岩石学报  2012, Vol. 28 Issue (10): 3076-3086   PDF    
江西九瑞矿集区硅质断裂磨砾岩带的厘定及其成岩成矿意义
蒋少涌1, 徐耀明1, 周巍1, 朱志勇1, 孔凡斌1,2, 孙岩1     
1. 内生金属矿床成矿机制研究国家重点实验室, 南京大学地球科学与工程学院, 南京 210093;
2. 江西地质矿产勘查开发局赣西北大队, 九江 332000
摘要: 在九瑞矿集区研究叠合断裂和叠加成矿作用的基础上, 我们进一步详细研究了出露在洋鸡山-丁家山-望夫山一线的硅质角砾岩, 指出它们不是原先认为的石炭系沉积硅质岩, 而应属于一种断裂磨砾岩, 并深入探究其形成过程及与成矿之关系。断裂磨砾岩是断裂分带结构成熟的标志之一, 多在剪切作用和热液作用下, 断裂岩石经硅化-破裂-碎裂-粉碎-研磨, 形成具有一定圆度和球度, 大小差异较大的磨砾或磨粒, 且又会反复的集结-破碎, 不断拓宽断裂构造形成磨砾-角砾岩带。本文研究的断裂磨砾岩, 呈北东向展布, 延长达十几千米。成分上以硅化角砾岩为主, SiO2含量一般大于90%, 石英颗粒由隐晶到显晶。一些角砾岩中含Fe2O3较高, 有可能是原先的硫化物经氧化形成的褐铁矿。本区洋鸡山-丁家山-望夫山一线产出的断裂磨砾-角砾岩带, 很可能是燕山期构造-岩浆-成矿事件的产物。在城门山和武山铜矿, 我们之前的工作己发现存在产于泥盆系五通组和石炭系黄龙组层滑构造体系中的黄铁矿角砾岩, 则有可能属于海西期同生断裂活动的产物。因此, 这些不同的角砾岩具有多阶段活动和叠加成矿的特征。本文还进一步指出, 九瑞地区其他层位(如泥盆系与志留系之间、志留系与奥陶系之间)发育的层滑构造体系和断裂角砾岩及热液蚀变岩, 也很可能是成矿有利部位, 值得今后找矿工作的关注。
关键词: 磨砾     层滑系统     断层结构分带     燕山期构造-岩浆-成矿事件     九瑞矿集区    
Discovery of fault-grinding siliceous breccia rock in the Jiurui ore district, Jiangxi Province, and its formation mechanism and mineralization significance
JIANG ShaoYong1, XU YaoMing1, ZHOU Wei1, ZHU ZhiYong1, KONG FanBin1,2, SUN Yan1     
1. State Key Laboratory for Mineral Deposits Research, School of Earth Science and Engineering, Nanjing University, Nanjing 210093, China;
2. Northwestern Jiangxi Geological Team, Bureau of Exploration and Development of Geology and Mineral Researches of Jiangxi Province, Jiujiang 332000, China
Abstract: Following our previous study on reiterative fault systems and superimposed mineralization in the Jiurui ore district (Jiang et al., 2010), in this study we conducted a thoroughly investigation on a tectonic-hydrothermal siliceous breccia rock which occurs along the NE trending Yangjishan gold mine-Dingjiashan gold mine-Wangfushan belt. Our study indicates that these siliceous breccia rocks are not sedimentary siliceous rocks in Carboniferous strata as previously thought, but belong to a fault-grinding breccia rock. The rock-forming mechanism of the breccia rocks and their relation to mineralization are also discussed in detail in this paper. Generally speaking, the fault-grinding gravel (grain) include all kinds of boudinage, grinding gravel and cataclastic flow grinding gravel, and it is an indication for maturity of fault zoning texture. Under shearing, the faulted rock may have passed stages of rupturing-fracturing-comminution-grinding and to form a great variety of grinding gravels or grains in different size with appropriate roundness and sphericity. These breccia rocks could have been repeatedly aggregated and fractured, and continuously developed to form a grinding gravel and breccia zone. In the Jiurui ore district, we found that these fault-grinding breccia rocks developed along the main NE-trending structure line of the district and extended tens kilometers long. The breccias are highly silicified with SiO2 contents > 90%. The quartz includes both cryptocrystalline and crystalline grains. Some of the breccias contain high Fe2O3 contents, which may indicate presence of primary sulfide ore breccias which have been oxidized to goethite later on. It is likely that these fault rocks were products of Yanshanian tectonic-magmatic-hydrothermal events. In the Chengmenshan and Wushan deposits, we also found various types of pyrite breccias occurring within the Devonian/Carboniferous strata and layer slip fault zone, which may have formed during the Hercynian syn-sedimentary faulting stage. All these different types of breccias composed the ore complex in the district, which show a multiple stage developing feature and superimposed mineralization characteristics. It is also suggested in this paper that the layer slip fault gravel-breccia zones in other sedimentary strata such as the Devonian/Silurian and Silurian/Ordovician at depths are potential mineralization targets that need to pay more attention in future exploration.
Key words: Grinding gravel     Layer slip system     Fault texture zoning     Yanshanian tectonic-magmatic-hydrothermal event     Jiurui ore district    

