2. 中国科学院大学,北京 100049;
3. 北京大学造山带与地壳演化重点实验室,北京 100871;
4. 湖北银矿,竹山县 442218
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China;
4. Hubei Silver Mine, Zhushan 442218, China
包括秦岭在内的中央造山带完整记录了大陆裂解-洋盆产生、大洋消减-大陆增生、大陆碰撞、大陆内部构造演化等过程(陈衍景和富士谷, 1992; Zhang et al., 1996; 陈衍景, 2010)。根据现代造山-成矿理论(Groves et al., 1998; Goldfarb et al., 2001, 2005; Pirajno, 2009; 陈衍景, 2013),中央造山带可发育增生造山和碰撞造山两种构造体制的多种类型的成矿系统(陈衍景等, 2009),包括斑岩型、矽卡岩型、爆破角砾岩型等岩浆热液铜-金-钼等金属矿床(Chen et al., 2000, 2007, 2009; 李诺等, 2007; Zhu et al., 2011; Deng et al., 2012a, b; Li et al., 2012a, b, c),造山型或变质热液型金矿(Mao et al., 2002; Zhou et al., 2002; Fan et al., 2003; Chen et al., 2005, 2008) 和铜、银、钼、铅锌等金属矿床(Chen et al., 2004; 张静等, 2004, 2008; 陈衍景, 2006; 祁进平等, 2007; 邓小华等, 2008; 姚军明等, 2008; Ni et al., 2012; Zhang et al., 2011),以及卡林型金矿、MVT型铅锌矿床等浅成热液矿床(陈衍景等, 2009;张颖等, 2010)。目前,秦岭造山带的造山型金矿(王海华等, 2001; Li et al., 2002; Mao et al., 2002; Chen et al., 2008; 周振菊等, 2011a, b) 与造山型银多金属矿床(Chen et al., 2004; 张静等, 2004, 2008) 被报道,而后者主要集中在小秦岭和熊耳山地区,对于南秦岭造山型银多金属矿床的研究仍属空白。显然,在南秦岭地区寻找和识别典型的造山型银、铜、钼和铅锌等矿床不但具有重要的科学研究价值,而且对于指导找矿和增加储量具有重要意义。
武当地块作为南秦岭造山带的重要组成部分,南接扬子板块北缘活动带,西南与北大巴山加里东褶皱带相邻,伴随着南秦岭造山带的发展演化,在不同地层发育了大量的银、金及多金属矿床(图 1c)。关于这些银、金及多金属矿的成因问题,前人争议较大,仅对银洞沟矿床就有以下观点:(1) 岩浆热液型(蔡锦辉等, 1999);(2) 变质热液型(汪东波等, 1991; 汪东波, 1993a, b; 李文博等, 2010);(3) 中-低温次火山热液型铅锌银矿床(刘丛强, 1984, 1989);(4) 韧-脆性剪切变形变质作用有关的中低温热液矿床(秦正永和雷世和, 1997);(5) 火山沉积岩型(王平安等, 1997)。
![]() |
图 1 秦岭造山带位置(a)、秦岭造山带构造格局和矿床分布示意图(b, 据陈衍景等, 2009) 和银洞沟矿床区域地质图(c, 据张成立等, 1999a修改) Fig. 1 Tectonic map of China, showing the location of the Qinling Orogen (a), tectonic framework and ore-system distribution in Qingling Orogen (b, after Chen et al., 2009) and regional geology of the Yindonggou deposit (c, modified after Zhang et al., 1999a) |
银洞沟矿床作为武当山地区最大的银金矿床,探获Ag资源量2000t (平均品位178g/t),Au资源量近20t (平均品位1.79g/t)。本文选取银洞沟矿床作为研究对象,在详细的野外工作基础上,系统总结了矿床地质特征,划分成矿阶段;并对不同热液阶段石英中的流体包裹体进行了详细的岩相学、显微测温和激光拉曼研究及氢氧同位素研究,以期精确限定成矿流体性质、来源及演化规律,厘定矿床成因类型。
2 区域地质银洞沟矿床行政区划属湖北省竹山县,向西延伸至陕西白河县。该矿床位于南秦岭造山带东南段,武当地块西缘(图 1b, c),属鲍峡一得胜铺成矿带(雷世和和唐桂英,1996;雷世和等, 1998)。武当地块被认为是卷入南秦岭构造带的过渡基底岩块(张国伟等, 1995),南以青峰断裂与扬子北缘褶冲带相连(图 1c)。区域地层主要为新元古界武当山群和耀岭河群、震旦系陡山沱组和灯影组以及古生代地层(图 1c)。此外,区内中酸性岩浆岩贫乏,发育大量的基性岩脉(图 1c)。
武当山群是一套变质火山-沉积岩系,主要由变质基性至中酸性火山岩组成,夹少量变质沉积岩(凌文黎等, 2002; 张宗清, 2002)。变基性火山岩原岩主要为玄武安山质熔岩、火山碎屑岩和凝灰岩,变酸性火山岩原岩主要为英安质流纹岩和中酸性晶屑岩屑凝灰岩,其中,火山碎屑岩锆石U-Pb (LA-ICP-MS) 年龄为755±3Ma (凌文黎等, 2007);变沉积岩以长石石英质砂岩为主,夹少量粉砂质泥岩与泥质粉砂岩(凌文黎等, 2002),变沉积岩中的凝灰岩夹层锆石U-Pb年龄为744±36Ma (蔡志勇等, 2006)。变酸性火山岩蕴含了大量热液金属矿床,包括银洞沟银金矿、许家坡银金矿以及银洞坪等银多金属矿床(图 1c) 等。耀岭河群分布于武当地块周缘,集中在北部和西部地区,岩性为变石英角斑质含砾凝灰岩、变细碧凝灰岩、细碧岩夹泥质砂岩或凝灰质砂岩(汪东波等, 1991);前人得到锆石U-Pb年龄分别为:808±6Ma、746±2Ma (李怀坤等, 2004; TIMS)、685±5Ma (凌文黎等, 2007; LA-ICP-MS)。武当山群和耀岭河群均经历了绿片岩相变质作用(汪东波等, 1991; 凌文黎等, 2002; 张宗清等, 2002)。震旦系陡山沱组和灯影组岩性主要为灰岩、白云质灰岩、含钙绢云母片岩、绢云母片岩、千枚岩等,发育了一些金矿床。另外,区内还有少量的中、新生代地层出露。
研究区内先后经历了古生代伸展及中生代的陆陆碰撞(胡健民等, 2002) 等多阶段的变形作用,主要形成北东向及随后的北北西向的断裂/褶皱构造,并以北西西向断裂构造为主,由北向南依次发育了两郧断裂、十堰-白河断裂、房县-竹山断裂、青峰断裂(图 1c)。区内岩浆岩主要为基性侵入体,岩性为辉绿岩和辉长岩脉,呈带状东西向、北西向延伸(图 1c),常成群出现,单体长达数千米,宽数百米,以岩脉、岩墙产出,普遍经历了绿片岩相变质作用(周鼎武等, 1998; 凌文黎等, 2007),个别达低角闪岩相(张成立等, 1999a, b)。
3 矿床地质矿区内出露地层为武当山群变酸性火山岩、变沉积岩以及耀岭河群下部(图 2)。其中,变酸性火山岩为变石英角斑质火山岩-火山碎屑岩,变沉积岩为富火山碎屑的变泥质粉砂岩与变粉砂质泥岩(汪东波等, 1991),而耀岭河群为变石英角斑质凝灰岩-含砾凝灰岩(李文博等, 2010)。矿体赋矿于武当山群变石英角斑质凝灰岩与变钾长石英角斑岩中(图 2、图 3)。除上述地层外,矿区还发育变辉绿岩脉。
![]() |
图 2 银洞沟矿床地质简图(据李应平等, 2008修改) Fig. 2 Geological map of the Yindonggou deposit (modified after Li et al., 2008) |
![]() |
图 3 银洞沟矿床勘探线联合剖面示意图(据吴贤奎等, 1988修改) Fig. 3 Geological profiles for prospecting line of the Yindonggou deposit (modified after Wu et al., 1988) |
矿区内构造主体为银洞岩背斜及其两翼的F1与F2断裂,沿背斜核部还发育EW向陡倾韧脆性剪切带(李应平等, 2008)。银洞沟矿床产于银洞岩背斜轴部(图 3)。银洞岩背斜近东西向,轴面南倾,倾角68°左右,南翼缓北翼陡,枢纽自矿区中部分别向西、向东倾伏,倾伏角为10°~30°。F1、F2断裂均呈近东西向,分别为倾向北的正断层(倾角76°) 和倾向南的逆断层(倾角78°)。
银洞沟矿体东西长2150m,南北宽150~300m,矿体向西侧伏。目前已圈定27个银金矿体,矿体呈脉状、薄板状,少数透镜状(图 4),均呈近EW走向,倾向166°~175°,浅部倾角稍缓(约60°~68°),深部倾角较陡(约70°~80°)。其中,主矿体呈陡倾脉状,产状175°∠75°,呈平行脉状或斜列式产出,矿脉长200~1000m,平均厚度2.4m;矿体沿走向和倾向有狭缩膨胀、尖灭、再现和局部分枝复合现象,膨大部位银品位177g/t,金品位1.80g/t。
![]() |
图 4 银洞沟矿床矿脉特征及穿切关系 (a)-Ⅰ阶段细粒石英-铅锌矿脉,接触部位发育大量的硫化物; (b)-Ⅰ阶段细粒石英-铅锌矿脉被Ⅱ阶段细粒石英-银金矿脉穿切,两者又被Ⅳ阶段铁白云石-石英脉穿切; (c)-Ⅲ阶段粗粒石英脉,含少量方铅矿、闪锌矿和黄铜矿等硫化物,穿切Ⅱ阶段深灰色石英-银金矿脉; (d)-Ⅱ阶段细粒石英-银金矿脉近水平发育; (e)-Ⅱ阶段细粒石英-银金矿脉褶皱变形,转折端充填了Ⅳ阶段铁白云石-石英; (f)-Ⅰ阶段细粒石英-铅锌矿脉形成石香肠,并被Ⅳ阶段铁白云石-石英脉穿切.矿物简写: Ank-铁白云石; Ccp-黄铜矿; Gn-方铅矿; Q-石英; Sph-闪锌矿 Fig. 4 Photos of ore bodies of the Yindonggou deposit (a)-the quartz-sphalerite-galena vein of stage 1; (b)-the quartz-sphalerite-galena vein of stage 1 cut by Ag-Au-bearing quartz vein of stage 2, and all of them cut by massive ankerite-quartz of stage 4; (c)-Ag-Au-bearing quartz vein of stage 2 cut by quartz vein of stage 3; (d)-the Ag-Au-bearing quartz vein; (e)-deformation of the Ag-Au-bearing quartz vein of stage 2, and the turning side filled by ankerite-quartz vein of stage 4; (f)-the boudinage of quartz-sphalerite-galena vein of stage 1 cut by massive ankerite-quartz vein of stage 4. Abbreviations: Ank-ankerite; Ccp-chalcopyrite; Gn-galena; Q-quartz; Sph-sphalerite |
