2. Department of Geology, University of Regina, Regina, Saskatchewan S4S0A2, Canada;
3. 国家地质实验测试中心, 北京 100037
2. Department of Geology, University of Regina, Regina, Saskatchewan S4S0A2, Canada;
3. State Center of Geological Experiment and Analysis, Beijing 100037, China
世界各地沉积岩容矿的铅锌矿床中多见有机质,它们与金属成矿的关系倍受关注 (Dianar and Sureau, 1990;Chi et al., 1995;Sicree and Barnes, 1996;Disnar,1996;谢树成等,1997;Bartrick and Andrew, 1997;Pangenberg and Macko, 1998;殷鸿福等,1999;Spangenberg et al., 1999;Ulrich et al., 1999;Gusfkiewicz and Kwiecinska, 2001;Fallick et al., 2001;薛春纪等, 2002a, 2007a, 2009;朱弟成等,2003;Southam and Saunders, 2005;高永宝等,2008a;顾雪祥等;2010)。云南金顶铅锌矿床是目前中国最大铅锌矿床,也是世界上唯一陆相沉积岩容矿、且形成于新生代的超大型铅锌矿床 (Xue et al., 2000, 2003),代表了沉积岩容矿铅锌矿床的一种新类型 (Kyle and Li, 2002;Xue et al., 2004, 2006, 2007c;薛春纪等,2007b);矿区矿石、围岩及矿物流体包裹体中多见有机质 (胡明安,1989a;薛春纪等, 2002a, 2007a, 2009;王大锐和张抗,2003;常象春和张金亮,2003;付修根,2004;Xue et al., 2007c;高永宝等,2008a),是认识有机质与金属成矿关系的重要对象。
对金顶铅锌矿床的成因研究存在“同生沉积-后期改造层控矿床”(白嘉芬等,1985)、“中低温非岩浆热液成矿”(高广立,1989)、“同生沉积-变形叠加成矿”(吴淦国和吴习东,1989)、“喷气 (热液) 沉积成矿”(赵兴元,1989)、“岩溶成矿”(胡明安,1989b)、“壳幔流体混合成矿”(尹汉辉等,1990;王京彬和李朝阳,1991;Xue et al., 2000, 2003, 2006, 2007c;薛春纪等, 2002a, b, 2007b;Chi et al., 2007;Wang et al., 2010) 等颇多分歧。从有机质的岩相学、有机地球化学和油气成藏条件分析,推测矿区铅锌成矿前曾存在油气藏形成 (薛春纪等, 2007a, 2009;高永宝等,2008a),并认为油气对硫酸盐的热化学还原形成大量硫化氢,从而导致铅锌硫化物大量沉淀成矿 (高永宝等,2008b;薛春纪等,2009);但有学者依据矿区有细脉状产出的沥青等特点,认为有机质是铅锌硫化物成矿后运移到矿区的 (Leach, 2010, 个人交流),很可能与金属成矿关系不大。本文对金顶铅锌矿床中的沥青开展了Re-Os法同位素测年,试图为探索金顶有机质与金属成矿关系提供新的依据。
2 地质背景和矿床地质金顶铅锌矿床产在西南三江中段兰坪盆地内。兰坪盆地隶属昌都-思茅微板块,东侧以金沙江断裂带与扬子板块相接,西侧以澜沧江断裂带与保山地块毗邻;在古特提斯基础上沉积了中-新生界海相、陆相碳酸盐岩、火山碎屑岩和碎屑岩建造,地层中有多个陆相膏盐层,存在多个沉积间断 (薛春纪等, 2002a, b;)。受古金沙江洋和古澜沧江洋相向俯冲以及印度-欧亚板块碰撞影响,兰坪盆地印支期具有残留海性质,燕山期是拗陷盆地,喜马拉雅期属走滑拉分盆地 (Xue et al., 2003, 2004)。板内构造体制下的深大断裂和岩浆活动、地幔扰动和地幔流体上涌、地层中不整合及壳幔相互作用等是金顶铅锌成矿的基本地质背景 (Xue et al., 2004, 2007c)。
金顶铅锌矿田先后大致经历了中-新生界沉积、推覆构造、局部穹隆以及穹隆破裂等地质过程 (薛春纪等,2002b;Xue et al., 2007c),油气成藏和金属成矿可能伴随推覆构造、穹隆化和热液活动先后发生 (薛春纪等, 2007a, 2009;高永宝等,2008a)。矿区发育多个推覆构造,较老地层多被推覆到较新地层之上;局部穹隆化使推覆构造面和它上下的地层发生变形,形成金顶穹隆 (吴淦国和吴习农,1989;薛春纪等,2002b)。穹隆核心由中白垩统虎头寺组 (K2h) 灰色砂岩和古新统云龙组 (E1y) 红色砂砾岩正常层序、即原地系统构成,围绕穹隆核心向外围依次为下白垩统景星组 (K1j) 灰色细砂岩、中侏罗统花开左组 (J2h) 杂色泥岩和粉砂泥岩、上三叠统麦初箐组 (T3m) 碳质泥岩和三合洞组 (T3s) 碳质灰岩等倒转层序构成的外来系统 (图 1)。铅锌硫化物后生热液矿化主要发生在主推覆构造面上下的K1j砂岩和E1y砂砾岩中,矿体呈板状、脉状,主要集中在穹隆近核部 (图 1)。典型矿石结构是闪锌矿、方铅矿、黄铁矿等硫化物热液矿物交代碎屑岩中钙质胶结物形成的胶结结构,硫化物矿物它形微晶-细晶状,后生热液成矿特征明显。成矿温度为100~250℃,成矿深度1.0km左右 (薛春纪等,2002b)。
![]() |
