岩石学报  2012, Vol. 28 Issue (6): 1857-1874   PDF    
星星峡石英闪长质片麻岩的锆石年代学:对天山造山带构造演化及基底归属的意义
贺振宇1, 张泽明1, 宗克清2, 王伟3, 于飞3     
1. 中国地质科学院地质研究所, 大陆构造与动力学国家重点实验室, 北京 100037;
2. 中国地质大学地质过程与矿产资源国家重点实验室, 武汉 430074;
3. 中国地质大学地球科学学院, 武汉 430074
摘要: 天山造山带是中亚造山带(CAOB)的主要组成部分,对于其前寒武纪古老基底的起源、古生代构造单元划分和造山作用过程的认识还存在很大分歧。本文对分布在星星峡镇西的石英闪长质片麻岩开展了系统地岩相学观察和锆石U-Pb年龄、Hf同位素及全岩地球化学分析。根据矿物组成推测它们的原岩为石英闪长岩,两个样品中的锆石具有基本一致的内部结构特征,均发育黑色、均一的边部和具震荡环带的核部,部分保留有更早的继承锆石核。分析结果表明,它们的原岩形成于~425Ma,变质作用年龄为约320~360Ma,继承锆石的年龄为1381~1743Ma。原岩结晶锆石具有正的且变化较大的εHf(t)值(0.9~17.8),继承锆石的tDM2模式年龄变化于1.54~2.44Ga。在全岩地球化学组成上,石英闪长质片麻岩具有明显富集Rb、Ba、Th、K等大离子亲石元素和Pb、U元素,亏损Nb、Ta、Ti等高场强元素的特点。结合区域上已有的前寒武纪基底、高级变质岩、蛇绿混杂岩、岩浆岩的研究资料,获得以下认识:中天山地块的前寒武纪基底的起源与塔里木板块没有明显的相关性,可能是中元古代时期,由东欧板块边缘的弧增生造山作用形成;中天山地块东部在早古生代为大陆边缘弧的构造环境,可能形成于南天山洋向中天山板块的俯冲作用;南天山洋在天山造山带的东部和西部可能具有一致的闭合时间。
关键词: 石英闪长质片麻岩     早石炭世     中元古代     星星峡     中天山地块    
Zircon geochronology of Xingxingxia quartz dioritic gneisses: Implications for the tectonic evolution and Precambrian basement affinity of Chinese Tianshan orogenic belt
HE ZhenYu1, ZHANG ZeMing1, ZONG KeQing2, WANG Wei3, YU Fei3     
1. State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;
3. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Abstract: The Tianshan orogen is the major component of the Central Asian Orogenic Belt (CAOB). There has been a continued debate on the derivation of the old Precambrian crustal basements and Paleozoic tectonic divisions and evolutions of the orogen. In this paper we present petrological characteristics, zircon U-Pb ages and Hf isotope compositions as well as the whole rock geochemistry of the quartz dioritic gneisses from west of the Xingxingxia Town. Based on the mineral assemblies, their protoliths are speculated to be quartz dioritic. Zircon grains from two collected samples have similar internal structures identified on the cathodoluminescence (CL) images, which is characterized by CL-dark, homogeneous rims surrounding the oscillatory zoning cores with rare inherited inner cores. Zircon U-Pb dating results indicate that their protoliths were formed in Early Paleozoic time at ~425Ma, and were metamorphosed during Early Carboniferous at approximately 320~360Ma. The inherited zircon cores yield a wide age range of ca. 1381~1743Ma. The crystallization zircons from the protolith show positive and varying εHf(t) values (from 0.9 to 17.8), and the inherited zircon cores give tDM2 model ages of 1.54Ga to 2.44Ga. The quartz dioritic gneisses are characterized by marked positive Rb, Ba, Th and K anomalies and depletion in Nb, Ta and Ti on the primitive mantle-normalized spider diagrams. Through integration of these new data with the previous results of Precambrian basements, high-grade metamorphic rocks, ophiolitic mélanges and igneous rocks from the Tianshan orogen, we suggest that: 1) the Precambrian crustal basements in the Tianshan orogen don’t have much affinity with the Tarim Block, and are inferred to be formed through a magmatic arc accretionary orogen along the margins of Baltica during the Mesoproterozoic; 2) the eastern segment of Central Tianshan was an active continental margin during the Early Paleozoic, due to the subduction of the South Tianshan Ocean; 3) the closure of the South Tianshan Ocean may be synchronous in its eastern and western segments.
Key words: Quartz dioritic gneisses     Early Carboniferous     Mesoproterozoic     Xingxingxia     Central Tianshan block    
1 引言

天山造山带是中亚造山带(CAOB)的主要组成部分(图 1a),其东起中国甘肃-新疆交界,向西延入哈萨克斯坦和吉尔吉斯坦,南北分别以准格尔盆地和塔里木盆地为界(图 1bSengör et al. 1993; Xiao et al., 2004, 2010; Windley et al. 2007)。前人在天山地区揭示了大量能够指示板块汇聚边界的蛇绿混杂岩和高级变质岩(图 1b)。传统上依据巴音沟和干沟-米什沟蛇绿混杂岩带和科克苏-库米什蛇绿岩带与高压变质岩带为界将天山造山带分为北天山、中天山(包括伊犁地块)和南天山三个构造单元(Gao et al., 1998; Chen et al., 1999; Xiao et al., 2004)。但最近的研究依据巴音沟蛇绿混杂岩带、科克苏高压变质岩和干沟-米什沟蛇绿混杂岩、黑英山和榆树沟-库米什蛇绿混杂岩带这三条缝合带将天山划分为北天山、伊犁地块、中天山地块、南天山等四个构造单元(图 1b; Charvet et al., 2007, 2011; Wang et al., 2008, 2011; Lin et al., 2009; Qian et al., 2009)。另外,天山造山带西部的蛇绿混杂岩的年龄、超高压变质岩的变质作用时代指示天山西部的洋盆最晚于石炭纪末期闭合(Gao and Klemd, 2003; Klemd et al., 2005; Lin et al., 2009; Qian et al., 2009; Gao et al., 2009; Su et al., 2010; Han et al., 2011; Wang et al., 2011)。而在天山造山带东部,碰撞缝合事件的时代缺少精确的年代学制约,如红柳河蛇绿岩所代表的洋盆闭合时限、尾亚麻粒岩的变质时代等仍存在争议(董富荣等, 1996; 陈义兵和胡霭琴, 1997; Shu et al., 2004; 于福生等, 2006; 张元元和郭召杰, 2008)。因而关于南天山洋在天山造山带东部闭合时限,还存在早二叠世晚期或早泥盆世之前等多种认识(Xiao et al., 2004; 郭召杰等, 2006; 高俊等, 2006; 张元元和郭召杰, 2008)。

图 1 中亚造山带构造简图(a, 据Han et al., 2011修改)和天山造山带构造简图(b, 据Xiao et al., 2004; Wang et al., 2008; Charvet et al., 2011修改) Fig. 1 Sketched tectonic map of the Central Asian Orogenic Belt (a, modified after Han et al., 2011) and tectonic sketch map of Chinese Tianshan Belt showing the main tectonic boundaries (b, modified after Xiao et al., 2004; Wang et al., 2008; Charvet et al., 2011)

对古生代花岗岩和火山岩的研究表明,天山造山带的前寒武纪基底也参与了古生代地壳增生和构造演化过程(胡霭琴等, 1999; Chen et al., 2000; Jahn et al., 2000; Kröner et al., 2008; Lei et al., 2011; Wang et al., 2012)。这些前寒武纪基底的起源及早期演化历史,是认识天山造山带构造格架和古生代增生造山作用过程的关键。但是,目前关于天山造山带前寒武纪基底的起源和构造归属的认识还存在很大分歧。一些学者认为天山前寒武纪基底是从塔里木板块分离出来的(郭召杰和李茂松, 1993; Chen et al., 1999; Khain et al., 2003; Lei et al., 2011; Ma et al., 2011);然而,一些学者认为天山的基底与塔里木克拉通变质基底没有明显的相关性,是一个单独的大地构造单元,或另有其源(胡霭琴等, 1999; 李铨等, 2002; 刘树文等, 2004);另有一些学者认为天山的陆壳基底是哈萨克斯坦板块的一部分(李春昱等, 1982; 肖序常等, 1992; 何国琦等, 2001; Windley et al., 2007; Xiao et al., 2008);且关于哈萨克斯坦板块的起源也有来自西伯利亚板块(Berzin and Dobretsov, 1994; Levashova et al., 2011)、东冈瓦纳大陆(Kheraskova et al., 2003; Dobretsov and Buslov, 2007)或者东欧板块(Heinhorst et al., 2000; Biske and Seltmann, 2010)等多种认识。

