岩石学报  2012, Vol. 28 Issue (4): 1029-1036   PDF    
河西走廊晚泥盆世地层中冥古宙碎屑锆石的发现
袁伟1, 杨振宇1,2, 杨进辉3     
1. 南京大学地球科学与工程学院, 南京 210093;
2. 中国地质科学院古地磁重点实验室, 北京 100081;
3. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029
摘要: 河西走廊地区晚泥盆统中宁组地层中,利用LA-ICP-MS法测年获得了3.9Ga和4.0Ga两颗碎屑锆石,其Th/U依次为1.01和0.58,均为岩浆锆石。两颗锆石稀土元素呈轻稀土(LREE)亏损、重稀土(HREE)富集,均具有Ce正异常,其中4.0Ga锆石具有Eu负异常,3.9Ga锆石无Eu负异常。利用锆石中49Ti的含量计算原岩岩浆温度分别为792±36℃(3.9Ga)和967±45℃(4.0Ga)。3.9Ga锆石获得原位Hf同位素结果,176Hf/177Hfi=0.280169,εHf(t)=-3.6,tDM=4139Ma, tDMC=4319Ma。这两颗>3.9Ga碎屑锆石为西北地区首次发现,其微量元素特征说明在冥古宙时地球上可能存在地壳;结合前人古生物和古地磁研究结果,说明河西走廊在晚泥盆世时同澳大利亚西北部可能具有亲缘性。
关键词: 冥古宙     碎屑锆石     U-Pb年龄     Hf同位素     微量元素     泥盆纪     河西走廊    
The discovery of Hadean detrital zircon in Late Devonian strata in Hexi Corridor, Northwest China
YUAN Wei1, YANG ZhenYu1,2, YANG JinHui3     
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China;
2. Key Laboratory of Paleomagnetism, Chinese Academy of Geological Sciences, Beijing 100081, China;
3. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: Two detrital zircons with the age of 3.9Ga and 4.0Ga have been dated from Late Devonian strata in Hexi Corridor by LA-ICP-MS method. They are both magmatic zircons and the Th/U ratios are 1.01 and 0.58 respectively. Both zircons are enriched in heavy REE (HREE) compared to light REE (LREE) and show a distinctive positive Ce. The 4.0Ga zircon is with negative Eu while the 3.9Ga zircon without negative Eu. Using the geothermometer-49Ti content of zircon, we calculated magmatic temperatures that were 792±36℃(3.9Ga) and 967±45℃(4.0Ga) respectively. The 3.9Ga zircon was analyzed for Hf-isotope: 176Hf/177Hfi=0.280169, εHf(t)=-3.6, tDM=4139Ma, tDMC=4319Ma. It is the first report of the >3.9Ga zircons in Northwest China. The trace element characteristics of the zircons prove that the crust may exist on earth in the Hadean. Further, Combined with previous paleontological and paleomagnetic results, these results indicate that the Hexi Corridor might have the affinity with northwestern Australia in the Late Devonian.
Key words: Hadean     Detrital zircon     U-Pb age     Hf isotope     Trace element     Devonian     Hexi Corridor    
1 引言

冥古宙地球表层陆壳的形成是当今地球科学研究的热点之一,花岗质岩浆作用和早期陆壳再循环是地球早期陆壳演化的一个重要方面。然而,目前为止发现大于4.0Ga的岩石的报道很少,只有北美Acasta片麻岩为4.0Ga左右(Bowring et al., 1984, 1989 ; Iizuka et al., 2006, 2007)。地球上最老的锆石(4.4Ga)发现于西澳Jack Hills (Wilde et al., 2001; Harrison et al., 2005),该区域获得了大量>4.0Ga碎屑锆石的U-Pb年龄、Hf和O同位素结果 (Maas et al., 1992; Amelin, 1998; Peck et al., 2001; Valley et al., 2002; Cavosie et al., 2004, 2005; Dunn et al., 2005; Nemchin et al., 2006; Ushikubo et al., 2008; Kemp et al., 2010; Bell et al., 2011)。通过冥古宙岩石或锆石的研究,对我们了解地球早期陆壳的形成、演化历史和环境具有重要意义。

