岩石学报  2012, Vol. 28 Issue (2): 421-432   PDF    
富铜斑岩岩浆形成机制与演化过程
徐兴旺1, 吴琪1,2, 黄雪飞1,2, 刘杰3, 张永4     
1. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029;
2. 中国科学院研究生院,北京 100049;
3. 新疆大学地质与勘查工程学院,乌鲁木齐 830046;
4. 中国地质调查局天津地质矿产研究所,天津 300170
摘要: 斑岩铜矿在现代经济和科学中扮演了重要的角色,已成为一种最重要的铜矿床类型。自Schwartz(1947)首次使用“斑岩铜矿(porphyry copper deposit)”术语以来,地质学家对其开展了系统研究,取得一系列重要进展。本文对斑岩铜矿成矿岩浆形成机制及演化过程的研究进展进行了总结与回顾。结果显示,富铜斑岩岩浆的形成经历了在洋壳俯冲或大陆岩石圈地壳拆沉机制下形成含矿岩浆,中间岩浆房岩浆的结晶分异与成矿流体、成矿物质的富集,以及富成矿流体与成矿物质的岩浆(富矿斑岩岩浆)上侵至地壳浅部结晶固化并与围岩、地下水相互作用等过程,斑岩铜矿是该“生产线”的“终端产品”。最后,本文对斑岩铜矿形成机制待进一步研究的一些问题进行了思考与概括。
关键词: 斑岩铜矿     形成机制     富铜岩浆     岩浆演化    
Formation mechanism and evolution process of copper-rich porphyry magma
Xu XingWang1, Wu Qi1,2, Huang XueFei1,2, Liu Jie3, Zhang Yong4     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, CAS, Beijing 100029, China;
2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Geological and Exploration Engineering, Xinjiang University, Urumqi 830046, China;
4. Tianjin Institute of Geology and Mineral Resources, China Geological Survey, Tianjin 300170, China
Abstract: Porphyry copper deposits, as one of the most important copper deposits in the world, play a vital role in modern economic and science. Since Schwartz (1947) firstly defined "Porphyry copper deposit", geologists had paid great attentions on it. Proceedings on formation mechanism and evolution process of porphyry copper deposits show that formation of copper-rich porphyry magma involved a series of processes as follows: formation of ore-bearing magma related to subduction of oceanic crust or detachment of continental lithospheric crust, crystallization and fractionation of magma and enrichment of ore-forming fluids and material in median magma chamber, crystallization and solidification of ore-rich porphyry magma in shallow crust, interaction between ore-rich porphyry magma and ambient rocks. Porphyry copper deposits were final products of the "product line". Finally, some hot topics of origin of porphyry copper deposits and ore-forming magma were discussed in this contribution.
Key words: Porphyry copper deposit     Formation mechanism     Copper-rich magma     Magma evolution    
1 引言

斑岩铜矿是与具斑状结构的中酸性侵入岩伴生,蚀变与矿化受流体、构造控制且分带明显,矿石以细脉浸染状为主、低品位大储量的铜矿床(Lowell and Guilbert, 1970; Kirkham et al., 1972; Gustafson and Hunt, 1975; Cooke et al., 2004; Seedorff et al., 2005; 侯增谦等,2007)。斑岩铜矿是最重要的铜矿床类型,为世界提供了近四分之三的铜(Sillitoe, 2010)。自Schwartz(1947) 首次使用“斑岩铜矿(porphyry copper deposit)”术语、Lowell and Guilbert(1970) 对斑岩铜矿进行定义以来,地质学家从斑岩铜矿的特征、形成机制、及成矿预测与探查技术方法等三方面开展系统研究,并取得了一系列重要进展。

本文从初始含矿岩浆形成、演化的深部过程,到初始岩浆如何在中间岩浆房形成富矿岩浆与成矿流体,再到富矿岩浆与成矿流体如何在浅部侵位与成矿等几个方面,归纳总结前人的研究进展,以期对斑岩铜矿形成过程的探索起到一定的积极作用。

2 成矿斑岩地球化学特征及其岩浆形成的深部过程 2.1 成矿斑岩及其岩浆的地球化学特征

成矿斑岩为从闪长质到花岗质的中酸性岩(侯增谦,2004),典型的岩石类型有石英二长斑岩、二长花岗斑岩、花岗闪长斑岩。成矿斑岩体的出露面积通常较小,一般小于1km2(芮宗瑶等,2006汤中立等,2006)。

不同构造背景与动力学机制下的成矿斑岩与其母岩浆的地球化学特征有一定的差异。俯冲机制的弧岩浆包括钙碱性岩浆(Muller and Groves, 1993)、埃达克岩浆(Kay et al., 1995; Thie´blemont et al., 1997)与碱性岩浆(McInnes and Cameron, 1994)。岛弧环境的含矿斑岩通常是钙碱性的,而陆缘弧环境的含矿斑岩多为高钾钙碱性、部分为钾质碱性和钾玄质(Rush and Seegers, 1990Arribas et al., 1995Kerrich et al., 2000)。大陆内部非俯冲机制的含矿斑岩主体是高钾钙碱性的和钾玄质的,以高钾为其显著特征(侯增谦等,2007)。钙碱性弧岩浆岩广泛分布于岛弧区(Sillitoe, 1972),高水(高挥发分)、高硫和富集大阳离子亲石元素(高LILE: Rb、K、Cs、Ba和Sr等),富集如Li、B、Pb、As和Sb等元素,相对亏损高强场元素如Ti、Nb和Ta(曲晓明等,2001; 芮宗瑶等,2004)。成矿斑岩继承了原始岛弧岩浆岩的特征,它们相对富集轻稀土元素(20×10-6~129×10-6),亏损重稀土元素(2.72×10-6~9.91×10-6),铕负异常不明显(Cline et al., 1992)。典型钙碱性岩浆是斑岩铜矿成矿的理想岩浆,其不仅可以提供足量的金属成矿元素,还可以提供搬运成矿物质的成矿流体。

埃达克岩因一些大型斑岩铜矿含矿斑岩具埃达克质特征或为埃达克岩而被普遍关注(侯增谦,2004冷成彪等,2007Thie´blemant et al., 1997; Oyarzun et al., 2001)。Defant et al.(2002) 指出埃达克岩可以作为找矿标志来使用。张旗等(2003) 研究认为我国的斑岩铜矿大多与C型埃达克岩有关,而世界级斑岩铜矿多数与O型埃达克岩有关。我国许多学者也报道了一些与Cu-Mo-Au矿床有关的埃达克岩的地球化学特征(Wang et al., 2003; 侯增谦等,2003; Hou et al., 2004)。埃达克质岩与Cu-Mo-Au 矿床密切相关的原因,是埃达克质岩浆与正常的长英质岩浆不同,其以高水含量、高氧逸度和富硫为特征(Oyarzun et al., 2001),因而成为斑岩铜矿的重要含矿母岩和金属硫的可能载体(侯增谦,2004)。大陆环境含矿斑岩也经常具有埃达克岩亲和性(侯增谦等,2007)。拥有高场强元素(HFSE: Nb、Ta、Ti和P)亏损和大离子不相容元素(LILE: Rb、K和Ba)富集特征(曲晓明等,2001)。与岛弧环境的含矿埃达克岩相比,大陆环境的含矿埃达克岩以高钾(Na2O/K2O)<1.2)、低镁、高(87Sr/86Sr)i与低144Nd/143Nd为特征。

但是,关于埃达克岩与Cu-Mo-Au矿床成矿的关系,也存在不同的看法。例如,关于智利北部晚始新世-早渐新世超大型斑岩铜矿是否与埃达克岩有关存在不同认识。Oyarzun et al.(2001) 认为智利北部晚始新世-早渐新世超大型斑岩铜矿与成因于缓俯冲板片熔融形成的埃达克岩浆有关。Richards(2002) 不同意Oyarzun et al.(2001) 的观点,认为没有有力的现象说明该斑岩岩浆成因于板片重熔,反而大量的事实说明其成因于地壳的正常岛弧岩浆作用。Rabbia et al.(2002) 也不赞成Oyarzun et al.(2001) 的观点,主要基于:(1) 北部智利巨型斑岩铜矿及其岩浆形成于42~33Ma;(2) 低角度俯冲发生于35~27Ma,紧接着快速的转换和正常的俯冲介于38~35Ma之间;(3) Oyarzun et al.(2001) 认为低角度俯冲起因于斜向俯冲与快速汇聚,但板块运动重建结果却显示特定阶段的岩浆与成矿作用其板块的俯冲速度较低(5~6cm/year)与中等的斜度(60°),而较快速的俯冲(8~10cm/year)发生于27~28Ma之后6~7Ma,晚于最年轻的巨型斑岩铜矿;(4) Adakitic是在特定条件下形成的岩浆,不寻常的构造环境包括大角度的斜冲(几乎平行于岛弧)、快速俯冲(8~10cm/year)、板片撕裂是造成老板片熔融的原因。根据平板熔融模型,在早期岩浆阶段有大约100km宽的宽阔岛弧带形成;这与北部智利Late Eocene-Early Oligocene岩浆岩带呈窄条是有明显区别的;(5) 根据Drummond and Defant(1990) 的化学定义,与榴辉岩相矿物残余相平衡的安山岩-英安岩岩浆能被划为adakite岩浆或构造加厚的大陆地壳(Hildreth, 1981)、从弧或前弧搬运过来的地壳。同样的,智利晚第三系具埃达克特征、伴随平缓俯冲的熔岩被解释为具加厚下地壳或由于前弧构造剥蚀而导致的前弧地壳循环进入地幔。而与平缓俯冲伴生的厄瓜多尔活火山中的埃达克组分则被认为是含石榴子石基底的部分熔融形成的(Arculus et al., 1999)。而Oyarzun et al.(2002) 则进一步强调,智利北部晚始新世-早渐新世超大型斑岩铜矿成矿斑岩具典型的埃达克岩的地球化学特征,岩浆具高的含水量(>10% H2O)与高氧逸度,这需要俯冲洋壳的部分熔融;岩石具较高的εNd值与低的(87Sr/86Sr)i值,这意味着不是直接源于下地壳基底。