矿石类型包括石英脉型和蚀变岩型,并以前者为主。金属矿物主要为辉铜银矿、自然银、螺状银矿、闪锌矿和方铅矿、黄铁矿、黄铜矿,另有少量含银锌黝铜矿、深红银矿、锌砷黝铜矿和银金矿、硫锑铜银矿、硫锑银矿等(图 5)。脉石矿物主要包括石英、绢云母、铁白云石、绿泥石等。其中,辉银矿、自然银等银矿物主要产于细粒石英-银金矿化脉中,沿方铅矿、闪锌矿边部交代(图 5c) 或独立出现(图 5h);方铅矿、闪锌矿主要产于细粒石英-铅锌矿化脉中,与少量黄铜矿共生,并交代较自形的黄铁矿(图 5a);少量铅锌矿物产于乳白色粗粒石英脉中,伴生黄铜矿(图 5g)。矿石结构包括填隙结构、交代残余结构(图 5a) 与镶边结构(图 5c)、共结边结构(图 5d)、固溶体分离结构。矿石构造主要有条带状构造,稀疏浸染状,稠密浸染状,块状和脉状构造。
![]() |
图 5 银洞沟矿床矿石岩石学特征 (a)-Ⅰ阶段方铅矿、闪锌矿交代黄铁矿,呈交代残余结构; (b)-Ⅱ阶段浸染状自然银; (c)-Ⅱ阶段闪锌矿被银矿物交代呈反应边结构; (d)-Ⅱ阶段辉银矿与方铅矿共生; (e)-Ⅱ阶段银金矿与辉铜银矿共生; (f)-Ⅱ阶段方铅矿、闪锌矿、硫锑铜银矿、黄铜矿共生; (g)-Ⅲ阶段的黄铜矿、方铅矿和闪锌矿; (h)-Ⅱ阶段细粒石英中的辉铜银矿与自然银共生; (i)-Ⅱ阶段细粒石英中的与银矿物密切相关的硅化和绢云母化.缩写: Arn-辉银矿; Ank-铁白云石; Ccp-黄铜矿; El-银金矿; Gn-方铅矿; Jal-辉铜银矿; Pol-硫锑铜银矿; Py-黄铁矿; Q-石英; Ser-绢云母; Slv-自然银; Sph-闪锌矿 Fig. 5 Photographs showing ore petrography of the Yindonggou deposit (a)-sphalerite and galena replaced the pyrite of stage 1, showing metasomatic relict texture; (b)-disseminated natural silver in stage 2; (c)-sphalerite replaced by silver forming metasomatic reaction rim texture in stage 2; (d)-argentite coexisting with galena in stage 2; (e)-electrum coexisting with jalpaite in stage 2; (f)-polybasite coexisting with sphalerite, galena and chalcopyrite in stage 2; (g)-chalcopyrite, sphalerite and galena in stage 3; (h)-natural silver coexisting with jalpaite in fine granular quartz veins in stage 2; (i)-silicification and sericitization in stage 2. Abbreviations: Arn-Argentite; Ank-Ankerite; Ccp-Chalcopyrite; El-Electrum; Gn-Galena; Jal-Jalpaite; Pol-Polybasite; Py-Pyrite; Q-Quartz; Ser-Sericite; Slv-Native silver; Sph-Sphalerite |
围岩蚀变包括硅化、绢云母化(图 5i)、铁白云石化和绿泥石化。硅化普遍发育,强硅化表现为各成矿阶段的石英脉;绢云母化分布范围较窄,只分布于近矿围岩与含矿石英脉中,且常与铁白云石、硫化物等矿物伴生,呈片状、线状产出(图 5i);铁白云石化只在晚期块状石英脉中大量出现,呈它形粒状充填或嵌于石英颗粒中间。
根据矿脉穿切关系、矿石组构及矿物组合,银洞沟矿床成矿过程可划分4个阶段(图 6):(Ⅰ) 细粒石英-铅锌矿脉,可见铅、锌等硫化物沉淀于石英脉与围岩接触部位(图 4a);(Ⅱ) 细粒石英-银金矿脉,可见其穿切细粒石英-铅锌矿脉(图 4b),局部含银矿物富集程度高,形成品位极高的深灰色或黑色石英细脉(图 4c, d);(Ⅲ) 粗粒石英脉,硫化物较少,可见其穿切细粒石英-银金矿脉(图 4c),可见少量闪锌矿、方铅矿、黄铜矿呈稀疏浸染状分布,无工业价值矿体;(Ⅳ) 块状铁白云石-石英脉,可见其穿切细粒石英-铅锌矿脉(图 4b, f) 或细粒石英-银金矿脉(图 4e),基本无矿化。
![]() |
图 6 银洞沟矿床矿物共生顺序 Fig. 6 Paragenetic sequence of the Yindonggou deposit |
本次流体包裹体研究样品采自银洞沟矿区1280~875m等不同中段,包含了不同成矿阶段的代表性样品共计20件,其中Ⅰ阶段烟灰色石英6件,Ⅱ阶段与硫化物密切共生的石英11件以及Ⅲ阶段乳白色石英3件,而Ⅳ阶段铁白云石包裹体稀少,不适合流体包裹体研究。
流体包裹体显微测温分析在中国科学院地质与地球物理研究所流体包裹体实验室完成,仪器为英国产LINKAN THMSG 600型冷热台,测试温度范围为-196~+600℃。分析精度为:±0.5℃, < -70℃;±0.2℃,x100℃;±2℃, < 600℃;以美国FLUID INC公司的合成流体包裹体标准样品标定冷热台温度。测试过程中,升温速率一般为1~5℃/min,含CO2包裹体相变点附近升温速率为0.2℃/min,水溶液包裹体相变点附近的升温速率为0.2~0.5℃/min。
激光拉曼光谱分析在北京大学造山带与地壳演化教育部重点实验室完成,所用仪器为Renishaw RW-1000型激光拉曼光谱仪,光源为514.5nm的氩激光器,计数时间为10s,每1cm-1(波数) 计数一次,100~4000cm-1全波段一次取峰,激光束斑约2μm,光谱分辨率±2cm-1。
根据冷热台试验测得的NaCl-H2O溶液包裹体的冰点温度(Tm, ice),利用Bodnar (1993)提供的方程,可获得NaCl-H2O溶液包裹体的盐度。根据冷热台试验测得的CO2-H2O型包裹体的笼合物熔化温度(Tm, cla),利用Collins (1979)所提供的方法,可获得CO2-H2O包裹体水溶液相的盐度。
4.2 流体包裹体岩相学根据流体包裹体成分、室温下(21℃) 的岩相学特征以及冷热台下的相变行为(卢焕章等, 2004),可将银洞沟矿床流体包裹体分为NaCl-H2O型(W型)、CO2-H2O-NaCl型(C型) 和CO2-CH4型(PC型) 等3种类型,各类包裹体岩相学特征详见表 1。
![]() |
表 1 银洞沟矿床不同类型包裹体特征 Table 1 Overview of fluid inclusion types of the Yindonggou deposit |
银洞沟矿床不同阶段流体包裹体组合不同:Ⅰ阶段烟灰色石英中包裹体大多数孤立分布,包裹体较小,包括W型(图 7a, b)、C型(图 7c) 和少量PC型;Ⅱ阶段石英中包裹体亦较小,成群分布,包括W型(图 7d)、C型(图 7e, f) 以及少量PC型(图 7h),并可见C型与W型包裹体共存(图 7g),指示可能存在流体不混溶;Ⅲ阶段乳白色石英中仅见W型包裹体,多成群分布(图 7i),个体较大。
![]() |
图 7 银洞沟矿床流体包裹体显微照片 (a)-Ⅰ阶段W型包裹体; (b)-Ⅰ阶段W型包裹体; (c)-Ⅰ阶段C型包裹体; (d)-Ⅱ阶段W型包裹体; (e)-Ⅱ阶段C型包裹体; (f)-Ⅱ阶段C型包裹体分布特征; (g)-Ⅱ阶段C型与W型包裹体分布特征; (h)-Ⅱ阶段PC型纯CO2包裹体; (i)-Ⅲ阶段W型包裹体.缩写: VCO2-气相CO2; LCO2-液相CO2; VH2O-气相H2O; LH2O, -液相H2O Fig. 7 Microphotographs of fluid inclusions of the Yindonggou deposit (a)-the W-type inclusion in stage 1; (b)-the W-type inclusion in stage 1; (c)-the C-type inclusion containing more H2O than CO2 in stage 1; (d)-the W-type inclusion in stage 2; (e)-the C-type inclusion containing more CO2 than H2O in stage 2; (f)-distribution of the C-type inclusions in stage 2; (g)-coexistence of the C-type and W-type inclusions in stage 2; (h)-the PC-type inclusion in stage 2; (i)-the W-type inclusions containing more liquid H2O than vapor in stage 3. Abbreviations: VCO2-CO2vapor; LCO2-CO2liquid; VH2O-H2O vapor; LH2O-H2O liquid |
各成矿阶段石英中流体包裹体显微测温结果可见表 2、图 8、图 9。
![]() |
图 8 银洞沟矿床流体包裹体均一温度和盐度直方图 Fig. 8 Histograms of homogenization temperatures and salinities of fluid inclusions from Yindonggou deposit |
![]() |
图 9 不同阶段流体包裹体均一温度-盐度协变图 Fig. 9 Homogenization temperatures versus salinities of fluid inclusions in different stages |
![]() |
表 2 银洞沟矿床流体包裹体显微测温结果 Table 2 Microthermometric data of the Yindonggou deposit |
Ⅰ阶段石英中W型包裹体气液比为10%~30%,个别达80%;冰点温度为-6.8~-3.1℃,对应盐度为5.1%~10.2% NaCleqv,密度为0.49~0.77g/cm3;升温过程中,大部分向液相均一,均一温度308~436℃,集中于346~412℃;个别向气相均一,均一温度高达483℃。C型包裹体CO2相(LCO2+VCO2) 所占比例为10%~25%;冷冻回温过程中测得固相CO2初熔温度为-58.9~-57.7℃,低于纯CO2三相点温度(-56.6℃),表明除CO2外,另有其他气相组分,这与激光拉曼光谱检测到CH4的存在相吻合(图 10a);继续回温,测得笼合物消失温度为5.9~6.8℃,对应盐度为6.1%~7.6% NaCleqv,密度为1.00~1.02g/cm3;CO2相部分均一温度为8.2~9.1℃,多数部分均一至液相;完全均一温度为320~357℃,完全均一至液相。
![]() |