在我国一些前寒武纪基底也发现了古老锆石,如华北鞍山地区、冀东、信阳发现3.6~3.8Ga岩石和锆石(Liu et al., 1992, 2008; Song et al., 1996; Wan et al., 2005; Zheng et al., 2004; 刘敦一等, 1994; 吴福元等, 2005; 万渝生等, 2009),华南崆岭杂岩中发现≥3.5Ga岩石(Zhang et al., 2006a)和3802±8Ma碎屑锆石(εHf(t)=-0.8, tDM1=3.96Ga, tDM2=4.0Ga) (Zhang et al., 2006b), 西北阿尔金山阿克塔什塔格变质岩中获得3605±43Ma单颗粒锆石U-Pb年龄(陆松年和袁桂邦, 2003; 李惠民等, 2001)。西藏普兰县石英片岩中发现锆石U-Pb年龄为4103±4Ma (多吉等, 2007);北秦岭西段奥陶纪火山岩中发现一颗4079±5Ma捕虏锆石(不谐和度2.28%)(王洪亮等, 2007),第五春荣等(2010) 在该地区又发现两颗207Pb/206Pb年龄为4007±29Ma和3908±45Ma变质成因锆石。在华夏地块,发现Hf模式年龄大于4.0Ga的碎屑锆石较多,于津海等(2007) 报道了潭溪片麻岩中3755Ma锆石Hf 同位素模式年龄为4.07Ga, Yao et al. (2011) 报道了赣南地区早古生代地层中两颗碎屑锆石Hf模式年龄分别为4068Ma(锆石U-Pb年龄2435±19Ma)和4202Ma(锆石U-Pb年龄2649±9Ma)。本文报道了河西走廊晚泥盆世地层中发现的3.6Ga、3.9Ga和4.0Ga三颗碎屑锆石,其中>3.9Ga这两颗锆石为西北地区首次发现;通过分析锆石原位微区Hf同位素和微量元素,对地球早期地壳形成、演化以及河西走廊地区在晚泥盆世古地理位置进行初步探讨。

2 地质背景与采样

研究区位于华北西缘河西走廊过渡带的东段(图 1)。河西走廊过渡带为一早古生代的弧后盆地,归为阿拉善-龙首山地块的西南部大陆边缘(陆松年等, 2009)。该过渡带呈北西西-南东东向展布,其北界为龙首山断裂,断裂东延为元山子断裂,以后转为北西向的牛首山断裂和南北向的罗山断裂;南界可能为海原断裂带的月亮山,崛吴山断裂;东端与鄂尔多斯地块相接;西界可能为阿尔金断裂的东北延伸部分(Zhao et al., 1993; 李清河等, 1999; Huang et al., 2000; 陆松年等, 2009)。区内发育厚度很大的中-晚泥盆世河湖相沉积,为典型磨拉石建造(潘江等, 1987)。阿拉善-河西走廊地块是否为华北地块的西向延伸,是否与塔里木和柴达木地块构成西域板块,其大地构造属性尚存争议(葛肖虹和刘俊来, 2000)。

图 1 河西走廊地质简图 (a):①龙首山-六盘山深断裂;②沙坡头-同心断裂;③车道-阿色浪断裂;④黄河断裂. (b):3.6Ga(样品号: QK-3)和3.9Ga(样品号: QK-1)碎屑锆石采样位置地质图. (c): 4.0Ga碎屑锆石采样点地质图(SX-7为样品号) Fig. 1 he simplified geological map of Hexi Corridor (a): ① Longshoushan-Liupanshan fault; ② Shapotou-Tongxin fault; ③ Chedao-Aselang fault; ④ Huanghe fault; (b): The geological map for the sampling site of 3.6Ga detrital zircon (sample number: QK-3) and 3.9Ga detrital zircons (sample number: QK-1). (c): The geological map for the sampling site of 4.0Ga detrital zircons (sample number: SX-7)