本文在野外地质和岩相观察的基础上,对分布于东天山星星峡的一套石英闪长质片麻岩开展系统的锆石U-Pb年代学、Hf同位素和地球化学研究,以期揭示其原岩性质、形成时代及变质作用时代,进而讨论其对天山造山带东部(东天山)构造演化的意义。同时,利用其所包含的继承锆石年龄信息,并结合周缘已有的前寒武纪陆壳基底的研究资料,尝试探讨天山造山带前寒武纪基底的起源和演化。

2 地质概况与岩石特征

天山造山带位于中亚造山带的西南部,主要由北天山缝合带、伊犁地块、中天山地块、南天山缝合带等构造单元组成(图 1Windley et al. 2007; Wang et al., 2007; Kröner et al., 2008; Xiao et al., 2010; Charvet et al., 2011)。

北天山缝合带位于天山主断裂以北,西部以巴音沟蛇绿混杂岩带为代表,在东部主要发育晚石炭世浊积岩和火山碎屑岩,也称为哈尔里克-大南湖岛弧(Xiao et al., 2004, 2012)。通常认为北天山缝合带是天山最晚的一条缝合带,形成于300~295Ma(徐学义等, 2005, 2006a; Wang et al., 2007; Charvet et al., 2011)。伊犁地块是一个具有元古代结晶基底的大陆地块,基底岩石出露在其南、北两缘,包括木扎尔特群、那拉提群和温泉群(胡霭琴等,1999),晚泥盆世-石炭纪具有弧特征的火山岩和侵入岩广泛分布在伊犁盆地边缘(Wang et al., 2007)。中天山地块也是具有元古代基底的大陆微陆块,基底岩石主要为星星峡群片麻岩、角闪岩和大理岩(胡霭琴等,1999),该地块广泛发育奥陶纪-早泥盆世火山岩、侵入岩和晚泥盆世花岗岩(Gao et al., 1998; 李伍平等,2001; 胡霭琴等,2007; Lei et al., 2011; Dong et al., 2011)。南天山缝合带主要包括黑英山、库勒湖、库米什、红柳河等蛇绿混杂岩带,局部地点如榆树沟、铜花山等地有高压变质岩分布(Gao et al., 1998; 王润三等,1999; 刘斌和钱一雄, 2003; Wang et al., 2011)。在那拉提断裂以南的西南天山,分布有一条长约200km的超高压变质带,是一套由榴辉岩、蓝片岩、绿片岩、变质杂砂岩、大理岩和超基性岩构成的变质俯冲杂岩,榴辉岩呈薄层状、透镜状、布丁状、厚层状或大岩块状分布,该变质带的峰期变质年龄为350~345Ma(Gao and Klemd, 2000, 2003)或~320Ma(Su et al., 2010),蓝片岩至绿片岩相退变质年龄为~335Ma(Wang et al., 2010)或~310Ma(Klemd et al., 2005)。该变质带曾被认为是南天山洋缝合带的一部分(Gao et al., 1998; Chen et al., 1999; Klemd et al., 2005),或者是伊犁地块与中天山地块之间的缝合带(Lin et al., 2009; Qian et al., 2009; Gao et al., 2009; Wang et al., 2010)。

本文研究的石英闪长质片麻岩位于星星峡镇以西(图 2),312国道刚好穿过岩体中心,采样点GPS坐标为北纬41°48.7′,东经94°59.0′。岩体呈椭圆状,出露面积约5km2,侵入于星星峡群变质岩系中。区域出露的星星峡群主要由片麻岩、大理岩、片岩、石英岩、混合岩等组成,总体上为角闪岩相变质,其原岩包括火山岩、深成岩、碳酸盐岩或碎屑岩等(董富荣等,1996刘树文等,2004胡霭琴等,2006)。所研究的片麻岩样品(X10-16-1)具有片麻状构造,发育少量长英质脉体,其宽度约1~2cm,脉体与片麻岩一起发生了褶皱(图 3a)。岩石呈鳞片粒状变晶结构,主要矿物组成为斜长石(40%;An=30~35)、钾长石(20%)、石英(15%)、黑云母(25%),石英发育波状消光,黑云母具有扭曲变形和定向排列(图 3b)。根据矿物组成及产出特征,并结合其化学成分特征(下述)判断片麻岩原岩应为石英闪长岩。所研究的另一个片麻岩样品(X10-16-3),采自与围岩矽卡岩的接触带上(图 3c),矿物组成与X10-16-1基本类似,但含有少量透辉石、方解石、白云母和黝帘石等矿物(图 3d),可能是石英闪长岩体边部,受到了围岩较强的同化混染作用。

图 2 星星峡地区地质简图(据新疆维吾尔自治区地质局区域地质测量大队,1965;地质部甘肃省地质局第一区域地质测量队,1966修改) Fig. 2 Simplified geological map of Xingxingxia area

新疆维吾尔自治区地质局区域地质测量大队. 1965. 中华人民共和国地质图沙泉子幅(1:200000)

地质部甘肃省地质局第一区域地质测量队. 1966. 中华人民共和国地质图星星峡幅(1:200000)

图 3 研究样品的野外和岩相学照片 (a)-石英闪长质片麻岩(X10-16-1)的野外照片;(b)-样品X10-16-1的显微照片(正交偏光);(c)-片麻岩与围岩矽卡岩接触带的野外照片,虚线方框显示样品(X10-16-3)大致位置;(d)-样品X10-16-3的显微照片(正交偏光).矿物缩写:Bt-黑云母;Di-透辉石;Kfs-钾长石;Ms-白云母;Qz-石英;Zo-黝帘石;Pl-斜长石 Fig. 3 Field and petrographic photos of the studied samples (a)-field photo of the Xingxingxia quartz dioritic gneiss; (b)-photomicrograph of the representative sample X10-16-1 (crossed nicols); (c)-field photo of the contact belt between the quartz dioritic gneiss and the calc-silicate rock, the dashed rectangle roughly denotes the location of sample X10-16-3; (d)-photomicrograph of the representative sample X10-16-3 (crossed nicols). Bt-biotite; Di-diopside; Pl-plagioclase; Kfs-K-feldspar; Ms-muscovite; Qz-quartz; Zo-zoisite
3 分析方法

全岩主量元素成分在国家地质实验测试中心用Rigaku-3080型XRF测定。微量元素成分在中国地质大学地质过程与矿产资源国家重点实验室采用Agilent 7500a ICP-MS测定。

锆石分选采用重砂方法完成。CL图像分析在中国地质科学院地质研究所北京离子探针中心Hitachi S2250-N扫描电镜上完成。锆石U-Pb年龄测定和同时进行的微量元素成分分析在南京大学成矿作用国家重点实验室完成。ICP-MS型号为Agilent 7500a型,激光剥蚀系统为New Wave公司UP213固体激光剥蚀系统。仪器工作参数为:波长213nm,激光脉冲重复频率5Hz,脉冲能量为10~20J/cm2,熔蚀孔径为30~40μm,剥蚀时间60s,背景测量时间40s。质量分馏校正采用标样GEMOC/GJ-1。微量元素分析结果采用NIST 610为内标进行校准。普通铅校正采用Andersen (2002) 的方法进行。校正后的结果用Isoplot程序(ver.2.49, Ludwig, 2001)完成年龄计算和谐和图的绘制。详细的仪器条件和实验步骤参见He et al. (2010)

锆石Hf同位素分析在中国地质大学地质过程与矿产资源国家重点实验室Finnigan Neptune多接收器电感耦合等离子体质谱仪(MC-ICPMS)和193-nm GeoLas 2005激光取样系统上进行。分析时激光束直径40μm,激光脉冲频率为6Hz。用锆石国际标样91500和GJ-1作外标。在计算(176Hf/177Hf)iεHf值时,176Lu的衰变常数采用1.865×10-11a-1(Scherer et al., 2001),εHf的计算采用Bouvier et al. (2008) 推荐的球粒陨石Hf同位素值,176Lu/177Hf=0.0336,176Hf/177Hf=0.282785。Hf模式年龄计算中,亏损地幔176Hf/177Hf现在值采用0.28325,176Lu/177Hf 为0.0384,两阶段模式年龄采用平均地壳的(176Lu/177Hf)C=0.015(Griffin et al., 2000)进行计算。

