半透明,部分锆石颗粒晶形保存完好,呈自形-半自形棱柱状,部分呈浑圆状。其中,样品Z1和Z2中锆石粒径和形貌较为相似,完整颗粒的长轴在75~300μm,短轴在30~125μm,长/宽比变化于1.6~3.8。样品T1中锆石粒径相对较小,完整颗粒的长轴在70~190μm,短轴在45~90μm,长/宽比介于1.6~3.4。大部分锆石颗粒振荡环带发育,属岩浆锆石,少量锆石具核边结构或均质结构。通常,CL强度不均一时,锆石来源复杂(Zhu et al., 2011b)。锆石U-Pb分析结果见表 1

图 3 早白垩世东河群碎屑锆石阴极发光图像 44μm圆为U-Pb和Hf同位素分析点位置,分析点号位于锆石图像下方,图中括号前为锆石U-Pb年龄,括号内为εHf(t) 值,线比例尺长度为100μm Fig. 3 Cathodoluminescence images of detrital zircon grains from the Donghe Group Circles with 44μm diameter indicate the locations of laser ablation. Spot numbers, ages and εHf(t) values (in brackets) are labeled. The bar is 100μm long

表 1 早白垩世东河群砂砾岩碎屑锆石U-Pb年龄 Table 1 U-Pb ages of detrital zircon grains from the Early Cretaceous sediments

东河群3件砂砾岩样品碎屑锆石分析共获得了225个有效年龄数据,年龄分布范围为3059~208Ma (图 4图 5),主要峰值集中在2600~2300Ma,2000~1700Ma,1200~880Ma,860~735Ma,660~515Ma,490~400Ma,340~250Ma和240~208Ma,此外还有部分次要峰值为>2600Ma和2200~2100Ma。如此复杂的年龄分布,反映了东河群碎屑沉积岩的物源区组成复杂性,即南秦岭微陆块物质组成及其来源的复杂性。

图 4 早白垩世东河群碎屑锆石U-Pb谐和图和Th/U比值与U-Pb年龄关系图 Fig. 4 Plots of U-Pb concordia and U/Th ratios versus U-Pb ages of detrital zircons from the Early Cretaceous Donghe Group

图 5 早白垩世东河群碎屑锆石U-Pb年龄分布直方图 Fig. 5 Histogram of U-Pb ages of detrital zircons from the Early Cretaceous Donghe Group

除3粒锆石之外,其余锆石Th/U比值>0.1,介于0.14~3.23之间(图 4),显示绝大部分碎屑锆石属岩浆成因(Belousova et al., 2002)。3颗锆石的Th/U比值<0.1(0.02~0.06),它们缺乏明显密集的振荡环带构造,可能属变质成因,其年龄分别为1848Ma、893Ma和786Ma。

岩浆成因的锆石总体可分为两类,一是U-Pb年龄<490Ma者,多呈自形-半自形棱柱状(图 3),显示其未经历长距离的磨圆搬运,应属快速风化沉积或近源风化沉积;二是年龄>515Ma的锆石,均为浑圆状(图 3),说明其经历了长距离的搬运或是多期次的沉积再循环(Zhu et al., 2011b)。

样品T1采自东河群下部田家坝组底部,其碎屑锆石年龄集中在晚中元古代至早古生代,在1200~880Ma、860~750Ma、660~515 Ma和500~400 Ma范围出现峰值(图 5)。Z1和Z2样品采自周家湾组底部和中部,其最主要的年龄峰值分布在2600~2300Ma、2000~1700Ma、240~208Ma。相对而言,Z1样品的240~208Ma年龄峰值更为突出,而Z2样品则具有更明显的晚古生代(340~250Ma) 年龄峰值。以上表明,在东河群沉积过程中,物源区的岩石组成发生了变化。

4 讨论 4.1 沉积物物源示踪

沉积岩中的碎屑矿物(如锆石,石榴子石,磷灰石和白云母) 都曾被用于识别华北克拉通、扬子陆块、大别造山带和北秦岭造山带沉积物源区和古老大陆边缘的演化历史(Chen et al., 2009; Sun et al., 2009; 胡波等, 2009; Wang et al., 2010; Yan et al., 2010; Zhu et al., 2010b)。锆石是最为稳定的矿物之一,抗风化能力强,受沉积分选过程影响小,其U-Th-Pb同位素体系封闭温度高,受后期构造热事件影响较小。碎屑锆石年龄谱系特征可直接反映沉积物源区岩石的年龄组成(Drewery et al., 1987; Geslin et al., 1999)。

东河群砂砾岩碎屑锆石U-Pb年龄谱图(图 5) 出现多个峰,分布在>2600Ma,2600~2300Ma,2200~2100Ma,1900~1800Ma,1750~1700Ma,1200~800Ma,650~400Ma,490~400Ma,350~200Ma,表明砂砾岩的直接源区--南秦岭微陆块的物质组成复杂、来源广泛。下面对锆石年龄进行分组讨论,探讨南秦岭微陆块的物质来源。需要强调,碎屑锆石的年龄结构并不受沉积循环分馏过程的影响,碎屑锆石中即使存在沉积锆石再循环,这些再循环锆石的年龄特征也与区域构造-岩浆事件相对应(Morton et al., 1996)。