九瑞矿集区铜金多金属矿床的形成和演化是一个复杂的地质系统, 叠合断裂, 复式岩体与地层, 和多期热液作用为其系统的三个重要组成部分。我们在研究九瑞矿集区叠合断裂和叠加成矿作用的基础上(蒋少涌等, 2010), 对前人认为属于石炭纪沉积的望夫山硅质角砾岩带(江西省赣西北地质大队, 1989, 见图 1), 进行了深入观察探讨, 发现该角砾岩带并不只在望夫山分布, 也不仅在石炭系地层中分布, 而是从洋鸡山、丁家山至望夫山均有分布, 呈一条北东向展布的断裂角砾岩带。它很可能属于断裂磨砾岩(fault-grinding conglomerate or breccia)(如Sun et al., 2005所述)。断裂磨砾岩(包括磨粒岩)是成熟的断裂(mature fault)或断裂成熟的标志之一, 显示断裂构造在角砾研磨, 细粒泥化, 分带结构, 和动力变质等的时空演化已发展到成型的阶段(Chester et al., 2005; Wilson et al., 2005)。这样断裂本身及其伴生、派生构造能更有利地起到控岩控矿, 导岩导矿的功能作用。为此, 本文试图从区内的洋鸡山、丁家山至望夫山一带地表大量出露的硅质角砾岩为切入点, 结合该区深部坑道和钻孔揭露的各种不同类型的角砾岩, 来深入探讨九瑞矿集区断裂磨砾岩带的成岩过程和成矿关系。

①江西省赣西北地质大队.1989.江西省九江-瑞昌铜金矿带地质矿产图(1:5万)

图 1 江西九瑞矿集区武山-洋鸡山-丁家山地区地层构造简图 Fig. 1 a sketch map of sedimentary strata and structures in the Wushan-Yangjishan-Dingjiashan area of Jiurui ore district
1 地质构造背景

九瑞铜多金属矿集区是长江中下游铜金硫多金属成矿带的重要组成部分。该区发育有各种不同类型的构造-岩浆-热液成矿作用, 主要包括有海西期喷流沉积成矿和燕山期岩浆热液成矿(顾连兴和徐克勤, 1984, 1986; 常印佛等, 1991; 翟裕生等, 1992, 1999, 2009; 蒋少涌等, 2008, 2010; 徐克勤和朱金初, 2009; 毛景文等, 2009; Pan and Dong, 1999)。

九瑞地区所位于的长江中下游地区地质构造复杂, 具有长期演化的多层次构造网络的特点(翟裕生等, 1992, 1999)。该区长期受到北面大别山隆起和南面九岭山江南褶皱造山带的构造活动影响, 加之区内地层的层块、岩块在密度强度和弹性模量等各种物性上韵律性的差异, 更加剧了岩层的构造分层作用(tectonic layering)(如Suvorov, 2000), 分离作用(partitioning)(如Hippertt et al., 2001)和界面断裂(boundary face fault)的发育(如Rice and Guo, 2001)。本区区域性层滑倾滑系统均与一定的地层层位有关, 且岩石(岩层)的力学和物理性质又与岩石的成份和结构有关。翟裕生等(1999)将该区岩石圈划分为六大层和六个滑移(拆离)面。Sun et al.(1993)孙岩等(1997)也划分了六套层滑系统, 其中第一滑动系统是区域性的, 为该区变质基底与盖层间的大型层滑界面, 已为物探资料验证(图 2) (翟裕生等, 1999), 第二、三和四层滑系统为成矿构造层, 程度依次增加(图 3)。总体而言, 叠层滑动系统薄皮构造搭建了本区南北分带和东西分块的层块格架。

图 2 九瑞地区武山铜矿至洋鸡山金矿地球物理资料综合解释地质剖面图(据翟裕生等, 1999) Fig. 2 Synthetical interpreting section by geophysical data from Wushan copper mine to Yangjishan gold mine, Jiurui district (after Zhai et al., 1999)

图 3 九瑞地区武山至城门山第Ⅲ和第Ⅳ套区域层滑系统构造剖面示意图 Fig. 3 Structural section showing the third and fourth regional layer slip systems from Wushan copper mine to Chengmenshan copper mine, Jiurui ore district
2 断裂磨砾岩带的特征 2.1 分布情况

通过我们近两年十余次的详细野外观察, 特别是由于该区大规模的修路及工业园区建设施工工程揭露出许多新鲜剖面, 使我们认识到, 这些硅质角砾岩并不像赣西北地质大队1:5万地质图上所示产于石炭系地层中, 而是沿着洋鸡山矿区和丁家山矿区的南部边缘, 带状分布在Q1网纹黄土和Q4冲积土中, 或分布在志留系至三叠系地层断裂带中, 为宽度不定、大小不等的角砾或磨砾(图 4), 顺NE向构造带延至望夫山东麓, 似成为面型带状展布态势(图 1)。但根据我们在望夫山地区的详细踏勘, 此面型带状分布很可能系后期强势外动力的坡积冲积所致。