图 10 银洞沟矿床流体包裹体激光拉曼光谱分析 (a)-Ⅰ阶段W型包裹体,含少量CH4和CO2; (b)-Ⅰ阶段PC型包裹体; (c)-Ⅱ阶段W型包裹体; (d)-Ⅱ阶段W型包裹体; (e)-Ⅱ阶段PC型包裹体,含有少量水; (f)-Ⅱ阶段PC型包裹体,成分为CH4 Fig. 10 Laser-Raman analyses of fluid inclusions of the Yindonggou deposit (a)-the W-type inclusion in stage 1 containg variable contents of CH4 and CO2 (b)-CO2 in PC-type inclusion in stage 1; (c)-water in W-type inclusion in stage 2; (d)-the W-type inclusion in stage 2 containg variable contents of CH4 and N2; (e)-carbonic inclusion in stage 2; (f)-carbonic inclusion in stage 2 containg CH4 |
Ⅱ阶段石英中的W型包裹体气液比为5%~40%,测得冰点温度为-7.2~-1.7℃,对应盐度为2.9%~10.7% NaCleqv,密度为0.67~0.90g/cm3;回温过程中向液相均一,均一温度为220~375℃,集中于250~310℃。C型包裹体中CO2相(LCO2+VCO2) 所占比例为10%~40%;冷冻回温过程中,测得固相CO2初熔温度为-59.6~-56.7℃,明显低于纯CO2三相点温度(-56.6℃),表明可能含有其他组分,与拉曼光谱分析显示含有CH4相吻合;笼合物消失温度为5.1~9.0℃,对应盐度为2.0%~8.9% NaCleqv,密度为0.96~1.04g/cm3;CO2相部分均一温度在7.6~25.1℃,多数部分均一至液相;完全均一温度为224~375℃,集中于262~317℃,完全均一至液相。
Ⅲ阶段石英中W型包裹体气液比为5%~20%,测得冰点温度为-4.5~-0.2℃,对应盐度为0.4%~7.2% NaCleqv,密度为0.83~0.96g/cm3;升温过程中包裹体向液相均一,均一温度为122~272℃,集中于151~240℃。
4.4 激光拉曼光谱分析激光拉曼显微探针分析显示,Ⅰ阶段C型包裹体的成分为CO2(V)+CO2(L)+H2O (L),CO2相特征拉曼峰值明显(1387cm-1和1284cm-1);W型包裹体液相成分为H2O,气相成分中除H2O外,还含少量CO2和CH4(图 10a);PC型包裹体气相成分为CO2(图 10b),部分含CH4。
Ⅱ阶段C型包裹体成分为CO2(V)+CO2(L)+H2O (L);W型包裹体液相成分为H2O,气相成分中除H2O外,部分含少量N2和CH4(图 10c和d);PC型包裹体气相成分为CH4(图 10e) 或CO2(图 10f)。
Ⅲ阶段石英中的W型包裹体液相为H2O,气相中除H2O外,部分含极少量CO2。
5 H-O同位素 5.1 样品与分析方法用于氢-氧同位素测试的样品采自银洞沟矿床不同深度的矿脉,样品特征详见表 3。将选出的各阶段代表性石英样品粉碎至40~60目,经筛分、清洗晾干,在双目镜下挑选,得到纯度为99%的单矿物样品。质谱分析样品的制备过程如下:石英流体包裹体氢同位素测试:通过真空热爆法打开包裹体,分离获得水;将获得的水与锌反应,获得可供质谱测试的氢气。石英氧同位素分析:将挑选的石英样品研磨至200目,干燥后取样品10~30mg,于550~700℃与纯BrF5恒温反应而获得氧气,用组合冷阱分离BrF4、BrF3等杂质组分获得纯净的O2。将纯化后的氧气在700℃铂催化作用下与碳棒逐级反应,逐一收集反应生成的CO2,然后送质谱测试。
![]() |
表 3 银洞沟矿床氢-氧同位素样品特征表 Table 3 The geological characteristics of samples from the Yindonggou deposit |
测试采用Finningan MAT 253 EM质谱计,在中国地质科学院同位素地球化学开放实验室完成。氧同位素结果采用V-SMOW标准,δ18O与δD分析误差分别为±0.2‰,±2‰。
5.2 测试结果银洞沟矿床氢-氧同位素测试结果列于表 4。其中,与石英达到平衡的成矿流体的δ18Ow值是利用平衡分馏方程1000lnα石英-水=3.38×106T-2-3.40(Clayton et al., 1972)(适用于200~500℃) 计算所得;与铁白云石达到平衡的流体的δ18Ow值利用平衡分馏方程1000lnα白云石-水=3.06×106T-2-3.24(Matthews and Katz, 1977) 近似计算所得。
![]() |
表 4 银洞沟矿床氢氧同位素组成 Table 4 Hydrogen and oxygen isotopic compositions (‰SMOW) of the Yindonggou deposit |
由表 4可知,银洞沟矿床I阶段δ18O石英为11.1‰~13.9‰,平均12.9‰,计算其平衡水δ18Ow值为6.7‰~9.4‰,平均8.4‰,落入变质水和岩浆水范围(图 11);δD值为-74‰~-69‰,平均为-72‰。Ⅱ阶段δ18O石英为11.2‰~12.5‰,计算其平衡水δ18Ow值3.6‰~4.9‰,明显低于I阶段;δD值为-95‰~-56‰,亦低于I阶段。Ⅲ阶段δ18O石英值为10.5‰~15.3‰,其平衡水的δ18Ow值为-1.2‰~3.6‰,低于前两阶段,δD值为-77‰~-48‰,平均-67‰,向大气降水线漂移(图 11)。
![]() |
图 11 银洞沟矿床成矿流体氢氧同位素组成图(底图据Taylor, 1974) 小秦岭和胶东造山型金矿的H-O范围据蒋少涌等(2009); Juneau gold belt, Mother Lode以及Chugach terrace地区造山型金矿H-O范围据Goldfarb et al. (2005) Fig. 11 δD-δ18O plots of ore-fluids at the Yindonggou deposit (base map after Taylor, 1974) Range of the Xiaoqinling and Jiaodong orogenic deposits after Jiang et al. (2009); Juneau gold belt, Mother Lode and Chugach terrace orogenic Au deposits after Goldfarb et al. (2005) |
银洞沟矿床不同阶段流体包裹体类型、组合、均一温度及盐度等既有相似性又存在差异,显示了成矿流体的规律性演化(图 8、图 9)。而在热液成矿过程中,仅早阶段矿脉中的流体包裹体能反映成矿流体的性质和成因(陈衍景等, 2007)。银洞沟矿床Ⅰ阶段铅锌矿脉中流体包裹体以W型和C型为主,少量PC型包裹体;激光拉曼显示包裹体成分为H2O-CO2±CH4;成矿流体均一温度峰值为350~410℃,盐度峰值为6%~10% NaCleqv, 具有中温、中低盐度、富CO2的特征,与变质热液一致(陈衍景, 2006; 陈衍景等, 2007; Zhang et al., 2012; Zheng et al., 2012)。
银洞沟Ⅲ阶段矿脉中流包裹体主要为W型,激光拉曼显示其成分为NaCl-H2O;成矿流体均一温度集中于150~220℃,盐度为2.7%~3.6% NaCleqv, 具有低温、低盐度、贫CO2的特征,指示为大气降水热液(陈衍景等, 2007)。银洞沟Ⅱ阶段银金矿脉中发育W型和C型包裹体,激光拉曼显示其成分为H2O-CO2±CH4±N2;成矿流体均一温度峰值为220~320℃;盐度峰值为4%~9% NaCleqv, 均间于Ⅰ和Ⅲ阶段之间(图 8)。银洞沟矿床流体盐度随温度降低而减小,二者呈正相关性(图 9),显示流体混合的趋势(Kreuzer, 2005),故Ⅱ阶段流体应为Ⅰ阶段和Ⅲ阶段流体混合的产物。
综上所述,银洞沟矿床成矿流体由Ⅰ阶段中温、中低盐度、富CO2的变质热液,向Ⅲ阶段低温、低盐度、贫CO2的大气降水热液演化,而Ⅱ阶段经历了变质热液与大气降水的混合。
6.2 成矿流体来源氢-氧同位素常被用来示踪热液矿床的成矿流体来源(Hoefs, 1997; Pirajno, 2009),但由于岩浆水和变质水的氢-氧同位素范围重叠(Hagemann and Cassidy, 2000; Kerrich et al., 2000),导致矿床成因认识上的混乱。比如,银洞沟矿床的成矿流体即存在较大争议:①岩浆热液(蔡锦辉等, 1999);②大气降水(张理刚, 1985);③变质热液与岩浆热液的混合流体(汪东波, 1993a);④岩浆水、深部循环地下水与大气降水的混合(刘丛强, 1987, 1989)。因此,银洞沟矿床的氢-氧同位素数据需要更合理的解释。
从表 4和图 11可知,银洞沟矿床Ⅰ阶段成矿流体的δ18Ow值变化于5.8‰~10.1‰(取均一温度峰值380℃),集中于6.6‰~9.4‰,δD值平均为-72‰,投影点位于变质水范围下侧,落在岩浆水范围内,表明成矿流体的同位素组成类似于岩浆水和/或变质水。假设初始成矿流体为岩浆水,其初始生成温度应在573℃(最低共结点) 以上,生成后又不断通过水岩作用形成石英、碱性长石等lnδ矿物-水>0的矿物,即初始岩浆水不断卸载δ18O而降温到380℃时仍保持δ18OW=10.1‰(表 4),这就要求初始岩浆水δ18OW值必须远高于10.1‰,而自然界尚未报道δ18OW>>10.1‰的岩浆水,而南秦岭印支期花岗岩多为I型花岗岩(Jiang et al., 2010),其δ18O值也很难大于10.1‰,因此,银洞沟矿床Ⅰ阶段成矿流体不可能是岩浆水,而只能是变质水。支持此结论的其他证据有:①银洞沟矿区围岩经历了绿片岩相变质作用(汪东波, 1993a),由此变质分凝的石英δ18O值为10.5‰~13.4‰(刘丛强, 1987),计算变质流体的δ18Ow值5.2‰~11.1‰(取变质作用温度区间为350~500℃),与Ⅰ阶段成矿流体一致;②银洞沟矿床形成于印支期(蔡锦辉等, 1999),而矿区缺乏印支期岩浆岩(汪东波等, 1991; 雷世和等, 1998),更不可能产生岩浆热液;③银洞沟矿床Ⅰ阶段成矿流体以低盐度、富CO2为标志,明显不同于岩浆热液(陈衍景等, 2007),而显示变质流体特征。
Ⅲ阶段δ18Ow值变化于-1.2‰~3.6‰(取均一温度峰值200℃),平均0.9‰,δD值为-77‰~-48‰,平均-67‰,显示大气降水特征。Ⅳ阶段白云石和石英中的δ18Ow值更低,为-3.2‰~-2.5‰,δD值为-45‰~-40‰,更接近大气降水线。银洞沟矿床Ⅱ阶段成矿流体的δ18Ow值变化于3.6‰~4.9‰,平均4.3‰,介于I和Ⅲ、Ⅳ阶段样品之间,显示了早阶段变质水与晚阶段大气降水热液混合的特征。
银洞沟矿床Ⅱ阶段成矿流体的δD值为-95‰~-56‰,平均为-76‰,明显低于I和Ⅲ阶段,显示流体δD值变化与δ18Ow值变化的不一致性。若成矿流体与富含低δD有机质的沉积岩发生同位素交换(Goldfarb et al., 1989; Peters et al., 1991; McCuaig and Kerrich, 1998; Jia et al., 2001),可能导致所有成矿阶段δD的亏损,但本矿床δD亏损现象仅出现于Ⅱ阶段,显然无法得到合理解释。事实上,中阶段流体δD值骤降现象在热液脉状矿床中普遍存在(陈衍景和张莉, 2008及其引文)。陈衍景和张莉(2008)解释为流体中具低δD值的H+被Pb2+、Zn2+、Ag+等阳离子置换,并加入到流体中,从而造成中期阶段δD值的骤降。