2.2 初始含矿岩浆中的金属来源

Sillitoe较早对板块俯冲背景下成矿金属在深部的起源进行了详细探讨,他认为斑岩铜矿的成矿金属主要来自俯冲洋壳。在洋壳俯冲过程中由于温度升高,成矿金属与挥发组分一起从洋壳中释放出来,这些金属进入由地幔楔熔融所产生的岩浆,并与岩浆一起到达地壳浅部(Sillitoe, 1972)。由于俯冲板片在平缓俯冲情况下直接部分熔融产生的幔源O型埃达克质岩浆具有高水含量、高氧逸度和富硫的特征,可能为金属硫的载体,暗示成矿物质来源于俯冲板片。地幔作为Cu和Au的直接来源越来越受到重视。Sillitoe指出,俯冲洋壳所释放出的流体或熔融所产生的岩浆富含Fe3+,当这些流体或岩浆与上地幔发生相互作用时,Fe3+会氧化地幔中富含Cu和Au的硫化物,硫化物分解后,Cu和Au会被释放出来进入岩浆并与岩浆一起到达地壳浅部(Sillitoe, 1997)。在岩浆弧环境,含矿斑岩无论是直接来源于幔源MORB质洋壳物质熔融,还是来源于经历流体交代的楔形地幔,岩石圈地幔都直接向岩浆系统提供了大量成矿金属元素。然而,对于大陆环境,侯增谦等(2007) 认为直接起源于古老下地壳物质的长英质岩浆是不能成矿的,而成矿者,主要通过了下述3种方式从地幔物质中吸纳或萃取了大量成矿金属元素:(1) 幔源岩浆的底侵成壳。新生的下地壳部分熔融是幔源物质间接贡献于含矿岩浆系统的重要途径。在陆内碰撞环境下,来自幔源的玄武质岩浆在地壳底部大规模底侵,甚至与地壳物质相互作用,经固结形成新生的下地壳;(2) 软流圈物质对古老地壳的渗透交代。从大规模上升和热侵蚀的软流圈中分凝出的小批量岩浆熔体,向下地壳底部渗透和注入,将交代或混染古老下地壳,可能形成斑杂状的、含大量新生幔源组分的下地壳(如德兴斑岩铜矿田),这些小批量的岩浆熔体经部分熔融也可以产生具有成矿潜在性的高Mg#值的埃达克质熔浆;(3) 初生熔浆与地幔岩反应。初生的埃达克质熔体与地幔橄榄岩的相互作用,可能是埃达克质熔体获取金属和硫的重要途径。Mathur et al.(2000) 用Re-Os同位素来研究智利地区巨型斑岩铜矿的年龄与成矿物质来源,结果表明矿床铜的总含量与Os初始比值有很好的对应关系,巨型矿床较小型矿床具低的Os初始比值:这意味着巨型斑岩铜矿其硫化物具较低的Os初始比值与较多的源于地幔的物质组分,而金属量相对低的矿床其Os初始比值相对较大、意味着较多的地壳物质的加入。Mungall(2002) 认为,洋壳沉积物与海水相互作用及热水蚀变过程会获得较高的氧逸度,源于板片的熔体与流体将携带具有氧化潜力的元素到上覆地幔中(McInnes and Cameron, 1994)。具有氧化效应的元素是C, H, S和Fe,氧化作用的结果是使橄榄石分解、并使其中的亲铜元素Cu与Au释放到岩浆中。Core et al.(2006) 基于美国犹他州Bingham地区巨型斑岩铜矿Last Chance岩体中发现了富黄铜矿与斑铜矿的基性岩包体,及该岩体与成矿斑岩具同源的特征,认为Bingham巨型斑岩铜矿形成于含硫化物堆积的下地壳侵入体与含铜矿床的深埋变质地体部分熔融形成的异常富铜岩浆。

2.3 含矿岩浆形成的大地构造背景与深部作用

大地构造背景与演化对含矿岩浆的形成有明显制约作用。自Sillitoe(1972) 采用板块俯冲模式来说明板块运动与岛弧岩浆及斑岩铜矿床形成关系以来,研究者们对岛弧岩浆的形成机制与影响制约因素已形成一些共识:

(1) 岛弧岩浆形成过程:由大洋板块沿毕尼奥夫俯冲带到达深部后,发生脱水,使上地幔发生交代,产生含水的地幔部分熔融岩浆,此时的温度大约为1000℃。由于大陆板块的覆盖,即存在玄武岩底垫,温度陡然增高至1400℃,即在壳幔交界面上形成地幔流。当地幔流透过过渡大陆地幔岩石圈即玄武岩底垫时,则在Mash带形成相当规模的初始岛弧岩浆(Tatsumi, 1986Peacock, 1993Richards, 2003),即初始含矿岩浆。

(2) 压性弧有利于斑岩铜矿的形成(Sillitoe, 1980Uyeda and Nishiwaki, 1980Richards, 2003)。Sillitoe(1997) 识别出挤压环境对形成斑岩铜矿5种有利因素:阻止岩浆上升通过上地壳、即抑制火山作用;相对于张性弧,在挤压环境可形成较大的岩浆房;利于岩浆的充分分异、气相的饱和、形成大量的岩浆热液流体;限制一些可能形成于岩浆房顶部的小岩体的形成,使更多的有效流体集中于单个的岩体中;快速的隆升与剥蚀,促进由瞬间减压而引起的岩浆热液流体的有效萃取与搬运(Masterman et al., 2005)。Sillitoe(1997) 注意到与挤压构造背景伴生的地壳隆升和许多巨型斑岩铜矿系统的形成是同时的,而在张性构造背景下则形成一些小的斑岩铜钼矿。

(3) 俯冲板块的运动与变形对弧岩浆与斑岩铜矿的形成有一定的制约作用。Mitchell(1973) 较早的提出大洋板块俯冲的角度对斑岩铜矿的形成存在明显制约。环太平洋一些巨型斑岩与浅成低温矿床的形成与低角度(平板片)俯冲具一定的伴生关系(Kerrich et al., 2000)。Vos et al.(2007) 认为板片断裂是包括斑岩铜矿在内的主要矿床的关键控制因素,俯冲锁死之后的板片断裂将引起软流圈地幔上涌、进而提供瞬间的热支持。侯增谦(2004) 认为通过板片断裂窗上涌的软流圈诱发了富集地幔的部分熔融,导致了钾质超钾质火山喷发,而钾质超钾质岩浆作为一种新生组分注入下地壳底部,一方面引起加厚的下地壳部分熔融,形成埃达克质含矿岩浆,另一方面,为含矿岩浆贡献部分成矿金属组分。

(4) 斑岩矿床形成于一系列短的、不连续阶段,并可能对应于岩石圈板块运动时间与速率的变化阶段(Sillitoe, 1972)。Mungall(2002) 认为正常俯冲过程并不利于形成大型金铜矿床。Sillitoe(1997) Kerrich et al.(2000) 认为板块俯冲角度、俯冲速度与构造机制的变化与转变是斑岩矿床形成的扳机。被识别的有利成矿的构造扳机包括:俯冲角度由陡变缓(Cooke et al., 2004)、平缓俯冲的启动或停止、俯冲带极性的反转、碰撞引发的俯冲的停止(McInnes and Cameron, 1994Sillitoe, 1997)、古俯冲带的复活与变形(徐兴旺等,2006Xu et al., 2009)。

近年来,侯增谦等(20032007)、侯增谦(2004) 基于青藏高原欧亚大陆碰撞过程形成的斑岩铜矿,提出“非弧”-大陆环境斑岩铜矿的概念,并对其特征进行系统总结,强调下地壳与岩石圈地幔的拆沉与部分熔融、及软流圈上涌对斑岩铜矿初始岩浆形成的贡献。由此可见,斑岩铜矿及其母岩浆可以形成于板块汇聚边缘的岛弧环境,也可形成于大陆内部非弧构造背景。不同构造背景与动力学机制下的含矿岩浆其地球化学特征有一定的差异。