图 1 金顶超大型铅锌矿床地质图 (据薛春纪等,2002b) Q-第四系;E2g-始新统果朗组岩屑石英砂岩;E1y-古新统云龙组;E1ya-云龙组下段粉砂泥岩;E1yb-云龙组上段砾岩和砂岩;K2h-中白垩统虎头寺组石英砂岩及粉砂岩;K1j-下白垩统景新组砂岩;J2h-中侏罗统花开左组粉砂质泥岩;T3m-上三叠统麦初箐组粉砂-细砂岩;T3wl-上三叠统挖鲁八组泥岩河粉砂岩;T3s-上三叠统灰岩;1-逆冲推覆断裂;2-正断层;3-性质不明断层;4-地质界线;5-不整合界面;6-正常岩层产状;7-倒转岩层产状;8-铅锌矿体;9-勘探线及编号;五角星-铅锌硫化物矿石中沥青采样和观察点 Fig. 1 The geological map of the Jinding Zn-Pb ore deposit (after Xue et al., 2002b) Q-Quaternary; E2g-Eocene Guolang Formation sandstone and siltstone; E1y-Paleocene Yunlong Formation; E1ya-Lower member of Yunlong Formation siltstone and mudstone; E1yb-Upper member of Yunlong Formation breccia and sandstone; K2h-Middel Cretaceous Hutousi Formation sandstone; K1j-Lower Cretaceous Jingxing Formation sandstone; J2h-Middle Jurassic Huakaizuo Formation siltstone and mudstone; T3m-Upper Triassic Maichuqing Formation shale and siltstone; T3wl-Upper Triassic Waluba Formation; T3s-Upper Triassic Sanhedong Formation limestone; 1-thrust fault; 2-normal fault; 3-indeterminate fault; 4-geological boundary; 5-unconformit; 6-normal stratigraphic sequence; 7-reversed stratigraphic sequence; 8-Zn-Pb orebody; 9-exploratory line and number; Star-sample location and viewpoint of the bitumen in Zn-and Pb-sulfide minerals |
金顶矿区岩石和矿石中有机质及古油气藏遗迹多见 (薛春纪等, 2007a, 2009;高永宝等,2008a)。T3s中沥青灰岩多见,夹有炭质泥灰岩及炭质泥岩薄层,沥青含量在1%~25%不等 (云南省地质局第三地质大队, 1984①),它们富炭色黑,有机质多为含泥沥青和干酪根,显微镜下集合成黑色条带和层纹。矿区T3m中常见有黑色碳质泥岩和碳质泥灰岩,含炭化植物碎片。J2h中发育黑色碳质泥岩。矿区K1j砂岩基本全层发生铅锌硫化物矿化,矿石和矿化砂岩经常会嗅到石油味;打开标本时,常会观察到石油从某个集中点向四周扩散,并且同时嗅到浓烈的汽油味;K1j矿化砂岩中也常见到黑色有机物质斑点团块状、浸染状分布,显微镜下有机质个体不定形,浸染状、团块状分布并与闪锌矿伴生;K1j砂岩钙质胶结物常被闪锌矿等硫化物矿物交代,并且伴生有沥青。
①云南省地质局第三地质大队. 1984.云南省兰坪县金顶铅锌矿详细勘探地质报告
金顶矿床所在区域的E1y中不含明显有机物质,而矿区E1y含砾细砂岩岩层上部发生铅锌硫化物矿化,多黑色或深色,更常嗅到的石油气味比在K1j矿化砂岩中更加浓烈。野外新打开岩、矿石标本时,嗅到的石油气味使人感到刺激难忍。在角砾岩型矿石的空洞格架或裂隙内发现黑褐色粘稠原油物质 (重油),具有石油气味,新打开的岩、矿石新鲜面可见黑褐色重油从空洞中慢慢渗出 (图 2c,d)。角砾岩型矿石内空洞或晶洞及其附近常见黑色玻璃状 (脆) 沥青 (图 2a,b),它们很可能是石油等有机物质在后来成矿作用热影响下成熟的产物。矿区架崖山矿段露天采场多处可见古油气藏遗迹,有机质热成熟现象显著。从区域到矿区,不同形式和成熟度的有机物质可能是原始有机物质降解、生烃、运移、储集、成藏、热成熟、裂解及构造热流体破坏影响等不同阶段的产物 (薛春纪等, 2007a;高永宝等,2008a),成藏应早于金属成矿作用 (薛春纪等,2009)。
![]() |
图 2 金顶矿区铅锌硫化物矿化含砾砂岩和砂砾中岩角砾格架内的沥青 (a、b) 和空洞内的重油 (c、d) Fig. 2 the bitumen (a, b) in the grilles and the heavy oil (c, d) in the cavity of breccia-bearing sandstone and sandy breccia bearing Zn-and Pb-sulfide minerals, Jinding |
尤其在以云龙组 (E1y) 含砾砂岩和砂砾岩为主岩铅锌硫化物矿石的角砾格架和空洞中,沥青和重油常集中产出 (图 2),这些有机质的岩相学和有机地球化学特征已专门论述铅锌硫化物矿体主岩、即云龙组 (E1y) 含砾砂岩和砂砾岩中角砾次棱角状,分选差,主要成分是来自上三叠统三合洞组 (T3s) 碳质灰岩、沥青灰岩和麦初箐组 (T3m) 泥灰岩、碳质泥岩,少部分为中侏罗统花开左组 (J2h) 杂色泥岩和粉砂泥岩;填隙物为含岩屑含长石石英细砂岩。铅锌硫化物矿化发生在填隙物、即含岩屑含长石石英细砂岩中,同样表现为闪锌矿、方铅矿、黄铁矿等硫化物热液矿物交代细砂岩中方解石胶结物形成胶结结构的后生热液成矿特征,含砾砂岩和砂砾岩中角砾常被交代成不规则边界 (薛春纪等,2002b)。