全球造山型金矿床的矿石δ18O石英极为一致(>10‰),而成矿流体δ18O水的范围较宽,约5‰~25‰(Goldfarb et al., 2005)。我国胶东和小秦岭金矿省的氢-氧同位素研究显示(图 11; 蒋少涌等, 2009),胶东金矿省成矿流体δ18O值为4.9‰~10.9‰,δD为-78‰~-101‰;相对而言,小秦岭金矿省δD略高,δ18O略低(图 11),主成矿期的成矿流体以变质水为主,混入了少量大气降水,而晚期以大气降水为主。而银洞沟主成矿阶段矿石的δ18O石英为10.7‰~13.4‰,δ18O水的范围较宽,约3.6‰~9.4‰,δD为-56‰~-95‰,与造山型金矿一致。
综上所述,银洞沟矿床成矿流体应为岩石建造的变质脱水向大气降水演化。
6.3 金属迁移-沉淀机理银洞沟热液成矿过程中,Ⅰ阶段铅锌矿化温度较高,甚至超过400℃,此时硫化物中出现磁黄铁矿(刘丛强, 1987),指示发生了Py→Po+H2S的反应,使得磁黄铁矿逐渐替代黄铁矿成为主要的硫化物(Marshall et al., 2000),而反应释放的H2S有利于Au-Ag的迁移,并呈硫络合物的形式稳定存在于流体中。当流体演化至Ⅱ阶段银金矿化,温度降低为220~320℃,此时Py→Po+H2S反应并不发生,H2S急剧减少,使硫络合物失稳而沉淀出银和金。而对于Pb、Zn等贱金属元素,Ⅰ阶段铅锌矿化成矿流体中的Cl-和HCO3-含量远高于Ⅱ阶段银矿化,同时,Ⅰ阶段铅锌矿化流体盐度(6%~10% NaCleqv) 也大于Ⅱ阶段银矿化(4%~9% NaCleqv),均指示Pb-Zn以氯络合物形式迁移。
热液矿床成矿物质沉淀的重要机制包括:水岩反应(Shenberger and Barnes, 1989; McCuaig and Kerrich, 1998; Zoheir, 2008)、流体沸腾或相分离(Hagemann and Luders, 2003; Mernagh et al., 2007; Chen et al., 2012)、流体混合(Uemoto et al., 2002; Mernagh et al., 2007; Zacharias et al., 2009) 等。对于石英脉型矿床,压力波动导致流体沸腾或相分离控制了金属的沉淀。然而,确定流体沸腾与否的关键标志是发现沸腾包裹体组合的存在,即高密度流体和低密度流体同时被捕获,因此确定沸腾包裹体组合的条件非常苛刻(Ramboz et al., 1982):(1) 气液比差别悬殊的包裹体共生;(2) 均一温度相近;(3) 均一方式各异。虽然Ⅱ阶段银金矿脉中可见W和C型包裹体共生,或不同气液比的W型包裹体共生,其气液比差异较大,均一温度相近,但这类包裹体组合发育有限。因此,银洞沟矿床可能存在局部的流体沸腾,但不是最主要的金属沉淀机制。流体混合是热液矿床常见的金属元素沉淀的机理。银洞沟流体包裹体研究显示,成矿流体系统由Ⅰ阶段铅锌矿化的高温、中盐度、富CO2的变质热液,演化为Ⅲ阶段低温、低盐度、贫CO2的大气降水;H-O同位素研究也指示了成矿流体由早阶段的深源变质流体演化到晚阶段大气降水(图 11)。由此可知,变质热液与大气降水的混合导致了Ⅱ阶段大规模银金矿化的形成。
总之,流体混合是导致银洞沟矿床成矿物质沉淀的主要机制,而局部可能存在流体沸腾现象。
6.4 成矿压力与深度根据CO2-H2O型包裹体的部分均一温度和均一方式、部分均一时CO2相所占比例及完全均一温度,利用流体包裹体数据处理Flincor程序(Brown, 1989) 和Bowers and Helgeson (1983)计算公式,获得各矿化阶段流体包裹体最低捕获压力:Ⅰ阶段铅锌矿脉为330~463MPa,Ⅱ阶段银矿脉为180~366MPa (图 12)。Ⅲ阶段由于缺少CO2-H2O型包裹体,而没有得到相应的压力。考虑到矿区出露围岩主要为变石英角斑质凝灰岩,假设其密度为2.7g/cm3,按静岩压力求得Ⅰ阶段铅锌矿化成矿深度为12.5~17.5km,Ⅱ阶段银矿化成矿深度为6.8~13.8km。Ⅰ、Ⅱ阶段分别与造山型铅锌矿(Zhang et al., 2012) 和造山型银矿(张静等, 2004) 成矿深度相当,可能经历过构造超压(Zhang et al., 2012)。
![]() |
图 12 银洞沟矿床压力估算图 Fig. 12 The estimated minimum trapping pressures of the C-type fluid inclusions from the Yindonggou deposit |
前人对银洞沟矿床成因类型仍存在争议,主要有:(1) 岩浆热液型(蔡锦辉等, 1999);(2) 变质热液型(汪东波等, 1991;汪东波, 1993a, b);(3) 中-低温次火山热液型(刘丛强, 1984, 1989) 以及(4) 火山沉积岩型(王平安等, 1997)。显然,争论焦点在于对成矿流体性质的认识差异。
众所周知,矿床地质是厘定矿床类型的根本性依据,而流体包裹体是判别矿床成因的关键(Dowling and Morrison, 1989; 陈衍景等, 2007)。本文流体包裹体和氢氧同位素研究表明,银洞沟矿床成矿流体以低盐度、富CO2的变质流体为主,且矿区缺乏岩浆岩的发育,指示其矿床成因类型不可能是岩浆热液型;而早阶段成矿温度高达350~410℃,显然,亦不符合中低温次火山热液型的特征;此外,银洞沟变火山岩中的火山碎屑岩锆石U-Pb (LA-ICP-MS) 年龄为755±3Ma (凌文黎等, 2007),而近矿围岩中多硅白云母39Ar-40Ar年龄为223Ma (秦正永和雷世和, 1996),指示成矿时代为印支期,晚于成岩作用,亦排除了火山沉积岩型的观点。银洞沟矿床的地质和流体包裹体特征与造山型矿床相似(表 5),因此,应为变质热液主导的造山型矿床,主要证据有以下几方面。
![]() |
表 5 银洞沟矿床与造山型矿床主要特征对比 Table 5 Geological characteristics comparison between the Yindonggou and orogenic deposit |
(1) 矿床赋存于新元古界武当山群变石英角斑质凝灰岩与变钾质石英角斑岩中,武当山群经历了绿片岩相变质作用。
(2) 矿床受东西向韧性剪切带与背斜构造控制,呈脉状展布,矿体产状与构造展布一致。
(3) 围岩蚀变主要为硅化、绢云母化、铁白云石化、绿泥石化、黄铁矿化等,矿石类型以石英脉型为主,与造山型矿床一致。
(4) 成矿流体属H2O-CO2-NaCl±CH4体系,含少量N2、H2S等,具有低盐度、富CO2的特点,符合典型造山型矿床的特点(陈衍景等, 2007)。
(5) 从早到晚,流体包裹体均一温度由350~410℃,经220~320℃,降低为150~220℃,流体盐度由6%~10% NaCleqv,经过4%~9% NaCleqv,降低为2.7%~3.6% NaCleqv,指示成矿流体由早阶段变质热液,向晚阶段大气降水热液演化。
(6) H-O同位素研究揭示其初始成矿流体为变质流体,并逐渐混入了大气降水。
(7) 成矿压力范围为180~463MPa,成矿深度为6.8~17.5km,属于典型的中温、中深成的变质热液矿床。
(8) 矿床具有明显的上部银金、下部铅锌的垂向分带,与造山型矿床地壳连续模式(Groves et al., 1998; 陈衍景, 2006) 一致,并相当于地壳连续模式的中深成相。
最新的研究表明(陈衍景, 2010及其引文),秦岭古特提斯洋于230~200Ma期间自东向西拉链式缝合,扬子板块与华北-秦岭联合板块之间的碰撞造山作用接踵而至。银洞沟矿床形成于223Ma (秦正永和雷世和, 1996),构造背景可能属于由洋-陆俯冲向陆-陆碰撞转换的特殊时期。银洞沟矿床在印支期造山作用过程中,变质脱水形成初始流体,萃取地层的成矿物质,并沿银洞沟韧性剪切带向上运移,并在背斜轴部沉淀,形成银洞沟矿床。
综上所述,银洞沟矿床时间上与秦岭造山作用一致,空间上处于秦岭造山带,成矿流体具有变质热液特征,属于典型的造山型矿床。
7 结论(1) 银洞沟矿床包含四个矿化阶段:(Ⅰ) 细粒石英-铅锌矿化阶段;(Ⅱ) 细粒石英-银金矿化阶段;(Ⅲ) 粗粒石英阶段,含少量硫化物;(Ⅳ) 块状铁白云石-石英阶段。Ⅰ阶段为主要的铅锌矿化,Ⅱ阶段为主要的银金矿化,Ⅲ和Ⅳ阶段基本无矿化。
(2) 流体包裹体和氢氧同位素数据表明,成矿流体由中温、中低盐度、富CO2的变质流体,演化为低温、低盐度、贫CO2的大气降水,且流体混合可能是主要的成矿机制。
(3) 银洞沟矿床地质特征、成矿流体性质与演化、成矿构造背景均与造山型矿床一致,指示银洞沟矿床成因类型为中深成的造山型矿床。
致谢 研究工作在陈衍景教授指导下完成。野外工作得到了湖北银矿华福奎、魏兴炎、丁士垣、李应平、陈世昌等领导的大力支持,样品采集和处理得到了李文博副教授和钟日晨博士的大力帮助,实验研究和论文写作得到张增杰、李诺、郑义、杨永飞、林振文等博士的帮助,两位评审人提出了宝贵的修改意见,特致谢意![] | Bodnar RJ. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. DOI:10.1016/0016-7037(93)90378-A |
[] | Bowers TS, Helgeson HC. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47(7): 1247–1275. DOI:10.1016/0016-7037(83)90066-2 |
[] | Brown PE. 1989. Flincor: A microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11-12): 1390–1393. |
[] | Cai JH, Zhang YM, Fu JM, Chen SF. 1999. The genesis of the Yindonggou Ag-polymetallic deposit in the Northwest Hubei. Acta Geoscientia Sinica, 20(Suppl.): 316–320. |
[] | Cai ZY, Luo H, Xiong XL, Wu DK, Wu XL, Sun SC, Yang J. 2006. A discussion on the age of the meta-sedimentary rocks in the upper part of the Wudang Group: Constrained by the grain-zircon U-Pb dating. Journal of Stratigraphy, 30(1): 60–63. |
[] | Chen HY, Chen YJ, Baker MJ. 2012. Isotopic geochemistry of the Sawayaerdun orogenic-type gold deposit, Tianshan, Northwest China: Implications for ore genesis and mineral exploration. Chemical Geology, 310-311: 1–11. DOI:10.1016/j.chemgeo.2012.03.026 |
[] | Chen YJ, Fu SG. 1992. Gold Mineralization in West Henan. Beijing: Seismological Press: 1-234. |