3 岩浆演化与富矿岩浆、成矿流体的形成机制

深部过程形成了含矿岩浆,而成矿岩浆与富矿岩浆及成矿流体的形成与岩浆演化有关。

3.1 成矿流体特征与性质

斑岩铜矿成矿流体为富含金属元素(Cu、Au、Mo等)、卤素、硫化物和气相的热水溶液(Hedenquist and Lowenstern, 1994; Seedorff et al., 2005)。关于成矿流体的性质,较早的研究者(如Emmons, 1933Lindgren, 1937; Neumann, 1948Field, 1966Burnham, 1967; Jensen, 1967Fournier, 1967Nielsen, 1968; Rose, 1970; Lowell and Guilbert, 1970)基于铜矿体与斑岩体间紧密的时空联系、对称的蚀变与矿化分带、与陨石硫相似或一致的硫同位素组成等特征认为斑岩铜矿成矿物质与成矿流体是从斑岩体迁移出来的。20世纪60年代随着氢氧同位素与流体包裹体研究的开展及其在斑岩铜矿研究中的应用,一些研究人员(如:Hemley and Jones, 1964White, 1968Sheppardr et al., 19691971)指出在斑岩铜矿成矿-蚀变系统中有雨水的加入,并提出雨水-岩浆水混合对流并从围岩萃取成矿物质的成矿模型(White, 1968Sheppardr et al., 19691971)。但大气降水萃取围岩金属元素的理论与许多斑岩矿床钾化带的氧同位素组成不符(Candela and Holland, 1986)。另外,按照围岩萃取理论,我们可以期望在矿床的外带出现一个金属成矿物质的耗竭带,而事实上斑岩铜矿床周边并不存在这样的耗竭带。Hendry et al.(1981) 曾示范地研究了环状岩体的成矿,即外侧岩体并没有因内侧岩体为成矿岩体而铜含量低。越来越多的证据显示斑岩铜矿成矿流体主体为岩浆流体、成矿物质源于岩浆流体(Burnham, 1967Burnham, 1979Candela, 1989Hedenquist and Lowenstern, 1994Lowenstern and Sinclair, 1996Hedenquist et al., 1998Audétat et al., 2000Cloos, 2002Holliday et al., 2002Harris et al., 2003Redmond et al., 2004Candela and Piccoli, 2005Core et al., 2006)。例如,Ulrich et al.(1999) 发现两个世界最大斑岩铜金矿床石英流体包裹体中初始高温卤水中Au/Cu比值与矿床Au/Cu比值平均值一致,矿床金属量受控于源于岩浆分异的流体的成分组成,即成矿物质源于岩浆。

岩浆中的含水量可以通过含水矿物角闪石来估算,角闪石的出现反映了熔体中最低的水富集。一旦其中的水低于某一氧逸度,角闪石将脱水(Rutherford, 1993)。随着长石与石英的结晶,水作为不相容组分在熔体中不断增加(Candela and Holland, 1986)。Lowenstern(1994) 通过红外波谱的方法分析犹他州Pine Grove地区22Ma的火山凝灰岩石英斑晶玻璃包体中水与CO2的含量时发现,被捕获的硅酸盐熔体中含水量高达6%~8%。

3.2 成矿流体与斑岩岩浆的关系

关于成矿流体与斑岩和岩浆房岩浆的关系有两种不同认识。大量研究人员(如Emmons, 1933; Neumann, 1948Field, 1966Burnham, 1967; Lowell and Guilbert, 1970Hedenquist and Lowenstern, 1994Guillou-Frottier and Burov, 2003Heinrich et al., 2004)认为成矿流体是从斑岩岩浆中分离出来的,斑岩与矿化蚀变体是富矿斑岩岩浆结晶固化过程形成的“双胞胎”(Xu et al., 2009),斑岩含矿与成矿特征取决于斑岩岩浆的含矿性。同时,另一部分学者(如Henley and McNabb, 1978Shinohara et al., 1995Richards, 2003)认为成矿流体是直接从深部岩浆房分异出来并独立上移的,斑岩仅是含矿围岩。第二种认识不能很好的解释一些斑岩铜矿的矿化与蚀变分带以岩体中心呈对称状分布现象,不能解释同一矿区时代相同或相近、成分一致的不同斑岩成矿的显著差异;且从理论上讲,斑岩成岩后的矿化蚀变更易沿接触带发展、更易沿断裂破碎带扩展。相对而言,第一种认识较合理一些。

近年来,我们在东准噶尔琼河坝地区发现有些斑岩铜矿具岩浆结晶成矿特征。例如和尔赛斑岩铜矿区发现富黄铜矿钠长斑岩脉侵位于钾长花岗岩中,矿化仅发育于钠长斑岩中、围岩钾长花岗岩无矿化(图 1a),矿石的结构以浸染状矿化为特征(图 1b),硫化物结晶温度大于600℃(Xu et al., 2012a)。和尔赛斑岩铜矿区钠长斑岩中还发现不规则球状富富硫化物与黑云母-角闪石-绿泥石暗色矿物的囊体(图 2),球粒与围岩钠长斑岩界限截然,球粒中含有与围岩钠长斑岩成份相似的钠长石斑晶,这些暗色球粒可能为斑岩结晶过程中形成的富水、铜与铁质岩浆-流体的结晶体。即斑岩岩浆结晶过程中可形成富水、铜与铁质的岩浆体。这说明富铜斑岩岩浆的存在。

图 1 东准噶尔和尔赛斑岩铜矿区富硫化物钠长斑岩岩芯照片 (a)-富硫化物钠长斑岩(SRAP)脉体侵位于无矿化的钾长花岗岩(KG)中,晚期方解石脉(CV)在钠长斑岩于钾长花岗岩中都有发育;(b)-钠长斑岩中硫化物与成矿矿物集合体(OMA)浸染状分布于钠长石斑晶之间 Fig. 1 Photographs of rock core of sulfide-rich albite porphyry intruded in K-feldspar granite in the Hersai porphyry copper deposit, East Junggar (a)-sulfide-rich albite porphyry(SRAP)emplaced in barren K-feldspar granite(KG), late calcite vein(CV)occurred in the sulfide-rich albite porphyry and K-feldspar granite;(b)-porphyritic texture and disseminated distribution of OMAs

图 2 东准噶尔和尔赛斑岩铜矿区钠长斑岩中富铜斑岩球粒 Fig. 2 Copper and hydrous mineral rich porphyritic pockets in an albite porphyry intrusion in the Hersai porphyry copper deposit, East Junggar
3.3 富矿岩浆形成机制

无论是岛弧俯冲机制还是大陆内部背景形成的岩浆(Sillitoe, 1972Tatsumi, 1986Peacock, 1993Arculus et al., 1999Richards, 2003侯增谦等,2007);也无论钙碱性岩浆(Sillitoe, 1972Muller and Groves, 1993)与碱性岩浆(McInnes and Cameron, 1994)还是埃达克岩浆(Defant and Drummon, 1990Kay et al., 1995; Thie´blemont et al., 1997; Oyarzun et al., 2001侯增谦,2004),深部俯冲带、岩石圈地幔与下地壳所形成的岩浆为含矿岩浆,都还不是形成经济矿床的成矿岩浆(芮宗瑶等,2006)。同一地区或同一矿区,时代一致或相近、成分一致或相近的斑岩体成矿特征可以明显不同,这也说明成矿岩浆不是源区直接形成的(侯增谦等,20032007侯增谦,2004芮宗瑶等,2006)。因此,形成一个富成矿流体与金属物质的斑岩岩浆(富矿岩浆)是成矿的关键。

物质平衡约束计算表明,大型-超大型斑岩铜矿需要一个大体积的岩浆来支撑。例如,针对阿根廷Alumbrera Cu-Au-Mo矿床(铜金属量约为4Mt)物质平衡计算结果显示,要形成矿床所必须的铜金金属元素,在成矿斑岩之下需要一个体积至少100km3的岩浆房(Ulrich et al., 1999)。对于Mo含量为2×10-6的初始岩浆,结晶过程中50%的Mo进入流体,那体积为370km3的岩浆可形成一个百万吨的钼矿(Candela and Holland, 1986)。然而,大部分成矿斑岩的出露面积都较小(Kerrich et al., 2000),如我国德兴、土屋、驱龙与金堆城等大型斑岩铜矿其成矿岩体出露面积均小于1km2(芮宗瑶等,2006汤中立等,2006)。这需要大体积岩浆中的成矿物质向小体积岩浆体中富集。富含成矿物质与成矿流体的富矿岩浆的形成可能与岩浆的结晶和分异有关。安山质岩浆结晶分异可形成富矿的、富挥发份的碱性斑岩岩浆(Richards, 2003)。岩浆房含矿岩浆中的成矿流体可在重力作用下往岩浆体上部或顶部集中而形成富成矿流体的岩浆。岩浆房中硅酸盐矿物的不断结晶析出的结果是残余岩浆中不断富集成矿流体与成矿物质。