4 样品和Re-Os法测年本次用于Re-Os法测年的沥青样品采自金顶铅锌矿区架崖山矿段露天采坑底部 (图 1),为以云龙组 (E1y) 含砾砂岩和砂砾岩为主岩铅锌硫化物矿石角砾格架中的沥青 (图 2a,b)。野外采样中,先选择采坑底部新剥露出的较新鲜矿体部位,使用木质工具逐粒采集沥青3~5g,用拉边封口塑料袋存放样品;实验室内将样品用木质工具稍作粉碎后,在双目实体显微镜下针对0.5~1.0mm沥青颗粒逐粒检查其纯度,排除有连生或混入其他杂质矿物的颗粒,使样品沥青纯度达到99.5%以上;然后,在超声波中清洗样品,以除去沥青样品表面吸附的粉尘等杂质,以备测年。由于没有能够获得足够量纯度较高的重油样品 (图 2c,d),本次没有对铅锌硫化物矿石角砾空洞中的重油开展测年工作。
准确称取0.2g备好的沥青样品,将其转入Carius管中,加入氧化剂 (3mL盐酸,5mL硝酸, 1mL双氧水) 和稀释剂,在200℃封闭溶样24h (李超等,2011)。用蒸馏法分离Os (杜安道等,1994),用丙酮萃取法分离Re (李超等,2009)。Re、Os的制备液在HR-element2-ICP-MS分析,分析结果见表 1。Re、Os含量的不确定度包括样品和稀释剂称量误差、同位素组成误差、稀释剂的标定误差、质谱分析的分馏校正误差和待分析样品同位素比值误差。整个流程的空白平均值Re为4pg,普通Os为0.3pg,187Os为0.03pg。空白相对样品中Re、Os含量,可以忽略不计。沥青样品中Re的含量在71.30×10-9~404.4×10-9之间,普通Os和187Os的含量分别为0.0487×10-9~1.027×10-9和0.1028×10-9~0.9646×10-9。
![]() |
表 1 金顶铅锌矿石中沥青的Re、Os同位素组成分析结果数据 Table 1 The analysis results of Re-Os isotopic compositions of the bitumen in the Jinding zinc-lead ores |
金顶铅锌硫化物矿石中沥青的Re、Os同位素组成分析数据 (表 1) 用isoplot软件 (Ludwig,2003) 处理,获得金顶沥青Re-Os同位素等时线 (图 3) 年龄为68±5Ma,187Os/188Os初始比值为4±1,MSWD=9.2。
![]() |
图 3 金顶铅锌矿石中沥青的Re-Os等时线 Fig. 3 The Re-Os isochron of the bitumen in the Jinding zinc-lead ores |
沉积岩中的有机质多与海相还原环境有关。海水中Re在氧化条件下以ReO4-形式存在,溶解度大,容易迁移;而在富有机质沉积岩形成的还原环境,海水中ReO4-被还原成较难溶解的组分被有机物吸附 (Bruland,1983)。海水中Os在氧化条件下以HOsO5-形式存在,溶解度大,易于迁移;而在还原环境下,以活动性很弱的低价形式存在,因此在富有机质的还原沉积环境中,高价态的Os被还原富集 (Peucker-Ehrenbrink and Ravizza, 2000;Yoshiro et al., 2007)。由于Re、Os在富有机质的岩石中富集,并且这些富有机质的岩石常形成于较还原环境,Re-Os同位素体系能够保持较好封闭性,使Re-Os同位素体系近年有效地应用于富有机质地质样品。
油页岩、黑色页岩、炭质泥岩、富有机质灰岩等构成的黑色岩系在沉积的过程中,有机质能吸附、富集海水中的Re、Os元素,故其沉积过程就是其中Re-Os同位素体系封闭计时的过程;黑色岩系Re-Os同位素年龄反映的是黑色岩系的成岩年龄,初始187Os/188Os反映的是黑色岩系沉积时海水的187Os/188Os值。原油、沥青、油砂等多由黑色岩系在一定条件下经过热降解和热裂解衍生而成,它们的形成往往经过了生烃、运移、圈闭等有机质富集过程;此过程中Os同位素达到平衡,Re-Os同位素体系会重置和重新计时 (李超等,2010);相对于黑色岩系,这些有机质样品更富集有机质,Re和Os含量和放射成因同位素较高,Re-Os同位素年龄记录的是烃源岩生烃后,烃类运移或圈闭的年龄 (Creaser et al., 2002),初始187Os/188Os指示含烃流体的来源 (Selby et al., 2005)。
油气勘查、有机岩相学和地球化学研究表明,兰坪盆地沉积柱中,上三叠统三合洞组 (T3s) 碳质灰岩和麦初箐组 (T3m) 碳质泥岩是主要烃源岩 (胡明安,1989a;王大锐和张抗,2003;常象春和张金亮,2003;付修根,2004;高永宝等,2008a;薛春纪等, 2007a, 2009)。金顶矿区云龙组为陆相含砾砂岩和砂砾岩,虽然其中较多角砾为上三叠统三合洞组 (T3s) 碳质灰岩和麦初箐组 (T3m) 碳质泥岩,具有一定的生烃能力,但研究认为金顶穹隆中大量油气显示和遗迹说明大部分烃类物质是二次运移到穹隆内富集的 (Xue et al., 2007c;高永宝等,2008a;薛春纪等,2009)。本次针对金顶矿区古新统云龙组铅锌硫化物矿化含砾砂岩和砂砾岩角砾格架空隙中沥青,Re-Os法测得等时线年龄68±5Ma,应代表烃类流体运移至云龙组内富集成藏的时代,它在误差范围内与云龙组地层的沉积成岩时代相一致。兰坪盆地新生代陆相沉积主要与盆地中央南北走向的比江断裂自新生代以来强力活动形成的走滑拉分盆地有关,这个断裂具有较大的切割深度 (尹汉辉等,1990;薛春纪等,2002b;Xue et al., 2004),为盆地主要烃源岩生烃后向上运移提供了地质条件。兰坪盆地古新统主要沿比江断裂的西侧分布,云龙组含砾砂岩和砂砾岩成岩之后,矿区发生了推覆和穹隆构造,随后烃类流体沿比江断裂从下部运移注入,穹窿构造对油气起到了很好的圈闭保护作用。