4 分析结果 4.1 地球化学特征

星星峡石英闪长质片麻岩代表性样品的主量元素和微量元素分析结果列于表 1。样品X10-16-1具有偏低的SiO2含量(58.63%),较高的Al2O3含量(17.39%),CaO含量为6.00%,全碱含量为5.09%,铝饱和指数0.96,为准铝质。样品X10-16-3的地球化学特征与其相比,存在较大差异,具有低的SiO2、FeOT、K2O含量,高的Al2O3、CaO含量。这与样品采自岩体边部,受到较强的围岩混染作用,成分发生改变有关。样品X10-16-1具有轻稀土元素富集的稀土元素配分曲线(图 4a),无明显Eu异常(Eu/Eu*=0.90)。在微量元素蛛网图上,显示出明显富集Rb、Ba、Th、K等大离子亲石元素和Pb、U元素,亏损Nb、Ta、Ti等高场强元素的特点,具有与同时代的星星峡花岗闪长岩类似的分布形式(图 4b)。样品X10-16-3虽然配分曲线型式与样品X10-16-1基本类似,但各元素含量与其差异较大,与其地球化学组成受到围岩同化混染作用发生很大改变有关(图 4)。

图 4 稀土元素配分图(a)和微量元素蛛网图(b) 球粒陨石标准值引自Taylor and McLennan (1985) ,原始地幔标准值引自Sun and McDonough (1989) ;星星峡花岗闪长岩引自Lei et al. (2011) 作为对比 Fig. 4 Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element diagram (b) Chondrite values after Taylor and McLennan (1985) , primitive mantle values after Sun and McDonough (1989) , also showing the patterns of Xingxingxia granodiorite for comparison (Lei et al., 2011)

表 1 星星峡石英闪长质片麻岩的主量元素(wt%)和微量元素(×10-6)分析结果 Table 1 Major (wt%) and trace (×10-6) element composition of the Xingxingxia quartz dioritic gneisses
4.2 锆石U-Pb定年与Hf同位素

样品X10-16-1与X10-16-3中锆石特征基本一致,为长柱状,锥面略呈次圆状,CL图像显示这些锆石普遍具有黑色、均一的边部和震荡环带发育的核部,部分锆石核部还保留有更早的继承锆石核(图 5)。代表性锆石样品的U-Pb年龄、REE元素成分和Hf同位素组成的分析结果分别列于表 2表 3表 4

图 5 代表性锆石CL图像 实线圆圈为年龄测点,虚线圆圈为Hf 同位素测点.标尺长度为100μm Fig. 5 CL images of representative zircons Solid circles denote U-Pb analysis spot and dashed circles denote Lu-Hf analysis spot. The scale bars are 100μm

表 2 星星峡石英闪长质片麻岩锆石U-Pb同位素定年结果 Table 2 LA-ICP-MS zircon U-Pb isotopic analyses of the Xingxingxia quartz dioritic gneisses

表 3 星星峡石英闪长质片麻岩锆石稀土元素分析结果(×10-6) Table 3 REE compositions of zircons from the Xingxingxia quartz dioritic gneisses (×10-6)

表 4 星星峡石英闪长质片麻岩的锆石Hf同位素组成 Table 4 Zircon Hf isotope compositions of the Xingxingxia quartz dioritic gneisses

对样品X10-16-1共进行了23个点的U-Pb年龄分析,其中14个分析点位于具震荡环带的锆石核部,分析结果较为一致且均位于谐和线上(图 6a),加权平均年龄为425±4Ma(2σ; MSWD=0.94),Th/U比值为0.15~0.35。它们的稀土元素配分曲线显示出明显的Ce正异常、Eu负异常以及重稀土富集的特点(图 6b),为典型的岩浆锆石特征。因此,425±4Ma应代表原岩石英闪长岩的结晶年龄。4个位于继承锆石核上的分析点给出了较老的年龄结果,为1381~1735Ma,Th/U值为0.40~1.51。这些分析点具有和~425Ma锆石较为一致的稀土配分曲线,反映它们也是岩浆成因锆石。在黑色的锆石边部获得了5个分析点数据,给出了较年轻的分析结果,为314~326Ma,加权平均年龄为319±7Ma(2σ; MSWD=3.2),Th/U值为0.04~0.13,且具有相对低的稀土元素含量(图 6b),反映为变质作用过程的新生锆石,应代表变质作用的时代。

图 6 锆石U-Pb谐和曲线图解(a, c)和稀土配分曲线(b, d) Fig. 6 U-Pb concordia diagrams (a, c) and chondrite-normalized REE patterns (b, d) of zircons

对样品X10-16-1中测年锆石进行了9个点的Hf同位素分析(表 4),其中6个分析点选在年龄为~425Ma的核部,其初始176Hf/177Hf比值变化于0.282543~0.282815,相应的εHf(t)值为0.9~10.6,tDM模式年龄为0.61~0.99Ga。3个分析点在年龄较老的继承锆石区域,初始176Hf/177Hf比值变化于0.281824~0.282417,相应的tDM2模式年龄变化于0.99~2.34Ga。

对样品X10-16-3共进行了26个点的U-Pb年龄分析,其中15个分析点位于震荡环带发育的锆石核部,给出了较为一致的分析结果(图 6c),加权平均年龄为425±9Ma(2σ; MSWD=6.1),Th/U值为0.02~0.52。较大的MSWD值可能与部分锆石经历了不同程度的不完全重结晶作用有关。稀土元素配分曲线显示出明显的Ce正异常、Eu负异常和富集重稀土的特点(图 6d),具有典型的岩浆锆石特征。这一年龄结果与样品X10-16-1的原岩年龄非常一致。7个分析点位于黑色的锆石边部,给出了较年轻的分析结果,为313~359Ma,Th/U比值为0.02~0.31,且具有相对低的稀土元素含量和重稀土富集程度(图 6d),应代表变质作用时代。其中5个谐和的分析点的加权平均年龄为342±21Ma(2σ; MSWD=11)。4个位于继承锆石核的分析点给出了较老的年龄结果,为1591~1800Ma,Th/U值为0.53~0.71,具有类似岩浆锆石特征的稀土配分曲线(图 6d)。

对样品X10-16-3中测年锆石进行了8个点的Hf同位素分析(表 4),其中5个分析点位于年龄为~425Ma的锆石核部,其初始176Hf/177Hf比值变化于0.282869~0.283005,相应的εHf(t)值变化于13.1~17.8,tDM模式年龄为0.34~0.53Ga。3个分析点位于年龄较老的继承锆石核,初始176Hf/177Hf比值变化于0.281805~0.282117,tDM2模式年龄变化于1.54~2.11Ga。

5 讨论 5.1 天山造山带基底的起源与演化

随着锆石原位微区定年以及Lu-Hf同位素分析的发展与普及,碎屑锆石、继承锆石的年龄和Hf同位素组成在研究地壳演化、构造演化和古地理恢复等方面发挥越来越重要的作用,可以有效弥补岩石露头不足的制约(Gehrels and Yin, 2003; Darby and Gehrels, 2006; Cawood et al., 2007; Wu et al., 2007; Zhou et al., 2010; Rojas-Agramonte et al., 2011)。鉴此,我们将本文获得的继承锆石年龄信息,以及最近发表的星星峡花岗闪长岩中继承锆石年龄(Lei et al., 2011),以及托克逊干沟地区副片麻岩中碎屑锆石年龄(林彦蒿等,2011),共37个均是采用LA-ICP-MS微区原位分析方法的数据汇总于图 7,并结合锆石Hf同位素分析数据(图 8),以讨论中天山地块的物质组成、地壳演化历史,并与周缘大陆对比,揭示其可能的构造归属。

图 7 前寒武纪锆石年龄柱状对比图 (a)-中天山地块,数据来源:托克逊干沟地区副片麻岩中碎屑锆石(林彦蒿等,2011);星星峡花岗闪长岩中继承锆石(Lei et al., 2011)以及本文研究的石英闪长质片麻岩中的继承锆石;并与周缘主要陆块前寒武纪构造热事件年龄对比:(b)-塔里木板块,新元古代副变质岩中碎屑锆石,数据引自He et al. (2012) ;(c)-东欧板块,碎屑锆石,数据引自Safonova et al. (2010) Fig. 7 Frequency diagrams of compiled Precambrian U-Pb ages are shown for comparison (a)-the Central Tianshan Block, data source: the detrital zircons from the meta-supracrustal rocks in Gangou area (Lin et al., 2011), inherited zircons from the Xingxingxia granodiorite (Lei et al., 2011) and the inherited zircons from the studied sample; (b)-Precambrian tectonothermal histories of the Tarim Craton (detrital zircons, after He et al., 2012); (c)-Baltic Craton (detrital zircons, after Safonova et al., 2010)

图 8 中天山地块基底的Hf同位素演化 星星峡花岗闪长岩中继承锆石数据引自Lei et al. (2011) ;塔里木克拉通基底演化区域引自Long et al. (2010) Fig. 8 Hf isotopic evolution diagram for the Central Tianshan Block The Hf isotopic data of inherited zircons of the Xingxingxia granodiorite is from Lei et al. (2011) ; the shaded region indicating Hf isotope evolution for crustal basement of Tarim Craton is from Long et al. (2010)