3.4 岩浆中金属元素的富集机理

岩浆中金属元素的富集与岩浆中卤素、气相与硫化物的富集及金属元素在卤水、气相、硫化物、硅酸盐熔体、硅酸盐矿物间的分配特征有关。

3.4.1 金属元素在矿物相间的分配

铜与金在硫化物结晶体与硅酸盐熔体间的分配系数非常高(Rajamani and Naldrett, 1978),如铜在磁黄铁矿和中酸性硅酸盐熔体之间的分配系数大于550(Lynton et al., 1993)。铜与金强烈的被分配进入岩浆硫化物、向硫化物相富集,熔体中硫化物液体的结晶或出溶可造成长英质熔体中铜的耗竭(Ewarte et al., 1973Carroll and Rutherford, 1985)。此外,铜与金在磁黄铁矿-固溶体-花岗质熔体间分配行为的实验结果显示铜将强烈的分配进入磁黄铁矿、金强烈进入中间固溶体,即熔体中磁黄铁矿的结晶将使熔体中铜耗竭(或萃取完全),ISS的结晶将导致熔体中金的耗竭(Jugo et al., 1999)。Cygan and Candela(1995) 研究发现金在固溶体中的溶解度高出其在磁黄铁矿、黄铁矿与磁铁矿中3个数量级,磁铁矿对于熔体中Cu与Au萃取效率没有磁黄铁矿与固溶体高。

Cu-Fe-S 系统的实验(Yund and Kullerud, 1966; Barton and Hanson, 1989)结果显示铜在磁黄铁矿与流纹质熔体间的分配将导致可观的铜从熔体中移走。铜铁硫化物较磁黄铁矿富集更多的Au, Zn与Ag(Stimac and Hickmott, 1995)。Cu-Fe-S-Au 系统实验结果还显示在斑岩铜矿中可含金1000×10-6,斑铜矿与黄铜矿在600~700℃时达到饱和,而金仅在200~300℃时达到饱和(Kesler et al., 2002)。这意味着,金在高温阶段将最大程度地被固定在Cu-Fe硫化物中。

3.4.2 成矿金属在岩浆中的赋存与富集机制及影响因素

铜在岩浆结晶过程为相容元素(Candela and Holland, 1986),Mo、水、气体(CO2与CH4等)与硫化物液体是不相容元素(Burnham and Ohmoto, 1980)。岩浆的分异结晶可使残余岩浆中富集不相容元素Mo、水与硫化物液体(Westra and Keith, 1981)。岩浆相中接收铜的有硫化物(Rajamani and Naldrett, 1978; Burnham, 1979),黑云母(Hendry et al., 1981),及含Cl的水与气体(Candela and Holland, 1984)。

金属元素(特别是铜)通过优先分配进入岩浆中卤水、气体与硫化物液体中而富集(Candela and Holland, 1984Williams et al., 1995Keith et al., 1997Pokrovski et al., 2005)。岩浆卤水中的金和铜主要以氯合物的形式富集与运移(Hayashi and Ohmoto, 1991),铜在高温(350 to >700℃)与相对氧化(fO2-NNO to HM缓冲器)的卤水中可以水氯复合体形式迁移(Burnham and Ohmoto, 1980; Williams et al., 1995),Au也可以HS络和物的形式迁移。高浓度的氯有利于铜的富集与迁移。Hemley et al.(1992) 的实验结果显示金属元素Fe, Pb, Zn与Cu在氯溶液中的溶解度随温度与Cl总量的增加而增加。如果岩浆的Cl/H2O比值从0.03提高到0.1,则其成矿能力提高5倍多。

3.4.3 金属在成矿流体中富集的影响因素

Burnham and Ohmoto(1980) 认为岩浆的氧逸度将影响花岗岩伴生矿床的类型,铜和钼与氧化的花岗岩伴生,锡与钨矿床与更还原的花岗岩伴生。对于元素铜(Lynton et al., 1993)、金(Jugo, 1997)、钼与钨、锡,只有锡与钨在熔体中的分配不随氧逸度的增加而增加。Candela(1989) 指出岩浆的高氧逸度与氧化状态不利于磁黄铁矿的形成与结晶,其中的硫主要呈S4+,当硫达到饱和后不会形成硫化物而是形成硬石膏,结果是铜仍然留在岩浆中。Keith et al.(1997) 提出岩浆硫化物只能在最弱氧化环境和最弱去气的熔岩与玻基斑岩中保存,氧化熔蚀(S去气作用)可增加岩浆成矿流体中的金属含量。

斑岩铜矿中Mo/Cu比值与水相从岩浆中出来的深度有关。斑岩钼矿形成于较斑岩铜矿深一些地方。Berzina and Sotnikov(1977) 认为斑岩钼矿较斑岩铜矿形成于较高的压力环境。另外,沸腾是斑岩铜矿非常普遍的现象,而在斑岩钼矿中却少见(Westra and Keith, 1981)。这是因为形成斑岩铜矿的压力较低而足以使其沸腾。斑岩型钼矿相对于斑岩型铜具更不富F的特征(Westra and Keith, 1981)。不同深度与压力条件下,岩浆中水的饱和状态不同,都会影响斑岩铜矿的形成。

4 成矿斑岩结构特征与形成机制 4.1 成矿斑岩结构特征

斑岩为具斑状结构的浅成-超浅成相侵入体。岩石由粒度较大的斑晶和细晶质-隐晶质的基质组成。岩石结构为典型的斑状结构,说明斑岩岩浆在侵位前曾经在中间岩浆房停留过一次或多次,每次停留期间都会析出斑晶,随后继续上侵,凝结结晶为基质(Xu et al., 2009)。斑晶为显晶质结构,大小不等,个别在富含挥发份条件下可以达到1~4cm。部分斑晶粒内破裂构造与联晶构造发育。基质通常为隐晶质,有时为细晶质。

4.2 成矿斑岩岩浆侵位机制

Emmons(1933) 提出斑岩形成的“炮塔”(Cupola)模型以来,斑岩被认为是岩基上凸的部分(Lowell and Guilbert, 1970Sillitoe, 1972; Whitney, 1975Cloos, 2001),又被称为“顶峰型”(Climax-type)侵入体(Shinohara et al., 1995)或“指状挤出体”(Guillou-Frottier and Burov, 2003)。但是,“炮塔”(Cupola)模型不能很好地解释斑岩由斑晶与基质组成的斑状结构(Cox et al., 1979; Hyndman, 1985; Best and Christiansen, 2001)。斑岩的形成经历了两个阶段的结晶作用:第一阶段在深部岩浆房,高温环境下的缓慢的结晶作用形成粗粒的斑晶,第二阶段,部分结晶的岩体被快速抬升至浅部,并在快速冷却在低温环境下快速结晶形成细粒的基质。为此,Richards(2003) 认为斑岩岩浆是从岩浆房中分异并上侵的岩浆。近来,Xu et al.(2009) 在滇西碱性斑岩中发现发育破裂构造、堆积成因的联晶(图 3),指出斑岩中斑晶形成于中间岩浆房、斑岩为中间岩浆房中结晶分异岩浆的残余岩浆再侵位的产物。我们认为,岩浆的结晶分异可导致金属物质在残余岩浆中的富集。大体积岩浆可通过在中间岩浆房分异与结晶、硅酸盐矿物不断结晶与离开岩浆、金属元素(铜、金与钼等)则可分配进入富氯与硫酸盐的水或硫化物液体中而富集于残余岩浆中,进而形成小体积富矿岩浆。这可能是斑岩铜矿成矿物质聚集的重要机制,可能是小岩体成大矿的根本原因。成矿斑岩岩浆通过注入破裂形成岩墙,并在压力梯度作用下沿破裂往上运移。这种破裂可以是先存的破裂、同生的断层和剪切带(如,Hutton et al., 1990; Morand, 1992; Neves et al., 1996; Brown and Solar, 1998Xu et al., 2009),也可以是岩浆自己创造的破裂(Spence et al., 1987; Lister and Kerr, 1991; Nakashima, 1995)。

图 3 滇西战河长石斑岩中碎裂更长石连晶内的堆晶构造 Fig. 3 Polarized microscopic images of fractured accumulated phenocrysts from a feldspar porphyry in the Chanho area, western Yunnan
5 侵位于上地壳的成矿岩浆的成矿及其与围岩和地下水的相互作用

富含成矿流体的岩浆侵位于上地壳浅部、与围岩-地下水相互作用、并最终形成产品(矿床)是斑岩铜矿非常关键的过程。在这一过程中可能发生的地质作用包括:(1) 由于温度与压力的降低,岩浆快速结晶形成细晶-隐晶质基质,同时岩浆中的成矿流体饱和并出溶;(2) 岩浆和成矿流体与先结晶固化的斑岩体和围岩-地下水发生相互作用,形成矿体、矿化蚀变带。