本次测年沥青样品所代表的古油气藏与其储层、即古新统云龙组属同时代;金顶铅锌硫化物矿化以云龙组油气储层为主岩,发生显著的热液交代后生成矿作用 (白嘉芬等,1985;吴淦国和吴习东,1989;胡明安,1989b;尹汉辉等,1990;薛春纪等,2002b;Chi et al., 2007),反映油气成藏先于铅锌成矿。油气藏内有机质对硫酸盐的热化学还原产生的大量硫化氢为铅锌硫化物沉淀奠定了还原硫化学物质基础 (Xue et al., 2003, 2006, 2007c;高永宝等,2008b),很可能沿比江断裂从深部注入金顶油气藏的金属离子与硫化氢快速集中反应导致铅锌硫化物大量沉淀而成矿 (Xue et al., 2006, 2007c;薛春纪等,2009),油气成藏与铅锌成矿很可能是先后连续发生的动力学过程。
6 结论金顶超大型矿床以古新统云龙组含砾砂岩和砂砾岩为主岩铅锌矿石中沥青的Re-Os等时线年龄为68±5Ma,指示金顶古油气成藏时代。
金顶古油气藏形成于古新世,先于铅锌硫化物大规模成矿,烃类物质具有通过热化学还原硫酸盐提供铅锌成矿所需硫化氢的客观条件。
油气成藏与铅锌成矿在云南金顶矿区很可能是一个先后发生的连续地质过程,成藏为成矿奠基,成矿伴随着油气藏的破坏。
致谢 云南金鼎锌业有限公司和李成厚、谭俊伦、聂志焱、丰书荣、王小军、王伯光等在野外调查和样品采集过程中的热情帮助与全力支持;周利敏博士对文章也提出了较多意见;评审人提出了十分有益的建议意见;作者对他们一并表示衷心感谢。[] | Bai JF, Wang CH and Na RX. 1985. Geological characteristics of the Jinding lead-zinc deposit in Yunnan with a special discussion on its genesis. Mineral Deposits, 4(1): 1–9. |
[] | Bartrick L and Andrew P. 1997. Organic matter in hydrothermal deposits. In: Hubest BL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. SL: John Wiley and Sons Inc., 613-645 |
[] | Bruland KW. 1983. Trace elements in seawater. Chemical Oceanography. London: Academic Press: 157-220. |
[] | Chang XC and Zhang JL. 2003. Geochemical characteristics of oil in Jinding lead-zinc and its implication. Special Oil and Gas Reservoirs, 10(5): 15–19. |
[] | Chi GX, Savard MM and Heroux Y. 1995. Constraints from fluid inclusion data on the origin of the Jubilee carbonate-hosted Zn-Pb deposit, Cape Breton, Nova Scotia. The Canadian Mineralogist, 33: 709–721. |
[] | Chi GX, Xue CJ, Lai JQ and Qing HR. 2007. Sand injection and liquefaction structures of an over-pressured fluid system and implications for mineralization. Economic Geology, 102: 739–743. DOI:10.2113/gsecongeo.102.4.739 |
[] | Creaser RA, Sannigrahi P and Chacko T. 2002. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw formation, Western Canada sedimentary basin. Geochimica et Cosmochimica Acta, 66(19): 3441–3452. DOI:10.1016/S0016-7037(02)00939-0 |
[] | Dianar JR and Sureau JF. 1990. Organic matter in ore genesis: Process and perspectives. Org. Geochem., 16: 577–599. DOI:10.1016/0146-6380(90)90072-8 |
[] | Disnar JR. 1996. A comparision of mineralization histories for two MVT deposits, Treves and Malines (Causses basin, France), based on the geochemistry of associated organic matter. Ore Geology Reviews, 11: 133–156. DOI:10.1016/0169-1368(95)00019-4 |