研究区上泥盆统中宁组整合接触覆于上泥盆统大岱沟组之上,与上覆地层中石炭统羊虎沟群或下石炭统臭牛沟组呈平行不整合接触;上泥盆统中宁组(D3z)分三段:上段(D3z3)为浅湖相-深湖相泥岩、粉砂岩、砂质灰岩,灰岩,含丰富的鱼类化石;中段(D3z2)为浅湖相-河流相粉砂岩、砂岩;下段(D3z1)为河流相-浅湖相砂岩、粉砂岩(潘江等, 1987)。本次样品采自宁夏中宁地区晚泥盆统中宁组地层中(图 2),为紫红色中粗粒长石石英砂岩。样品QK-1(GPS点为37°40′46″N; 105°44′15.1″E)、QK-3(GPS点为37°40′47.2″N; 105°44′17.3″E)采集于上泥盆统中宁组上段,SX-7(GPS点为37°39′16.2″N; 105°59′38.0″E)采集于上泥盆统中宁组中段。样品QK-3中发现了U-Pb年龄为3.6Ga碎屑锆石,QK-1中发现了U-Pb年龄为3.9Ga碎屑锆石;SX-7中发现了U-Pb年龄为4.0Ga碎屑锆石。

图 2 采样剖面地层柱状图 Fig. 2 Strata histogram for sampling profile
3 测试方法

锆石是将所采砂岩样品粉碎至60目以下,按磁选和重液方法分选,最后在双目镜下挑纯。按照随机原则,每个样品粘300~400颗锆石,固定于环氧树脂中,经抛光后,进行透射光和反射光照相,并用阴极发光(CL)扫描电子显微镜进行图像分析,以观察锆石的抛光面及内部结构。CL显微照相在西北大学大陆动力学国家重点实验室完成,CL发光仪为加载于扫描电子显微镜(Quanta 400 FEG)上的美国Gatan公司的Mono CL3+型阴极荧光探头,分析电压为10kV,电流为240μA。

锆石U-Pb年龄分析是在中国科学院地质与地球物理研究所多接收等离子质谱仪实验室利用激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS) 上完成的。激光束斑直径为32μm,频率为8Hz,能量密度为15J/cm2。采用91500 标准锆石(1062.4±0.6Ma)作为标准, GJ-1 (608.53±0.37Ma)作为未知样品对测试结果进行监控,采用美国国家标准物质局研制的人工合成硅酸盐玻璃NIST610为外标(Pearce et al., 1997),29Si为内标进行元素含量校正。每个样品在试验开始和结束时分别测试两次91500和NIST610,每完成10个测点加测一次GJ-1和91500,每完成20个测点加测一次NIST610。利用Glitter (4.0版)软件处理测试数据,采用Isoplot 程序(3.0版)计算年龄,绘制谐和图(Ludwig,2003)。详细分析流程见谢烈文等(2008) Xie et al. (2008)

锆石原位Lu-Hf同位素分析在中国科学院地质与地球物理研究所193nm激光取样系统的Neptune多接收电感耦合等离子质谱仪(LA-MC-ICPMS)上进行,激光束斑直径为60μm,激光脉冲宽度为15ns,采用He气做为剥蚀物质载气,详细分析流程见Wu et al. (2006) Xie et al. (2008) 。每个样品在开始和结束分别测试两次GJ-1,每完成10个测点加测一次GJ-1。本次标样GJ-1的测定结果为176Hf/177Hf=0.282009±25(2σ,N=145),该值与目前已获得的值在误差范围内一致(Elhlou et al., 2006; Armin et al., 2007)。εHf(t)和模式年龄计算中,176Lu衰变常数为1.867×10-11 (Bouvier et al., 2008),现今球粒陨石的176Lu/177Hf和176Hf/177Hf分别为0.0332、0.282772 (Bicher-Toft et al., 1997), 亏损地幔的176Lu/177Hf和176Hf/177Hf采用0.0384、0.28325 (Griffin et al., 2000),地壳模式年龄(tDMC)采用平均地壳的176Lu/177Hf=0.015 (Griffin et al., 2002)。

借助锆石透射光、反射光、CL照片,避开包裹体,确定测点位置,获得较准确可靠的年龄。测试U-Pb年龄时,每个样品在靶上从左往右,无论大小(>32μm)依次测试,直到锆石数目达到140或150为止。