侵位于上地壳浅部的含矿岩浆能否形成有工业价值的矿床及其品质还受诸多因素的影响:

(1) 矿化特征在一定程度上受控于斑岩体侵位的围岩岩相环境。当斑岩体侵位于火成岩区或砂板岩系,其矿化类型相对单一,主要为Cu、Cu-Mo和Cu-Au矿化,主矿体主要容存于斑岩体及其与围岩的接触带中。当斑岩体侵位于碳酸岩区时,碳酸岩常常发生矽卡岩化和大理岩化。伴随着矽卡岩化作用,常发生强烈的铅锌铜多金属矿化,黄铜矿、闪锌矿、方铅矿、黄铁矿等金属硫化物在退化蚀变阶段大量堆积,形成矽卡岩容矿的多金属矿体(侯增谦. 2004)。

(2) 斑岩岩浆就位时所处位置的构造应力特征。张应力环境不利于成矿流体与围岩的相互作用,也不利于成矿物质的聚集与沉淀,成矿流体可能很快析出并往上运移。一种极端的情况是成矿流体随岩浆喷出,如1991年菲律宾Pinatubo火山喷发出大量的SO2,火山喷发不利于斑岩铜矿的形成。区域构造应力场可影响与控制矿床中矿化脉体的产状。

(3) 流体的冷却可能是K硅酸盐蚀变带盐水中金、铜沉淀与成矿的原因(Redmond et al., 2004)。Redmond et al.(2004) 通过对Bingham斑岩铜矿石英脉中流体包裹体的研究,认为铜铁硫化物沉淀于温度低于400℃时。

(4) 成矿流体与其周边的地下水发生相互作用,形成泥化蚀变及其上部浅成低温矿床的蚀变(Sheppardr et al., 1971; Taylor, 1974; Henley and McNabb, 1978)。岩浆流体与地下水的混合形成绢英岩化蚀变,改造早期的矿化(Taylor, 1974)。

6 富铜斑岩岩浆与斑岩铜矿形成机制

富铜与成矿流体的斑岩岩浆的形成是斑岩铜矿形成过程的重要与关键环节。斑岩铜矿是岩浆演化-结晶与再搬运的产物,其形成可划分为3个阶段(图 4)。

图 4 富铜斑岩岩浆与斑岩铜矿形成模型 Fig. 4 Formation model of copper-rich porphyry magma and porphyry copper deposit
6.1 含矿岩浆形成阶段

板块俯冲与岩石圈拆沉等不同大地构造背景下形成的、位于壳幔边界的源区岩浆为含矿初始岩浆。源区岩浆房可能会出现气相流体的过饱和与析出。若该地区地壳整体表现出弹性特征,如东非(Zhao et al., 1997; De´verche´re et al., 2001; Albaric et al., 2009)、印度地盾(Priestley et al., 2008)和西伯利亚贝加尔湖(De´verche´re et al., 2001)等地区,可发育贯穿整个地壳的破裂与断裂(Maggi et al., 2000Jackson, 2002)。在这种构造背景,这些气相流体可沿破裂快速上升到地壳浅部与地表、发生冷却而形成液相流体。液相流体与围岩相互作用过程,成矿流体所携带的金属物质发生沉淀而成矿,形成浅成低温蚀变矿化(图 4a)。随后沿断裂上升侵位于地壳浅部的岩浆可形成细晶-隐晶质浅成岩或喷出地表形成火山岩(图 4a)。这种构造背景不利于斑岩与斑岩铜矿的形成。

6.2 富铜岩浆形成阶段

对于具有果酱三明治结构(jelly sandwich mode)(Chen and Molnar, 1983)的岩石圈,下地壳中的塑性层不利于破裂与断裂的形成与扩展。其结果是从源区岩浆房往上繁殖的岩墙与搬运的岩浆被截阻而形成中间岩浆房(Gudmundsson, 1990)(图 4b)。被搬运到中下地壳中间岩浆房的岩浆因压力降低,会导致部分气相的过饱和而发生二次出溶,从而在岩浆房顶部形成囊状气相体。当气相囊体中压力大于围岩的抗张强度时,岩石失稳与破裂(Shames and Pitarresi, 2000),气相流体在压力梯度的驱动下往上运移(Fyfe et al., 1978; Etheridge et al., 1984; Brown and Solar, 1998; Watanabe et al., 2002)。同样的,这些气相流体可运移到地壳浅部与地表、发生冷却而形成液相流体,并与围岩相互作用、金属物质发生沉淀而成矿(图 4c)。

岩浆房减压,岩浆开始结晶与分异。岩浆中硅酸盐矿物发生堆晶分异,成矿流体与金属物质在残余岩浆中富集,形成富成矿流体与硫化物熔体的残余岩浆。当中间岩浆房部分结晶的岩浆被岩墙与源区岩浆相连,残余岩浆不仅获得物质的补给、同时还获得压力的补给,其结果是被圈闭的残余岩浆压力增大。当残余岩浆中的压力大于围岩强度时,新的破裂与岩墙形成,含斑晶矿物的富矿岩浆往上搬运形成富矿斑岩岩浆(图 4e)。当这种机制发生在岩浆结晶初始阶段,岩浆中成矿物质与成矿流体富集程度不高时,上侵与形成的斑岩岩浆可为无矿或矿化较弱的斑岩岩浆(图 4d)。

6.3 富铜斑岩岩浆的结晶与斑岩铜矿形成

岩浆自创破裂与运移驱动力的消失将导致斑岩岩浆侵位于地壳浅部形成一些小的岩浆房。此时从岩浆中出溶的热液流体将对围岩发生蚀变,形成蚀变岩。富矿斑岩岩浆的结晶作用将使成矿流体与硫化物熔体进一步向岩体中间的残余岩浆中聚集。在岩浆结晶与蚀变过程,流固转化所引起的体积增大可导致残余岩浆压力的增加(Xu et al., 2012b)。当残余岩浆中的压力大于围岩强度时,新的破裂形成,成矿流体注入先结晶的斑岩与围岩形成脉状矿化。岩体中心没有往外迁移的流体可对其围岩发生面状蚀变形成浸染状矿化(图 4f)。当富矿残余岩浆被圈闭而直接结晶成矿,则可形成具岩浆结构的岩浆型斑岩铜矿。

最终的结果是壳幔边界的源区岩浆被往上搬运,构成地球内部物质循环的一个环节。中间岩浆房岩浆结晶形成深成岩,地壳浅部岩浆房岩浆结晶形成斑岩与斑岩矿床。期间,一些岩浆可被搬运到地表形成火山与火山岩。因此,斑岩与斑岩铜矿是地球内部物质循环与岩浆搬运过程的一个节点与片段。

7 尚待进一步研究与查明的科学问题

经过半个多世纪的研究,人们对其特征与形成机制有了较深入的了解,但仍有许多问题还待研究与探讨。这些问题的解决也将丰富地壳演化与岩浆动力学的研究。可以概括为以下几个方面:

(1) 成矿流体的组成。目前,成矿流体的组成主要依据流体包裹体的分析结果。一般认为斑岩铜矿中的硫化物是从热水溶液中沉淀结晶的(Seedorff et al., 2005)。然而深入的思考会发现此结论有值得进一步推敲的地方。若按流体包裹体分析结果估算:成矿流体中NaCl+KCl平均含量为10%,而Cu的平均含量为0.1%,那么形成一百万吨的铜将有一亿吨的盐矿伴生,然而并没有发现哪个大型-超大型铜矿有大型-超大型盐矿伴生。因此,斑岩铜矿成矿流体组成仍是一个需进一步研究的基本问题。

(2) 成矿流体的富集与迁移机制。大体积岩浆中的成矿物质是如何聚集到小体积成矿斑岩中的?是通过结晶分异形成小体积富矿斑岩岩浆的,还是先形成独立的成矿流体,而后上升富集于斑岩中而成矿的?这两种机制下形成的斑岩铜矿有何区别?为什么有的斑岩铜矿系统会产生很大的岩浆-热液角砾岩,而有的斑岩铜矿系统只有很少的角砾或根本没有。

(3) 关于岩浆型斑岩铜矿。我们在东准噶尔琼河坝地区发现有些斑岩铜矿具有岩浆结构,可能为岩浆型铜矿。这意味着中酸性岩浆与基性-超基性岩浆一样,通过结晶分异可在岩浆晚期阶段形成岩浆型铜矿床。但其特征与形成机理待进一步研究。

(4) 控制斑岩铜矿床中整体Cu/Au/Mo比例的机制到底是什么。

(5) 成矿斑岩岩浆的侵位动力学机理。已有的研究结果显示斑岩岩浆为在中间岩浆房部分结晶的岩浆,那么在岩浆房中停歇与结晶的岩浆是如何再往上运移侵位的?岩浆迁移过程中的破裂构造是如何形成的?