[] | Chen YJ, Li C, Zhang J, Li Z, Wang HH. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D), 43(Suppl.): 82–94. |
[] | Chen YJ, Pirajno F, Sui YH. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 39(5-6): 560–575. DOI:10.1007/s00126-004-0429-9 |
[] | Chen YJ, Pirajno F, Qi JP. 2005. Origin of gold metallogeny and sources of ore-forming fluids, Jiaodong province, eastern China. International Geology Review, 47(5): 530–549. DOI:10.2747/0020-6814.47.5.530 |
[] | Chen YJ. 2006. Orogenic-type deposits and their metallogenic model and exporation potential. Geology in China, 33(6): 1181–1196. |
[] | Chen YJ, Chen HY, Zaw K, Pirajno F, Zhang ZJ. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31(1-4): 139–169. DOI:10.1016/j.oregeorev.2005.01.001 |
[] | Chen YJ, Ni P, Fan HR, Pirajno F, Lai Y, Su WC, Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9): 2085–2108. |
[] | Chen YJ, Pirajno F, Qi JP. 2008. The Shanggong gold deposit, eastern Qinling Orogen, China: Isotope geochemistry and implications for ore genesis. Journal of Asian Earth Sciences, 33(3-4): 252–266. DOI:10.1016/j.jseaes.2007.12.002 |
[] | Chen YJ, Zhang L. 2008. Middle-stage δD-depletion in ore fluids of sulfide-bearing lode deposits: Examples and origin. Geochimica, 37(4): 353–360. |
[] | Chen YJ, Pirajno F, Li N, Guo DS, Lai Y. 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan Province, China: Implications for ore genesis. Ore Geology Reviews, 35(2): 245–261. DOI:10.1016/j.oregeorev.2008.11.003 |
[] | Chen YJ, Zhai MG, Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695–2726. |
[] | Chen YJ. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, Central China. Geology in China, 37(4): 854–865. |
[] | Chen YJ. 2013. The development of continental collision metallogeny and its application. Acta Petrologica Sinica, 29(1): 1–17. |
[] | Clayton RN, O'Neil JR, Mayeda TK. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057–3067. DOI:10.1029/JB077i017p03057 |
[] | Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435–1444. DOI:10.2113/gsecongeo.74.6.1435 |
[] | Deng XH, Li WB, Li N, Mei M, Zhang Y. 2008. Fluid inclusion constraints on the origin of Zhifang Mo deposit Songxian County, Henan Province. Acta Petrologica Sinica, 24(9): 2133–2148. |
[] | Deng XH, Chen YJ, Santosh M, Yao JM. 2012a. Genesis of the 1.76Ga Zhaiwa Mo-Cu and its link with the Xiong'er volcanics in the North China Craton: Implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research. DOI:10.1016/j.precamres.2012.02.014 |
[] | Deng XH, Chen YJ, Santosh M, Zhao GC, Yao JM. 2012b. Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo-Cu system in the North China Craton. Ore Geology Reviews. DOI:10.1016/j.oregeorev.2012.11.004 |
[] | Dowling K, Morrison G. 1989. Application of quartz textures to the classification of gold deposits using North Queensland examples. Economic Geology Monograph, 6: 342–355. |
[] | Fan HR, Zhai MG, Xie YH, Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold Province, China. Mineralium Deposita, 38(6): 739–750. DOI:10.1007/s00126-003-0368-x |
[] | Goldfarb RJ, Leach DL, Rose SC, Landis GP. 1989. Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska: Implications for ore genesis. Economic Geology Monograph, 6: 363–375. |
[] | Goldfarb RJ, Groves DI, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18(1-2): 1–75. DOI:10.1016/S0169-1368(01)00016-6 |
[] | Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR, Gosselin P. 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniversary Volume: 407–450. |
[] | Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5): 7–27. DOI:10.1016/S0169-1368(97)00012-7 |
[] | Hagemann SG, Cassidy KF. 2000. Archean orogenic lode gold deposits. In: Hagemann SG and Brown PE (eds.). Reviews in Economic Geology. Boulder: Society of Economic Geologists, 13: 9–68. |
[] | Hagemann SG, Lüders V. 2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: Conventional and infrared microthermometric constraints. Mineralium Deposita, 38(8): 936–952. DOI:10.1007/s00126-003-0351-6 |
[] | Hoefs J. 1997. Stable Isotope Geochemistry. 4th Edition. Berlin: Springer-Verlag: 1-201. |
[] | Hu JM, Meng QR, Bai WM, Zhao GC. 2002. Mid-Late Paleozoic extension of the Wudang block in the South Qingling tectonic belt, China. Geological Bulletin of China, 21(8): 471–477. |
[] | Jia Y, Li X, Kerrich R. 2001. Stable isotope (O, H, S, C, and N) systematics of quartz vein systems in the turbidite-hosted Central and North Deborah gold deposits of the Bendigo gold field, central Victoria, Australia: Constraints on the origin of ore-forming fluids. Economic Geology, 96(4): 705–721. |
[] | Jiang SY, Dai BZ, Jiang YH, Zhao HX, Hou ML. 2009. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings. Acta Petrologica Sinica, 25(11): 2727–2738. |
[] | Jiang YH, Jin GD, Liao SY, Zhou Q, Zhao P. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, Central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1-4): 183–197. DOI:10.1016/j.lithos.2010.02.014 |
[] | Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Y. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China (Series D), 43(Suppl.): 1–68. |
[] | Kreuzer O. 2005. Intrusion-hosted mineralization in the Charters Towers Goldfield, North Queensland: New isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Economic Geology, 100(8): 1583–1603. DOI:10.2113/gsecongeo.100.8.1583 |
[] | Lei SH, Tang GY. 1996. The structural model and genetic mechanics of the Wudang nappe on the north margin of the Yangtze Platform. Journal of Hebei College of Geology, 19(1): 25–32. |
[] | Lei SH, Tang GY, Qin ZY, Liu Bo, Zhang ZC. 1998. Geology and mineralization genesis of the Yindonggou Ag-Au deposit, NW Hubei. Geology and Prospecting, 34(4): 13–21. |
[] | Li HK, Lu SN, Chen ZH, Xiang ZQ, Zhou HY, Hao GJ. 2004. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Regional Geology of China, 22(10): 775–781. |
[] | Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y, Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, 14(5): 186–198. |
[] | Li N, Chen YJ, Pirajno F, Ni ZY, Sun YL. 2012a. Timing of the Yuchiling giant porphyry Mo system and implications for ore genesis. Mineralium Deposita. DOI:10.1007/s00126-012-0441-4 |
[] | Li N, Chen YJ, Ulrich T, Lai Y. 2012b. Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Mineralium Deposita, 47(5): 467–482. DOI:10.1007/s00126-011-0384-1 |
[] | Li N, Ulrich T, Chen YJ, Thompson TB, Peace V, Pirajno F. 2012c. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geology Reviews, 48: 442–459. DOI:10.1016/j.oregeorev.2012.06.002 |
[] | Li QZ, Chen YJ, Zhong ZQ, Li WL, Li SR, Guo XD, Jin BY. 2002. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area. Acta Geologica Sinica, 76(4): 488–493. DOI:10.1111/j.1755-6724.2002.tb00102.x |
[] | Li WB, Zhou WD, Chen SC, Li YP, Deng XH, Zhong RC. 2010. Geological characteristics of the Yindonggou silver deposit in Hubei Province and its implication for ore genesis. Earth Science Frontiers, 17(1): 177–185. |
[] | Li YP, Wei XY, Gao F, Yu JT, Zhang HW. 2008. Geological characteristics and ore-forming mechanism for the gently dipping ore bodies in Yingdonggou Ag-Au deposits, Hubei Province. Geological Survey and Research, 31(1): 6–13. |
[] | Ling WL, Chen JP, Wang XH, Zhou HW. 2002. Geochemical features of the Neoproterozoic igneous rocks from the Wudang region and their implications for the reconstruction of the Jinning tectonic evolution along the South Qinling orogenic belt. Acta Petrologica Sinica, 18(1): 25–36. |
[] | Ling WL, Ren BF, Duan RC, Liu XM, Mao XW, Peng LH, Liu ZX, Cheng JP, Yang HM. 2007. Zircon U-Pb isotopic ages and geological implications of mafic rocks of the Wudang and Yaolinghe Groups in southern Qinling. Chinese Science Bulletin, 52(12): 1445–1456. |
[] | Liu CQ. 1984. Geochemistry and metallogenic mechanism study of Pb-Zn-Ag deposit in the Northwest of Hubei Province. Master Degree Thesis. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-164 (in Chinese) |
[] | Liu CQ. 1987. Geochemistry and genesis of the Yindonggou lead-zinc-silver deposit. Mineral Deposits, 6(4): 53–61. |
[] | Liu CQ. 1989. A fluid inclusion study of Yindonggou Pb-Zn-Ag deposit in the northwest of Hubei Province. Geochimica(2): 139–149. |
[] | Lu HZ, Fan HR, Ni P, Ou XG, Shen K, Zhang WH. 2004. Fluid Inclusion. Beijing: Science Press: 1-487. |
[] | Mao JY, Qiu YM, Richard J, Goldfarb JR, Zhang ZC, Garwin S, Ren FS. 2002. Geology, distribution, and classification of gold deposits in the western Qinling belt, Central China. Mineralium Deposita, 37(3-4): 352–377. DOI:10.1007/s00126-001-0249-0 |
[] | Marshall BF, Vokes FM, Larocque ACL. 2000. Regional metamorphic remobilization: Upgrading and formation of ore deposits. Reviews in Economic Geology, 11: 19–38. |
[] | Matthews A, Katz A. 1977. Oxygen istope fractionation during the dolomitisation of calcium carbonate. Geochimica et Cosmochimica Acta, 41(10): 1431–1438. DOI:10.1016/0016-7037(77)90249-6 |
[] | McCuaig TC, Kerrich R. 1998. P-T-t deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geology Reviews, 12(6): 381–453. |
[] | Mernagh TP, Bastrakov EN, Zaw K, Wygralak AS, Wyborn LA. 2007. Comparison of fluid inclusion data and mineralization processes for Australian orogenic gold and intrusion-related gold systems. Acta Petrologica Sinica, 23(1): 21–32. |
[] | Ni ZY, Chen YJ, Li N, Zhang H. 2012. Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, Central China, and implication for Triassic tectonic setting. Ore Geology Reviews, 46: 60–67. DOI:10.1016/j.oregeorev.2012.01.004 |
[] | Peters SG, Golding SD, Dowling K. 1991. Melange and sediment-hosted gold-bearing quartz veins, Hodgkinson gold field, Queensland, Australia: Reply. Economic Geology, 86(1): 197–200. DOI:10.2113/gsecongeo.86.1.197 |
[] | Pirajno F. 2009. Hydrothermal Processes and Mineral System. Berlin: Springer: 1-1250. |