所测锆石中,年龄>2600Ma者只有4粒(图 5),年龄值分别是3059Ma、2845Ma、2670Ma和2663Ma。这一现象说明:(1) 南秦岭微陆块形成过程中,太古宙地壳物质参与较少,太古宙锆石来自再循环沉积物的可能性较大;(2) 锆石源于华北克拉通太古宙基底物质或其再循环物质,原因是这些年龄与华北克拉通南缘太古宙基底的主要发育期一致。例如,嵩箕地块的青羊沟绿岩带形成于3000Ma以前,并遭受3000Ma石牌河岩体侵入;华熊地块太华超群底部的背孜群产有2841Ma的锆石207Pb/206Pb年龄,多种测试方法获得的大量年龄为2550~2900Ma (详见胡受奚等, 1988; 陈衍景和富士谷, 1992; Chen and Zhao, 1997; Zhai et al., 2005; Li et al., 2011b; 及其引文)。尽管扬子陆块在3300~3200Ma和~2950Ma有两期重要的岩浆活动(张少兵和郑永飞, 2007),但与本文所获得的锆石年龄(3059~2663Ma) 并不吻合。因此,这些古老碎屑锆石可能纪录了华北克拉通>2600Ma的成岩事件。

图 5中,大量碎屑锆石分布在2600~2300Ma,而2600~2300Ma恰恰是华北克拉通南缘之嵩箕地块登封群和华熊地块荡泽河群绿岩带的发育期(Chen and Zhao, 1997),也是整个华北克拉通绿岩带的广泛发育期,如五台群、吕梁群、泰山群、胶东群等(胡受奚等, 1988)。而且,在2500Ma左右还发生了多个太古宙花岗绿岩地体或陆块的拼贴、碰撞作用,形成高压或高温麻粒岩带(Zhao et al., 2002; Zhai et al., 2000; Zhai, 2010)。应当指出,该时期发生全球范围的超大陆会聚事件,形成了基诺(Kenor) 超大陆(Bekker and Eriksson, 2003; Tang et al., 2011)。

图 5中,2300~2050Ma之间锆石较少,此与华北克拉通总体缺乏此间大规模岩浆活动密切相关,事实上,该时期也是全球范围的岩浆寂静期,并发生了全球性大氧化事件(Tang et al., 2011, 2013; Zhai and Santosh, 2011)。在华北克拉通南缘,该期以发育原岩为沉积岩的水滴沟群孔兹岩系为特征(Chen and Zhao, 1997);在孔兹岩系发育之后的2200~2100Ma期间,华北克拉通南缘局部发育了中低级变质的双峰式火山岩建造,如崤山地体的崤山群(陈衍景和富士谷, 1992; Chen and Zhao, 1997)。十分一致的是,图 5中恰恰出现了较小的2200~2100Ma范围的锆石年龄峰。

2050~1800Ma被称为造山纪,全球范围发生了广泛的大陆碰撞、拼贴事件,形成哥伦比亚(Columbia) 超大陆(Zhao et al., 2000, 2001, 2002, 2005; Li et al., 2011b; Santosh, 2010)。期间,华北克拉通的多个陆块发生碰撞拼贴,特别是华北克拉通南缘华熊地块与嵩箕地块之间的拼合(陈衍景和富士谷, 1992)。与此次事件相呼应,图 5中出现了显著1900~1800Ma的年龄峰,其中包含了一颗年龄为1848Ma的变质成因的碎屑锆石,充分证明此次岩浆-变质事件十分强烈(Zhai, 2010),形成了大量花岗岩类和变质岩及其所含锆石。

图 5中出现了较多的年龄为1550~1800Ma的碎屑锆石,且以1700~1750Ma为高峰,显示该时期有大量岩浆岩发育。事实上,1800Ma之后华北克拉通发生造山后伸展和裂解作用,多处发育1700~1600Ma之间的岩浆岩,特别是基性岩墙(Peng et al., 2008; Zhai, 2010);与此同时,华北克拉通南缘在1850~1450Ma期间发育安第斯型岩浆弧,形成了巨厚的熊耳群安山岩建造(陈衍景和富士谷, 1992; Zhao et al., 2002, 2004, 2005; Li et al., 2011b; Deng et al., 2013a, b)。显然,这些岩浆岩可作为东河群碎屑锆石的源区或再循环锆石的原始源区。

在长达300Myr的1550~1250Ma期间,东河群样品中只获得一粒锆石记录,足见该时期岩浆成岩作用的微弱程度。华北克拉通南缘在该时期发育了官道口群和汝阳群沉积地层,其中的高山河组或云梦山组含最厚达134m的火山岩夹层,前人获得其Rb-Sr等时线年龄为1394±42Ma和1267Ma (吕国芳等, 1993及其引文),恰与东河群内的碎屑锆石207Pb/206Pb年龄(1344±13Ma; 表 1) 相当,可能属后者的物源区。