(6) 大地构造对斑岩铜矿的制约作用。如年轻的弧片段与斑岩铜矿系统到底相关与否,其最基本的地幔/地壳证据又在哪?穿弧线性构造对斑岩铜矿的定位是否真有影响(Sillitoe, 2010)。又如斑岩铜矿的成矿时代以新生代居多。是因为古生代、中生代形成的斑岩铜矿少,还是后来被剥蚀了?

8 结语

斑岩铜矿是与具斑状结构的中酸性侵入岩伴生、蚀变与矿化受流体构造控制且分带明显,矿石以细脉浸染状为主、低品位大储量的铜矿床。洋壳俯冲或岩石圈拆沉在深部形成含矿岩浆,初始含矿岩浆在中间岩浆房结晶分异形成了成矿物质和成矿流体,它们不断聚集形成了富矿岩浆,而后侵位于地壳浅部并与围岩、地下水相互作用,硫化物在岩浆或流体中沉淀结晶,从而形成了斑岩铜矿,即斑岩铜矿是该“生产线”的终端产品。斑岩铜矿的成矿岩浆不是源区直接形成的,因而形成一个富成矿流体与金属物质的斑岩岩浆(富矿岩浆)是成矿的关键。而富矿岩浆的形成可能与岩浆的结晶分异有关:岩浆房中硅酸盐矿物的结晶析出,使残余岩浆不断富集成矿流体与成矿物质,而这些成矿流体可在重力作用下往岩浆体上部或顶部集中,从而形成富矿岩浆。