[] | Du AD, He HL and Yin NW. 1994. A study on the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica, 68(4): 339–347. |
[] | Fallick AE, Ashton JH, Boyce AJ, Ellam RM and Russell MJ. 2001. Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulfide orebody at Navan, Ireland. Economic Geology, 96: 85–890. |
[] | Fu XG. 2004. Discussion on biogenic and organic mineralization of the Jinding Pb-Zn deposit. Resources Survey & Environment, 25(3): 184–189. |
[] | Gao GL. 1989. Review of geological origin about Jinding lead-zinc ore deposit. Earth Science, 14(5): 468–475. |
[] | Gao YB, Xue CJ and Zeng R. 2008a. Geochemistry of the organic matter in the Jinding Zn-Pb deposit, Lanping, NW-Yunnan, China. Geochimica, 37(3): 223–232. |
[] | Gao YB, Xue CJ, Zeng R. 2008b. Forming mechanism of H2S in the Jinding Pb-Zn deposit, Lanping Basin, Northwest Yunnan Province. Journal of Earth Sciences and Environment, 30(4): 367–372. |
[] | Gu XX, Zhang YM, Li BH, Xue CJ, Dong SY, Fu SH, Cheng WB, Liu L and Wu CY. 2010. The coupling relationship between metallization and hydrocarbon accumulation in sedimentary basins. Earth Science Frontiers, 17(2): 83–105. |
[] | Gusfkiewicz MS and Kwiecinska B. 2001. Organic matter in the Upper Silesian (Mississippi Valley-type) Zn-Pb deposits, Poland. Economic Geology, 97(4): 981–992. |
[] | Hu MA. 1989a. Hydrothermal maturation of indigenous organic matters and their significance in the metallogenic processes of the Jinding lead-zinc deposit, Yunnan Province. Earth Science, 14(5): 503–512. |
[] | Hu MA. 1989b. A preliminary evaluation of the mineralization and their characteristics on the karst-type lead-zinc deposit by the emplification of Jinding, Yunnan Province. Earth Science, 14(5): 531–538. |
[] | Kyle JK and Li N. 2002. Jinding: A giant Tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China. SEG Newsletter, 50: 8–16. |
[] | Li C, Qu WJ and Du AD. 2009. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating. Rock & Mineral Analysis, 28(3): 233–238. |
[] | Li C, Qu WJ, Wang DH, Chen ZH and Du AD. 2010. Advances in the study of the Re-Os isotopic system of organic-rich samples. Acta Petrologica et Mineralogica, 29(4): 421–430. |
[] | Li C, Qu WJ, Wang DH, Chen ZH and Du AD. 2011. Experimental research of Re-Os isotope system for Bitumen Samples. Rock & Mineral Analysis, 30(6): 688–694. |
[] | Ludwig KR. 2003. Users manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication(4): 25–32. |