4 锆石形态和U-Pb年龄

对三个样品测定约450颗锆石后,发现大量前寒武纪碎屑锆石(0.5~4.0Ga),峰值主要集中在~2.3~2.5Ga、1.8~2.1Ga、0.8~1.2Ga和0.5Ga,并发现两颗始太古代锆石(3.6Ga和3.9Ga)和一颗冥古宙锆石(4.0Ga)。207Pb/206Pb年龄为3611±17Ma的锆石U-Pb年龄谐和度达95%,无色透明,长150μm,宽75μm,CL照片显示锆石呈面状结构、较暗,具有变质增生亮边(图 3),Th/U=0.14(表 1)。207Pb/206Pb年龄为3891±17Ma的锆石U-Pb年龄谐和度达96%,无色透明,长150μm,宽95μm,CL照片显示锆石没有振荡环带结构,较暗,具有变质增生亮边(图 3),Th/U=1.01(表 1),为岩浆锆石。207Pb/206Pb年龄为4022±16Ma的锆石年龄谐和度为100%,无色透明,直径100μm左右,磨圆较好,CL照片显示核部具有明显的振荡环带结构(获取U-Pb年龄的位置),较亮,从CL照片观察应存在至少4期变质增生边(图 3),Th/U=0.58(表 1),为岩浆锆石。

图 3 锆石CL照片 大圆圈表示Hf同位素测试点;小圆圈表示U-Pb年龄测试点 Fig. 3 CL images of zircons Large circles indicate positions for Hf-isotope analyses; small circles indicate positions for U-Pb age analyses

表 1 锆石U-Pb同位素LA-ICP-MS分析结果 Table 1 Zircon LA-ICP-MS U-Pb isotopic data
5 锆石Hf同位素和微量元素

U-Pb年龄为3.9Ga的锆石获得原位Hf同位素结果:176Hf/177Hfi=0.280169,εHf(t)=3.6,tDM=4139Ma,tDMC=4319Ma (表 2); 207Pb/206Pb年龄为3611±17Ma锆石的原位Hf同位素结果为:176Hf/177Hfi=0.280196,εHf(t)=9.3,tDM=4113Ma,tDMC=4464Ma(表 2)。这两颗锆石原位Hf同位素结果与华北板块3.8Ga左右岩石中锆石的Hf同位素结果(吴福元等,2005Zheng et al., 2004)存在明显不同,而与Jack Hills>4.0Ga锆石的Hf同位素特征(Kemp et al., 2010; Harrison et al., 2008)非常相近(图 4)。

图 4 锆石εHf(t)对U-Pb年龄图解 Fig. 4 εHf(t) vs. U-Pb age for zircons

锆石稀土元素轻稀土(LREE)亏损重稀土(HREE)富集,均具有Ce正异常,4.0Ga锆石具有Eu负异常,3.9Ga锆石没有Eu负异常(图 5)。Ce正异常是Ce﹢4优先进入锆石晶格的结果(吴元保等, 2003),Eu负异常则是锆石与长石平衡生长的结果(Rubatto and Williams, 2000)。

图 5 冥古代锆石稀土元素蛛网图 Fig. 5 Rare earth element patterns of Hadean zircon

利用锆石中49Ti含量计算母岩岩浆温度(Ferry and Watson, 2007),3.9Ga、4.0Ga锆石的母岩岩浆温度分别为792±36℃和967±45℃(表 3)。

6 地质意义 6.1 早期陆壳生长

古老锆石的发现和研究可有效追溯冥古宙大陆地壳的形成。Jack Hills地区4.4Ga左右碎屑锆石的稀土元素具有轻稀土亏损重稀土富集,Ce正异常和Eu负异常(图 5),且测试点附近发现了SiO2包裹体,表明这些锆石源于花岗岩岩浆(Wilde et al., 2001)。前人获得这些40亿以上锆石的δ18O值为6.3‰~7.5‰ (Peck et al., 2001; Cavosie et al., 2006), 而地幔平均δ18O为5.3±0.3‰ (Valley et al., 2005),说明在地球历史早期有大陆地壳的存在。Grimes et al. (2007) 统计了大量的洋壳锆石和陆壳锆石的微量元素特征,通过U对Yb、U/Yb对Hf或Y图解很好地将陆壳锆石和洋壳锆石区分开来,Narryer Terrane太古宙变质沉积岩中冥古宙碎屑锆石及Acasta Gneiss中的4.2Ga碎屑锆石在U对Yb、U/Yb对Hf或Y图解中明显处于大陆地壳区域(图 6),表明在地球形成早期可能有陆壳的存在。本文报道的3.9Ga和4.0Ga两颗锆石在U/Yb对Hf或Y图解中也落入到了大陆地壳区域(图 6),可能说明地球在冥古宙有地壳的存在。