图 7所示,中天山地块具有和塔里木板块类似的0.8~1.0Ga和~1.8Ga的年龄峰,但同时具有塔里木板块所没有的中元古代(1.3~1.6Ga)的年龄峰,显示中天山地块前寒武纪地壳演化历史上存在三次重要构造热事件。~1.8Ga的锆石具有介于亏损地幔和球粒陨石之间的176Hf/177Hf 初始值,模式年龄变化于1.63~2.44Ga,反映了古元古代晚期发生了古元古代早期地壳的再造和新生地壳物质加入事件(图 8)。这一年龄峰期类似于星星峡群片麻岩和混合岩的Sm-Nd等时线年龄(~1828Ma; 胡霭琴等,1999),尾亚麻粒岩原岩的单颗粒锆石上交点年龄(~1848Ma;陈义兵和胡霭琴,1997),以及星星峡花岗闪长质片麻岩中继承锆石年龄(1845±24Ma;胡霭琴等,2006)。1.3~1.6Ga锆石的模式年龄变化于0.99~2.34Ga,部分锆石具有接近亏损地幔的176Hf/177Hf 初始值,代表了中天山地块一次重要的中元古代地壳新生和古老地壳再造事件。胡霭琴等(2006) 曾报道了与这一年龄接近的星星峡花岗闪长质片麻岩的结晶年龄(SHRIMP U-Pb年龄,1405±8Ma)。0.8~1.0Ga的锆石模式年龄变化于1.35~1.89Ga,总体上位于~1.4Ga和~1.8Ga锆石所限定的地壳演化区域内(图 8),反映了该期热事件主要为中-古元古代地壳的再造事件。由此可见,中天山地块的地壳基底主要形成于古元古代早期和中元古代早期,在古元古代晚期和新元古代经历了有少量新生地壳物质加入的再造事件,具有和塔里木板块显著不同的地壳形成和演化历史(图 8李铨等,2002胡霭琴等,2006Long et al., 2010, 2011)。

尽管对天山造山带基底的起源存在多种观点,但目前的研究都认为与中亚造山带周缘主要克拉通有关,包括东欧(Baltica)、西伯利亚(Siberian)、塔里木和华北等(Kheraskova et al., 2003; Windley et al., 2007; Kröner et al., 2008; Kovach et al., 2011)。由于西伯利亚和华北缺少格林威尔期(Grenville-age;1.3~1.0Ga)的热事件记录(Gladkochub et al., 2006; Darby and Gehrels, 2006; Zhou et al., 2010; Safonova et al., 2010; Rojas-Agramonte et al., 2011),不可能是中天山地块的源区(Dobretsov and Buslov, 2007; Alexeiev et al., 2011)。从图 7可见,中天山地块前寒武纪主要构造热事件历史与东欧板块相比较为类似,均具有一致的古元古代晚期和新元古代早期、尤其是中元古代早期的年龄峰值。中元古代早期(1.6~1.3Ga)是全球大陆地壳主要增生期,新生地壳主要分布在劳伦大陆东部(eastern Laurentia)、东欧板块西南部(SW Baltica)、扬子板块(SE China)、亚马逊古陆西部(western Amazonia)和澳大利亚东北部(NE Australia)(Condie, 2004; Wang et al., 2010)。古元古代晚期,劳伦古大陆和东欧大陆拼合形成一个大陆,即Nena大陆(Gower et al. 1990),在中元古代早期,沿Nena大陆的东部和南部边缘发育一系列弧增生造山带,包括北美的Yavapai, Matzatal和Ketilidian造山带,东欧的Sveco-Fennian、Trans-Scandinavian和Gothian造山带等(Gower et al. 1990; Cawood et al., 2007; Kuznetsov et al., 2010)。

虽然上述继承锆石年龄和锆石Hf模式年龄(图 7图 8),以及前人对前寒武纪基底岩石的Nd同位素研究均表明中天山地块的基底岩石应主要形成于中-古元古代(1.4~2.4Ga;胡霭琴等, 1986, 1999Hu et al., 2000刘树文等,2004)。但是至今在天山造山带尚未发现有确切年龄数据的古元古代时期的岩浆岩体,目前确定的最古老的岩浆岩是星星峡花岗闪长质片麻岩(SHRIMP U-Pb年龄,1405±8Ma)(胡霭琴等,2006)。因此,中天山地块很可能是中元古代时期,由上述在东欧板块边缘的弧增生造山作用形成,而古元古代的年龄信息继承自东欧板块。这一推测也得到东欧板块存在1.4~1.5Ga的地壳新生事件,以及新太古代-古元古代地壳基底的支持(Kuznetsov et al., 2010)。同时,对中天山地块泥盆纪沉积岩中大量的碎屑锆石分析结果,也揭示了新太古代-古元古代地壳物质的存在(Ma et al., 2011)。

一些学者在研究天山古生代构造演化过程时,将天山作为哈萨克斯坦板块的一部分(李春昱等,1982; 肖序常等,1992; Windley et al., 2007; Xiao et al., 2008)。哈萨克斯坦板块是在早古生代时由多个前寒武纪微陆块、岛弧碎片和增生杂岩体拼合而成(Windley et al., 2007; Abrajevitch et al., 2008)。其前寒武纪基底岩石主要分布在其北部的Kokchetav地块,由片麻岩和长英质片岩组成,形成时代为约1.0~2.0Ga(Heinhorst et al., 2000; Khain et al., 2003; Windley et al., 2007; Kröner et al., 2008)。Heinhorst et al. (2000) 提出哈萨克斯坦板块的基底岩石组合类似于东欧板块边缘,而且在哈萨克斯坦板块也广泛存在与上述东欧板块边缘弧增生造山作用同期的中元古代构造热事件记录,如Makbal杂岩中榴辉岩的原岩年龄~1.45Ga,在该杂岩的花岗闪长岩中也保留有类似年龄的继承锆石(Konopelko et al., 2011)。哈萨克斯坦南部的Anrakhai高压变质带中石榴石白云母片岩中也存在有~1.6Ga的碎屑锆石(Alexeiev et al., 2011)。因此,中天山地块与哈萨克斯坦板块均具有与东欧板块的亲缘性,很可能是在Rodinia超大陆裂解时一起从东欧板块分离,而后进入古亚洲洋的构造演化过程(Mossakovsky et al., 1994; Kheraskova et al. 2003; Levashova et al., 2011)。

5.2 对天山造山带构造演化的意义

在传统的天山三分方案中,南天山被认为是一条宽大的蛇绿混杂带,包括汗腾格里峰-科克苏高压/超高压变质带、黑英山蛇绿岩、库勒湖蛇绿岩、色日克牙依拉克蛇绿岩、库米什蛇绿岩、榆树沟高压麻粒岩、铜花山蓝片岩等(Chen et al., 1999; Xiao et al., 2004, 2008; 高俊等,2006; Zhang et al., 2007; 李曰俊等, 2009; Wang et al., 2011)。但最近的一些研究表明,科克苏高压变质岩和干沟-米什沟蛇绿混杂岩在运动学标志、所代表的洋壳成因和时代上更为一致,应代表同一个洋壳的残片,该缝合带被称为中天山缝合带,其两侧分别是具有前寒武纪基底的伊犁地块和中天山地块(图 1bCharvet et al., 2007, 2011; Wang et al., 2008, 2011; Lin et al., 2009; Qian et al., 2009),闭合时间在早石炭世至晚石炭世(Gao and Klemd, 2003; Klemd et al., 2005; Gao et al., 2009; Su et al., 2010)。而南天山其它蛇绿混杂岩则属于另一个不同时代不同构造位置的缝合带。北天山缝合带以巴音沟蛇绿岩为代表,是天山造山带最晚的一条缝合带,可能形成于石炭世末期(300~295Ma)(徐学义等, 2005, 2006a; Wang et al., 2007; Charvet et al., 2011)。

图 9 构造环境判别图解(据Pearce et al., 1984) 星星峡花岗闪长岩引自Lei et al. (2011) 作为对比 Fig. 9 Tectonic discrimination diagram (Pearce et al., 1984), also showing the fields of Xingxingxia granodiorite (Lei et al., 2011)