东河群中的大量碎屑锆石给出了1200~700Ma (图 5),并包含年龄分别为893Ma和786Ma变质成因锆石。表明其间秦岭造山带发生了强烈的岩浆成岩事件和变质作用,与全球范围的Rodinia超大陆会聚和裂解时间相一致。已有研究表明,在中元古代晚期和新元古代初期,华北克拉通内部较为稳定,发育少量基性岩墙(~1000Ma, Liu et al., 2006);北秦岭地区构造热事件强烈,秦岭群内发育大量980~930Ma的同碰撞或后碰撞花岗岩类,被解释为Grenvillian造山运动(1300~1000Ma) 的产物(张成立等, 2004; Chen et al., 2006);松树沟蛇绿岩全岩Sm-Nd等时线年龄为1030Ma,也被认为是Grenvillian事件的响应(Dong et al., 2008);宽坪地体(宽坪群为主) 变质沉积岩中含有大量1000~900Ma的岩浆成因的碎屑锆石(Zhu et al., 2011b)。900~700Ma期间,华北克拉通南缘和北秦岭造山带发生造山后伸展,发育碱性花岗岩类和基性岩浆岩,例如河南方城双山正长岩体的锆石U-Pb年龄为844.3±1.6Ma (Bao et al., 2008),栾川县侵入栾川群的辉长岩锆石U-Pb年龄为830±6Ma (Wang et al., 2011)。因此,东河群沉积物中年龄为1200~700Ma的碎屑锆石可能源自华北古板块Grenvillian造山运动及造山后形成的岩浆-变质杂岩。

研究表明,扬子陆块内部和周缘的Grenvillian造山运动及相关岩浆、变质成岩事件更为强烈,甚至被建议为区分扬子与华北克拉通元古宙演化的重要标志(Zheng, 2003)。扬子陆块东南缘与华夏陆块在~900Ma时拼接碰撞,随后发生南华裂解事件(Zhang et al., 2008a);在北缘,随县、桐柏、陡岭、武当、安康、碧口等岩浆弧地体形成,并通过增生型造山作用成为扬子古板块的一部分(陈衍景和富士谷, 1992; 林振文等, 2013),它们构成了此后“南秦岭微陆块”的变质基底。例如,扬子陆块西缘和西北缘发育大量年龄为860~740Ma的花岗岩类与镁铁质侵入岩(Zhou et al., 2002; Li et al., 2003; Sun et al., 2009; 陆松年等, 2005; 凌文黎等, 2006);碧口群中火山岩锆石SHRIMP年龄为840~776Ma (闫全人等, 2003),沉积岩的碎屑锆石年龄主要为910~745Ma (峰值年龄为805Ma)(Sun et al., 2009)。如此,扬子古板块具有向东河群提供碎屑锆石或再循环碎屑锆石的可能性,特别是距离观音坝盆地较近的碧口地体。

图 5出现650~400Ma年龄峰,而且是东河群碎屑锆石纪录的5个最显著峰之一。该时期是Gondwana和Laurentia超大陆的形成期,我国学者习称加里东期(胡受奚等, 1988)。在北秦岭发育了有商丹缝合带、秦岭群岩浆-变质杂岩和二郎坪群中浅变质的火山-沉积岩系组成的沟-弧-盆体系,即典型的北秦岭增生造山带(胡受奚等, 1988; 陈衍景等, 2009)。例如,漂池和灰池子花岗岩基的同位素年龄分别为~495Ma和434~421Ma (王涛等, 2009)。无疑,北秦岭增生造山带可以较好解释河东群650~400Ma碎屑锆石的来源问题。值得说明的是,扬子陆块新元古代晚期地层中发育多个薄层火山凝灰岩,凝灰岩层分布面积广阔,几乎遍及整个扬子克拉通及其东南缘,且层位和厚度稳定,锆石U-Pb年龄介于663~555Ma (Zhou et al., 2004; Zhang et al., 2005, 2008b),扬子陆块西北缘的后龙门山地区也出现类似的凝灰岩夹层(李佐臣等, 2011),但扬子克拉通及其周缘缺乏同期厚层火山岩建造,致使火山灰来源成为未解之谜。本文基于东河群碎屑锆石研究,初步认为遍布扬子克拉通的新元古代晚期的火山凝灰岩之火山灰源自北秦岭增生造山带的同期弧岩浆作用。当然,这种解释要求扬子古板块与华北古板块在650~550Ma期间相距不远。事实上,大量研究证明扬子古板块在400Ma之前就已经与华北古板块碰撞拼接在一起(陈衍景等, 2009及其引文);而且,前已述及, < 490Ma的碎屑锆石磨圆程度明显不如>490Ma者,显示了近距离搬运沉积的特征,表明沉积盆地距物源区越来越近。由此,我们进一步推测,南秦岭微陆块和扬子古板块早古生代地层中可能存在火山凝灰岩夹层。

东河群碎屑锆石最年轻的年龄峰出现在350~200Ma (340~208Ma),集中于250~200Ma (图 5),与Pangaea超大陆形成时间吻合。这些锆石通常呈自形-半自形棱柱状(图 3),Th/U比值较高(0.25~0.70),成分振荡环带清楚,属于近源搬运沉积的岩浆锆石。与这些碎屑锆石相对应,勉略缝合带以北的秦岭地区广泛发育三叠纪花岗岩类(李诺, 2012及其引文),这些花岗岩曾被认为形成于后碰撞环境(张国伟等, 2001; 杨荣生等, 2006; Zhu et al., 2011a),现被一些学者解释为碰撞前的岩浆弧环境的产物(Jiang et al., 2010, 陈衍景, 2010; Li et al., 2011a; Ni et al., 2012; 李诺, 2012)。前人关于勉略带蛇绿岩残片和黑沟峡火山岩的同位素年代学研究结果显示,勉略洋壳至少在350~242Ma期间发育(Lai et al., 2008),彻底闭合时间不早于220Ma (陈衍景, 2010及其引文)。一个令人困惑的问题是,东河群中有较多350~250Ma的近源岩浆锆石(图 5),杨荣生等(2006)曾获得阳山金矿田含矿蚀变花岗斑岩中独居石继承核Th-U-Pb年龄为297~251Ma,认为其记录了古特提斯洋盆向北消减诱发的南秦岭弧岩浆作用,而勉略带蛇绿岩的时代显示秦岭造山带应有晚古生代的弧岩浆作用,但是,迄今秦岭造山带未见年龄确切的350~250Ma之间的花岗岩类和火山岩地层。显然,这一矛盾需要研究解决。