图 6 冥古宙锆石Hf对U/Yb图解(a)和Y对U/Yb图解(b) (据Grimes et al., 2007修改) Fig. 6 Hf vs. U/Yb (a) and Y vs. U/Yb (b) for Hadean zircon (after Grimes et al., 2007)
6.2 构造意义

西藏普兰县石英片岩和北秦岭西段奥陶纪火山岩中冥古宙(碎屑或继承)锆石的发现(华南崆岭群,≥3.5Ga)并非偶然,其中西藏普兰变质沉积岩的老锆石与西澳Jack Hills冥古宙碎屑锆石(>4.0Ga)的沉积物源区可能具有成因联系(万渝生等, 2009)。古地理和古地磁研究也均表明西藏雅鲁藏布江带缝合带西段和华南地块与东冈瓦纳地块具有明显的亲缘关系(Allegre et al., 1984; Yang et al., 2004)。宁夏中宁地区晚泥盆世地层中发现的中华豆石介族(介形类),表明泥盆纪时该区属华南生物地理区系(王尚启等, 1995);发现的胴甲鱼表明中宁与华南和澳大利亚西北部具有明显亲缘性(Jia et al., 2010)。上述地区在古生代中期的亲缘关系也得到古地磁研究的初步证明(Huang et al., 2000)。本次在中宁地区获得的3.6Ga和3.9Ga锆石同华北板块3.8Ga左右岩石中锆石Hf同位素特征亲缘性较差,同Jack Hills地区4.0Ga以上锆石Hf同位素具有一定的相似性,则说明河西走廊在晚泥盆世时与澳大利亚西北部沉积物源区可能具有成因联系。

7 结论

本次在河西走廊地区晚泥盆统中宁组地层中利用LA-ICP-MS法测年,首次在我国西北地区的沉积岩中发现3.9Ga和4.0Ga碎屑锆石。这两颗锆石的微量元素特征,说明在冥古宙时地球上可能存在地壳;3.9Ga锆石同Jack Hills地区>4.0Ga锆石Hf同位素具有一定的相似性,结合前人古生物和古地磁研究结果,说明在晚泥盆世时河西走廊同澳大利亚西北部可能具有亲缘性。