图 4 九瑞矿区洋鸡山-丁家山-望夫山断裂带巨型透镜状磨砾(岩) (a)-洋鸡山金矿南部边缘巨型磨砾, 表面磨损, 偶见擦线; (b)-丁家山金矿南部边缘巨型磨砾, 大小角砾磨砾相互混杂, 毫米级细粒有定向排列现象(箭头); (c)-望夫山山坡巨型磨砾, 大的角砾包容次级或更次级角砾, 细小磨砾略显分选迹象(箭头) Fig. 4 Giant lens grinding gravel (rock) from the Yangjishan-Dingjiashan-Wangfushan, Jiurui ore district (a)-giant grinding gravel located the margin in southern Yangjishan gold mine, attrition and rare slickenside on the surface; (b)-giant grinding gravel located in the margin of southern Dingjiashan gold mine, containing both large and small breccia-grinding gravel, and millimeter scaled fine grains displaying linear phenomena (arrow); (c)-giant grinding gravel located in the slope of a hill in the Wangfushan, larger breccia comprising secondary or smaller one and fine grinding gravels display a rough sorting (arrow)
2.2 岩石学特征

偏光显微镜下观察表明, 这些磨砾岩的岩石硅化, 颗粒粒化(granulation)和剪切弱化作用(weakening)现象是很明显的。尤其是多期的广泛的硅化作用普遍发育。洋鸡山的磨砾岩(图 4a), 镜下显现断裂带最常见的低温的构造热演化(tectono-thermal evolution)、构造变质作用(tectono-metamorphism)形成的同运动学矿物(syn-kinematic minerals), 其多期硅化的石英颗粒, 有隐晶的和显晶的, 细粒的和粗粒的。图 5a示细砂-粉砂岩被后期SiO2热液沿层理定向交代。剪切动力热变质的不均匀局域化作用可以显示亚颗粒和晶体优选方位(crystal preferred orientation)(图 5b), 进而向剪切弱化, 应变软化作用(strain softening)转化, 产生动力重结晶(dynamic recrystallization), 在粗粒石英颗粒可显现变形纹理(deformed lamellae), 沙钟构造(sand glass)等消光现象(图 5c), 大小不等的磨砾(粒)大部被硅质、铁质和少许泥质等胶结(图 5d)。

图 5 洋鸡山巨磨砾标本偏光显微镜下观察照片 (a)-隐晶和显晶硅化石英颗粒, 局部可见逐渐过渡现象(箭头); (b)-硅化岩颗粒亚颗粒定向排列; (c)-石英颗粒生长加大显砂钟消光(箭头); (d)-硅质磨粒为铁质所胶结 Fig. 5 Photos of giant grinding gravel samples from the Yangjishan under polarization microscope observation (a)-cryptocrystalline and crystalline quartz grains with progressive transition phenomena at local scope; (b)-siliceous rock with quartz grains and subgrains showing oriented arrangement; (c)-overgrowth of quartz grains with the hourglass extinction; (d)-grinding grains cemented with Fe-oxides

丁家山和望夫山巨磨砾标本(图 4b, c)偏光显微镜下观察到, 大的碎粒(直径d > 500μm)周围细小的碎粒(d=~20~40μm)长边与其平行, 表明其转动的迹象(图 6a)。且磨砾周边更明显, 大粒(d > 800μm)中又包容小的碎粒(d=~100μm)(图 6b)。有的圆度(roundness, 指圆化的程度)和球度(sphericity, 指球粒化的程度)极佳的磨砾, 圆度指数Rd近乎1(如Lin et al., 1998), 其长英质的颗粒霏细化、糜棱化(nm~μm级)。且变余结构定向排列, 方向有别(图 6c)。有的磨砾周边次生石英颗粒呈梳状构造(comb structures)的镶边(图 6d), 此系沿后期的张裂隙垂直壁生长。

图 6 丁家山(a, b)和望夫山(c, d)巨磨砾标本正交偏光显微镜下观察照片 (a)-霏细碎粒长边平行大颗粒边界(箭头); (b)-包容在磨粒中的碎粒(箭头); (c)-不同方向延伸的霏细颗粒(箭头)为愈合的隐裂隙(虚箭头)分开; (d)-磨粒边缘的梳状构造(箭头) Fig. 6 Photos of giant grinding gravel samples from the Dingjiashan (a, b) and Wangfushan under crossed polarization microscope observation (a)-longside of felsitic fracture grains paralleling to the boundary of larger grain (arrow); (b)-fracture grain contained within the grinding grain (arrow); (c)-felsitic grains extending to different direction (arrow) have been splited by healed cryptofissure (dashed arrow); (d)-comb structure (arrow) located around the grinding gravels
2.3 岩石化学特征

洋鸡山-丁家山-望夫山一线的角砾-磨砾岩的地球化学组成分析表明(表 1):

表 1 洋鸡山-丁家山-望夫山地区断层角砾-磨砾岩和围岩岩石化学分析表(wt%) Table 1 Chemical analysis of the fault breccias, grinding gravels and country rocks from the Yangjishan-Dingjiashan-Wangfushan areas (wt%)

(1) SiO2含量一般均大于90%, 为强硅化岩, 石英颗粒由隐晶到显晶(图 5图 6), 丁家山和望夫山一带尤甚, 同围岩(砂岩, 灰岩和花岗岩)相比化学成分差别明显(表 1)。

(2) Fe2O3全都高于FeO, Fe3+/Fe2+之比表明氧化系数极高。表明断裂角砾-磨砾岩带的产生和演变, 为较为氧化环境。个别样品含Fe2O3极高(41.87%), 主要是由于强褐铁矿化所致。