4.2 南秦岭微陆块的构造演化

东河群砂砾岩碎屑锆石LA-ICP-MS U-Pb年龄谱图清楚地记录了5次超大陆聚合事件,且总体分为三种情况:(1) Rodinia超大陆会聚-裂解(1250~700Ma) 之前,碎屑锆石年龄分布可与华北克拉通的重要成岩事件完全一一对应,包括Kenor和Columbia两次超大陆旋回以及其间的小规模岩浆活动,特别是2200~2100Ma、1750~1700Ma (或1800~1550Ma)、1400~1300Ma几乎是华北克拉通南缘特有的3次岩浆活动。(2)1250~400Ma期间的锆石记录了兼有华北古板块南缘和扬子古板块北缘地质事件的混杂信息,包括Rodinia和Gondwana两次超大陆聚合事件,以及490Ma前后锆石磨圆度的显著差异。(3)350~200Ma期间的秦岭造山带内部地质作用的信息,包括古特提斯洋消减闭合和Pangaea超大陆聚合事件。这三种情况中,最后一种情况自然是容易理解的,因为观音坝盆地本身属于秦岭造山带内部的山间断陷盆地。那么,位于南秦岭微陆块南缘的观音坝盆地何以纪录如此众多的华北古板块的锆石信息呢?

从观音坝盆地区域地质情况(图 1) 可见,作为山间断陷盆地沉积物的东河群碎屑物可能以就地取材的方式来自周围的地质体,包括图 1中未标出的三叠纪花岗岩类、新元古代晚期(震旦纪) 至三叠纪沉积地层,以及碧口地体的前寒武纪碧口群。东河群的碎屑锆石也应该源自上述地质体,或者来自通过一次或多次再循环作用而进入上述地质体中的锆石。换句话说,东河群中的碎屑锆石可以反演其不同世代的源区物质组合和演化,即族谱。

按照上述认识,观音坝盆地南部碧口地体可以为观音坝盆地提供碎屑物,可解释东河群中的所有南秦岭微陆块基底或扬子克拉通的锆石源区信息,却无法解释北秦岭和华北克拉通的锆石信息。如此,观音坝盆地周围新元古代晚期至三叠纪地层就成为蕴涵华北克拉通和北秦岭造山带物质信息的唯一源区。

前人研究表明,新元古代晚期-早古生代,南秦岭作为扬子陆块的北缘,北秦岭作为华北克拉通南缘,二者之间被原特提斯秦岭洋所分隔。早古生代,由于原特提斯洋向北俯冲消减,北秦岭演化为活动大陆边缘。早古生代晚期,伴随Gondwana超大陆会聚,原特提斯洋闭合,南、北秦岭于沿商丹缝合带碰撞拼合。之后,由于古特提斯洋沿勉略缝合带打开,勉略洋以南为扬子克拉通,勉略洋以北则是由华北克拉通、北秦岭增生造山带、秦岭微陆块共同构成的华北-秦岭大陆板块。因此,晚古生代期间,南秦岭微陆块并非是一个独立块体,而是华北-秦岭大陆板块的一部分。在晚古生代至三叠纪期间,南秦岭微陆块作为华北-秦岭大陆的南缘,接受了大量陆源台地相复理石-碳酸盐交互的大陆边缘沉积。无疑,这些陆缘沉积物的源区是北秦岭增生带和华北克拉通,其碎屑锆石也主要来自北秦岭增生带和华北克拉通。其中,490Ma之前的磨圆度较好的锆石可能源自北秦岭-华北克拉通的早古生代或更老的沉积地层,而490~400Ma之间的磨圆度较差的锆石可能源自早古生代末期的碰撞造山作用形成的花岗岩类。自然,观音坝盆地早白垩世东河群继承了其盆边晚古生代地层中的这种锆石物源特征和信息。

河东群最年轻一组碎屑锆石的年龄分布在350~200Ma (具体年龄值为340~208Ma),表明古特提斯洋壳或勉略洋板块开始俯冲到华北-秦岭大陆板块之下的时间不早于350Ma,且俯冲诱发的陆缘岩浆弧发育时间不超出350~200Ma (或340~208Ma)。如此,我们有理由认为扬子克拉通与华北-秦岭大陆板块的全面碰撞不早于208Ma,即三叠纪-侏罗纪之交(陈衍景, 2010)。考虑到扬子板块与华北-秦岭大陆板块之间的古特提斯洋自东向西剪刀式闭合,认为晚三叠世(特别是220~200Ma期间) 的秦岭地区与现今地中海相当,属于洋-陆俯冲向陆-陆碰撞转换、洋-陆俯冲与陆-陆碰撞并存的复杂构造体制(陈衍景, 2010)。所以,秦岭地区强烈的大陆碰撞-挤压造山作用发生在侏罗纪,而非三叠纪或更早,秦岭造山带普遍缺失侏罗纪沉积物也十分有力地证明着这一结论性认识(陈衍景和富士谷, 1992)。据此,秦岭造山带大面积发育的燕山期花岗岩类和丰富的燕山期热液矿床均应是大陆碰撞成岩成矿的结果。