[] | Pangenberg JE and Macko SA. 1998. Organic geochemistry of the San Vicente zinc-lead district, eastern Pucara basin, Peru. Chemical Geology, 149: 1–23. DOI:10.1016/S0009-2541(98)00030-8 |
[] | Peucker-Ehrenbrink B and Ravizza G. 2000. The marine osmium isotope record. Terra Nova, 12: 205–219. DOI:10.1046/j.1365-3121.2000.00295.x |
[] | Selby D, Creasera RA and Dewing K. 2005. Evaluation of bitumenas a 187Re-187Os geochronometer for hydrocarbon maturation andmigration: A test case from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters, 235: 1–15. DOI:10.1016/j.epsl.2005.02.018 |
[] | Sicree AA and Barnes HL. 1996. Upper Mississippi Valley district ore fluid model: The role of organic complexes. Ore Geology Reviews, 11: 105–131. DOI:10.1016/0169-1368(95)00018-6 |
[] | Southam G and Saunders JA. 2005. The geomicrobiology of ore deposit. Economic Geology, 100: 1067–1084. DOI:10.2113/gsecongeo.100.6.1067 |
[] | Spangenberg JE, Fonbote L and Macko SA. 1999. An evaluation of the inorganic and organic geochemistry of the San Vicente Mississippi Valley-type zinc-lead district, central Peru: Implications for ore fluid composition, mixing processes and sulfate reduction. Economic Geology, 94: 1067–1092. DOI:10.2113/gsecongeo.94.7.1067 |
[] | Ulrich T, Gunther D and Heinnch CA. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399: 676–679. DOI:10.1038/21406 |
[] | Wang CM, Deng J, Zhang ST, Xue CJ, Yang LQ, Wang QF and Sun X. 2010. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kiangdian area on the western margin of Yangtze Craton. Acta Geologica Sinica, 84(6): 1428–1438. DOI:10.1111/acgs.2010.84.issue-6 |
[] | Wang DR and Zhang K. 2003. The Nature of Containing Oil Gas in the Cenozoic Basin, Yunnan. Beijing: Geological Publishing Houses: 62-117. |
[] | Wang JB and Li CY. 1991. REE geochemistry of the Jinding super large Pb-Zn deposit. Geochimica, 19(4): 359–365. |
[] | Wu GG and Wu XD. 1989. A preliminary study on the tectonic evolution and mineralization regularity of the Jinding lead-zinc deposit, Yunnan Province. Earth Science, 14(5): 477–486. |
[] | Xie SC, Yin HF and Wang HM. 1997. The biological marker compound of fluid inclusions in Qixiashan polymetal deposit. Chinese Science Bulletin, 42(12): 1312–1314. |
[] | Xue CJ, Wang DH, Chen YC, Yang JM and Yang WG. 2000. Helium, argon, and xenon isotopic compositions of ore-forming fluids in Jinding-Baiyangping polymetallic deposits, Yunnan, Southwest China. Acta Geologica Sinica, 74(3): 521–528. |