致谢 承蒙刘建明、刘红涛和俞良军老师审阅本文,并提出建设性的修改意见。在此,向他们表示衷心地感谢。
参考文献
[] Albaric J, Déverchère J, Petit C, Perrot J and Le Gall B. 2009. Crustal rheology and depth distribution of earthquakes: Insights from the central and southern East African Rift System. Tectonophysics , 468 :28–41. DOI:10.1016/j.tecto.2008.05.021
[] Arculus RJ, Lapierrre H and Jaillard E. 1999. Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology , 27 :547–550. DOI:10.1130/0091-7613(1999)027<0547:GWISAA>2.3.CO;2
[] Arribas A, Hedenquist JW, Itaya T, Okada T, Concepción RA and Garcia JS. 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300ka in northern Luzon, Philippines. Geology , 23 :337–340. DOI:10.1130/0091-7613(1995)023<0337:CFOAPA>2.3.CO;2
[] Audétat A, Günther D and Heinrich CA. 2000. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta , 64 :3373–3393. DOI:10.1016/S0016-7037(00)00428-2
[] Barton MD and Hanson RB. 1989. Magmatism and the development of low-pressure metamorphic belts: Implications from the western United States and thermal modeling. Geological Society of America Bulletin , 101 :1051–1065. DOI:10.1130/0016-7606(1989)101<1051:MATDOL>2.3.CO;2
[] Berzina AP and Sotnikov VI. 1977. Physicochemical conditions of endogene processes in copper-molybdenum deposits in central Asia. Economic Geology , 77 :25–36.
[] Best MG and Christiansen EH. 2001. Igneous Petrology. Blackwell Science :1–458.
[] Brown M and Solar GS. 1998. Shear zones and melts: Positive feedback in orogenic belts. Journal of Structural Geology , 20 :211–227. DOI:10.1016/S0191-8141(97)00068-0
[] Burnham CW. 1967. Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston Inc., 34-76
[] Burnham CW. 1979. Magma and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. New York: Wiley Interscience, 71-136
[] Burnham CW and Ohmoto H. 1980. Late-state processes of felsic magmatism. Mining Geology Special Issue , 8 :1–11.
[] Candela PA and Holland HD. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta , 48 :373–380. DOI:10.1016/0016-7037(84)90257-6
[] Candela PA and Holland HD. 1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Economic Geology , 81 :1–19. DOI:10.2113/gsecongeo.81.1.1
[] Candela PA. 1989. Calculation of magmatic fluid contributions to porphyry-type ore systems-predicting fluid inclusion chemistries. Geochemical Journal , 23 :295–305. DOI:10.2343/geochemj.23.295
[] Candela PA and Piccoli P. 2005. Magmatic processes in the development of porphyry-type ore systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JR (eds.). Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado, 25-37
[] Carroll MR and Rutherford MJ. 1985. Sulfide and sulfate saturation in hydrous silicate melts. Proc. 15th Lunar Planet. Sci. Conf. J. Geophys. Res, 90. C6: 1-12
[] Chen WP and Molnar P. 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. , 88 :4183–4214. DOI:10.1029/JB088iB05p04183
[] Cline JS and Bodnar RJ. 1992. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res. , 96 :8113–8126.
[] Cloos M. 2001. Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review , 43 :285–311. DOI:10.1080/00206810109465015
[] Cloos M. 2002. Bubbling magma chambers, cupolas and porphyry copper deposits. In: Ernst G (ed.). Frontiers in Geochemistry; Organic, Solution, and Ore Deposit Geochemistry, International Book Series, v. 6:191-217
[] Cooke DR, Wilson AJ and Davies AGS. 2004. Characteristics and genesis of porphyry copper-gold deposits: 24 AT Au Workshop. Codes Special Publication , 5 :17–34.
[] Core DP, Kesler SE and Essene EJ. 2006. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology , 34 :41–44. DOI:10.1130/G21813.1
[] Cox KG, Bell JD and Pankhurst RJ. 1979. The Interpretation of Igneous Rocks. George Allen and Unwin. London , 450 :432–445.
[] Cygan GL and Candela PA. 1995. Preliminary study of gold partitioning among pyrrhotite, pyrite, magnetite, and chalcopyrite in gold-saturated chloride solutions at 600 to 7008℃, 140MPa (1400bars). In: Thompson JFH. (ed.). Magmas, Fluids, and Ore Deposits Mineralogical Association of Canada Short Course, 23: 129-137
[] De´verche´re J, Petit C, Gileva N, Radzimiovitch N, Melnikova V and San'kov V. 2001. Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere. Geophysics Journal of Internation , 146 :714–730. DOI:10.1046/j.0956-540x.2001.1484.484.x
[] Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature , 347 :662–665. DOI:10.1038/347662a0
[] Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica , 18 :129–142.
[] Emmons WH. 1933. On the mechanism of the deposition of certain metalliferous lode systems associated with granitic batholiths. In: Ore deposits of the western States. New York, American Institute of Mining and Metallurgical Engineers, 327-349
[] Etheridge MA, Wall VJ, Cox SF and Vernon RH. 1984. High fluid pressure during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms. Journal of Geophysical Research, , B89 :4344–4358.
[] Ewart A, Bryan WB and Gill JB. 1973. Mineralogy and geochemistry of the younger volcanic islands of tonga, S. W. Pacific. Journal of Petrology , 14 :429–465. DOI:10.1093/petrology/14.3.429
[] Field CW. 1966. Sulfur isotope abundance data, Bingham district, Utah. Economic Geology , 61 :850–871. DOI:10.2113/gsecongeo.61.5.850
[] Fournier RO. 1967. The porphyry copper deposit exposed in the Liberty open-pit mine near Ely, Nevada. Part I. syngenetic formation. Economic Geology , 62 :57–81.
[] Fyfe WS, Price NJ and Thompson AB. 1978. Fluids in the Earth's Crust. Elsevier :1–383.
[] Gudmundsson A. 1990. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics , 176 :257–275. DOI:10.1016/0040-1951(90)90073-H
[] Guillou FL and Burov E. 2003. The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth and Planetary Science Letters , 214 :341–356. DOI:10.1016/S0012-821X(03)00366-2
[] Gustafson LB and Hunt JP. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology , 70 :857–912. DOI:10.2113/gsecongeo.70.5.857
[] Harris AC, Kamenetsky VS, White NC, Achterbergh E and Ryan CG. 2003. Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science , 302 :2109–2111. DOI:10.1126/science.1089927
[] Hayashi K and Ohmoto H. 1991. Solubility of gold in NaCl and H2S-bearing aqueous solutions at 250~350℃. Geochimica et Cosmochimica Acta , 55 :2111–2126. DOI:10.1016/0016-7037(91)90091-I
[] Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature , 370 :519–527. DOI:10.1038/370519a0
[] Hedenquist JW, Arribas AJ and Reynolds TJ. 1998. Evolution of an intrusion-centered hydrothermal system: Far South-east Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology , 93 :373–404. DOI:10.2113/gsecongeo.93.4.373
[] Heinrich CA, Driesner T, Stefánsson A and Seward TM. 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology , 32 :761–764. DOI:10.1130/G20629.1
[] Hemley JJ and Jones WR. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Economic Geology , 59 :538–569. DOI:10.2113/gsecongeo.59.4.538
[] Hemley JJ, Cygan GL, Fein JB, Robinson GR and D'Angelo WM. 1992. Hydrothermal ore-forming processes in the light of studies in rock buffered systems: I. Fe-Cu-Zn-Pb sulphide solubility relations. Economic Geology , 87 :1–22.
[] Hendry D, Chivas A, Reed S and Long J. 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization: 2 Ion-probe analysis of Cu contents of mafic minerals, Koloula igneous complex. Contributions to Mineralogy and Petrology , 78 :404–412.
[] Henley RW and McNabb A. 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology , 73 :1–20. DOI:10.2113/gsecongeo.73.1.1
[] Hildreth W. 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research , 86 (B11) :10153–10192. DOI:10.1029/JB086iB11p10153
[] Holliday JR, Wilson AJ, Blevin PL, Tedder IJ, Dunham PD and Pitzner M. 2002. Porphyry gold-copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism. Mineralium Deposita , 37 :100–116. DOI:10.1007/s00126-001-0233-8
[] Hou ZQ, Mo XX, Gao YF, Qu XM and Meng XJ. 2003. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in tibetan plateau and in northern Chile. Mineral Deposits , 22 (1) :1–12.
[] Hou ZQ. 2004. Porphyry Cu-Mo-Au deposits: Some new insights and advances. Earth Science Frontiers , 11 (1) :131–143.
[] Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters , 220 :139–155. DOI:10.1016/S0012-821X(04)00007-X
[] Hou ZQ, Pan XF, Yang ZM and Qu XM. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings. Geoscience , 21 (2) :332–351.
[] Hutton DHW, Dempster TJ, Brown PE and Becker SD. 1990. A new mechanism of granite emplacement: Intrusion in active shear zones. Nature , 343 :452–455. DOI:10.1038/343452a0
[] Hyndman DW.1985. Petrology of Igneous and Metamorphic Rocks. New York: McGraw-Hill Book Company : 786 -788.
[] Jackson J. 2002. Faulting, flow, and the strength of the continental lithosphere. International Geology Review , 44 :39–61. DOI:10.2747/0020-6814.44.1.39
[] Jenson ML. 1967. Sulfur isotopes and mineral genesis. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston, 143-165
[] Jugo PJ. 1997. Experimental study of the behavior of copper and gold in the system: Haplogranite-CuFeS-FeS-Au-H2O-HCl-O2-S2 at 850℃ and 100MPa. Master Degree Thesis. College Park, University of Maryland
[] Jugo PJ, Candela PA and Piccoli PM. 1999. Magmatic sulfides and Au∶Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 8508℃, 100MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos , 46 :573–589. DOI:10.1016/S0024-4937(98)00083-8
[] Kay SM, Kurtz A and Godoy E. 1995. Tertiary magmaticand tectonic framework of the El Teniente copper deposit, southwestern Chile (348S to 358S). Geological Society of America Abstracts with Programs , 27 :A409.
[] Keith JD, Whitney JA, Hattori K, et al. 1997. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. Journal of Petrology , 38 :1679–1690. DOI:10.1093/petroj/38.12.1679
[] Kerrich R, Goldfarb R, Groves D and Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins. Reviews in Economic Geology , 13 :501–551.
[] Kesler SE, Chryssoulis SL and Simon G. 2002. Gold in porphyry copper deposits: Its abundance and fate. Ore Geology Reviews , 21 :103–124. DOI:10.1016/S0169-1368(02)00084-7
[] Kirkham RV. 1972. Porphyry deposits. In: Blackadar RG (ed.). Report of Activities Part B. Geological Survey of Canada, 72-1b: 62-64
[] Leng CB, Zhang XC, Chen YJ, Wang SX, Gou TZ and Chen W. 2007. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks. Earth Science Frontiers , 14 (5) :199–210.
[] Lindgren W. 1937. Succession of minerals and temperatures of formation in ore deposits of magmatic affiliation. Transactions of the American Institute of Mining and Metal , 126 :356–376.
[] Lister JR and Kerr RC. 1991. Fluid-mechanical models of crack propagation and their application to magma transport in dikes. Journal of Geophysical Research , 96 :10049–10077. DOI:10.1029/91JB00600
[] Lowell JD and Guilbert JM. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology , 65 :373–408. DOI:10.2113/gsecongeo.65.4.373
[] Lowenstern JB. 1994. Dissolved volatile concentrations in an ore-forming magma. Geology , 22 :893–896. DOI:10.1130/0091-7613(1994)022<0893:DVCIAO>2.3.CO;2
[] Lowenstern JB and Sinclair WD. 1996. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences , 87 :291–303. DOI:10.1017/S0263593300006696