(3)一些弱硅化(如表 1中691)和不显硅化(如表 1中690)样品, 前者Al2O3达7.46%, 后者Fe2O3达41.87%。它们有可能是由于有部分花岗岩或沉积岩和硫化物矿石卷入到断层岩中, 并受到不同程度的动力变质和热液蚀变作用, 也可能记录了多阶段的构造演化史。

3 断裂磨砾岩的构造成因分析

前人研究表明, 发育成型的剪切断裂的横向分带结构可按简单模式或复杂模式来描述(Sun and Shen, 1983, 1986; Sibson, 2003; Ge et al., 2004; Chester et al., 2005; Micarelli et al., 2006)。

简单模式为二带型, 中心向外侧依次为①断层核心带(fault core zone)或称主滑移带(principal slip zone, PSZ), 和②断层损伤带(damage zone)或称微裂隙和次级断层带(subsidiary fault)(图 7a)(Sibson, 2003), 或将核心带称为超碎裂岩带(ultra-catailasitc zone)(图 7b)(Chester et al., 2005)。

图 7 不同研究者的剪切断层带横向分带模式 (a)-Sibson (2003)模式; (b)-Chester et al.(2005)模式; (c)-Micarelli et al.(2006)模式; (d)-Sun and Shen (1986)模式; 详细说明见正文 Fig. 7 Crossed zoning model of shear fault zones suggested by different researchers

复杂模式为四带型, 中心至外侧依次为①断层核心带, ②初角砾岩条带(proto-breccia band), ③强变形损伤带(intensely deformed damage zone, IDDZ)和④弱变形损伤带(weakly deformed damage zone, WDDZ)(图 7c)(Micarelli et al., 2006)。Sun and Shen (1986)将断裂带的显微构造同断层岩结合起来进行分带, 分别为①断层泥砾带, ②剪切劈理-糜棱岩带, ③构造透镜体-粒化岩带, ④密集裂隙(伴生派生裂隙)-碎裂岩带(图 7d)。四带型的断裂带的宽度一般都达到数米或数十米。在压性断裂构造域, 磨砾和磨砾化的构造岩有一定的普适性。

图 7四种分带模式中, 其中图 7d模式明显图示出透镜体构造带, 且在泥砾带中压性逆冲断层(图 7d, 1)和扭性走滑断层(图 7d, 2)中的磨砾(粒)形态有别, 前者为透镜状, 拉长状;后者为椭圆状, 圆球状。而前三种模式(图 7a, b, c)在裂隙发育处均可显示由裂隙围绕成的菱形、透镜形的岩块, 进而可发育成透镜体或磨砾构造。

九瑞矿集区洋鸡山-丁家山-望夫山一线断裂带的巨磨砾, 在新疆天山和四川华蓥山、以及安徽肥东山区和江苏宜溧山区等地均有发现(Sun and Shen, 1983, 1986; Sun et al., 1993)。其中后者所形成的地质背景同研究区的情况较为相似, 巨磨砾也是产生在志留系和泥盆系之间的近EW向逆冲断裂带, 并暴露地表。在研究区的早石炭世梓山组碎屑岩与前泥盆纪岩层之间, 也广泛发育断层角砾岩(孙岩等, 1984)。

参照上述实例, 结合区域构造, 综观九瑞矿区断裂带巨磨砾的形成可初步划分为内外动力作用两个阶段。

(1)内动力作用阶段:区域性层滑剪切作用下, 形成四带型的逆冲断裂带, 通常规模较大, 加上旁侧损伤带, 或四带型的伴生派生裂隙带(图 7), 宽度达30m或更宽, 方能产生砾径达1m的巨磨砾。据地表及钻孔观察, 在洋鸡山纵贯金矿的F1剪切断层宽度可达40m以上(图 8)。由于多次的构造运动, 断裂活动和破裂作用, 磨砾岩也是经历形成磨砾-碎成角砾-再研成磨砾(粒)-再变成大的磨砾的一个反复异构化(alienation)转化的演变进程(Sun et al., 2008)。先是断层泥砾(磨砾和磨粒)带不断加宽的过程;后经浅层块片垂直运动、脱开断层(extraction fault)厚皮构造型式活动(Froitzheim et al., 2006)等。在洋鸡山金矿, F1断层带视垂直断层可达400m。因而可将早期薄皮构造型式的产物(磨砾等)显露出来。

图 8 洋鸡山金矿10线地质构造剖面和角砾-磨砾岩分布(据江西地质矿产勘查开发局赣西北大队, 1986 简化) Q-第四系;E-古近系(第三系);T-三叠系;P-二叠系;C2h-中石炭统黄龙组;D3w-上泥盆统五通组;S-志留系;δμ-石英闪长玢岩;Or-矿石;Br-角砾磨砾岩;ZK108-钻孔 Fig. 8 & geological structure cross section and occurrence of breccias-grinding conglomerates in the Yangjishan gold mine along the tenth geological line Q-Quaternary; E-Tertiary; T-Triassic; P-Permian; C2h-Huanglong Formation, Middle Carboniferous; D3w-Wutong Formation, Devanian; S-Silurian; δμ-quartz-diorite-porphyrite; Or-ores; Br-breccia and grinding conglomerate; ZK108-bore hole