[] | Xue CJ, Chen YH, Yang JM Wang DH and Xu J. 2002a. The CO2-rich and hydrocarbon-bearing ore-forming fluid and their metallogenic role in the Lanping Pb-Zn-Ag-Cu ore-field, north-western Yunnan. Acta Geologica Sinica, 76(2): 102–116. |
[] | Xue CJ, Chen YC and Yang JM. 2002b. Jinding Pb-Zn deposit: Geology and geochemistry. Mineral Deposits, 21(3): 270–277. |
[] | Xue CJ, Chen YC, Wang DH, Yang JM, Yang WG and Zeng R. 2003. Geology and isotopic composition of helium, neon, xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan, China. Science in China (Series D), 46(8): 789–800. DOI:10.1007/BF02879523 |
[] | Xue CJ, Liu SW, Chen YC, Zeng R and Zhao SH. 2004. Giant mineral deposits and their geodynamic setting in the Lanping basin, Yunnan, China. Acta Geologica Sinica, 78(2): 368–374. |
[] | Xue CJ, Chi GX, Chen YC, Wang DH and Qing HR. 2006. Two fluid systems in the Lanping basin, Yunnan, China: Their interaction and implications for mineralization. Journal of Geochemical Exploration, 89: 436–439. DOI:10.1016/j.gexplo.2005.11.027 |
[] | Xue CJ, Gao YB, Zeng R, Chi GX and Qing HR. 2007a. Organic petrography and geochemistry of the giant Jinding deposit, Lanping basin, northwestern Yunnan, China. Acta Petrologica Sinica, 23(11): 2889–2900. |
[] | Xue CJ, Chi GX, Chen YC, Zeng R, Gao YB and Qing HR. 2007b. Fluid dynamic processes of large-scale mineralization in the Lanping basin, Yunnan, SW-China: Evidence from fluid inclusions and basin fluid modeling. Earth Science Frontiers, 14(5): 147–157. DOI:10.1016/S1872-5791(07)60042-6 |
[] | Xue CJ, Zeng R, Liu SW, Chi GX and Qing HR. 2007c. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, China: A review. Ore Geology Reviews, 31: 337–359. DOI:10.1016/j.oregeorev.2005.04.007 |
[] | Xue CJ, Gao YB, Chi GX and Leach DL. 2009. Possible former oil-gas reservoir in the giant Jinding Pb-Zn deposit, Lanping, NW-Yunnan: The role in the ore accumulation. Journal of Earth Sciences and Environment, 31(3): 221–229. |
[] | Yin HF, Zhang WH and Zhang ZJ. 1999. The Biometallogenesis System. Wuhan: China University of Geosciences Press: 1-58. |
[] | Yin HH, Fan WM and Lin G. 1990. The deep factor of geodepression basin evolution and the mineralization of crust-mantle mixing in Lanping-Simao, Yunnan. Geotectonica et Metallogenia, 14(2): 113–124. |