[] Lynton SJ, Candela PA and Piccoli PM. 1993. An experimental study of the partitioning of copper between pyrrhotite and a high silica rhyolitic melt. Economic Geology , 88 :901–915. DOI:10.2113/gsecongeo.88.4.901
[] Maggi A, Jackson JA, McKenzie D and Priestley K. 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology , 28 :495–498. DOI:10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2
[] Masterman G, Berry R, Cooke DR and Walshe JL. 2005. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Economic Geology , 100 :835–862. DOI:10.2113/gsecongeo.100.5.835
[] Mathur R, Ruiz J and Munizaga F. 2000. Relationship between copper tonnage of Chilean base-metal porphyry deposits and Os isotope ratios. Geology , 28 :555–558. DOI:10.1130/0091-7613(2000)28<555:RBCTOC>2.0.CO;2
[] McInnes BIA and Cameron EM. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters , 122 :125–141. DOI:10.1016/0012-821X(94)90055-8
[] Mitchell AHG. 1973. Metallogenic belts and angle of dip of benioff zones. Nature , 245 :49–52.
[] Morand VJ. 1992. Pluton emplacement in a strike-slip fault zone: The Doctors Flat Pluton, Victoria, Australia. Journal of Structural Geology , 14 :205–213. DOI:10.1016/0191-8141(92)90057-4
[] Muller D and Groves DI. 1993. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geology Reviews , 8 :383–406. DOI:10.1016/0169-1368(93)90035-W
[] Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology , 30 :915–918. DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
[] Nakashima Y. 1995. Transport model of buoyant metamorphic fluid by hydrofracturing in leaky rock. Journal of Metamorphic Geology , 13 :727–736. DOI:10.1111/jmg.1995.13.issue-6
[] Neumann H. 1948. On hydrothermal differentiation. Economic Geology , 48 :77.
[] Neves SP, Vauchez A, and Archanjo CJ. 1996. Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil. Tectonophysics , 262 :349–364. DOI:10.1016/0040-1951(96)00007-8
[] Nielsen RL. 1968. Hypogene texture and mineral zoning in a copper-bearing granodiorite porphyry stock, SantaRita, New Mexico. Economic Geology , 63 :37–50. DOI:10.2113/gsecongeo.63.1.37
[] Oyarzun R, Ma' rquez A, Lillo J, Lo' pez I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita , 36 :794–798. DOI:10.1007/s001260100205
[] Oyarzun R, Marquez A, Lillo J, et al. 2002. Reply to Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun R, Marquez A, Lillo J, Lopez I and Rivera S (Mineralium Deposita, 36: 794-798, 2001). Mineralium Deposita , 37 :795–799. DOI:10.1007/s00126-002-0286-3
[] Peacock SM. 1993. Large-scale hydration of the lithosphere above subducting slabs. Chemical Geology , 108 :49–59. DOI:10.1016/0009-2541(93)90317-C
[] Pokrovski GS, Roux J and Harrichoury JC. 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology , 33 :657–660. DOI:10.1130/G21475.1
[] Priestley K. Jackson J and McKenzie D. 2008. Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophysical Journal of Internation , 172 :345–362. DOI:10.1111/gji.2008.172.issue-1
[] Qu XM, Hou ZQ and Huang W. 2001. Is Gangdese porphyry copper belt the second Yulong copper belt?. Mineral Deposits , 20 (4) :355–366.
[] Rabbia OM, Hernandez LB, King RW and Lopez-Escobar L. 2002. Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun et al. (Mineralium Deposita , 36 :794–798.
[] Rajamani VA and Naldrett J. 1978. Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Economic Geology , 73 :82–93. DOI:10.2113/gsecongeo.73.1.82
[] Redmond PB, Einaudi MT, Inan EE, Landtwing MR and Heinrich CA. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology , 32 :217–220. DOI:10.1130/G19986.1
[] Richards JP. 2002. Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001). Mineralium Deposita, 37: 788-790
[] Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology , 98 :1515–1533. DOI:10.2113/gsecongeo.98.8.1515
[] Rose AW. 1970. Zonal relations of wallrock alteration and sulfide distribution at porphyry copper deposits. Economic Geology , 65 :920–936. DOI:10.2113/gsecongeo.65.8.920
[] Rui ZY, Zhang LS, Chen ZY, Wang LS, Liu YL and Wang YT. 2004. Approach on source rock or source region of porphyry copper deposits. Mineral Deposits , 20 (2) :29–38.
[] Rui ZY, Zhang HT, Chen RY, Wang ZL, Wang LS and Wang YT. 2006. An approach to some problems of porphyry copper deposits. Mineral Deposits , 25 (4) :491–501.
[] Rush PM and Seegers HJ. 1990. Tedi copper-gold deposits. Australasian Institute of Mining and Metallurgy Monograph , 14 :1747–1754.
[] Rutherford MJ, Joseph D and Devine. 1993. The May 18, 1980, Eruption of Mount St. Helens 3. Stability and chemistry of amphibole in the magma chamber. Journal of Geophysical Research , 93 (B10) :11949–11959.
[] Schwartz GM. 1947. Hydrothermal alteration in the “porphyry copper” deposits. Economic Geology , 42 :319–352. DOI:10.2113/gsecongeo.42.4.319
[] Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary :251–298.
[] Shames IH and Pitarresi JM. 2000. Introduction to Solid Mechanics. Third Edition. Prentice-Hall, Upper Saddle, 769
[] Sheppardr SMF, Nielsen R and Taylor HP. 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology , 64 :755–777. DOI:10.2113/gsecongeo.64.7.755
[] Sheppard SMF, Nielsen RL and Taylor HP. 1971. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Economic Geology , 66 :515–542. DOI:10.2113/gsecongeo.66.4.515
[] Shinohara H, Kazahaya K and Lowenstern JB. 1995. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology , 23 :1091–1094. DOI:10.1130/0091-7613(1995)023<1091:VTIACM>2.3.CO;2
[] Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology , 67 :184–197. DOI:10.2113/gsecongeo.67.2.184
[] Sillitoe RH. 1980. Are porphyry copper and Kuroko-type massive sulfide deposits incompatible. Geology , 8 :11–14. DOI:10.1130/0091-7613(1980)8<11:APCAKM>2.0.CO;2
[] Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences , 44 :373–388. DOI:10.1080/08120099708728318
[] Sillitoe RH. 2010. Porphyry copper systems. Economic Geology , 105 :3–41. DOI:10.2113/gsecongeo.105.1.3
[] Spence DA, Sharp PW and Turcotte DL. 1987. Buoyancy-driven crack propagation: A mechanism for magma migration. Journal of Fluid Mechanics , 174 :135–153. DOI:10.1017/S0022112087000077
[] Stimac JA and Hickmott D. 1995. Ore metal partitioning in intermediate-to-silicic magmas: PIXE results from natural mineral/melt assemblages. In: Clarke AH (ed.). Proceedings Volume of the 2nd Conference on Giant Ore Deposits. Kingston: Queen's University, 25-27: 197-235
[] Tang ZL, Yan HQ, Jiao JG and Li XH. 2006. New classification of magmatic sulfide deposits in China and ore-forming processes of small intrusive bodies. Mineral Deposits , 25 (1) :1–9.
[] Tatsumi Y. 1986. Chemical characteristics of fluid phase released from a subduction lithosphere and origin of arc magma: Evidence from high pressure experiments and natural rocks. Journal Volcano Geothermal Research , 29 :293–309. DOI:10.1016/0377-0273(86)90049-1
[] Taylor HP. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology , 69 :43–83.
[] Thie´blemont D, Stein G and Lescuyer JL. 1997. Gisements e'pithermaux et porphyriques: La connexion adakite. Acade'mie de Sciences Paris Comptes Rendus , 325 :103–109.
[] Ulrich T, Gunther D and Heinrich CA. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature , 399 :676–679. DOI:10.1038/21406
[] Uyeda S and Nishiwaki C. 1980. Stress field, metallogenesis and mode of subduction. In: Strangway DW (ed.). The Continental Crust and Its Mineral Deposits. Geol. Asso. Can. Spec., 20: 323-339
[] Vos IMA, Bierlein FP and Heithersay PS. 2007. A crucial role for slab break-off in the generation of major mineral deposits: Insights from central and eastern Australia. Mineralium Deposita , 42 :515–522. DOI:10.1007/s00126-007-0137-3
[] Wang Q, Xu JF, Zhao ZH, et al. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and constraint to geodynamics process. Science in China (Series D) , 46 :801–815. DOI:10.1007/BF02879524
[] Watanabe T, Masuyama T, Nagaoka K and Tahara T. 2002. Analog experiments on magma-filled cracks: Competition between external stresses and internal pressure. Earth Planets Space , 54 :1247–1261. DOI:10.1186/BF03352453
[] Westra G and Keith SB. 1981. Classification and genesis of Stockwork molybdenum deposit. Economic Geology , 76 :844–873. DOI:10.2113/gsecongeo.76.4.844
[] White DE. 1968. Environments of generation of some base-metal ore deposits. Economic Geology , 63 :301–335. DOI:10.2113/gsecongeo.63.4.301
[] Whitney JA. 1975. Vapour generation in a quartz monzonite magma: A synthetic model with application to porphyry copper deposits. Economic Geology , 70 :346–358. DOI:10.2113/gsecongeo.70.2.346
[] Williams TJ, Candela PA and Piccoli PM. 1995. The partitioning of copper between silicate melts and 2-phase aqueous fluids: An experimental investigation at 1kbar, 800℃ and 0.5kbar, 850℃. Contributions to Mineralogy and Petrology , 121 :388–399. DOI:10.1007/s004100050104
[] Xu XW, Cai XP, Song BC, Zhang BL, Ying HL, Xiao QB and Wang J. 2006. Petrologic, chronological and geochemistry characteristics and formation mechanism of alkaline porphyries in the Beiya gold district, western Yunnan. Acta Petrologica Sinica , 22 (3) :631–642.
[] Xu XW, Jiang N, Yang K, Zhang BL, Liang GH, Mao Q, Li JX, Du SJ, Ma YG, Zhang Y and Qin KZ. 2009. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China. Lithos , 113 :595–611. DOI:10.1016/j.lithos.2009.06.034
[] Xu XW, Mao Q, Qu X, Deng G, Wu Q, Zhang Y, Yan X and Dong LH. 2012a. High-temperature (>600℃) porphyry copper deposit: The sulfide-rich albite porphyry intrusions in Hersai porphyry copper deposit, East Junggar, China. Mineralium Deposita, in reviewing
[] Xu XW, Zhang BL, Liang GH and Qin KZ. 2012b. Zoning of mineralization in hypogene porphyry copper deposits: Insight from comb microfractures within quartz-chalcopyrite veins in the Hongshan porphyry Cu deposit, western Yunnan, SW China. Journal of Asian Earth Science, in reviewing
[] Yund RA and Kullerud G. 1966. Thermal stability of assemblages in Cu-Fe-S system. Journal of Petrology , 7 :454–488. DOI:10.1093/petrology/7.3.454
[] Zhang Q, Wang Y, Liu HT, Wang YL and Li ZT. 2003. On the space-time distribution and geodynamic environments of adakites in China. Annex: Controversies over differing opinions for adakites in China. Earth Science Frontiers , 10 (4) :385–400.
[] Zhao M. Langston CA, Nyblade AA and Owens TJ. 1997. Lower-crustal rifting in the Rukwa Graben, East Africa. Geophysical Journal of Internation , 129 :412–420. DOI:10.1111/gji.1997.129.issue-2
[] 侯增谦, 莫宣学, 高永丰, 曲晓明, 孟祥金.2003. 埃达克岩: 斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例. 矿床地质 , 22 (1) :1–12.
[] 侯增谦.2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘 , 11 (1) :131–143.
[] 侯增谦, 潘小菲, 杨志明, 曲晓明.2007. 初论大陆环境斑岩铜矿. 现代地质 , 21 (2) :332–351.
[] 冷成彪, 张兴春, 陈衍景, 王守旭, 苟体忠, 陈伟.2007. 中国斑岩铜矿与埃达克(质)岩关系探讨. 地学前缘 , 14 (5) :199–210.
[] 曲晓明, 侯增谦, 黄卫.2001. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带?. 矿床地质 , 20 (4) :355–366.
[] 芮宗瑶, 张立生, 陈振宇, 王龙生, 刘玉琳, 王义天.2004. 斑岩铜矿的源岩或源区探讨. 岩石学报 , 20 (2) :29–38.
[] 芮宗瑶, 张洪涛, 陈仁义, 王志良, 王龙生, 王义天.2006. 斑岩铜矿研究中若干问题探讨. 矿床地质 , 25 (4) :491–501.
[] 汤中立, 闫海卿, 焦建刚, 李小虎.2006. 中国岩浆硫化物矿床新分类与小岩体成矿作用. 矿床地质 , 25 (1) :1–9.
[] 徐兴旺, 蔡新平, 宋保昌, 张宝林, 应汉龙, 肖骑彬, 王杰.2006. 滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制. 岩石学报 , 22 (3) :631–642.
[] 张旗, 王焰, 刘红涛, 王元龙, 李之彤.2003. 中国埃达克岩的时空分布及其形成背景. 附:《国内关于埃达克岩的争论》. 地学前缘 , 10 (4) :385–400.