但是,中天山缝合带和北天山缝合带均无法向东延伸,在天山造山带的东部,北天山发育哈尔里克-雅满苏晚石炭世浊积岩和火山碎屑岩带,以阿其克库都克断裂带与中天山地块为界(Xiao et al., 2004; 王义天等,2006)。在尾亚一带,星星峡群变质岩中发育有呈透镜状成群分布的基性和酸性麻粒岩,但是其形成时代还缺乏精确认识,被认为是早志留世或古元古代(董富荣等,1996陈义兵和胡霭琴,1997Shu et al., 2004)。北天山缝合带在东天山很可能被大型推覆体所掩盖而没有出露(Wang et al., 2008)。而中天山缝合带的干沟-米什沟蛇绿岩带,向东并不沿阿其克库都克断裂带延伸,也不能与东天山康古尔塔格构造带相连(李锦轶等,2006)。在中天山地块南侧,红柳河蛇绿混杂岩被认为是南天山缝合带库米什蛇绿混杂岩带的东延部分(Xiao et al., 2004)。由黑英山蛇绿混杂岩中糜棱岩化千枚岩、榆树沟麻粒岩、铜花山蓝片岩等确定的南天山缝合带的形成时间在早石炭世(~360Ma)(刘斌和钱一雄,2003王润三等, 2003; 周鼎武等,2004龙灵利等, 2006; Wang et al., 2011)。郭召杰等(2006) 张元元和郭召杰(2008) 认为侵入红柳河蛇绿岩中二长花岗岩脉和黑云母花岗岩未经历变质和变形,它们的形成年龄(~410Ma)可以指示东天山洋盆闭合时间的上限,认为南天山碰撞造山带的形成具有“剪刀式”的特点,东段较早,西段较晚(高俊等,2006)。但是锆石CL图像显示(参见张元元和郭召杰,2008图 2图 3),无论是堆晶辉长岩中还是黑云母花岗岩中的锆石均发育核边结构,反映其经历了明显的变质增生作用,因而这些岩体在洋盆闭合以前可能已经侵入,上述获取自核部的年龄并不能指示东天山洋盆闭合时间的上限。

天山造山带的西部和东部具有相近的俯冲作用开始时间,其标志是奥陶纪具弧特征的岩浆岩,如西南天山巴音布鲁克石英闪长岩和花岗闪长岩(~440Ma)(徐学义等,2006b胡霭琴等,2008);库米什以北阿克塔西花岗岩(~457Ma)(韩宝福等,2004);东天山红柳河北闪长岩和前进工区花岗岩(~440Ma;李伍平等,2001)、天湖东二长花岗岩(~466Ma;胡霭琴等,2007)等。Lei et al. (2011) 认为~425Ma星星峡花岗闪长岩形成于大陆弧的构造环境。本文研究的石英闪长质片麻岩的原岩年龄与之一致,为~425Ma,具有正的且变化较大的εHf(t)值(0.9~17.8),在图 8中,均位于中天山地壳演化区域的上方,反映其岩浆为地幔起源,但也有古老地壳物质的参与。微量元素配分曲线显示出Nb、Ta、Ti等高场强元素亏损,以及Rb、Ba、Th、U、K、Pb等元素富集的特征(图 4),这些特征通常认为岩浆形成于与俯冲作用有关的构造环境(Anderson et al., 1980; Pearce and Peate, 1995)。在Pearce et al. (1984) 的构造环境判别图解上,本文研究样品与同时代的星星峡花岗闪长岩类似,均落入“火山弧花岗岩”的区域(图 9)。因此,石英闪长质片麻岩的原岩应是早古生代中天山陆缘弧的一部分,可能形成于南天山洋向中天山地块的俯冲作用(图 10Xiao et al., 2004; Gao et al., 2009; Han et al., 2011)。

如前所述,石英闪长质片麻岩的变质作用年龄为约320~360Ma。该变质事件年龄与中天山地块北侧的西南天山高压/超高压变质带的峰期变质年龄(350~345Ma或320Ma;Gao and Klemd, 2003; Klemd et al., 2005; Wang et al., 2010; Su et al., 2010)、米什沟和干沟蛇绿岩的变质年龄(345~360Ma;刘斌和钱一雄,2003林彦蒿等,2011),以及中天山地块南侧的巴伦台一带花岗质片麻岩的变质年龄(355~323Ma;Li et al., 2008)、榆树沟麻粒岩的变质年龄(~360Ma;王润三等, 2003刘斌和钱一雄,2003周鼎武等,2004)等较一致。另外,大量的碱性岩和A型花岗岩的形成时代反映了天山造山带的后造山伸展作用发生在二叠纪早期(Gao et al., 2009; Wang et al., 2009),如黑英山克其克果勒霓霞正长岩(~275Ma)(刘楚雄等,2004);科克苏河的碱性钾长花岗岩单颗粒锆石年龄(约280~266Ma)(高俊等,2006);西天山北部的赛里木湖达巴特A型花岗斑岩(~290Ma)(唐功建等,2008)。我们在星星峡地区也发现了~280Ma的具A型花岗岩特征的二长花岗岩和含角闪石花岗岩(测试数据另文发表)。因此,我们认为星星峡石英闪长质片麻岩石炭纪早期的变质作用的形成很可能与中天山板块两侧的大洋闭合,并发生弧-陆碰撞或陆-陆碰撞有关(图 10)。因而,南天山洋在天山造山带的西部和东部可能具有一致的闭合时间。

图 10 中天山地块东部古生代构造演化模式简图(据Xiao et al., 2004修改) Fig. 10 Schematic model illustrating tectonic evolution of the eastern segment of the Central Tianshan Block during the Paleozoic (modified after Xiao et al., 2004)
6 结论

(1) 星星峡石英闪长质片麻岩的原岩形成年龄为~425Ma,可能与南天山洋向中天山板块的俯冲作用有关,在早古生代,中天山板块为大陆边缘弧的构造环境;

(2) 星星峡石英闪长质片麻岩的变质作用年龄为约320~360Ma,可能与中天山板块两侧的大洋闭合,并发生弧-陆碰撞或陆-陆碰撞有关,南天山洋在天山造山带的东部和西部具有一致的闭合时间;

(3) 中天山地块的地壳基底主要形成于古元古代早期和中元古代早期,具有和塔里木板块显著不同的地壳形成和前寒武纪演化历史,很可能是中元古代时期由东欧板块边缘的弧增生造山作用形成的块体。