5 结论

(1) 南秦岭微陆块南缘的观音坝盆地早白垩世东河群沉积物中碎屑锆石年龄完整地记录了5次全球性超大陆事件:Kenor (2600~2300Ma)、Columbia (2050~1800Ma)、Rodinia (1250~700Ma)、Gondwana (650~400Ma) 和Pangaea (350~200Ma)。

(2) 东河群中年龄>400Ma的碎屑锆石主要源自北秦岭造山带和华北克拉通,或由其再循环沉积的南秦岭古生代-三叠纪地层。

(3) 新元古代晚期至早古生代,北秦岭发育完整的沟-弧-盆体系的活动大陆边缘,其弧岩浆作用为是扬子克拉通发育新元古代火山凝灰岩夹层(663~555Ma) 提供了物质来源。

(4) 早古生代末,南秦岭微陆块与华北克拉通-北秦岭大陆板块碰撞拼合,此后一直是秦岭-华北联合大陆的一部分;晚古生代,秦岭微陆块是秦岭-华北大陆板块的南缘,而非独立的微陆块,并接受了来自华北克拉通、北秦岭增生带的陆源碎屑沉积。

(5) 在350~200Ma (或340~208Ma) 期间勉略洋板块向北俯冲到秦岭-华北联合大陆板块之下,诱发了晚古生代晚期至三叠纪的陆缘弧岩浆作用;南秦岭晚石炭统-三叠系地层中可能发育火山岩或火山凝灰岩夹层。

(6) 220~200Ma时,秦岭地区的洋-陆俯冲向陆-陆碰撞转化,洋-陆俯冲与陆-陆碰撞并存,构造构造格局和动力学体制复杂,与现今地中海相当;全面的陆陆碰撞造山作用始于三叠纪-侏罗纪之交,强烈的挤压造山作用发生在侏罗纪,而非三叠纪或更早。