①江西地质矿产勘查开发局赣西北大队. 1986.江西省瑞昌县洋鸡山金矿区详细勘探地质报告(内部资料)

(2)外动力作用阶段:在望夫山地区表现的尤为明显, 坡积、冲积以及洪积使之磨砾呈似面状分布的特点(图 1)。

在泥盆系的层状石英砂岩, 受层滑挤压和逆冲压扁作用(flattening)可形成布丁(boudinage)构造, 已有透镜体化的趋势, 若具一定规模剪切断层的裹挟, 也可显示磨砾征状, 或可谓布丁磨砾。此种现象在望夫山南和瑞昌科技园工地有几处已揭露出来(图 9)。且在扬子地块逆冲推覆构造带较为常见。在断裂核心泥砾带, 旁侧的损伤带, 裂隙带, 又有小剪切断层, 剪节理切过时, 会形成小规模的碎裂流变带(Ismat and Mitra, 2001)。这不仅会造成菱形岩块磨损, 还会造成长轴平行流变方向的小型透镜体和磨砾。兹在长江中下游矿区中也十分普遍。广义讲, 断裂磨砾岩带也应涵盖这两种类型。即总共有:断裂磨砾、布丁磨砾和碎流磨砾三种, 当然第一种分布的最为广泛, 且最具代表性, 也是本文研究之重点。

图 9 瑞昌工业园区建设工地揭露的冲断层分带结构图 S3-上志留统纱帽组粉砂岩; 284°∠60°-产状, 倾向和倾角; Ⅰ-劈理带; Ⅱ-磨砾化的透镜体构造带; Ⅲ-裂隙构造带 Fig. 9 Thrust zoning texture exposed at a construction site of the industrialized country in the Ruichang City S3-Shamao Formation sandstone, Upper Silurian System; 284°∠60°-occurrences, dipping and dip angle; Ⅰ-clearages zone; Ⅱ-lenticular structure zone; Ⅲ-fissure structure zone
4 断裂磨砾岩带与成矿的可能关系探讨

如果望夫山一带出露的硅质角砾岩为石炭纪沉积或热液作用产物, 则很可能与该区的海西期热水喷流沉积成矿作用有关。但从本文研究初步结果看, 望夫山的硅质角砾岩, 与洋鸡山、丁家山的硅质角砾岩一起, 构成了一条北东向展布的巨型断裂磨砾岩带。这条带中硅质角砾岩在地表可见呈巨型磨砾产于网纹黄土中, 也见于泥盆系至三叠系地层中(图 8图 9)。很显然, 它们不可能是海西期海底同生热液活动的产物。我们初步推测它们有可能是燕山期构造-岩浆-热液活动的产物, 部分角砾后来又被外动力作用搬运至网纹黄土及坡积物中。

实际上, 九瑞地区的角砾岩的产出类型很复杂, 时代也可能是多期的(翟裕生等, 1999; 蒋少涌等, 2010)。在武山铜矿和城门山铜矿中五通组(D3w)和黄龙组(C2h)地层间层状矿床的成矿断裂中也发育有不同规模的断裂磨砾岩(泥砾)带(图 10a)。通常磨砾(粒)大小差别较大, 岩石成分较复杂(图 10b), 亦可称之为含矿构造杂岩。成矿前的断裂构造杂岩, 在成矿期间和成矿后又经多次变动改造和岩性混杂, 形成含矿杂岩, 致使形成多种多样的矿石结构构造。在城门山、武山铜矿中, 块状和角砾状构造十分普遍。我们的观察表明, 这些块状角砾状不乏透镜状、次圆状的磨砾或磨砾化(蒋少涌等, 2010)。例如, 在武山铜矿, 黄铁矿本身就是透镜状的细小磨砾(图 11a)。含铜黄铁矿菱网状剪切系统(net shear system)约制(如Fusseis et al., 2006), 其菱块边缘被磨损(图 11b)。在剪切碎裂流影响下, 破裂硫化物矿石透镜体化(图 11c)。甚至破裂硫化物矿石再聚成大的透镜体构造, 并又产生不同程度的碎裂流动, 导致矿石或脉石磨砾化(图 11d)。

图 10 城门山-武山铜矿成矿断裂带中的磨砾和磨粒 (a)-城门山矿钻孔(编号ND-02)岩芯, 断层泥砾带, 附近为密集裂隙带矿化显著; (b)-武山铜矿坑道(-260m, 49线) F1断层泥砾带硅质的磨粒密集, 并见分散的黄铁矿磨粒(箭头) Fig. 10 Grinding gravels and grinding grains in ore-forming fault zones in Chengmenshan and Wushan copper mines (a)-bore-hole (No. ND-02) core in the Chengmenshan mine, showing fault clay-gravels, and mineralization occurring in dense fissure zone; (b)-F1 fault clay-gravel zone in Wushan mine (-260m, geological line 49), with dense siliceous-grinding grains and scattered pyrite grinding grains (arrow)