[] | Qi JP, Chen YJ, Ni P, Lai Y, Ding JY, Song YW, Tang GJ. 2007. Fluid inclusion constraints on the origin of the Lengshuibeigou Pb-Zn-Ag deposit, Henan Province. Acta Petrologica Sinica, 23(9): 2119–2130. |
[] | Qin ZY, Lei SH. 1996. New information on the ages of the Wudang Group with a discussion. Regional Geology of China(2): 176–185. |
[] | Qin ZY, Lei SH. 1997. Structural Analysis and Metallogenic Regularity of the Wudang Region. Beijing: Geological Publishing House: 1-159. |
[] | Ramboz C, Pichavant M, Weisbrod A. 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1-2): 29–48. |
[] | Shenberger DM, Barnes HL. 1989. Solubility of gold in sulfide solutions from 150 to 350℃. Geochimica et Cosmochimica Acta, 53(2): 269–278. DOI:10.1016/0016-7037(89)90379-7 |
[] | Taylor HP. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore depositiosn. Economic Geology, 69(6): 843–883. DOI:10.2113/gsecongeo.69.6.843 |
[] | Uemoto T, Ridley J, Mikucki E, Groves DI, Kusakabe M. 2002. Fluid chemical evolution as a factor in controlling the distribution of gold at the Archean Golden Crown lode gold deposit, Murchison Province, Western Australia. Economic Geology, 97(6): 1227–1248. DOI:10.2113/gsecongeo.97.6.1227 |
[] | Wang DB, Zhang BR, Ma ZD, Huang DK, Lin YW. 1991. Geological-geochemical investigation of the Yindonggou Xujiapo Au-Ag-multi-metal metallogenic belt. Geology and Prospecting, 27(8): 44–50. |
[] | Wang DB. 1993a. Studies on stable isotope geochemistry and ore-forming physico-chemical condition of Yindonggou Au-Ag-Pb-Zn deposit, Zhushan County, Hubei Province. Mining Geology, 14(3): 155–164. |
[] | Wang DB. 1993b. The geochemical study on alteration of wall rocks of Yingonggou Au-Ag-Pb-Zn deposit, Zhushan County, Hubei Province. Contributions to Geology and Mineral Resources Research, 8(2): 16–26. |
[] | Wang HH, Chen YJ, Gao XL. 2001. Isotope geochemistry of the Kangshan gold deposit in Henan and its illustration of the CPMF model. Mineral Deposits, 20(2): 190–198. |
[] | Wang PA, Chen YC, Pei RF. 1997. Qinling Orogenic Belt: Regional Metallogenic Series, Structure, Mineralization Cycles and Evolution. Beijing: Geological Publishing House: 21-23. |
[] | Wu XK, Zhou JH, Wang SQ. 1988. Yindonggou Ag-Au Deposit, Zhushan County Hubei Province. Wuhan: Northwest Hubei Province Hubei Geological Minerals Investigation Bureau: 1-131. |
[] | Yao JM, Zhao TP, Wei QG, Yuan ZL. 2008. Fluid inclusion features and genetic type of the Wangpingxigou Pb-Zn deposit, Henan Province. Acta Petrologica Sinica, 24(9): 2113–2123. |
[] | Zacharias J, Paterova B, Pudilova M. 2009. Mineralogy, fluid inclusion, and stable isotope constraints on the genesis of the Roudny Au-Ag deposit, Bohemian Massif. Economic Geology, 104(1): 53–72. DOI:10.2113/gsecongeo.104.1.53 |
[] | Zhang CL, Zhou DW, Jin HL, Han S, Liu YY. 1999a. Study on the Sr, Nd, Pb and O isotopes of basic dyke swarms in the Wudang block and basic volcanic of the Yaolinghe Group. Acta Petrologica Sinica, 15(3): 430–437. |
[] | Zhang CL, Zhou DW, Liu YY. 1999b. Geochemistry of basic dykes in Wudangshan block and their tectonic significance. Geochimica, 28(2): 126–135. |
[] | Zhang GW, Zhang ZQ, Dong YP. 1995. Nature of main tectono-lithostratigraphic units of the Qinling Orogen: Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101–114. |
[] | Zhang GW, Meng QR, Yu ZP, Sun Y, Zhou DW, Guo AL. 1996. Orogenesis and dynamics of the Qinling orogen. Science in China (Series D), 39(3): 225–234. |
[] | Zhang J, Chen YJ, Li GP, Li GQ, Li ZL, Wang ZG. 2004. Characteristics of ore geology and fluid inclusion of the Yindon. ggou silver deposit, Neixiang County, Henan Province: Implication for metallogenic type. Journal of Mineralogy and Petrology, 24(3): 55–64. |
[] | Zhang J, Chen YJ, Yang Y, Deng J. 2011. Lead isotope systematics of the Weishancheng Au-Ag belt, Tongbai Mountains, Central China: Implication for ore genesis. International Geology Review, 53(5-6): 656–676. DOI:10.1080/00206814.2010.496196 |
[] | Zhang J, Yang Y, Lu YH, Chen YJ, Wan SQ, Ma HW. 2008. Geological and geochemical characteristics and genesis of the Poshan silver deposit, Henan Province. Geology in China, 35(6): 1220–1229. |
[] | Zhang L, Zheng Y, Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems. Journal of Asian Earth Sciences, 49: 69–79. DOI:10.1016/j.jseaes.2011.11.019 |
[] | Zhang LG. 1985. Geological Applicance for the Stable Isotope: The Hydrothermal Mineralization of Metal Activation and It's Prospecting. Xi'an: Shaanxi Science and Technology Publishing House: 1-267. |
[] | Zhang Y, Chen YJ, Qi JP, Leng CB, Zhao CH. 2010. Geochemistry of Gongguan-Qingdonggou Hg-Sb deposit in Xuyang, Shaanxi Province. Acta Mineralogica Sinica, 30(1): 98–106. |
[] | Zhang ZQ, Zhang GW, Tang SH, Wang JH. 2002. The age of metamorphic rocks of the Wudang Group. Geology in China, 29(2): 117–125. |
[] | Zheng Y, Zhang L, Chen YJ. 2012. Ore geology, fluid inclusion geochemistry and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Cu deposit. Ore Geology Reviews, 49: 128–140. DOI:10.1016/j.oregeorev.2012.09.005 |