致谢 论文写作过程中得到汪相教授的热心帮助,年龄测试分析过程中得到张拴宏研究员、杨岳衡高级工程师、张艳斌副研究员细心指导,以及张海峰、王恒、秦永鹏三位硕士研究生在年龄测试过程中付出了辛勤劳动,在此表示感谢。
参考文献
[] Allégre CJ, Courtillot V, Tapponnier P, et al. 1984. Structure and evolution of the Himalaya-Tibet Orogenic belt. Nature, 307(5946): 17–2. DOI:10.1038/307017a0
[] Amelin YV. 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chemical Geology, 146: 25–38. DOI:10.1016/S0009-2541(97)00162-9
[] Armin Z, Axel G, Reiner K and Jackson MB. 2007. Archaean to Proterozoic crustal evolution in the Central Zone of the Limpopo Belt (South Africa-Botswana): Constraints from combined U-Pb and Lu-Hf isotope analyses of zircon. Journal of Petrology, 48(8): 1605–1639. DOI:10.1093/petrology/egm032
[] Bell EA, Harrison TM, McCulloch MT and Young ED. 2011. Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochimica et Cosmochimica Acta, 75(17): 4816–4829. DOI:10.1016/j.gca.2011.06.007
[] Blichert-Toft J, Chauvel C and Albarede F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248–260. DOI:10.1007/s004100050278
[] Bouvier A, Vervoort JD and Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48–57. DOI:10.1016/j.epsl.2008.06.010
[] Bowring SA and Van Schmus WR. 1984. U-Pb zircon constraints on evolution of Wopmay Orogen. N.W.T. Geological Association of Canada/Mineralogical Association of Canada, Abstracts, 9: 47.
[] Bowring SA, King JE, Housh TB, Isachsen CE and Podsek FA. 1989. Neodymium and lead isotope evidence for enriched Early Archean crust in North America. Nature, 340: 222–225. DOI:10.1038/340222a0
[] Cavosie AJ, Wilde SA, Liu DY, Weiblen PW and Valley JW. 2004. Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: A mineral record of Early Archean to Mesoproterozoic (4348~1576Ma) magmatism. Precambrian Research, 135: 251–279. DOI:10.1016/j.precamres.2004.09.001
[] Cavosie AJ, Valley JW, Wilde SA and EIMF. 2005. Magmatic δ18O in 4400~3900Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235: 663–681. DOI:10.1016/j.epsl.2005.04.028
[] Cavosie AJ, Valley JW, Wilde SA, and EIMF. 2006. Correlated microanalysis of zircon: δ18O and U-Th-Pb isotopic constraints on the igneous origin of complex >3900Ma detrital grains. Geochimica et Cosmichimica Acta, 70: 5601–5616.
[] Diwu CR, Sun Y, Dong ZC, Wang HL, Chen DL, Chen L and Zhang H. 2010. In situ U-Pb geocheronology of Hadean zircon xenocryst (4.1~3.9Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 26(4): 1171–1174.
[] Duo J, Wen CQ, Guo JC, Fan XP and Li XW. 2007. 4.1Ga old detrital zircon in western Tibet of China. Chinese Science Bulletin, 52(1): 23–26. DOI:10.1007/s11434-007-0009-3
[] Dunn SJ, Nemchin AA, Cawood PA and Pidgeon RT. 2005. Provenance record of the Jack Hills metasedimentary belt: Source of the Earth’s oldest zircons. Precambrian Research, 138: 235–254. DOI:10.1016/j.precamres.2005.05.001
[] Elhlou S, Belousova E, Griffin WL, Pearson NJ and O’Reilly SY. 2006. Trace element and isotope composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18S): A158.
[] Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154: 429–437. DOI:10.1007/s00410-007-0201-0
[] Ge XH and Liu JL. 2000. The broken “Western China Craon”. Acta Petrologica Sinica, 16(1): 59–66.
[] Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K and Schwartz JJ. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643–646. DOI:10.1130/G23603A.1
[] Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64: 133–147. DOI:10.1016/S0016-7037(99)00343-9
[] Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Harrison TM, Blichert-Toft J, Muller W, Albarede F, Holden P and Mojzsis SJ. 2005. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5G. Science, 310: 1947. DOI:10.1126/science.1117926
[] Harrison TM, Schmite AK, McCulloch MT and Oscar M. 2008. Loveraa early (≥4.5Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268: 476–486. DOI:10.1016/j.epsl.2008.02.011
[] Huang BC, Otofuji Y, Yang ZY, et al. 2000. New Silurian and Devonian palaeomagnetic results from the Hexi Corridor terrane, Northwest China and their tectonic implications. Geophys. J. Int, 140(1): 132–146. DOI:10.1046/j.1365-246x.2000.00983.x
[] Huo FC, Pan XS, You GL, et al. 1989. Geology of Ningxia. Beijing: Science Press (in Chinese).