图 11 武山铜矿(-260m中段)磨砾化的块状、角砾状的硫化物矿石照片 (a)-透镜化粒砾状的黄铁矿(箭头示滑润的边界), 又再次破碎(正交); (b)-圆滑的黄铁矿磨砾(实箭头)和磨损的硫化物矿石边缘(虚箭头); (c)-剪切破碎带和派生裂隙(虚线)反时针扭动(实箭头), 造成碎裂流变带和透镜化磨砾状的硫化物矿石; (d)-角砾状的硫化物矿石, 受局部剪切碎裂流影响显透镜化磨砾状并定向排列(虚线) Fig. 11 Massive and brecciated sulfide ores with the grinding gravel shape in the Wushan copper mine (-260m level) (a)-pyrite grain with lens and grinding form (arrow showing smooth boundary) and repeated rupturing; (b)-round pyrite grinding gravel (arrow) and attrited margin of sulfide ores (dashed arrow); (c)-shearing fracture zone (dashed line) and derivative fissure (left handed movement) (arrow) cause cataclastic rheology zone and sulfide ores with lens grinding gravel form; (d)-brecciated sulfide ores showing lens grinding gravel form and oriented arrangement (dash line) affected by local cataclastic flow

对九瑞地区的断裂磨砾岩及其他类型的角砾岩与成矿的可能关系, 除上面陈述的各种例证外, 我们可再作如下分析:

图 11中分散的黄铁矿(含铜黄铁矿)磨粒, 产于武山矿F1断裂的核心带, 显然同洋鸡山-丁家山-望夫山的硅质磨砾(图 4)的形成条件有别, 我们认为前者很可能是海西期同生断裂期成矿作用的产物(蒋少涌等, 2010), 而后者很可能是燕山期岩浆-热液作用的产物, 再经后续断裂研磨而成。这也反映了本区多期叠加成矿的特点。

图 10展示的为成矿前的磨砾, 图 11大都是成矿期-成矿后磨砾。从九瑞矿区叠合成矿断裂作用分析, 成矿前和成矿期形成的磨砾, 均大都被毁形改造。

③在矿坑和井下直观所见大都为断裂磨砾和碎流磨砾类型, 其布丁磨砾类型, 目前仅在受区域逆冲大断裂带控制的洋鸡山金矿可寻找踪迹。在洋鸡山金矿, 透镜状的矿体占有十分重要的地位, 矿体的厚度仅达1m。上面已提到, 在望夫山南坡我们也已观察到少量的这种磨砾化的透镜体。

深入探讨成型成熟的断裂构造对矿床形成定位所起的作用, 尚有许多问题仍值得后续工作的进一步关注:

①成型成熟分带结构的断裂, 简单剪切(simple shear), 单剪旋转(rotation)强烈, 破裂-碎裂-粉碎程度较高(如Ceriani et al., 2003; Keulen et al., 2007), 又易形成坚硬岩块转动(如Marques and Coelho, 2001)。加之伴生派生裂隙构造发育, 这种“宽绰”的断裂, 比之“遮蔽”的结构更易于促成超压流体(overpressure fluid)的流动和水-岩反应的进行(如Stump and Flemings, 2000; Yamashita, 2003)。同一断裂带, 由于受滑动地块的影响力度不等, 宽绰和遮蔽的程度也不同。如武山铜矿的层滑成矿断裂带向两侧延展, 断裂分带结构东边明显, 西边不显, 兹两边浅构造位, 就断裂带的成矿条件而言, 无疑前者居上。

②在断裂的演化过程中, 带状结构扩张, 磨砾角砾增生, 每每产生不同岩性聚集的断裂构造(混)杂岩。依据野外宏观勘查, 构造筛分磨砾类别, 微观观察和成矿分析等, 在九瑞地区的中石炭统和上泥盆统地层间的滑动和成矿构造杂岩的发育(图 3图 8图 11)应当控制着该地区主要矿床(以城门山, 武山为代表)的空间展布, 因此遵循就矿找矿原则, 沿该层滑断裂带向外侧开拓, 必将不断取得找矿新成果, 如最近在武山和城门山外围多个钻孔揭示出的厚大矿体即为明证。以洋鸡山-丁家山-望夫山一带的巨磨砾(图 4)为标志的北东向大断裂带是本区的区域性骨干构造线, 也是矿体赋存的最有利区带, 值得今后找矿工作的重点关注。此外, 在洋鸡山以南和武山以北也有沿近东西向构造线分布的角砾-磨砾岩带和长条状的花岗斑岩带, 也应是今后找矿的有利地区。

③值得注意的是, 在九瑞地区泥盆系与志留系地层间也存在层滑现象, 志留系内部如纱帽组砂岩层逆冲断层分带结构和磨砾-角砾岩带也有发育(图 9)。而在志留系和奥陶系地层间的层滑构造, 已于个别钻孔(如老屋蔡ZK81-1孔)见到龙马溪组(S1l)和汤头组(O3t)的层间破碎带, 应是层滑断裂角砾-磨砾岩带。这些不同层位的滑动系统均可视为具有潜在找矿前景的勘探层位。

5 结语

通过对九瑞矿集区的断裂磨砾岩的研究, 可得出如下初步结论:

(1)洋鸡山金矿-丁家山金矿-望夫山一带地表出露的大小不等的角砾不是石炭系的沉积硅质角砾岩, 而是一种断裂磨砾岩。它们的产出是断裂构造发育成熟的标志之一。

(2)九瑞矿集区内各矿床中普遍发育的各种类型的断裂磨砾岩和角砾岩, 是在长期叠合断裂作用下, 多次演变的产物。它们是含矿杂岩的重要组成部分之一。位于成熟断裂中心的磨砾岩带有利于成矿流体的流动, 可作为找矿勘探的地质-构造指示。