[] | Yoshiro Y, Yoshio T and Hiromitsu H. 2007. Comparison of reductive accumulation of Re and Os in seawater-sediment systems. Geochimica et Cosmochimica Acta, 71: 3458–3475. DOI:10.1016/j.gca.2007.05.003 |
[] | Zhao XY. 1989. On the genesis of the Jinding lead-zinc ore deposit in Yunnan. Earth Science, 14(5): 523–530. |
[] | Zhu DC, Zhu LD, Lin L, Xiong YZ, Pang CY and Fu XG. 2003. Organic mineralization of lead-zinc deposits in Devonian System, Xicheng ore field. Earth Science, 28(2): 201–208. |
[] | 白嘉芬, 王长怀, 纳荣仙. 1985. 云南金顶铅锌矿床地质特征及成因初探. 矿床地质, 4(1): 1–9. |
[] | 常象春, 张金亮. 2003. 金顶铅锌矿区中原油地化特征及其意义. 特种油气藏, 10(5): 15–19. |
[] | 杜安道, 何红蓼, 殷宁万. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339–347. |
[] | 付修根. 2004. 金顶铅锌矿床生物有机成矿探讨. 资源调查与环境, 25(3): 184–189. |
[] | 高广立. 1989. 论金顶铅锌矿床的地质问题. 地球科学, 14(5): 468–475. |
[] | 高永宝, 薛春纪, 曾荣. 2008a. 滇西北兰坪金顶铅锌矿床有机物质地球化学. 地球化学, 37(3): 223–232. |
[] | 高永宝, 薛春纪, 曾荣. 2008b. 兰坪金顶铅锌硫化物成矿中硫化氢的成因. 地球科学与环境学报, 30(4): 367–372. |
[] | 顾雪祥, 章永梅, 李葆华, 薛春纪, 董树义, 付绍洪, 程文斌, 刘丽, 吴成赟. 2010. 沉积盆地中金属成矿与油气成藏的耦合关系. 地学前缘, 17(2): 83–105. |
[] | 胡明安. 1989a. 有机质的热液成熟作用在云南金顶铅锌矿床形成过程中的意义. 地球科学, 14(5): 503–512. |
[] | 胡明安. 1989b. 试论岩溶型铅锌矿床的成矿作用及其特点--以云南金顶矿床为例. 地球科学, 14(5): 531–537. |
[] | 李超, 屈文俊, 杜安道. 2009. 铼-锇同位素定年方法中丙酮萃取铼的系统研究. 岩矿测试, 28(3): 233–238. |
[] | 李超, 屈文俊, 王登红, 陈郑辉, 杜安道. 2010. 富有机质地质样品Re-Os同位素体系研究进展. 岩石矿物学杂志, 29(4): 421–430. |
[] | 李超, 屈文俊, 王登红, 陈郑辉, 杜安道. 2011. 沥青Re-Os同位素分析实验研究. 岩矿测试, 30(6): 688–694. |
[] | 王大锐, 张抗. 2003. 云南地区新生代盆地含油气性. 北京: 地质出版社: 62-117. |
[] | 王京彬, 李朝阳. 1991. 金顶超大型铅锌矿床REE地球化学研究. 地球化学, 19(4): 359–365. |
[] | 吴淦国, 吴习东. 1989. 云南金顶铅锌矿床构造演化及矿化富集规律. 地球科学, 14(5): 477–486. |
[] | 谢树成, 殷鸿福, 王红梅. 1997. 南京栖霞山多金属矿床流体包裹体中的生物标志化合物. 科学通报, 42(12): 1312–1314. |
[] | 薛春纪, 陈毓川, 杨建民, 王登红, 徐珏. 2002a. 滇西北兰坪铅锌铜银矿田含烃富CO2成矿流体及其地质意义. 地质学报, 76(2): 244–253. |
[] | 薛春纪, 陈毓川, 杨建民. 2002b. 金顶铅锌矿床地质-地球化学. 矿床地质, 21(3): 270–277. |
[] | 薛春纪, 高永宝, 曾荣, ChiGX and Qing HR. 2007a. 滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学. 岩石学报, 23(11): 2889–2900. |
[] | 薛春纪, ChiGX, 陈毓川, 曾荣, 高永宝, QingHR. 2007b. 西南三江兰坪盆地大规模成矿的流体动力学过程--流体包裹体和盆地流体模拟证据. 地学前缘, 14(5): 147–157. |
[] | 薛春纪, 高永宝, ChiGX, LeachDL. 2009. 滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用. 地球科学与环境学报, 31(3): 221–229. |
[] | 尹汉辉, 范蔚茗, 林舸. 1990. 云南兰坪-思茅地洼盆地演化的深部因素及幔--壳复合成矿作用. 大地构造与成矿学, 14(2): 113–124. |
[] | 殷鸿福, 张文淮, 张志坚. 1999. 生物成矿系统论. 武汉: 中国地质大学出版社: 1-58. |
[] | 赵兴元. 1989. 云南金顶铅锌矿床成因研究. 地球科学, 14(5): 523–530. |
[] | 朱弟成, 朱利东, 林丽, 熊永柱, 庞艳春, 付修根. 2003. 西成矿田泥盆系铅锌矿床中的有机成矿作用. 地球科学, 28(2): 201–208. |