[] | Zhou DW, Zhang CL, Liu L, Wang JL, Liu YY, Zhang ZQ. 1998. Sm-Nd dating of basic dykes from Wudang block and a discussion of related-questions. Acta Geoscientia Sinica, 19(1): 25–30. |
[] | Zhou TH, Goldfarb RJ, Phillips GN. 2002. Tectonics and distribution of gold deposits in China: An overview. Mineralium Deposita, 37(3): 249–282. DOI:10.1007/s00126-001-0237-4 |
[] | Zhou ZJ, Jiang SY, Qin Y, Zhao HX, Hu CJ. 2011a. Fluid inclusion characteristics and ore genesis of the Wenyu gold deposit, Xiaoqinling gold belt. Acta Petrologica Sinica, 27(12): 3787–3799. |
[] | Zhou ZJ, Qin Y, Lin ZW, Wang LX, Wang ZQ. 2011b. Study of fluid inclusion characteristic and genetic type of the Huangchanggou gold deposit, West Qinling Orogen. Acta Petrologica Sinica, 27(5): 1311–1326. |
[] | Zhu LM, Zhang GW, Chen YJ, Ding ZJ, Guo B, Wang F, Lee B. 2011. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geology Reviews, 39(1-2): 46–62. DOI:10.1016/j.oregeorev.2010.10.001 |
[] | Zoheir BA. 2008. Characteristics and genesis of shear zone-related gold mineralization in Egypt: A case study from the Um El Tuyor mine, south Eastern Desert. Ore Geology Reviews, 34(3): 445–470. DOI:10.1016/j.oregeorev.2008.05.003 |
[] | 蔡锦辉, 张业明, 付建明, 陈盛峰. 1999. 鄂西北银洞沟银多金属矿床成因探讨. 地球学报, 20(增刊): 316–320. |
[] | 蔡志勇, 罗洪, 熊小林, 吴德宽, 吴贤亮, 孙三才, 杨军. 2006. 武当群上部变沉积岩组时代归属问题:单锆石U-Pb年龄的制约. 地层学杂志, 30(1): 60–63. |
[] | 陈衍景, 富士谷. 1992. 豫西金矿成矿规律. 北京: 地震出版社: 1-234. |
[] | 陈衍景. 2006. 造山型矿床, 成矿模式及找矿潜力. 中国地质, 33(6): 1181–1196. |
[] | 陈衍景, 倪培, 范宏瑞, PirajnoF, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085–2108. |
[] | 陈衍景, 张莉. 2008. 含硫化物脉状矿床成矿流体的中阶段δD亏损:实例与原因. 地球化学, 37(4): 353–360. |
[] | 陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695–2726. |
[] | 陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854–865. |
[] | 陈衍景. 2013. 大陆碰撞成矿理论的创建及应用. 岩石学报, 29(1): 1–17. |
[] | 邓小华, 李文博, 李诺, 糜梅, 张颖. 2008. 河南嵩县纸房钼矿床流体包裹体研究及矿床成因. 岩石学报, 24(9): 2133–2148. |
[] | 胡健民, 孟庆任, 白武明, 赵国春. 2002. 南秦岭构造带中-晚古生代伸展构造作用. 地质通报, 21(8): 471–477. |
[] | 蒋少涌, 戴宝章, 姜耀辉, 赵海香, 侯明兰. 2009. 胶东和小秦岭:两类不同构造环境中的造山型金矿省. 岩石学报, 25(11): 2727–2738. |
[] | 雷世和, 唐桂英. 1996. 扬子地台北缘武当推覆体结构模式及成因分析. 河北地质学院学报, 19(1): 25–32. |
[] | 雷世和, 唐桂英, 秦正永, 刘波, 张子才. 1998. 银洞沟银金矿矿床地质特征及成因探讨. 地质与勘探, 34(4): 13–21. |
[] | 李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2004. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775–781. |
[] | 李诺, 陈衍景, 张辉, 赵太平, 邓小华, 王运, 倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景. 地学前缘, 14(5): 186–198. |
[] | 李文博, 周卫东, 陈世昌, 李应平, 邓小华, 钟日晨. 2010. 湖北银洞沟银矿床地质特征与成因类型. 地学前缘, 17(1): 177–185. |
[] | 李应平, 魏兴炎, 高峰, 余吉庭, 张洪武. 2008. 湖北银洞沟银金矿床缓倾斜矿体地质特征与成矿机理研究. 地质调查与研究, 31(1): 6–13. |
[] | 凌文黎, 程建萍, 王歆华, 周汉文. 2002. 武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示. 岩石学报, 18(1): 25–36. |
[] | 凌文黎, 任邦方, 段瑞春, 柳小明, 毛新武, 彭练红, 刘早学, 程建萍, 杨红梅. 2007. 南秦岭武当山群, 耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445–1456. |
[] | 刘丛强. 1984.鄂西北竹山银洞沟铅锌-银矿床地球化学与成矿机理研究.硕士学位论文.贵阳:中国科学院地化所, 1-164 |
[] | 刘丛强. 1987. 银洞沟铅锌-银矿床的地球化学特征及其成因分析. 矿床地质, 6(4): 53–61. |
[] | 刘丛强. 1989. 鄂西北银洞沟铅锌-银矿床的流体包裹体研究. 地球化学(2): 139–149. |
[] | 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社: 1-487. |
[] | 祁进平, 陈衍景, 倪培, 赖勇, 丁俊英, 宋要武, 唐国军. 2007. 河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因. 岩石学报, 23(9): 2119–2130. |
[] | 秦正永, 雷世和. 1996. 武当群成岩年龄新资料兼讨论. 中国区域地质(2): 176–185. |
[] | 秦正永, 雷世和. 1997. 武当地区构造解析及成矿规律. 北京: 地质出版社: 1-159. |
[] | 汪东波, 张本仁, 马振东, 黄德坤, 林元文. 1991. 银洞沟-许家坡金银多金属成矿带地质地球化学研究. 地质与勘探, 27(8): 44–50. |
[] | 汪东波. 1993a. 竹山银洞沟Au-Ag-Pb-Zn矿床成矿物理化学条件及稳定同位素地球化学研究. 矿山地质, 14(3): 155–164. |
[] | 汪东波. 1993b. 湖北竹山银洞沟Au-Ag-Pb-Zn矿床围岩蚀变的地球化学研究. 地质找矿论丛, 8(2): 16–26. |
[] | 王海华, 陈衍景, 高秀丽. 2001. 河南康山金矿同位素地球化学及其对成岩成矿及流体作用模式的印证. 矿床地质, 20(2): 190–198. |
[] | 王平安, 陈毓川, 裴荣富. 1997. 秦岭造山带区域矿床成矿系列, 构造-成矿旋回与演化. 北京: 地质出版社: 21-23. |
[] | 吴贤奎, 周骏华, 王寿琼. 1988. 湖北省竹山县银洞沟银金矿床. 武汉: 湖北省鄂西北地质矿产调查所: 1-131. |
[] | 姚军明, 赵太平, 魏庆国, 原振雷. 2008. 河南王坪西沟铅锌矿床流体包裹体特征和矿床成因类型. 岩石学报, 24(9): 2113–2123. |
[] | 张成立, 周鼎武, 金海龙, 韩松, 刘颍宇. 1999a. 武当地块基性岩墙群及耀岭河群基性火山岩的Sr, Nd, Pb, O同位素研究. 岩石学报, 15(3): 430–437. |
[] | 张成立, 周鼎武, 刘颍宇. 1999b. 武当山地块基性岩墙群地球化学研究及其大地构造意义. 地球化学, 28(2): 126–135. |
[] | 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101–114. |
[] | 张静, 陈衍景, 李国平, 李忠烈, 王志光. 2004. 河南内乡县银洞沟银矿地质和流体包裹体特征及成因类型. 矿物岩石, 24(3): 55–64. |
[] | 张静, 杨艳, 鲁颖淮, 陈衍景, 万守全, 马宏卫. 2008. 河南破山银矿床地质地球化学特征及成因研究. 中国地质, 35(6): 1220–1229. |
[] | 张理刚. 1985. 稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社: 1-267. |
[] | 张颖, 陈衍景, 祁进平, 冷成彪, 赵成海. 2010. 陕西旬阳公馆-青铜沟汞锑矿床地球化学研究. 矿物学报, 30(1): 98–106. |
[] | 张宗清, 张国伟, 唐索寒, 王进辉. 2002. 武当群变质岩年龄. 中国地质, 29(2): 117–125. |
[] | 周鼎武, 张成立, 刘良, 王居里, 刘颖宇, 张宗清. 1998. 武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论. 地球学报, 19(1): 25–30. |
[] | 周振菊, 蒋少涌, 秦艳, 赵海香.胡春杰. 2011a. 小秦岭文峪金矿床流体包裹体研究及矿床成因. 岩石学报, 27(12): 3787–3799. |
[] | 周振菊, 秦艳, 林振文, 王立新, 汪志强. 2011b. 西秦岭铧厂沟金矿床流体包裹体特征研究及矿床成因. 岩石学报, 27(5): 1311–1326. |