(3)九瑞矿集区内不同层位不同规模的层滑断裂构造和磨砾-角砾岩带均有发育, 因此, 除应继续关注泥盆系五通组与石炭系黄龙组之间的多期叠合构造及含矿杂岩带外, 也应进一步关注其他地层间的层滑构造带的找矿工作。特别是在符合断裂成熟叠合、复式小型岩体和围岩热液蚀变成矿三要素的区域具有很大找矿前景。

致谢 野外工作得到了江西省国土资源厅、江西地质矿产勘查开发局和赣西北地质大队的大力支持, 作者在此深表谢意。感谢南京大学舒良树、孙明志、边立曾等教授对本工作的指导及对本文提出的宝贵修改建议。感谢两位匿名审稿人的评阅意见。
参考文献
[] Ceriani S, Mancktelow NS, Pennacchioni G. 2003. Analogue modelling of the influence of shape and particle/matrix interface lubrication on the rotational behaviour of rigid particles in simple shear. Journal of Structural Geology, 25(12): 2005–2021. DOI:10.1016/S0191-8141(03)00098-1
[] Chang YF, Liu XP, Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Yangtze River. Beijing: Geological Publishing House: 1-379.
[] Chester JS, Chester FM, Kronenberg AK. 2005. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437(7055): 133–136. DOI:10.1038/nature03942
[] Froitzheim N, Pleuger J, Nagel TJ. 2006. Extraction faults. Journal of Structural Geology, 28(8): 1388–1395. DOI:10.1016/j.jsg.2006.05.002
[] Fusseis F, Handy MR, Schrank C. 2006. Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain). Journal of Structural Geology, 28(7): 1228–1243. DOI:10.1016/j.jsg.2006.03.022
[] Ge HP, Sun Y, Lu XC, Zhu WB, Guo JC, Liu DL, Wang CY. 2004. Discovery and analysis of ultra-micro grinding grain texture in slipping lamellae of ductile-brittle zone. Science in China (Series D), 47(3): 265–271. DOI:10.1360/02YD0159
[] Gu LX, Xu KQ. 1984. The Middle Carboniferous marine volcanics and the origin of the bedded ore in Wushan, Jiangxi Province. Journal of Guilin University of Technology, 7(4): 243–251.
[] Gu LX, Xu KQ. 1986. On the carboniferous submarine massive sulphide deposits in the Lower Reaches of the Changjiang (Yangtze) River. Acta Geologica Sinica, 60(2): 176–188.
[] Hecht CA, Bönsch C, Bauch E. 2005. Relations of rock structure and composition to petrophysical and geomechanical rock properties: Examples from Permo-Carboniferous red-beds. Rock Mechanics and Rock Engineering, 38(3): 197–216. DOI:10.1007/s00603-005-0047-6
[] Hippertt J, Lana C, Takeshita T. 2001. Deformation partitioning during folding of banded iron formation. Journal of Structural Geology, 23(5): 819–834. DOI:10.1016/S0191-8141(00)00128-0
[] Holdsworth RE. 2004. Weak faults-Rotten cores. Science, 303(5655): 181–182. DOI:10.1126/science.1092491
[] Ismat Z, Mitra G. 2001. Folding by cataclastic flow at shallow crustal levels in the Canyon Range, Sevier orogenic belt, west-central Utah. Journal of Structural Geology, 23(2-3): 355–378. DOI:10.1016/S0191-8141(00)00101-2
[] Jiang SY, Li L, Zhu B, Ding X, Jiang YH, Gu LX, Ni P. 2008. Geochemical and Sr-Nd-Hf isotopic compositions of granodiorite from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrologica Sinica, 24(8): 1679–1690.
[] Jiang SY, Sun Y, Sun MZ, Bian LZ, Xiong YG, Yang SY, Luo L, Cao ZQ, Wu YM. 2010. Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, Middle and Lower Yangtze River mineralization belt, China. Acta Petrologica Sinica, 26(9): 2751–2767.
[] Keulen N, Heilbronner R, Stuenitz H, Boullier AM, Ito H. 2007. Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology, 29(8): 1282–1300. DOI:10.1016/j.jsg.2007.04.003
[] Leonov YG, Suvorov AI. 2000. Tectonic layering and tectonic motions in the continental lithosphere. Geotectonics, 34(6): 442–451.
[] Lin AM, Miyata T, Wan TF. 1998. Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong Peninsula, eastern China. Tectonophysics, 293(1-2): 85–104. DOI:10.1016/S0040-1951(98)00087-0
[] Mao JW, Shao YJ, Xie GQ, Zhang JD, Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109–119.
[] Marques FO, Coelho S. 2001. Rotation of rigid elliptical cylinders in viscous simple shear flow: Analogue experiments. Journal of Structural Geology, 23(4): 609–617. DOI:10.1016/S0191-8141(00)00135-8
[] Micarelli L, Benedicto a, Wibberley CAJ. 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28(7): 1214–1227. DOI:10.1016/j.jsg.2006.03.036