致谢 感谢许志琴院士、李锦轶研究员、孙立新研究员在工作中给予的指导和帮助。张建新研究员和王博副教授对本文提出了十分有益的修改意见,在此表示诚挚的谢意。
参考文献
[] Abrajevitch A, Van der Voo R, Bazhenov ML, Levashova NM, McCausland PJA. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics, 455(1): 61–76.
[] Alexeiev D, Ryazantsev A, Kröner A, Tretyakov A, Xia X, Liu D. 2011. Geochemical data and zircon ages for rocks in a high-pressure belt of Chu-Yili Mountains, southern Kazakhstan: Implications for the earliest stages of accretion in Kazakhstan and the Tianshan. Journal of Asian Earth Sciences, 42: 805–820. DOI:10.1016/j.jseaes.2010.09.004
[] Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59–79. DOI:10.1016/S0009-2541(02)00195-X
[] Anderson RN, DeLong SE, Schwarz WM. 1980. Dehydration, asthenospheric convection and seismicity in subduction zones. The Journal of Geology, 88: 445–451. DOI:10.1086/628527
[] Berzin NA and Dobretsov NL. 1994. Geodynamic evolution of southern Siberia in Late Precambrian-Early Paleozoic time. In: Coleman RG (ed.). Reconstruction of the Paleo-Asian Ocean. VSP, Utrecht, 53-70
[] Biske YS, Seltmann R. 2010. Paleozoic Tian Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Research, 17(2-3): 602–613. DOI:10.1016/j.gr.2009.11.014
[] Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48–57. DOI:10.1016/j.epsl.2008.06.010
[] Cawood PA, Nemchin AA, Strachan R, Prave T, Krabbendam M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, 164(2): 257–275. DOI:10.1144/0016-76492006-115
[] Charvet J, Shu L, Laurent-Charvet S. 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Episodes, 30: 162–186.
[] Charvet J, Shu LS, Laurent-Charvet S, Wang B, Faure M, Cluzel D, Chen Y, De Jong K. 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China (Earth Sciences), 54(2): 166–184. DOI:10.1007/s11430-010-4138-1
[] Chen C, Lu H, Jia D, Cai D, Wu S. 1999. Closing history of the southern Tianshan oceanic basin, western China: An oblique collisional orogeny. Tectonophysics, 302(1-2): 23–40. DOI:10.1016/S0040-1951(98)00273-X
[] Chen YB, Hu AQ. 1997. REE and Sm-Nd isotopic characteristics of Weiya granulites in eastern Tian Shan, NW China. Geochimica, 26(4): 70–77.
[] Chen YB, Hu AQ, Zhang GX, Zhang QF. 2000. Zircon U-Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications. Chinese Science Bulletin, 45(7): 649–653. DOI:10.1007/BF02886044
[] Condie KC. 2004. Growth of continental crust between 2.5 and 1.2Ga as constrained by Nd and Hf isotopes. Geological Society of America Abstracts with Programs, 36(5): 205.
[] Darby BJ, Gehrels G. 2006. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26(6): 637–648. DOI:10.1016/j.jseaes.2004.12.005
[] Dobretsov N, Buslov M. 2007. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russian Geology and Geophysics, 48(1): 71–82. DOI:10.1016/j.rgg.2006.12.006
[] Dong FR, Li SL, Feng XC. 1996. Low-pressure granulite facies in Weiya area of East. Tian Shan, Xinjiang, Xinjiang Geology, 14(2): 151–158.
[] Dong Y, Zhang G, Neubauer F, Liu X, Hauzenberger C, Zhou D, Li W. 2011. Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution. Gondwana Research, 20: 568–581. DOI:10.1016/j.gr.2011.01.013
[] Gao J, Li M, Xiao X, Tang Y, He G. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China. Tectonophysics, 287: 213–231. DOI:10.1016/S0040-1951(98)80070-X
[] Gao J, Klemd R. 2000. Eclogite occurrences in the Southern Tianshan high-pressure belt, Xinjiang, western China. Gondwana Research, 3(1): 33–38. DOI:10.1016/S1342-937X(05)70055-1
[] Gao J, Klemd R. 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: Geochemical and age constraints. Lithos, 66(1-2): 1–22. DOI:10.1016/S0024-4937(02)00153-6
[] Gao J, Long LL, Qian Q, Huang DZ, Su W, Klemd R. 2006. South Tianshan: A Late Paleozoic or a Triassic orogen. Acta Petrologica Sinica, 22(5): 1049–1061.
[] Gao J, Long L, Klemd R, Qian Q, Liu D, Xiong X, Su W, Liu W, Wang Y, Yang F. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98(6): 1221–1238. DOI:10.1007/s00531-008-0370-8
[] Gehrels GE, Yin A. 2003. Detrital zircon geochronology of the northeastern Tibetan Plateau. Geological Society of America Bulletin, 115: 881–896. DOI:10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
[] Gladkochub DP, Pisarevsky SA, Donskaya TV, Natapov LM, Mazukabzov AM, Stanevich A, Sklyarov EV. 2006. The Siberian Craton and its evolution in terms of the Rodinia hypothesis. Episodes, 29: 169–174.
[] Gower CF, Rivers T and Ryan AB. 1990. Mid-Proterozoic Laurentia-Baltica: An overview of its geological evolution and a summary of the contributions made by this volume. In: Gower CF, Rivers T and Ryan AB (eds.). Mid-Proterozoic Laurentia-Baltica. Geological Association of Canada, Toronto, Ont., 1-22
[] Griffin WL, Pearson NJ, Belousova E, Jackson SE, O’Reilly SY, van Achterberg E, Shee SR. 2000. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133–147. DOI:10.1016/S0016-7037(99)00343-9
[] Guo ZJ, Li MS. 1993. On the Early Paleozoic dispersed terranes in Mid-Tianshan. Acta Scicentiarum Naturalum Universitis Pekinesis, 29(3): 356–362.
[] Guo ZJ, Shi HY, Zhang ZC, Zhang JJ. 2006. The tectonic evolution of the south Tianshan paleo-oceanic crust inferred from the spreading structures and Ar-Ar dating of the Hongliuhe ophiolite, NW China. Acta Petrologica Sinica, 22(1): 95–102.
[] Han BF, He GQ, Wu TR, Li HM. 2004. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan, Xinjiang: Implications for tectonic evolution. Xinjiang Geology, 22(1): 4–11.
[] Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the North Xinjiang, western China. Earth-Science Reviews, 109: 74–93. DOI:10.1016/j.earscirev.2011.09.001
[] He GQ, Li MS, Han BF. 2001. Geotectonic research of southwest Tianshan and it's west adjacent area, China. Xinjiang Geology, 19(1): 7–11.
[] He ZY, Xu XS, Zou HB, Wang XD, Yu Y. 2010. Geochronology, petrogenesis and metallogeny of Piaotang granites in the tungsten deposit region of South China. Geochemical Journal, 44: 299–313. DOI:10.2343/geochemj.1.0073
[] He ZY, Zhang ZM, Zong KQ, Wang W, Santosh M. 2012. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: Petrology, zircon U-Pb ages and implications for the Rodinia assembly. Precambrian Research, 212-213: 21–33. DOI:10.1016/j.precamres.2012.04.014
[] Heinhorst J, Lehmann B, Ermolov P, Serykh V, Zhurutin S. 2000. Paleozoic crustal growth and metallogeny of Central Asia: Evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics, 328(1-2): 69–87. DOI:10.1016/S0040-1951(00)00178-5
[] Hu A, Zhang Z, Liu J, Peng J, Zhang J, Zhao D, Yang S, Zhou W. 1986. U-Pb age and evolution of Precambrian metamorphic rocks of middle Tianshan uplift zone, eastern Tianshan, China. Geochimica, 1: 23–35.
[] Hu AQ, Zhang GX, Zhang QF, Chen YB. 1998. Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic composition. Science in China (Series D), 41(6): 648–657. DOI:10.1007/BF02878748
[] Hu A, Jahn BM, Zhang G, Chen Y, Zhang Q. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotope evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328: 15–51.
[] Hu AQ, Wei GJ, Deng WF, Zhang JB, Chen LL. 2006. 1.4Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochimica, 35(4): 333–345.
[] Hu AQ, Wei GJ, Zhang JB, Deng WF, Chen WL. 2007. SHRIMP U-Pb age for zircons of East Tianhu granitic gneiss and tectonic evolution significance from the eastern Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 23(8): 1795–1802.
[] Hu AQ, Wei GJ, Zhang JB, Deng WF, Chen LL. 2008. SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China. Acta Petrologica Sinica, 24(12): 2731–2740.