致谢 研究工作得到阎凤增教授、李强之高级工程师的指导和支持,野外工作得到武警黄金部队第十二支队官兵的帮助,实验工作得到西北大学大陆动力学国家重点实验室朱赖民老师、弓虎军等老师和同学以及北京大学李诺博士、邓小华博士的热心帮助,张世红教授、陈斌教授和另一位审稿人提出了建设性修改意见,在此一并表示感谢!
参考文献
[] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW, Liu XM. 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Chinese Science Bulletin, 53(13): 2050–2061.
[] Bekker A, Eriksson KA. 2003. A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: A record of the Kenorland breakup. Precambrian Research, 120(3-4): 327–364. DOI:10.1016/S0301-9268(02)00165-1
[] Belousova EA, Griffin WL, O'Reilly S, Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143(5): 602–622. DOI:10.1007/s00410-002-0364-7
[] Blank LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards. Chemical Geology, 200(1-2): 171–188. DOI:10.1016/S0009-2541(03)00166-9
[] Chen F, Zhu XY, Wang W, Wang F, Hieu PT, Siebel W. 2009. Single-grain detrital muscovite Rb-Sr isotopic composition as an indicator of provenance for the Carboniferous sedimentary rocks in northern Dabie, China. Geochemical Journal, 43(4): 257–273. DOI:10.2343/geochemj.1.0023
[] Chen YJ, Fu SG. 1992. Gold Mineralization in West Henan. Beijing: Seismological Press: 1-234.
[] Chen YJ. 1996. Progresses in application of sedimentary trace element geochemistry to probe crustal composition and environmental change. Geology-Geochemistry(3): 7–11.
[] Chen YJ, Zhao YC. 1997. Geochemical characteristics and evolution of REE in the Early Precambrian sediments: Evidence from the southern margin of the North China craton. Episodes, 20(2): 109–116.
[] Chen YJ, Zhang J, Zhang FX, Pirajno F, Li C. 2004. Carlin and Carlin-Like gold deposits in western Qinling Mountains and their metallogenic time, tectonic setting and model. Geological Review, 50(2): 134–152.
[] Chen YJ, Chen HY, Zaw K, Pirajno F, Zhang ZJ. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31(1-4): 139–169. DOI:10.1016/j.oregeorev.2005.01.001
[] Chen YJ, Zhai MG, Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695–2726.
[] Chen YJ. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, Central China. Geology in China, 37(4): 854–865.
[] Chen ZH, Lu SN, Li HK, Li HM, Xiang ZQ, Zhou HY, Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences. Journal of Asian Earth Sciences, 28(1): 99–115. DOI:10.1016/j.jseaes.2005.03.011
[] Condie KC, Beyer E, Belousova EA, Griffin WL, O'Reilly SY. 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1-2): 42–100. DOI:10.1016/j.precamres.2005.04.006
[] Deng XH, Chen YJ, Santosh M, Yao JM. 2013a. Genesis of the 1.76Ga Zhaiwa Mo-Cu and its link with the Xiong'er volcanics in the North China Craton: Implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research. DOI:10.1016/j.precamres.2012.02.014
[] Deng XH, Chen YJ, Santosh M, Zhao GC, Yao JM. 2013b. Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo-Cu system in the North China Craton. Ore Geology Reviews. DOI:10.1016/j.oregeorev.2012.11.004
[] Dickinson WR, Suczek CA. 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12): 2164–2182.
[] Dong H, Zhang HF, Wei ZW. 2000. The new progress of study on the Cretaceous strata in Wen County, Southern Qinling orogen. Northwestern Geology, 33(3): 1–5.
[] Dong YP, Zhou MF, Zhang GW, Zhou DW, Liu L, Zhang Q. 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Sciences, 32(5-6): 325–335. DOI:10.1016/j.jseaes.2007.11.010
[] Drewery S, Cliff PA, Leeder MR. 1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons. Nature, 325(6099): 50–53. DOI:10.1038/325050a0
[] Ernst WG, Tsujimori T, Zhang R, Liou G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Sciences, 35: 73–110. DOI:10.1146/annurev.earth.35.031306.140146
[] Geslin JK, Link PK, Fanning CM. 1999. High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho. Geology, 27(4): 295–298. DOI:10.1130/0091-7613(1999)027<0295:HPPDUD>2.3.CO;2
[] Griffin WL, Belousova EA, Shee SR, Pearson NJ, O'Reilly SY. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231–282. DOI:10.1016/j.precamres.2003.12.011
[] Hu B, Zhai MG, Guo JH, Peng P, Liu F, Liu S. 2009. LA-ICP-MS U-Pb geochronology of detrital zircons from the Huade Group in northern margin of the North China Craton and its tectonic significance. Acta Petrologica Sinica, 25(1): 193–211.
[] Hu SX, Lin QL, Chen ZM, Li SM. 1988. Geology and Metallogeny of the Collisional Belt between the Northern and Southern China Ancient Plates. Nanjing: Nanjing University Press: 1-558.
[] Huang JQ, Chen BW. 1987. The Evolution of the Tethys in China and Adjacent Regions. Beijing: Geological Publishing House: 1-109.
[] Ireland TR, Flöttmann T, Fanning CM, Gibson GM, Preiss WV. 1998. Development of the Early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology, 26(3): 243–246. DOI:10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2
[] Jiang YH, Jin GD, Liao SY, Zhou Q, Zhao P. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, Central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1-4): 183–197. DOI:10.1016/j.lithos.2010.02.014
[] Kinny PD, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327–341. DOI:10.2113/0530327
[] Lai SC, Qin JF, Chen L, Grapes R. 2008. Geochemistry of ophiolites from the Mian-Lue Suture Zone: Implications for the tectonic evolution of the Qinling Orogen, Central China. International Geology Review, 50(7): 650–664. DOI:10.2747/0020-6814.50.7.650
[] Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y, Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, 14(5): 186–198.
[] Li N, Chen YJ, Fletcher IR, Zeng QT. 2011a. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Research, 20(2-3): 543–552. DOI:10.1016/j.gr.2010.12.013