[] Iizuka T, Horie K, Komiya T, Maruyama S, Hirata T, Hidaka H and Windley BF. 2006. 4.2Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 34: 245–248. DOI:10.1130/G22124.1
[] Iizuka T, Komiya T, Ueno Y, Katayama I, Uehara Y, Maruyama S, Hirata, Johnson SP and Dunkley DJ. 2007. Geology and zircon geochronology of the Acasta gneiss complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Research, 153: 179–208. DOI:10.1016/j.precamres.2006.11.017
[] Jia LT, Zhu M and Zhao WJ. 2010. A new Antiarch fish from the Upper Devonian Zhongning Formation of Ningxia. China Palaeoworld, 19: 136–145. DOI:10.1016/j.palwor.2010.02.002
[] Kemp AIS, Wilde SA, Hawkesworth CJ, et al. 2010. Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters(296): 45–56.
[] Li HM, Lu SN, Zheng JK, Yu HF, Zhao FQ, Li HK and Zuo YC. 2001. Dating of 3.6Ga zircon in granite-gneiss from the eastern Altyn Mountains and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 259–262.
[] Li QH, Guo SN and Lv DH. 1999. The Deep Structure and Tectonics of the Western and Southwestern Margin of the Ordos. Beijing: Seismological Press: 20-33.
[] Liu DY, Nutman AP, Compston W, et al. 1992. Remmants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20: 339–342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[] Liu DY, Nutman AP, Williams JS, Wu JS and Shen QH. 1994. The remnants of ≥3800Ma crust in Sino-Korean Craton: The evidence from ion microprobe U-Pb dating of zircon. Acta Geoscientia Sinica(1-2): 3–13.
[] Liu DY, Wilde S.A, Wan YS, Wu JS, Zhou HY, Dong CY and Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. American Journal of Science, 308: 200–231. DOI:10.2475/03.2008.02
[] Ludwig KR. 2003. Mathematical-statistical treatment of data and errors for 230Th/U geochronology. Uranium-Series Geochemistry, 52: 631–656.
[] Lu SN and Yuan GB. 2003. Geochronology of Early Precambrian magmatic activities in Aketashitage, East Altyn Tagh. Acta Geologica Sinica, 77(1): 61–68.
[] Lu SN, Yu HF, Li HK, Chen ZH, Wang HC and Zhang CL. 2009. Precambrian Geology of the Central Orogenic Belt (Central-Western). Beijing: Geological Publishing House (in Chinese).
[] Maas R, Kinny PD, Williams IS, Froude DO and William CW. 1992. The Earth’s oldest known crust: A geochronological and geochemical study of 3900~4200Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56(3): 1281–1300. DOI:10.1016/0016-7037(92)90062-N
[] Nemchin AA, Pidgeon RT and Whitehouse MJ. 2006. Re-evaluation of the origin and evolution of >4.2Ga zircons from the Jack Hills metasedimentary rocks. Earth and Planetary Science Letters, 244: 218–233. DOI:10.1016/j.epsl.2006.01.054
[] Pan J, Huo FC, Cao JX, Gu QC, Liu SY, Wang JQ, Gao LD and Liu C. 1987. Continental Devonian System of Ningxia and Its Biotas. Beijing: Geological Publishing House (in Chinese).
[] Peck WH, Valley JW, Wilde SA and Graham CM. 2001. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta, 65: 4215–4229. DOI:10.1016/S0016-7037(01)00711-6
[] Pearce NJG, Perkins WT and Westgate JA. 1997. A com pilation of new and published major and trace element data f or NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards New Letters, 21: 115–144. DOI:10.1111/ggr.1997.21.issue-1
[] Rubatto D and Williams IS. 2000. Imageing, trace element geochemistry and mineral inclusions: Linking U-Pb ages with metamorphic conditions. EOS: 21–25.
[] Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78: 79–94. DOI:10.1016/0301-9268(95)00070-4
[] Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL and Valley JW. 2008. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth and Planetary Science Letters, 272: 666–676. DOI:10.1016/j.epsl.2008.05.032
[] Valley JW, Peck WH, King EM and Wilde SA. 2002. A cool early Earth. Geology, 30(4): 351–354. DOI:10.1130/0091-7613(2002)030<0351:ACEE>2.0.CO;2
[] Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzzo MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150: 561–580. DOI:10.1007/s00410-005-0025-8
[] Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ and Geng YS. 2005. Geochemical and Nd isotopic compositions of 3.8Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance.. Journal of Asian Earth Sciences, 24(5): 563–575. DOI:10.1016/j.jseaes.2004.02.009