[] Pan YM, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177–242. DOI:10.1016/S0169-1368(99)00022-0
[] Rice JR, Guo G. 2001. New perspectives on crack and fault dynamics. Advances in Mechanics, 3: 447–460.
[] Sibson RH. 2003. Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3): 1169–1178. DOI:10.1785/0120020061
[] Stump BB, Flemings PB. 2000. Overpressure and fluid flow in dipping structures of the offshore Gulf of Mexico (EI 330 field). Journal of Geochemical Exploration, 69: 23–28.
[] Sun Y, Shen XZ. 1983. The textural classification of fault tectonite. Chinese Science Bulletin, 28(6): 787–791.
[] Sun Y, Shen XZ, Huang ZJ, Deng XY, Liu SH. 1984. Layer slip fractures and stratabound ore deposits: Evidence from Lower Paleozoic strata in southern Jiangsu and Anhui. Geological Reviews, 30(5): 430–436.
[] Sun Y, Shen XZ. 1986. a study on the zoning types of faulted rocks in China. Scientia Sinica Series B-Chemical Biological Agricultural Medical & Earth Sciences, 29(6): 663–672.
[] Sun Y, Shi Z, Gou F. 1993. Study on mechanical parameters of rocks and regional layerslip systems in Hunan-Jiangxi areas. Science in China (Series B), 36(8): 962–975.
[] Sun Y, Shu LS, Liu DL. 1997. On the tectonolayering, rheologicolayering and chemicolayering-yaking dipslip fault systems of the Middle-Lower Yangtze area as an example. Journal of Nanjing University (Natural Sciences), 33(1): 82–91.
[] Sun Y, Lu XC, Shu LS, Gu LX. 2005. Observation of ultra-microtexture of fault rocks in shearing-sliding zones. Progress in Natural Science, 15(1): 430–434.
[] Sun Y, Shu LS, Lu XC, Liu H, Zhang XH, Lin AM, Kosaka K. 2008. Recent progress in studies on the nano-sized particle layer in rock shear planes. Progress in Natural Science-Materials International, 18(4): 367–373. DOI:10.1016/j.pnsc.2007.12.001
[] Wilson B, Dewers T, Reches Z, Brune J. 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature, 434(7034): 749–752. DOI:10.1038/nature03433
[] Xu KQ, Zhu JC. 2009. Origin of the Sedimentary-(or Volcanosedimentary-) Iron-Copper Deposits in some Fault Depression Belts in South China. Collection of Xu KQ Papers. Beijing: Science Press: 426–499.
[] Yamashita T. 2003. Regularity and complexity of aftershock occurrence due to mechanical interactions between fault slip and fluid flow. Geophysical Journal International, 152(1): 20–33. DOI:10.1046/j.1365-246X.2003.01790.x
[] Zhai YS, Yao SZ, Lin XD. 1992. The Metallogenic Features of Fe and Cu (Au) in the Middle and Lower Reaches of the Changjiang River. Beijing: Geological Publishing House: 1-235.
[] Zhai YS, Yao SZ, Zhou ZG. 1999. Research on Orefield Tectonics of Copper and Gold Deposits in the Middle-Lower Reaches of the Yangtze River. Wuhan: China University of Geosciences Press: 1-195.
[] Zhai YS, Wang JP, Peng RM, Liu JJ. 2009. Research on superimposed metallogenic systems and polygenetic mineral deposits. Earth Science Frontiers, 16(6): 282–290.
[] 常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铁铜成矿带. 北京: 地质出版社: 1-379.
[] 顾连兴, 徐克勤. 1984. 江西武山中石炭世海相火山岩和块状硫化物矿床. 桂林工学院学报, 7(4): 243–251.
[] 顾连兴, 徐克勤. 1986. 论长江中、下游中石炭世海底块状硫化物矿床. 地质学报, 60(2): 176–188.
[] 蒋少涌, 李亮, 朱碧, 丁昕, 姜耀辉, 顾连兴, 倪培. 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24(8): 1679–1690.
[] 蒋少涌, 孙岩, 孙明志, 边立曾, 熊永根, 杨水源, 曹钟清, 吴亚民. 2010. 长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用. 岩石学报, 26(9): 2751–2767.
[] 毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109–119.
[] 孙岩, 沈修志, 黄钟瑾, 邓锡秧, 刘寿和. 1984. 层滑断裂与层控矿床--以苏皖南部上古生界的地层为例. 地质论评, 30(5): 430–436.
[] 孙岩, 舒良树, 刘德良. 1997. 论构造分层、流变分层和化学分层作用-以中下扬子区倾滑断裂系统为例. 南京大学学报(自然科学版), 33(1): 82–91.
[] 徐克勤, 朱金初. 2009.我国东南部几个断裂拗陷带中沉积(或火山沉积)热液叠加类铁铜矿床成因的探讨.见:徐克勤文集编辑委员会.徐克勤文集.北京:科学出版社, 426-499
[] 翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社: 1-235.
[] 翟裕生, 姚书振, 周宗桂. 1999. 长江中下游铜金矿床矿田构造. 武汉: 中国地质大学出版社: 1-195.
[] 翟裕生, 王建平, 彭润民, 刘家军. 2009. 叠加成矿系统与多成因矿床研究. 地学前缘, 16(6): 282–290.