[] Jahn B, Wu F, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91: 181–193. DOI:10.1017/S0263593300007367
[] Khain E, Bibikova E, Salnikova E, Kröner A, Gibsher A, Didenko A, Degtyarev K, Fedotova A. 2003. The Palaeo-Asian ocean in the Neoproterozoic and Early Palaeozoic: New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1): 329–358.
[] Kheraskova TN, Didenko AN, Bush VA, Volozh YA. 2003. The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian Ocean, and Central Asian fold belt. Russian Journal of Earth Sciences, 5: 165–184. DOI:10.2205/2003ES000123
[] Klemd R, Bröcker M, Hacker B, Gao J, Gans P, Wemmer K. 2005. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157–168. DOI:10.1086/427666
[] Konopelko D, Kullerud K, Apayarov F, Sakiev K, Baruleva O, Ravna E and Lepekhina E. 2011. SHRIMP zircon chronology of HP-UHP rocks of the Makbal metamorphic complex in the Northern Tien Shan, Kyrgyzstan. Gondwana Research, doi:10.1016/j.gr.2011.09.002
[] Kovach V, Salnikova E, Wang KL, Jahn BM, Chiu HY, Reznitskiy L, Kotov A, Iizuka Y and Chung SL. 2011. Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high-grade complex, southeastern Siberia: Implication for continental growth and evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2011.08.008
[] Kröner A, Hegner E, Lehmann B, Heinhorst J, Wingate M, Liu D, Ermelov P. 2008. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Journal of Asian Earth Sciences, 32(2-4): 118–130. DOI:10.1016/j.jseaes.2007.10.013
[] Kuznetsov N, Natapov L, Belousova E, OReilly SY, Griffin WL. 2010. Geochronological, geochemical and isotopic study of detrital zircon suites from Late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models. Gondwana Research, 17(2-3): 583–601. DOI:10.1016/j.gr.2009.08.005
[] Lei RX, Wu CZ, Gu LX, Zhang ZZ, Chi GX, Jiang YH. 2011. Zircon U-Pb chronology and Hf isotope of the Xingxingxia granodiorite from the Central Tianshan zone (NW China): Implications for the tectonic evolution of the southern Altaids. Gondwana Research, 20: 582–593. DOI:10.1016/j.gr.2011.02.010
[] Levashova N, Gibsher A, Meert J. 2011. Precambrian microcontinents of the Ural-Mongolian Belt: New paleomagnetic and geochronological data. Geotectonics, 45(1): 51–70. DOI:10.1134/S0016852111010043
[] Li CY, Wang Q, Liu XY, Tang YQ. 1982. Tectonic Map of Asia and Its Explanatory Notes. Beijing: Cartograph Publishing House: 1-49.
[] Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM, Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148–168.
[] Li Q, Yu HF, Xiu QY. 2002. On Precambrian basement of the eastern Tianshan Mountains, Xinjiang. Xinjiang Geology, 20: 346–351.
[] Li QG, Liu SW, Wang ZQ, Han BF, Shu GM, Wang T. 2008. Electron microprobe monazite geochronological constraints on the Late Palaeozoic tectonothermal evolution in the Chinese Tianshan. Journal of the Geological Society of London, 165: 511–522. DOI:10.1144/0016-76492007-077
[] Li WP, Wang T, Li JB, Kang X, Yu FS, Han QJ, Ma ZP. 2001. The U-Pb age of zircon from Late Caledonian granitoids in Hongliuhe area east Tianshan Mountains, Northwest China and its geological implications. Acta Geosicientia Sinica, 22(3): 231–235.
[] Li YJ, Yang HJ, Zhao Y, Luo JC, Zeng DM, Liu YL. 2009. Tectonic framework and evolution of South Tianshan, NW China. Geotectonica et Metallogenia, 33(1): 94–104.
[] Lin W, Faure M, Shi Y, Wang Q, Li Z. 2009. Palaeozoic tectonics of the south-western Chinese Tianshan: New insights from a structural study of the high-pressure/low-temperature metamorphic belt. International Journal of Earth Sciences, 98(6): 1259–1274. DOI:10.1007/s00531-008-0371-7
[] Lin YH, Zhang ZM, He ZY, Dong X, Yu F. 2011. Variscan orogeny of Central Tianshan Mountains: Constrains from zircon U-Pb chronology of high-grade metamorphic rocks. Geology in China, 38(4): 820–828.
[] Liu B, Qian YX. 2003. The geologic characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan. Acta Petrologica Sinica, 19: 283–292.
[] Liu CX, Zhou TR, Lu FX, Tong Y, Cai JH. 2004. Petrochemistry and tectonic significance of Hercynian alkaline rocks along the northern margin of the Tarim Platform and its adjacent area. Xinjiang Geology, 22(1): 43–49.
[] Liu SW, Guo ZJ, Zhang ZC, Li QG, Zheng HF. 2004. Nature of the Precambrian metamorphic blocks in the eastern segment of central Tianshan: Constraint from geochronology and Nd isotopic geochemistry. Science in China (Series D), 47: 1085–1094. DOI:10.1360/03yd0177
[] Long LL, Gao J, Xiong X, Qian Q. 2006. The geochemical characteristics and the age of the Kule Lake ophiolite in the southern Tianshan. Acta Petrologica Sinica, 22(1): 65–73.
[] Long X, Yuan C, Sun M, Zhao G, Xiao W, Wang Y, Yang Y, Hu A. 2010. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180: 272–284. DOI:10.1016/j.precamres.2010.05.001
[] Long X, Sun M, Yuan C, Kröner A and Hu A. 2011. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Research, doi:10.1016/j.precamres.2011.09.009
[] Ludwig KR. 2001. Users Manual for Isoplot/Ex (rev. 2.49): A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center, Special Publication, No. 1a, 55
[] Ma X, Shu L, Jahn BM, Zhu W and Faure M. 2011. Precambrian tectonic evolution of Central Tianshan, NW China: Constraints from U-Pb dating and in situ Hf isotopic analysis of detrital zircons. Precambrian Research, doi:10.1016/j.precamres.2011.06.004
[] Mossakovsky A, Ruzhentsev S, Samygin S, Kheraskova T. 1994. Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics, 27(6): 445–474.
[] Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956–983. DOI:10.1093/petrology/25.4.956
[] Pearce JA, Peate DW. 1995. Tectonic implications of the compositions of island arc magmas. Annual Reviews in Earth and Planetary Sciences, 23: 251–285. DOI:10.1146/annurev.ea.23.050195.001343
[] Qian Q, Gao J, Klemd R, He G, Song B, Liu D, Xu R. 2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: Constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences, 98(3): 551–569. DOI:10.1007/s00531-007-0268-x
[] Rojas-Agramonte Y, Kröner A, Demoux A, Xia X, Wang W, Donskaya T, Liu D, Sun M. 2011. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19: 751–763. DOI:10.1016/j.gr.2010.10.004
[] Safonova I, Maruyama S, Hirata T, Kon Y, Rino S. 2010. LA ICP MS U-Pb ages of detrital zircons from Russia largest rivers: Implications for major granitoid events in Eurasia and global episodes of supercontinent formation. Journal of Geodynamics, 50(3): 134–153.
[] Scherer E, Munker C, Mezger K. 2001. Calibration of the Lutetium-Hafnium clock. Science, 293: 683–687. DOI:10.1126/science.1061372
[] ŞengörAMC, Natal'inBA, BurtmanUS. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364: 209–304.
[] Shu LS, Yu JH, Charvet J, Laurent-Charvet S, Sang HP, Zhang RG. 2004. Geological, geochronological and geochemical features of granulites in the Eastern Tianshan, NW China. Journal of Asian Earth Sciences, 24(1): 25–41. DOI:10.1016/j.jseaes.2003.07.002
[] Su W, Gao J, Klemd R, Li JL, Zhang X, Li XH, Chen NS, Zhang L. 2010. U-Pb zircon geochronology of Tianshan eclogites in NW China: Implication for the collision between the Yili and Tarim blocks of the southwestern Altaids. European Journal of Mineralogy, 22: 473–478. DOI:10.1127/0935-1221/2010/0022-2040
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Tang GJ, Chen HH, Wang Q, Zhao ZH, Wyman DA, Jiang ZQ, Jia XH. 2008. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan. Acta Petrologica Sinica, 24(5): 947–958.
[] Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell.
[] Wang B, Chen Y, Zhan S, Shu L, Faure M, Cluzel D, Charvet J, Laurent-Charvet S. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3-4): 288–308. DOI:10.1016/j.epsl.2007.08.037
[] Wang B, Faure M, Shu L, Cluzel D, Charvet J, De Jong K, Chen Y. 2008. Paleozoic tectonic evolution of the Yili Block, western Chinese Tianshan. Bulletin de la Société Géologique de France, 179(5): 483–490. DOI:10.2113/gssgfbull.179.5.483
[] Wang B, Cluzel D, Shu L, Faure M, Charvet J, Chen Y, Meffre S and de Jong K. 2009. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan. International Journal of Earth Sciences, 98(6): 1275–1298. DOI:10.1007/s00531-008-0408-y
[] Wang B, Faure M, Shu L, de Jong K, Charvet J, Cluzel D, Jahn B, Chen Y, Ruffet G. 2010. Structural and geochronological study of high-pressure metamorphic rocks in the Kekesu section (Northwestern China): Implications for the Late Paleozoic tectonics of the southern Tianshan. The Journal of Geology, 118(1): 59–77. DOI:10.1086/648531
[] Wang B, Shu L, Faure M, Jahn B, Cluzel D, Charvet J, Chung S, Meffre S. 2011. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 497(1): 85–104.
[] Wang B, Jahn B, Shu L, Li K, Chung S, Liu D. 2012. Middle-Late Ordovician arc-type plutonism in the NW Chinese Tianshan: Implication for the accretion of the Kazakhstan continent in Central Asia. Journal of Asian Earth Sciences, 49: 40–53. DOI:10.1016/j.jseaes.2011.11.005
[] Wang LJ, Griffin W, Yu JH, O'Reilly S. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 177(1-2): 131–144. DOI:10.1016/j.precamres.2009.11.008
[] Wang RS, Zhou DW, Wang JL, Wang Y, Liu YJ. 1999. Variscan terrane of deep-crustal granulite facies in Yushugou area, southern Tianshan. Science in China (Series D), 42: 482–490. DOI:10.1007/BF02875242
[] Wang RS, Zhou DW, Wang Y, Wang JL, Sang HQ, Zhang RH. 2003. Geochronology for the muitiple-stage metamorphism of high-pressure terrane of granulite facies from Yushugou area, south Tianshan. Acta Petrologica Sinica, 19: 452–460.
[] Wang YT, Mao JW, Chen W, Yang FQ, Yang JM. 2006. Tectonic constraints on mineralization of the Kanggurtag gold belt in the Eastern Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 22(1): 236–244.
[] Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic belt. Journal of the Geological Society, London, 164: 31–47. DOI:10.1144/0016-76492006-022
[] Wu FY, Yang JH, Wilde SA, Liu XM, Guo JH, Zhai MG. 2007. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159(3-4): 155–177. DOI:10.1016/j.precamres.2007.06.007
[] Xiao WJ, Zhang LC, Qin KZ, Sun S, Li JL. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304: 370–395. DOI:10.2475/ajs.304.4.370
[] Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102–117. DOI:10.1016/j.jseaes.2007.10.008
[] Xiao WJ, Huang BV, Han CM, Sun S, Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253–273. DOI:10.1016/j.gr.2010.01.007
[] Xiao WJ, Windley BF, Allen MB and Han CM. 2012. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, doi:10.1016/j.gr.2012.01.012
[] Xiao XC, Tang YQ, Feng YM, Zhu BQ, Li JY, Zhao M. 1992. Tectonics of Northern Xinjiang and Their Vicinages. Beijing: Geological Publishing House: 1-169.
[] Xu XY, Ma ZP, Xia LQ, Wang YB, Li XM, Xia ZC, Wang LS. 2005. SHRIMP dating of plagiogranite from Bayingou ophiolite in the northern Tianshan Mountains. Geological Review, 51(5): 523–527.
[] Xu XY, Li XM, Ma ZP, Xia LQ, Xia ZC, Peng SX. 2006a. LA-ICPMS zircon U-Pb dating of gabbro from the Bayingou ophiolite in the northern Tianshan Mountains. Acta Geologica Sinica, 80(8): 1168–1176.
[] Xu XY, Ma ZP, Xia ZH, Xia LQ, Li XM, Wang LS. 2006b. TIMS U-Pb isotopic dating and geochemical characteristics of Paleozoic granitic rocks from the middle-western section of Tianshan. Nothwestern Geology, 39(1): 51–75.
[] Yu FS, Li JB, Wang T. 2006. The U-Pb isotopic age of zircon from Hongliuhe ophiolites in East Tianshan Mountains, Northwest China. Acta Geoscientica Sinica, 27(3): 213–216.
[] Zhang L, Ai Y, Li X, Rubatto D, Song B, Williams S, Song S, Ellis D, Liou J. 2007. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos, 96: 266–280. DOI:10.1016/j.lithos.2006.09.012
[] Zhang YY, Guo ZJ. 2008. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu and its tectonic implication. Acta Petrologica Sinica, 24(4): 803–809.
[] Zhou DW, Su L, Jian P, Wang RS, Liu XM, Lu GX, Wang JL. 2004. Zircon U-Pb SHRIMP ages of high-pressure granulite in Yushugou ophiolitic terrane in southern Tianshan and their tectonic implications. Chinese Science Bulletin, 49: 1415–1419. DOI:10.1360/03wd0598
[] Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Wang H, Zeng WS. 2010. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma?. Journal of Geodynamics, 50(3): 300–317.
[] 陈义兵, 胡霭琴. 1997. 天山东段尾亚麻粒岩REE和Sm-Nd同位素特征. 地球化学, 26(4): 70–77.
[] 董富荣, 李嵩龄, 冯新昌. 1996. 新疆东天山尾亚地区低压麻粒岩相的特征. 新疆地质, 14(2): 151–158.
[] 高俊, 龙灵利, 钱青, 黄德志, 苏文, KlemdR. 2006. 南天山: 晚古生代还是三叠纪碰撞造山带?. 岩石学报, 22(5): 1049–1061.
[] 郭召杰, 李茂松. 1993. 中天山早古生代离散地体构造的讨论. 北京大学学报(自然科学版), 29(3): 356–362.
[] 郭召杰, 史宏宇, 张志诚, 张进江. 2006. 新疆甘肃交界红柳河蛇绿岩中伸展构造与古洋盆演化过程. 岩石学报, 22(1): 95–102.
[] 韩宝福, 何国琦, 吴泰然, 李惠民. 2004. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义. 新疆地质, 22(1): 4–11.
[] 何国琦, 李茂松, 韩宝福. 2001. 中国西南天山及邻区大地构造研究. 新疆地质, 19(1): 7–11.
[] 胡霭琴, 章振根, 刘菊英, 彭建华, 张积斌, 赵殿甲, 杨昇祖, 周位. 1986. 天山东段中天山隆起带前寒武纪变质岩系时代及演化——据U-Pb年代学研究. 地球化学(1): 23–35.
[] 胡霭琴, 张国新, 张前锋, 陈义兵. 1999. 天山造山带基底时代和地壳增生的Nd同位素制约. 中国科学(D辑), 29(2): 104–112.
[] 胡霭琴, 韦刚健, 邓文峰, 张积斌, 陈林丽. 2006. 天山东段1. 4Ga花岗闪长质片麻岩SHRIMP锆石U-Pb年龄及其地质意义. 地球化学, 35(4): 333–345.
[] 胡霭琴, 韦刚健, 张积斌, 邓文峰, 陈林丽. 2007. 天山东段天湖东片麻状花岗岩的锆石 SHRIMP U-Pb 年龄和构造演化意义. 岩石学报, 23(8): 1795–1802.
[] 胡霭琴, 韦刚健, 张积斌, 邓文峰, 陈林丽. 2008. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 24(12): 2731–2740.
[] 李春昱, 王荃, 刘雪亚, 汤耀庆. 1982. 亚洲大地构造图说明书. 北京: 地图出版社: 1-49.
[] 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148–168.
[] 李铨, 于海峰, 修群业. 2002. 东天山前寒武纪基底若干问题的讨论. 新疆地质, 20: 346–351.
[] 李伍平, 王涛, 李金宝, 康旭, 于福生, 韩庆军, 马忠平. 2001. 东天山红柳河地区晚加里东期花岗岩类岩石锆石U-Pb年龄及其地质意义. 地球学报, 22(3): 231–235.
[] 李曰俊, 杨海军, 赵岩, 罗俊成, 郑多明, 刘亚雷. 2009. 南天山区域大地构造与演化. 大地构造与成矿学, 33(1): 94–104.
[] 林彦蒿, 张泽明, 贺振宇, 董昕, 于飞. 2011. 中天山北缘华力西期造山作用——变质岩锆石U-Pb年代学限定. 中国地质, 38(4): 820–828.
[] 刘斌, 钱一雄. 2003. 东天山三条高压变质带地质特征和流体作用. 岩石学报, 19(2): 283–296.
[] 刘楚雄, 邹天人, 路凤香, 童英, 蔡剑辉. 2004. 塔里木北缘及邻区海西期碱性化学特征及其大地构造意. 新疆地质, 22(1): 43–49.
[] 刘树文, 郭召杰, 张志诚, 李秋根, 郑海飞. 2004. 中天山东段前寒武纪变质地块的性质: 地质年代学和钕同位素地球化学的约束. 中国科学(D辑), 34(5): 395–403.
[] 龙灵利, 高俊, 熊贤明, 钱青. 2006. 南天山库勒湖蛇绿岩地球化学特征及其年龄. 岩石学报, 22(1): 65–73.
[] 唐功建, 陈海红, 王强, 赵振华, WymanDA, 姜子琦, 贾小辉. 2008. 西天山达巴特A型花岗岩的形成时代与构造背景. 岩石学报, 24(5): 947–958.
[] 王润三, 周鼎武, 王居里, 王焰, 刘养杰. 1999. 南天山榆树沟华力西期深地壳麻粒岩地体研究. 中国科学(D辑), 29(4): 306–313.
[] 王润三, 周鼎武, 王焰, 王居里, 桑海清, 张任祜. 2003. 南天山榆树沟高压麻粒岩地体多期变质定年研究. 岩石学报, 19: 452–460.
[] 王义天, 毛景文, 陈文, 杨富全, 杨建民. 2006. 新疆东天山康古尔塔格金矿带成矿作用的构造制约. 岩石学报, 22(1): 236–244.
[] 肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社: 1-169.
[] 徐学义, 马中平, 夏林圻, 王彦斌, 李向民, 夏祖春, 王立社. 2005. 北天山巴音沟蛇绿岩斜长花岗岩锆石 SHRIMP 测年及其意义. 地质论评, 51(5): 523–527.
[] 徐学义, 李向民, 马中平, 夏林圻, 夏祖春, 彭素霞. 2006a. 北天山巴音沟蛇绿岩形成于早石炭世: 来自辉长岩LA-ICPMS锆石U-Pb年龄的证据. 地质学报, 80(8): 1168–1176.
[] 徐学义, 马中平, 夏祖春, 夏林圻, 李向民, 王立社. 2006b. 天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究. 西北地质, 39(1): 51–75.
[] 于福生, 李金宝, 王涛. 2006. 东天山红柳河地区蛇绿岩U-Pb同位素年龄. 地球学报, 27(3): 213–216.
[] 张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义. 岩石学报, 24(4): 803–809.
[] 周鼎武, 苏犁, 简平, 王润三, 柳小明, 陆关祥, 王居里. 2004. 南天山榆树沟蛇绿岩地体中高压麻粒岩 SHRIMP锆石U-Pb年龄及构造意义. 科学通报, 49(14): 1411–1415.