[] Wan YS, Liu DY, Dong CY, Nutman A, Wilde SA, Wang W, Xie HQ, Yin XY and Zhou HY. 2009. The oldest rocks and zircon in China. Acta Petrologica Sinica, 25(8): 1793–1807.
[] Wang HL, Chen L, Sun Y, Liu XM, Xu XY, Chen JL, Zhang H and Diwu CR. 2007. Similar to 4. 1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chinese Science Bulletin, 52(21): 3002–3010.
[] Wang SQ, Yu ZZ and Wang C. 1995. Discovery of Late Devonian Sinoleperditiini (Ostracoda) in Zhongwei-Zhongning basin of Ningxia. Journal of Stratigraphy, 19(3): 204–207.
[] Wilde SA, Valley JW, Peck WH and Graham CM. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago. Nature, 409(1): 175–178.
[] Wu FY, Yang JH, Liu XM, et al. 2005. Hf isotopes of the 3.8Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473–2480. DOI:10.1360/982005-629
[] Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol., 234: 105–126. DOI:10.1016/j.chemgeo.2006.05.003
[] Wu YB, Chen DG, Xia QK, Tu XL, Cheng H and Yang XZ. 2003. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS. Science in China (Series D), 46(11): 1161–1170. DOI:10.1360/02yd0035
[] Xie LW, Zhang YB, Zhang HH, Sun JF and Wu FY. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Sci. Bull., 53: 1565–1573.
[] Yang ZY, Sun ZM, Yang TS and Pei JL. 2004. A long connection (750~380Ma) between South China and Australia: Paleomagnetic constraints. Earth and Planetary Science Letters, 220: 423–434. DOI:10.1016/S0012-821X(04)00053-6
[] Yao JL, Shu LS and Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry-New clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, 20: 553–567. DOI:10.1016/j.gr.2011.01.005
[] Yu JH, O’Reilly Y S, Wang LJ, Griffin WL, Jiang SY, Wang RC and Xu XS. 2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chinese Science Bulletin, 52(1): 13–22. DOI:10.1007/s11434-007-0008-4
[] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006a. Zircon isotope evidence for ≥3. 5Ga continentalcrust in the Yangtze craton of China. Precambrian Research, 146: 16–34.
[] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006b. Zircon U-Pb age and Hf isotope evidence for 3.8Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252: 56–71. DOI:10.1016/j.epsl.2006.09.027
[] Zhao XX, Coe R, Wu HN and Zhao ZY. 1993. Silurian and Devonian paleomagnetic poles from North China and implications for Gondwana. Earth and Planetary Science Letters, 117: 497–506. DOI:10.1016/0012-821X(93)90099-U
[] Zheng JP, Griffin WL, O’Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ and Li HM. 2004. 3.6Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 32: 229–232. DOI:10.1130/G20133.1
[] 第五春荣, 孙勇, 董增产, 王洪亮, 陈丹玲, 陈亮, 张红. 2010. 北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展. 岩石学报, 26(4): 1171–1174.
[] 多吉, 温春齐, 郭建慈, 范小平, 李小文. 2007. 西藏4.1Ga碎屑锆石年龄的发现. 科学通报, 52(1): 19–22.
[] 葛肖虹, 刘俊来. 2000. 被肢解的“西域克拉通”. 岩石学报, 16(1): 59–66.
[] 霍福臣, 潘行适, 尤国林, 等. 1989. 宁夏地质概论. 北京: 科学出版社.
[] 李惠民, 陆松年, 郑健康, 于海峰, 赵风清, 李怀坤, 左义成. 2001. 阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义. 矿物岩石地球化学通报, 20(4): 259–262.
[] 李清河, 郭守年, 吕德徽. 1999. 鄂尔多斯西缘与西南缘深部结构与构造. 北京: 地震出版社.
[] 刘敦一, NutmanAP, WilliamsJS, 伍家善, 沈其韩. 1994. 中朝克拉通老于38亿年的残余陆壳. 地球学报(1-2): 3–13.
[] 陆松年, 袁桂邦. 2003. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 77(1): 61–68.
[] 陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林. 2009. 中央造山带(中-西部)前寒武纪地质. 北京: 地质出版社.
[] 潘江, 霍福臣, 曹景轩, 顾其昌, 刘时雨, 王俊卿, 高联达, 刘椿. 1987. 宁夏陆相泥盆系及其生物群. 北京: 地质出版社.
[] 万渝生, 刘敦一, 董春艳, NutmanA, WildeSA, 王伟, 颉颃强, 殷小艳, 周红英. 2009. 中国最老岩石和锆石. 岩石学报, 25(8): 1793–1807.
[] 王洪亮, 陈亮, 孙勇, 柳小明, 徐学义, 陈隽璐, 张红, 第五春荣. 2007. 北秦岭西段奥陶纪火山岩中发现近4. 1Ga的捕虏锆石. 科学通报, 52(14): 1685–1693.
[] 王尚启, 虞子冶, 王成. 1995. 宁夏卫宁盆地晚泥盆世中华豆石介族(介形类)的发现. 地层学杂志, 19(3): 204–207.
[] 吴福元, 杨进辉, 柳小明, 等. 2005. 冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代. 科学通报, 50(18): 1996–2003.
[] 吴元保, 陈道公, 夏群科, 涂湘林, 程昊, 杨晓志. 2003. 大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年. 中国科学(D辑), 33(1): 20–28.
[] 谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53: 220–228.
[] 于津海, O’ReillyYS, 王丽娟, GriffinWL, 蒋少涌, 王汝成, 徐夕生. 2007. 华夏陆块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11–18.