[] Li N, Chen YJ, Santosh M, Yao JM, Sun YL, Li J. 2011b. The 1. 85Ga Mo mineralization in the Xiong'er Terrane, China: Implications for metallogeny associated with assembly of the Columbia supercontinent. Precambrian Research, 186(1-4): 220–232.
[] Li N. 2012. Process and mechanism of Yanshanian large-scale Mo accumulation in East Qinling. Ph. D. Dissertation. Beijing: Peking University, 1-262 (in Chinese with English summary)
[] Li N, Ulrich T, Chen YJ, Thomsen TB, Pease V, Pirajno F. 2012. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geology Reviews, 48: 442–459. DOI:10.1016/j.oregeorev.2012.06.002
[] Li RW, Meng QR, Li SY. 2005. Coupling of the Jurassic and Carboniferous basins with the orogens in the Dabie Shan and adjacent area: Constraints from sedimentary record. Acta Petrologica Sinica, 21(4): 1133–1143.
[] Li SG, Sun WD. 1996. A Middle Silurian-Early Devonian magmatic arc in the Qinling Mountains of Central China: A discussion. Journal of Geology, 104(4): 501–503. DOI:10.1086/629843
[] Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma? Precambrian Research, 122(1-4): 45–83. DOI:10.1016/S0301-9268(02)00207-3
[] Li ZC, Pei XZ, Liu ZQ, Li RB, Ding SP, Zhang XF, Chen GC, Liu ZG, Chen YX, Wang XL. 2011. Characteristics of sedimentary strata and their forming environments of Nanhuan Period-Early Paleozoic of back-Longmenshan in the northwest margin of Yangtze Block. Journal of Earth Sciences and Environment, 33(2): 117–124.
[] Lin ZW, Qin Y, Zhou ZJ, Yue SW, Zeng QT, Wang LX. 2013. Zircon U-Pb dating and geochemistry of the volcanic rocks at Huachanggou area, Mian-Lue suture, South Qinling. Acta Petrologica Sinica, 29(1): 83–94.
[] Ling WL, Gao S, Cheng JP, Jiang LS, Yuan HL, Hu ZC. 2006. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrologica Sinica, 22(2): 387–396.
[] Liu YQ, Gao LZ, Liu YX, Song B, Wang ZX. 2006. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2375–2382. DOI:10.1007/s11434-006-2114-0
[] Lu GF, Guan BD, Wang YX. 1993. The characteristics and tectonic setting of the volocanic rocks in the Gaoshanhe/Yunmengshan Formation, western Henan. Henan Geology, 11(1): 37–43.
[] Lu SN, Chen ZH, Li HK, Hao GJ, Xiang ZQ. 2005. Two magmatic belts of the Neoproterozoic in the Qinling Orogenic belt. Acta Geologica Sinica, 79(2): 165–173.
[] Ludwig KR. 2003. Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Pub(4): 1–70.
[] Machao N, Gauthier G. 1996. Determination of 207Pb/206Pb ages on zircon and monazite by laser ablation ICPMS and application to a study of sedimentary provence and metamorphism in southeastern Brazil. Geochimica et Cosmochimica Acta, 60: 5063–5073. DOI:10.1016/S0016-7037(96)00287-6
[] Mattauer M, Matte PH, Malavieille J, Tapponnier P, Maluski H, Xu ZQ, Lu YL, Tang YQ. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496–500. DOI:10.1038/317496a0
[] Meng QR, Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen, Central China. Tectonophysics, 323(3-4): 183–196. DOI:10.1016/S0040-1951(00)00106-2
[] Morton AC, Claoue-Long JC, Berge C. 1996. SHRIMP constraints on sediment provenance and transport history in the Mesozoic Statfjord Formation, North Sea. Journal of the Geological Society, 153(6): 915–929. DOI:10.1144/gsjgs.153.6.0915
[] Ni ZY, Chen YJ, Li N, Zhang H. 2012. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, Central China, and implication for Triassic tectonic setting. Ore Geology Reviews, 46: 60–67. DOI:10.1016/j.oregeorev.2012.01.004
[] Peng P, Zhai MG, Ernst RE, Guo JH, Liu F, Hu B. 2008. A 1.78Ga large igneous province in the North China Craton: The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260–280. DOI:10.1016/j.lithos.2007.07.006
[] Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149–167. DOI:10.1016/j.precamres.2010.02.003
[] Stevenson RK, Patchett PJ. 1990. Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochimica et Cosmochimica Acta, 54(6): 1683–1697. DOI:10.1016/0016-7037(90)90400-F
[] Sun WH, Zhou MF, Gao JF, Yang YH, Zhao XF, Zhao JH. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99–126. DOI:10.1016/j.precamres.2009.03.010
[] Tang HS, Chen YJ, Wu G, Lai Y. 2011. Paleoproterozoic positive δ13C carb excursion in the northeastern Sinokorean craton: Evidence of the Lomagundi Event. Gondwana Research, 19(2): 471–481.
[] Tang HS, Chen YJ, Santosh M, Zhong H, Yang T. 2013. REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event. Precambrian Research. DOI:10.1016/j.precamres.2012.02.005
[] Wang LJ, Griffin WL, Yu JH, O'Reilly SY. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 177(1-2): 131–144. DOI:10.1016/j.precamres.2009.11.008
[] Wang T, Wang XX, Tian W, Zhang CL, Li WP, Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science in China (Series D), 39(7): 949–971.
[] Wang XL, Jiang SY, Dai BZ, Griffin WL, Dai MN, Yang YH. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca. 830Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35–47.
[] Yan QR, Wang ZQ, Yan Z, Andrew D. H, Peter AD, Liu DY, Song B, Jian P, Wang T. 2003. Geochronology of the Bikou Group volcanic rocks: Newest results from SHRIMP zircon U-Pb dating. Geological Bulletin of China, 22(6): 456–458.
[] Yan Z, Wang ZQ, Chen JL, Yan QR, Wang T. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Sciences, 37(4): 322–334. DOI:10.1016/j.jseaes.2009.09.001
[] Yang RS, Chen YJ, Zhang FX, Li ZH, Mao SD, Liu HJ, Zhao CH. 2006. Chemical Th-U-Pb ages of monazite from the Yangshan gold deposit, Gansu Province and their geologic and metallogenic implications. Acta Petrologica Sinica, 22(10): 2603–2610.
[] Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3
[] Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM, Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100–118. DOI:10.1016/j.chemgeo.2007.10.003
[] Zhai MG, Cong BL, Guo JH, Liu WJ, Li YG, Wang QC. 2000. Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication. Lithos, 52(1-4): 23–33. DOI:10.1016/S0024-4937(99)00082-1
[] Zhai MG, Guo JH, Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547–561. DOI:10.1016/j.jseaes.2004.01.018
[] Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24–36.
[] Zhai MG, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6–25. DOI:10.1016/j.gr.2011.02.005
[] Zhang CL, Liu L, Zhang GW, Wang T, Chen DL, Yuan HL, Liu XM, Yan YX. 2004. Determination of Neoproterozoic post-collisional granites in the north Qinling Mountains and its tectonic significance. Earth Science Frontiers, 11(3): 33–42.
[] Zhang GW, Zhang BR, Yuan XC, Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press: 1-855.
[] Zhang J, Chen YJ, Shu GM, Zhang FX, Li C. 2002. Compositional study of minerals within the Qinlingliang granite, southwestern Shaanxi Province and discussions on the related problems. Science in China (Series D), 45(7): 662–672. DOI:10.1360/02yd9067
[] Zhang SB, Zheng YF. 2007. Growth and reworking of the Yangtze continental nucleus: Evidence from zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica, 23(2): 393–402.
[] Zhang SH, Jiang GQ, Zhang JM, Song B, Kennedy MJ, Christie-Blick N. 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 33(6): 473–476. DOI:10.1130/G21418.1
[] Zhang SH, Jiang GQ, Dong J, Han YG, Wu HC. 2008a. New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: Implications for rifting and stratigraphic erosion associated with the Early Cryogenian (Sturtian) glaciation in South China. Science in China (Series D), 51(11): 1537–1544. DOI:10.1007/s11430-008-0119-z
[] Zhang SH, Jiang GQ, Han YG. 2008b. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20(4): 289–294. DOI:10.1111/ter.2008.20.issue-4
[] Zhao GC, Cawood PA, Wilde SA, Sun M, Lu LZ. 2000. Metamorphism of basement rocks in the Central Zone of the North China craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2): 55–88. DOI:10.1016/S0301-9268(00)00076-0
[] Zhao GC, Wilde SA, Cawood PA, Sun M. 2001. Archean blocks and their boundaries in the North China craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45–73. DOI:10.1016/S0301-9268(00)00154-6
[] Zhao GC, Cawood PA, Wilde SA, Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125–162. DOI:10.1016/S0012-8252(02)00073-9
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91–123. DOI:10.1016/j.earscirev.2004.02.003
[] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177–202. DOI:10.1016/j.precamres.2004.10.002
[] Zheng YF. 2003. Neoproterozoic magmatic activity and global change. Chinese Science Bulletin, 48(16): 1639–1656. DOI:10.1360/03wd0342
[] Zhou C, Tucker R, Xiao S, Peng Z, Yuan X, Chen Z. 2004. New constraints on the ages of Neoproterozoic glaciations in South China. Geology, 32(5): 437–440. DOI:10.1130/G20286.1
[] Zhou MF, Yan DP, Kennedy AK, Li YQ, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51–67. DOI:10.1016/S0012-821X(01)00595-7
[] Zhu LM, Zhang GW, Chen YJ, Ding ZJ, Guo B, Wang F, Li B. 2011a. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitiods in West Qinling, China: Constrains on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geology Reviews, 39: 49–62.
[] Zhu XY, Chen FK, Li SQ, Yang YZ, Nie H, Siebel W, Zhai MG. 2011b. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20(1): 194–204. DOI:10.1016/j.gr.2010.12.009
[] 陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社: 1-234.
[] 陈衍景. 1996. 沉积物微量元素示踪地壳成分和环境及其演化的最新进展. 地质地球化学(3): 7–11.
[] 陈衍景, 张静, 张复新, PirajnoF, 李超. 2004. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式. 地质论评, 50(2): 134–152.
[] 陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695–2726.
[] 陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854–865.
[] 董翰, 张海峰, 魏振伟. 2000. 南秦岭文县白垩纪地层研究新进展. 西北地质, 33(3): 1–5.
[] 胡波, 翟明国, 郭敬辉, 彭澎, 刘富, 刘爽. 2009. 华北克拉通北缘化德群中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义. 岩石学报, 25(1): 193–211.
[] 胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社: 1-558.
[] 李诺, 陈衍景, 张辉, 赵太平, 邓小华, 王运, 倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景. 地学前缘, 14(5): 186–198.
[] 李诺. 2012.东秦岭燕山期大规模钼金属堆积的过程和机制.博士学位论文.北京:北京大学, 262
[] 李任伟, 孟庆任, 李双应. 2005. 大别山及邻区侏罗和石炭纪时期盆-山耦合:来自沉积记录的认识. 岩石学报, 21(4): 1133–1143.
[] 李佐臣, 裴先治, 刘战庆, 李瑞保, 丁仨平, 张晓飞, 陈国超, 刘智刚, 陈有析, 王学良. 2011. 扬子地块西北缘后龙门山南华纪-早古生代沉积地层特征及其形成环境. 地球科学与环境学报, 33(2): 117–124.
[] 林振文, 秦艳, 周振菊, 岳素伟, 曾庆涛, 王立新. 2013. 南秦岭勉略带铧厂沟火山岩锆石U-Pb年代学及地球化学研究. 岩石学报, 29(1): 83–94.
[] 凌文黎, 高山, 程建萍, 江麟生, 袁洪林, 胡兆初. 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387–396.
[] 吕国芳, 关保德, 王耀霞. 1993. 豫西高山河组云梦山组火山岩特点及其构造背景. 河南地质, 11(1): 37–43.
[] 陆松年, 陈志宏, 李怀坤, 郝国杰, 相振群. 2005. 秦岭造山带中两条新元古代岩浆岩带. 地质学报, 79(2): 165–173.
[] 王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑), 39(7): 949–971.
[] 闫全人, 王宗起, 闫臻, AndrewDH, PeterAD, 刘敦一, 宋彪, 简平, 王涛. 2003. 碧口群火山岩的时代-SHRIMP锆石U-Pb测年结果. 地质通报, 22(6): 456–458.
[] 杨荣生, 陈衍景, 张复新, 李志宏, 毛世东, 刘红杰, 赵成海. 2006. 甘肃阳山金矿独居石Th-U-Pb化学年龄及其地质和成矿意义. 岩石学报, 22(10): 2603–2610.
[] 张成立, 刘良, 张国伟, 王涛, 陈丹玲, 袁洪林, 柳小明, 晏云翔. 2004. 北秦岭新元古代后碰撞花岗岩的确定及其构造意义. 地学前缘, 11(3): 33–42.
[] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社: 1-885.
[] 张少兵, 郑永飞. 2007. 扬子陆核的生长和再造:锆石U-Pb年龄和Hf同位素研究. 岩石学报, 23(2): 393–402.